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Abstract—This article addresses near-field localization using
Reconfigurable Intelligent Surfaces (RIS) in 5G systems, where
Line-of-Sight (LOS) between the base station and the user is
obstructed. We propose a RIS phase optimization method based
on the minimization of the Cramér-Rao Lower Bound (CRLB).
This minimization itself is computationally costly, for which a
data-driven method is employed with remarkable computational
savings and positioning performance. The main contributions of
this work are: (1) the application of machine learning (ML) to
enhance CRLB minimization for RIS phase optimization; (2) an
overview on RIS phases preprocessing methods to enhance deep
neural networks training for the task; and (3) an end-to-end
simulation of the positioning task with the presented method,
showing a computational improvement without compromising
positioning accuracy.

I. INTRODUCTION

One of the key requirements for the interaction between
the digital and physical world is high-definition situational
awareness, which refers to the ability of a device to determine
its own location in a given environment. Indoor localization
and tracking technologies are therefore crucial to achieve such
a requirement [1].

The use of 5G signals yields to accuracy levels on the order
of 1 meter, through the use of wide bandwidths and high car-
rier frequencies. Moving beyond 5G, the trend is to operate at
much higher frequencies, benefiting from large available band-
widths and, therefore, achieving an even higher localization
accuracy. Nonetheless, transmissions at these elevated carrier
frequencies may encounter obstacles as objects obstruct the
Line-of-Sight (LoS) path between transmitters and receivers
[2]. The blockage of the LoS and the issues associated with
Received Signal Strength (RSS) localization methods [3], [4]
constitute two key challenges for the localization accuracy
improvement.

With these challenges in mind, the use of Reconfigurable
Intelligent Surfaces (RIS) can effectively assist the base station
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Fig. 1: Proposed architecture with the aid of a RIS in a
2D scenario where the LoS between the BS and UE is
blocked.

(BS) to accomplish the user equipment’s (UE) localization
task, overcoming the first of the aforementioned issues [5],
[6].

By introducing a RIS in our transmission framework, as
shown in Fig.1, the path loss between the UE and the BS can
be remarkably reduced. In addition, the RIS can modify the
impinging electromagnetic waves induced by the environment,
avoiding them to interfere with the transmitted signal [7].
Altogether, leads to a notable enhancement of the positioning
accuracy [8].

This article delves into near-field localization using a RIS
within 5G systems, focusing on scenarios where LoS commu-
nication between the BS and the UE is obstructed. [9] proposes
a framework for UE localization at the BS in near-field
scenario, obtaining RIS optimized phases by the derivation
of the CRLB. The main goal of this article is to replicate this
optimization using ML-based methods, in order to reduce its
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high computational cost.

The main contributions of this article are: (1) the application
of machine learning to enhance CRLB minimization for RIS
phase optimization; (2) an overview on RIS phases prepro-
cessing methods to enhance deep neural networks training for
the task; and (3) an end-to-end simulation of the positioning
task with the presented method.

The remainder of the paper is organized as follows. Section
II introduces the problem formulation and notation. Section III
presents the technical contribution of the article, the ML-based
RIS phase optimization. Section IV discusses the experiments
that validate the proposed methodology and Section V con-
cludes the paper with final remarks.

II. BACKGROUND
A. System Model

The architecture schema is presented in Fig.1. All com-
ponents are equipped with multiple-input multiple-output
(MIMO) uniform linear arrays (ULAs) with a number of
elements N2, N NM_for the BS, RIS and UE respectively
[10].

The system model can be expressed as,

Y=HX+Z (1)

where Y € CN”xM’ ig the received signal, X € CNM =M §g
the Positioning Reference Signal (PRS) composed by orthog-
onal column g)ilots having M° sequences with power P, and
7 € CN”*M" s an Additive White Gaussian Noise (AWGN)
of zero mean and variance 2. The matrix H € CN"*xN" jg
the channel matrix, which can be expressed as

H = H"oH™ 2)

where @ € CN™*N" jga diagonal matrix with elements © =
[€167%1, ..., Enpe?®Nr] with & and 6; being the magnitudes
and the RIS phases, respectively (we will assume the ideal case
magnitudes &; = 1); HP® € CV”*N" is the channel between
the BS and RIS; and H*M € CV "xN™ is the channel between
the RIS and UE. These channels are defined as follows:

HER = A(9P, 150 diag(pP) A" (057, aPR)  (3)

where A(¢BR, rBR) ¢ CN"*L"" diag(pBR) e CL""<L%"
and A(6BR dBR) ¢ CN"*L"" (with LBR and LEM being
the number of paths between the BS and the RIS, and between
the RIS and the UE respectively). The channel H?M can be
obtain analogously.

Given that a near-field scenario is considered, the elements
of the steering matrices A can be obtained using the Fres-
nel approximation of the spherical wavefront model [11] as
follows,

; q 2 q .49
at,l(a?; 8;1) — e](tw(al)""t 'Y((Xl »Sy )

_ w(af) = — 22 sin(af) 4
with q 4y _ w2 . 204
v(af s s)) = Xs7 COS (af)

where A is the wavelength, § is the distance between two
adjacent elements in the ULA. Notice that Eq. 4 is a general
expression that applies to each of the two channels. We
expressed it in a compact form where superindex g can be
either the BR or RM paths, a € {¢,0} and s € {r,d}.

More specifically, the parameters defining the BR channel
are such that g = BR, t =b where b€ B, B=[-B,..., B]
and B = (NBTA) And analogously for the RM channel.

The propagation gain of path 1 can be modeled as Finally,
pi is the propagation gain of path I, represented as,

c /2
q_
= <47r(rq+dq)fc> F ®)

where ¢ as the speed of light, f. is the carrier frequency and
F represents the fading coefficient [12].

B. Localization Algorithm

Given the system model defined in subsection II-A, the
localization algorithm is based on an iterative alternating
process between RIS phases and UE’s position.

From the received signal Y (dependant on the estimated
RIS phases ), the steering angles (¢] and 6}') and distances
(r{ and d}) can be estimated through Compressed Sensing
(CS) [13].

Subsequently, the optimized phases of 2 are determined
based on the chosen phase optimization method (see II-C).
Afterwards, with the updated RIS matrix, all parameters are
recomputed and the entire process is repeated until conver-
gence. Further details on this process are presented in [9].

C. SNR and CRLB-Based RIS Phase Optimization

The main objective of RIS phase optimization is to improve
the accuracy of the UE’s position estimation by minimizing
its average distortion with Euclidean distance measure [14]. In
other words, it aims to minimize the position’s mean square
error (MSE):

MSE(£.€) =E [(&™ —2M)?] + E [ - ™) (6

An approach to tackle this optimization is maximizing the
signal-to-noise ratio (SNR) by aligning the phases at the BS,
as done in [12]. As a result, a closed-form solution for the
phases can be obtained as:

—1 .
o :((QM +1)(2B + 1)LBRLRM) 3 {bw(¢BR)
b,m
n bz,y(quR’rABR) + rw(éBR) + TQ,Y(G“BR’ dBR) 7
+ rw(@TM) + 124 (M FEMY o (9RM)
+ m%(éRM,cZRM)}, vre(,...,N®)
An alternative method is to minimize the positioning CRLB,
assuming near-field scenario conditions. In comparison to

the aforementioned method, this approach offers a tighter
connection to the problem of minimizing the MSE [14].
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Hence, the objective is to find the RIS phases that provide

the minimum theoretically attainable value for the standard de-
viation of the positioning estimation (for unbiased estimators),
i.e.,
MSE(£,§) > (I ) ®)
where £ = [xM JyM ]T is the vector of unknown parame-
ters and J¢ denotes its associated Fisher Information Matrix
(FIM). Such a matrix can be computed from the FIM of the
parameters 1 = [dRM pBM GRM GRMIT denoted as J,).

o ot o

P
[Iolig = ¥(nim;) = 3R tr({T% an;

where SNR = G—PQ and IT = HERQHM X,
Using the transformation provided by this Jacobian matrix,
we can finally obtain J¢ as

Je=TJ,TT (10)

where [T]; ; = gZJ Hence, the final optimization problem is
defined as,

Q = argmin tr(ng) .
Q

(1)

See [9] for further details on the derivation of this expression.

III. ML-BASED RIS PHASE OPTIMIZATION

Computing the CRLB minimization is computationally ex-
pensive. Hence, in order to replicate this optimization process
relieving the computational burden, these optimal phases are
computed through a neural network. The model used is a
Multi-Layer Perceptron which is fed with the standardized
positions, and it outputs the corresponding N7 phases in the
[0, 2] range.!

To train the model, an extensive dataset of positions and
optimal phases has been computed, using the original approach
of minimizing the CRLB function.

A. Phase Distribution Smoothing

Recall that the dataset phases have been computed through
the minimization of the CRLB function. This optimization
process usually leads to local optima, which creates certain
noise on the phases distribution across the grid of positions.
Such a phenomena is illustrated in Fig. 2 for a single phase.
Hence, in order to ensure a smoother and more stable training
of our model we have introduced a smoothing process over the
distribution of each phase individually. In fact, this theoretical
reasoning is actually supported by empirical evidence as
results have proven in the next section.

Two potential smoothing processes have been studied:

e Uniform smoothing: application of a median filter with
a squared kernel over the distribution of each individual

'The model is a 5-layer MLP, with ReLU intermediate layers and Dropout
layers with value 0.1. The output layer of the MLP is a Sigmoid with a 27
product factor, in order to ensure outputs in the desired range. The model
was trained for 1000 epochs, and we used an Adam optimizer and the Cosine
Annealing scheduler. The initial learning rate value (I, = 0.001) and the
L2 regularization factor (I3 = 10~?) have been optimized using Bayesian
Optimization.

phase when taken as a grid according to their associated
positions.

o Conditional smoothing: similarly to the previous process,
apply a median filter over the distribution of phases.
However, in this case the resulting filtered phase value
will only be taken for those positions in which the
resulting value differs from more than a threshold k£ with
respect to its original value. The idea here is to correct
only those values that are clear outliers, and preserve the
details of the original phase distribution.

Both the kernel size (kernel_size= 3) and the threshold
value (k = 1) have been chosen based on a qualitative analysis
across the plots of each individual phase, seeking an optimal
trade-off between outlier removal and detail preservation.
Fig. 2 depicts an example of this process for a single phase.

Notice that, since we are working with modular data (an-
gles), distances between phases are always computed as the
shortest distance in both directions, i.e.,

91 — 92 = mln(|91 — 92|,27T — |01 — 92|) . (12)

IV. RESULTS

A. Training Results

As depicted in the previous section, this work defines 3
types of phase preprocessing methods before training the
MLP (no-preprocessing, uniform smoothing and conditional
smoothing). The quantitative comparison of the training results
for each kind of data is summarized in Table I. Notice that, no
matter whether the phases have been previously preprocessed,
to evaluate the prediction accuracy of each framework we will
always compare the predicted phases with the original non-
processed ones (given that these are theoretically the ones we
aim to resemble).

Preprocessing MAE (rad) RMSE (rad)
No smooth. 0.643 0.978
Uniform smooth. 0.505 0.765
Conditional smooth. 0.508 0.769

TABLE I. Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) between the original phases and
the predicted ones by the MLP trained with each prepro-
cessing method. Distances between phases are computed
according to Eq. 12.

In terms of qualitative analysis, Fig. 3 shows how discon-
tinuities in the original phase distribution worsen the MLP
predictions (MLP Prediction - Original Phases plot in Fig. 3).
For some close positions in the grid, we appear to have hard-
to-generalize phase changes (i.e. outliers) and so the MLP
proves to be unable to track these changes during training.
The result is an averaged prediction as shown in Fig. 3. Such
a result backs our original hypothesis motivating the use of
preprocessed phases for the training.
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Fig. 2: Distribution of the 7 phase over the grid of positions. (1) Original phases are the non-processed phase values for
each position according to the CRLB minimization, (2) Uniform Smoothing Phases are the uniformly smoothed phase
values, and (3) Conditional Smoothing Phases are the conditionally smoothed phase values.
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Fig. 3: Distribution of the 1% phase over the grid of
positions. (1) Original phases are the raw phases according
to the CRLB minimization, (2) MLP Prediction - Original
Phases are the phases predicted by the model trained with
the raw phases, (3) MLP Prediction - Uniform Smoothing
Phases are the phases predicted by the model trained with
the uniformly smoothed phases, and (4) MLP Prediction -
Uniform Smoothing Phases are the phases predicted by the
model trained with the conditionally smoothed phases.

B. Positioning Error

This subsection provides a quantitative analysis on the posi-
tion estimation accuracy, focusing on the comparison between
methods and their respective associated computational costs.
We will distinguish six different frameworks based on the RIS
phases optimization method used:

e Random phases: non-optimized (random) phases.

e Max. SNR method: phases optimized maximizing the

SNR (as proposed in [12]).
e Min. CRLB method: phases optimized minimizing the
CRLB (as proposed in [9]).

e MLP Original Phases: ML-based optimization using the

raw phases.

e MLP Uniform Smoothing: ML-based optimization using

uniform smoothing on the phases.

o MLP Conditional Smoothing: ML-based optimization us-

ing conditional smoothing on the phases.

The fixed parameters throughout the whole simulation are:
xB =0,0], xf = [5,5], xM =[9,2.5], NB =51, NM = 21,
NT = 40, f. = 28 GHz, u = 3 and M° = 64. In addition,
to obtain the transmitted SNR, thermal noise is considered
(02 = B{KT;, with B, = 10 MHz, K being the Boltzmann
constant and T} = 290 K).

Fig. 4 depicts a comparative analysis of the six methods in
terms of the evolution of the RMSE throughout the iterations
of the positioning algorithm defined in II-B. As expected, Ran-
dom Phases and Max. SNR method stand at a high magnitude
positioning error, on the order of 5 and 2 meters respectively.
In relation to the ML-based methods, these accomplish an
outstanding positioning accuracy comparable to the baseline
method (i.e. Min. CRLB). Especially, the conditional smooth-
ing preprocessing almost reaches this baseline error. See Table
IT for a more detailed view onto the respective positioning
errors.

RMSE

Iterations

—&— Random Phases
—&— ML-based uniform

Max. SNR method ML-based Original
ML-based conditioned —&— Min. CRLB method

Fig. 4: Evolution through iterations of the positioning
RMSE for the six optimization methods. Due to the
high variability on each repetition, 1000 Monte Carlo
simulations have been performed for each framework.
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Optimization method Positioning RMSE (m)

Random phases 5.551

Max. SNR method 1.992
MLP Original Phases 0.125
MLP Uniform Smoothing 0.116
MLP Conditional Smoothing 0.098
Min. CRLB method 0.096

TABLE II: Comparison of the positioning RMSE after
15 iterations for the simulations depicted in Fig. 4.

C. Computational Cost

Table III shows the computation time comparison between
the novel methods and the Min. CRLB method. Notice that,
since all the ML-based methods are essentially the same in
terms of computational cost (they are simply differently trained
MLPs), they are all grouped under ML-based methods. These
results show how the proposed framework clearly outperforms
the Min. CRLB method in terms of computation time. In fact,
the ML-based methods take only 1.5% of the total time spent
by the Min. CRLB method.

Notice that the cost of the dataset generation and the
MLP training are neglected, since this is a one-off process.
Hence, the only computation involved during the positioning
algorithm is a single network forward propagation for each
iteration.

Minimization method Time (s)
Min. CRLB method 3227
ML-based methods 49

TABLE III: Comparison between Min. CRLB method
and ML-based methods, on the time spent to compute
the optimized RIS phases. Times are obtained for a
15-iteration positioning algorithm and 50 Monte Carlo
simulations.

V. CONCLUSION

This article proposes an ML-based framework to replicate
optimal RIS phase computation according to CRLB min-
imization, in the context of 5G positioning systems in a
near-field scenario. The proposed method shows a substantial
computational gain with respect to the baseline method (i.e.
phase optimization through CRLB function minimization),
without compromising the positioning error. In addition, two
phase pre-processing methods have been introduced in order
to enhance the MLP training, showing a slight improvement
in both training and positioning error.

Although the gain in computational cost is notable, the
presented methods still have potential for improvement in
terms of achievable positioning accuracy. One of the main
sources of this gap comes from the stochasticity associated
to the CRLB function minimization during the computation
of the dataset phases. Hence, one of the key areas for fur-
ther enhancement would be the development of better pre-

processing methods, which can serve as additional refinements
to the CRLB-optimized phases.
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