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Abstract—This article addresses near-field localization using
Reconfigurable Intelligent Surfaces (RIS) in 5G systems, where
Line-of-Sight (LOS) between the base station and the user is
obstructed. We propose a RIS phase optimization method based
on the minimization of the Cramér-Rao Lower Bound (CRLB) for
position estimation. The main contributions of the article are: (1)
the derivation of the CRLB to optimize the RIS configuration;
and (2) the application of the mentioned framework in near-
field considering reflective RIS. The proposed method is validated
with simulations, showing an accuracy improvement of RIS phase
optimization with respect to the state-of-the-art methods.

I. INTRODUCTION

The interaction between the digital and the physical world
is becoming increasingly important in the context of telecom-
munications, as more and more devices are being developed
to bridge the gap between these two domains. One of the key
requirements for this interaction is high-definition situational
awareness, which refers to the ability of a device to determine
its own location in a given environment.

With 4G systems, a location accuracy of the order of 10
meters can be achieved [!]. However, with the use of 5G
signals, a location accuracy of 1 meter can be achieved due
to the use of larger bandwidths and higher carrier frequen-
cies. Beyond 5G systems, the trend is to operate at much
higher frequencies, benefit from large available bandwidths
and, therefore, achieve an even higher localization accuracy.
Nevertheless, transmissions at high carrier frequencies imply
the appearance of obstructions due to objects blocking the
Line-of-Sight (LoS) path between the transmitter and the
receiver. [2] The blockage of the LoS and the issues associated
with the Received Signal Strength (RSS) localization method
[3] [4] constitute two key challenges for the localization
accuracy improvement.

With these challenges in mind, the use of Reconfigurable
Intelligent Surfaces (RIS) can effectively assist the base sta-
tion (BS) with the user equipment’s (UE) localization task,
overcoming the first of the aforementioned issues [5] [0]. By
introducing a RIS in our transmission framework, the path
loss between the UE and the BS can be importantly reduced,
as shown in Figure 1. In addition, the RIS can modify the
impinging electromagnetic waves induced by the environment,
avoiding them to interfere with the transmitted signal [7] [8].

979-8-3503-6224-4/24/$31.00 ©2024 IEEE

Montse N4jar
Department of Signal Theory
and Communications
Universitat Politecnica de Catalunya
Barcelona, Spain
Email: montse.najar @upc.edu

Pau Closas
Department of Electrical
and Computer Engineering

Northeastern University
Boston, Massachusetts
Email: closas@ece.neu.edu

BR
0

SCATTER SCATTER

PR M

BR JBR
ritldy

RM
6

oM, y™)
USER EQUIPMENT
o )
B, y®)
BASE STATION
®9)

Fig. 1: Proposed architecture with the aid of a RIS where the LoS
between the BS and UE is blocked. p® = [27,4"] and p® =
[, y®] are the known locations of the BS and RIS respectively,
p™ = [z, yM] is the unknown and to-be-estimated UE position.

BR EM are the distances between (the BS and the scatters)

r and r
and (the RIS and the scatters) respectively and dZ% and d® are the

distances between (the scatters and the RIS) and (the scatters and the
UE) respectively. ¢? and 07 are the angles of departure and angles
of arrival of the different paths, being ¢ the BR or RM path.

Therefore, RIS has become a promising technology, and it
has been applied in various fields. For example, [9] proposes
a RIS-aided hierarchical codebooks method for mmWave lo-
calization system. [10] proposed an architecture for joint com-
munication and UE localization and orientation estimation in
a RIS-assisted environment. [11] investigates the influence of
different beamforming strategies for localization performance
when RIS acting as Lens and proposes the corresponding
maximum likelihood (ML) estimators.

Several contributions have been focusing on exploiting the
problem of localizing user equipment (UE) using RIS. The
authors in [12] studied the limits of mmWave MIMO position-
ing with the aid of a single RIS with a uniform linear array
(ULA) for a two-dimensional positioning system. This work
was extended to a three-dimensional scenario with a planar
RIS in [13]. Furthermore, various articles studied different
RIS phase design in order to improve the localization accuracy
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[14], [15].

This article develops on near-field localization using RIS,
in 5G systems where LoS between the BS and the UE is
obstructed. The main goal is to enhance the estimation of
the UE position with respect to the BS, through the selection
of convenient RIS phases. We propose a phase optimization
method (for the computation of these RIS phases) based on
the minimization of the Cramér-Rao Lower Bound (CRLB) of
the UE positioning estimation.

The authors in [15] propose a framework to localize a UE
in a near-field scenario, using a RIS system as well. However,
their computation of the optimal RIS phases is based on the
SNR maximization at the BS. This alternative method, which
we will refer to as Max. SNR method, will work as our main
baseline for performance comparison.

The main contributions of this article are: 1) The derivation
of the CRLB to optimize the RIS configuration; 2) The
application of the mentioned framework in near-field sce-
narios considering reflective RIS; and 3) a simulation-based
experimental analysis showing that the proposed RIS phase
optimization approach outperforms state-of-the-art solutions.

The remainder of the paper is organized as follows. Sec-
tion II-A introduces the problem formulation, notation, and
the employed localization algorithm. Section III presents the
technical contribution of the article, deriving the CRLB of
interest and comparing it to the alternative solution where the
SNR is maximized. Section IV discusses the experiments that
validate the proposed methodology and Section V conclude
the paper with final remarks.

II. BACKGROUND

This section provides a description of the system model
and a formulation of the near-field 5G positioning problem.
Additionally, a subsection describes the localization algorithm
used in combination with the proposed RIS phase optimization
method.

A. System Model

The architecture schema is presented in Figure 1. All
components are equipped with multiple-input multiple-output
(MIMO) uniform linear arrays (ULAs) with a number of
elements N2, N, NM _for the BS, RIS and UE respectively.
[16] The system model can be expressed as,

Y=HX+Z (1)

where Y € CN”xM° is the received signal, X € CNM =M §g
the Positioning Reference Signal (PRS) composed by orthog-
onal column Eilots having M° sequences with power P, and
7 € CN?xM" is an Additive White Gaussian Noise (AWGN)
of zero mean and variance o2. The matrix H € CN"*N" jg

the channel matrix, which can be expressed as
H = HPRQHEM )

where © € (CNRf<NR is a diagonal matrix with elements © =
[€167%1, .. Enpe’¥r] with & and 6; being the amplitudes

and the RIS phases respectively (we will assume amplitudes
¢ = 1), HPF € CN”*N" ig the channel between the BS and
RIS and HFM ¢ CN"*N" g the channel between the RIS
and UE. These channels are defined as follows:

HPR = AR, PR diag (o7 F) A" (67, dPF)  (3)
where A (¢Pf rBE) ¢ CNZxLP®, diag(pBF) € CLP"xL?®
and A(0BR dBR) e CN"*L"" (with LBR and LM being
the number of paths between the BS and the RIS, and between

the RIS and the UE respectively). The channel H*M can be
obtain analogously as.

HRI\/I _ A((,bRM, TRM)diag(pRM)AH(QRM, dRI\/I) (4)
with similar matrix definitions.

Given that a near-field scenario is considered, the elements
of the steering matrices A can be obtained using the Fres-

nel approximation of the spherical wavefront model [17] as
follows,
at,l(a?, S?) = ej(tw(a?)-i-tz’y(a?,s?))
ith w(af) = —@ sin(ay) (5)
wi Y
v(of, ) = For cos®(af)

where A is the wavelength, § is the distance between two
adjacent elements in the ULA. Notice that Equation 5 is a
general expression that applies to each of the two channels.
We expressed it in a compact form where superindex g can
be either the BR or RM paths, « € {¢,0} and s € {r,d}.

More specifically, the parameters defining the BR channel
are such that ¢ = BR, t = b where b € B, B = [—B, .., B]
and B = (NBT_I) On the other hand, for the RM channel,
the parameters are: ¢ = RM and t = m where m € M s
M = [-M,..,M] and M = (1\7“27—1)’ with [ denoting the
corresponding path.

Finally, the propagation gain of each path p? is represented

as,
. c w/2
pl= <47T(rq+dq)fc> F (6)

where ¢ as the speed of light, f. is the carrier frequency and
F represents the fading coefficient [15].

B. Localization Algorithm

Building upon the signal model outlined in subsection II-A,
this section introduces the algorithm to estimate the position
of the UE. To do so, we first estimate the geometry-related
parameters, including steering angles (¢] and ;') and distances
(r? and ) derived from the received signal. This estimation
process can be achieved, for instance, through Compressed
Sensing (CS) [18] techniques.

Given the near-field nature of our scenario, applying CS
directly over Equation 1 results in a high computational
complexity problem, due to having to optimize over a grid of
angles and distances.! For the sake of simplicity, [15] proposes

'Notice that, if far-field was considered instead, the gridding would only
be performed over angles.
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to exploit the spatial correlation in the channel matrix H to
perform this gridding. To do so, matrix V is defined as a
proper selection of elements from the covariance matrix of H

[19]:

Ub,m =E {hb,mhp,n*}

N - (7
VvmeM,beB, p=—-b n=-m

Multiple sparse estimation techniques can be used to estimate
angles and distances. In this work, Orthogonal Matching
Pursuit (OMP) has been considered as a recovery algorithm
[20]. The remainder of the subsection details the four main
steps required by the localization algorithm:

1) Estimation of ¢B%: V can be written as

V =S, (¢PF)C, (8)

where V € CB*M 'S, € CB*N and C; € CV*M 4 is an
LBR_sparse matrix>.
The gridded matrix S; € CP*VN is defined as s, =

- BR . . . . .
e27b«(@) which is basically a combination of N atoms each
associated with an angle ¢p5f = 2”"7\?7_(11\“1) (where n is the

grid counter and N is the grid size).

Applying the OMP recovery algorithm one can estimate
(ﬁB r [21] by finding the indices of the non-zero rows over
C; (recall it is LPR-sparse).

2) Estimation of ARM. In this case, we consider

V7= 8,(6")Cy )
where Cy € CV*B (Cy is LEM _sparse as well). Analogously,
6BM can be estimated constructing the gridded measurement
matrix Sp € CM*¥ with elements s, , = — e~ 2imw(0;M) and
selecting the indices of the non-zero rows from C,, as done
in subsection II-B1.

3) Estimation of r®% and d"*M : To estimate the distance

R the following relation is employed,

Y = A(97F,rBR)Cy (10)
where C3 € CNV*M and A(QASBR rBR) is the gridded matrix
over the estimated angle (;SBR and the distance vector rBE,
which is upper bounded by the Fraunhofer distance dp = 2? ’
[22] Analogously, d®M can be obtained from

Y7 = XTAGFM dBM)C, (11)

where C4 € CN*B,

4) Positioning: The position of the BS has been considered
as the reference frame and, from the estimated parameters, it
is possible to obtain the UE location as

‘,%]\4 _ (E 4 7,,R]\/I Sll’l(g?)lR]M)

M cos(pFM) —

dItM sin(9FM)

. (12)
dRM cos(@lRM)

g =yt il

2An L-sparse matrix is such that it only contains L non-zero rows.

III. CRLB-BASED RIS PHASE OPTIMIZATION

The objective of this article is to improve the accuracy of the
user’s position estimation by minimizing its average distortion
with Euclidean distance measure [10], that is to minimize the
mean square error (MSE)

MSE(£,€) = E [ — 2"’ ] + E [(y™ —9™)?]  (13)
where ¢ = [z, yM] " is the vector of the unknown parame-
ters.

A. Maximization of the SNR

One way to optimize system performance is by maximizing
the signal-to-noise ratio (SNR), which has a significant impact
on minimizing the MSE. To do so, various methods can be
used, one of which involves aligning the phases at the BS, as
presented in [15]. As a result, a closed-form solution for the
phases can be obtained as:

0; =((2M + 1)(2B + 1)LBRLF"’M)71 > (6B R)

bm
4 B2 (GBR, FBRY 4 (6BR) 4+ r2~(0BR dBR) (14)
+ rw(QASRM) + r%(q@RM, FRMY mw(éRM)
+ m2y(BRM CZRM)}, vre(l,...,N®)

B. Minimization of the CRLB

In this work we propose an alternative phase optimization
method based on the minimization of the positioning CRLB
in a near-field scenario that takes into account the presence
of a RIS channel. In comparison to the aforementioned SNR
method, this approach offers a tighter connection to the prob-
lem of minimizing the MSE [10]. In our case, the objective is
to find the RIS phases that provide the minimum theoretically
attainable value for the standard deviation of the positioning
estimation (for unbiased estimators), i.e.

MSE(¢, €) > (I ") (15)
where J¢ denotes their Fisher Information Matrix (FIM).

We first compute the FIM of the parameters 1 =
[aBfM pRM gRM gRMIT " denoted as J,), where the estima-
tion of 17 can be interpreted as ) = n+w, with w ~ N (0, X)
as a complex normal estimation error of zero mean and
variance 3. In this work 7} has been obtained using CS
techniques, e.g. orthogonal matching pursuit as discussed in
subsection II-B.

For the sake of simplicity, from this point on we will not
be considering scatters, and our framework will only take into
account the direct path from the BS to the RIS and from the
RIS to the UE. Hence, M = giM @RM — 7 4 ¢RM and
our estimated position becomes,

M _ ‘R
M — R +1" QAS ) (16)
o™

M gin(

g M

=y M cos(
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We aim to calculate the CRLB for the vector €. Therefore,
we first calculate the FIM of 7 and then perform a transfor-
mation for &:

P oIt o11
[Tl = Y(ni,ms) = ;R {tr( o, 5917j>} 17)

where, SNR = % and

II = HBFQHEM X (18)

The detailed derivatives of II with respect to the four
elements in 7:

RM
agg\/j :HBRQA(¢RJ\J7 ,,,RJW) [gZRM AH(&RJ\/I7 dR]\/I)"—
RM aAH(QRJW, dRJ\l)
9dRM }X
(19)
oII BR aA(¢RMaTRM) RM
grmr = B[ =
RM ,.RM ap"M HgRM jRM
A(™ ) o | AT (67N, )X
(20)
RM ,.RM
(21)
oI BR RM ~RM~ RM a‘AH(eRJW7 dRJ\l)

(22)
Since all the derivatives are over A (aft™ s®M) and pBM |
we can write compactly the derivatives over each component

as

dap (g, s T 2wbo b2mé? |
% =j|- 3 cos(ay)— s, s1n(2ozl)]ab,l(al,sl)
(23)
Oay (o, s mb%5%cos?(a
bl(asl l) — _j ASZ ( l)ab’l(al,sl) (24)
Ip(si,di) pct/? 25)
Osi urlqu/2 ful2(s) + dy) "5

To transform J,, into J¢, we compute the Jacobian matrix
T, where [T}; ; = gg?.
J
Using the transformation provided by this Jacobian matrix,

we can finally obtain the FIM for the £ vector as

Je=TJ,TT (26)
where we notice the dependence with the RIS phases through
matrix 2. This enables the formulation of an optimization
problem to obtain the optimal phases by minimizing the trace
of the inverse of the FIM for the UE position

Q2 = argmin tr(ng)
Q ‘

27)

C. Iterative estimation

The UE position estimation involves an iterative process
outlined in the algorithm below. Initially, random phases are
considered, and through the application of the OMP algorithm,
we systematically calculate the geometric parameters. Sub-
sequently, the optimized phases of 2 are determined based
on the chosen phase optimization method (either Max. SNR
phases method or Min. CRLB phases method). Following this,
with the updated RIS matrix, all parameters are recomputed,
and the entire process is repeated until convergence.

Algorithm 1 LOCALIZATION ALGORITHM

Require: H, X, and maximum algorithm iterations K
1: Draw random phases (2.
2: fori=1:K do
3: Obtain V using Equation 7 and compute V#
Build S, using the required angles
Recover C, using OMP and obtain 95
Get ¢*M using (OFM = 7 4 HRM)
Build the measurement matrix from Equation 11 using
the estimated angle
8: Recover C,4 using OMP and get
9: Compute 2 according to Equation 27.
10: end for
11: Obtain UE position using Equation 16.

Nk

J RM

IV. RESULTS

This section provides an analysis on the accuracy of the UE
position estimation, focusing on its convergence throughout
iterations and, its relation with the transmission SNR and the
number of RIS elements (N 7).

Specifically, we will distinguish three cases based on the
RIS phases optimization method used: non-optimized (ran-
dom) phases (Random phases), optimized phases maximizing
the SNR (Max. SNR phases method), and optimized phases
minimizing the CRLB (Min. CRLB phases method). The fixed
parameters are: 8 = [0,0], 2 = [5,5], M = [10,0.5],
NB =51, NM =21, f. = 28 GHz, 1 = 3 and M° = 64.
In addition, to obtain the transmitted SNR, thermal noise is
considered (02 = B, KT}, with B, = 10 MHz, K being the
Boltzmann constant and 7}, = 290 K).

A. Iterative process (RMSE and SNR)

This subsection describes the empirical behaviour of the
RMSE and SNR throughout iterations, for each of the afore-
mentioned methods?.

On the one hand, Figure 2 depicts a comparative analysis
on the evolution of the RMSE given a fixed number of
RIS elements (N® = 40). As expected, the use of non-
optimized phases results in a high positioning error (on the
order of almost 5 meters), coupled with a non-convergent
behavior. In contrast, phases optimized maximizing the SNR

3Notice that Random Phases method employs randomly-generated phases,
independently at each iteration.
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Fig. 2: Evolution of the RMSE throughout itera-
tions (with NE = 40 and SNR = 20dB) for the
three methods.
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Fig. 4: CRLB as a function of the SNR for different N
values.) for the three methods.

show higher convergence, achieving in this case an error
magnitude of 2 meters approximately. However, the proposed
optimization method (Min. CRLB phases method) has shown a
clear efficacy improvement, with a rapid convergence as well
and a substantially higher positioning accuracy comparable to
the theoretical CRLB.

On the other hand, given this same scenario, Figure 3
explores the behaviour of the SNR. As the number of iterations
increases, there is a corresponding rise in SNR for both
methods as expected. Nonetheless, the received SNR achieved
by the proposed method exhibits a faster increase, reaching
higher values in comparison to the Max. SNR phases method.

B. Impact of the RIS number of elements

Theoretically, an increase on the number of reflecting ele-
ments in the RIS contributes to enhancing the resolution and,
consequently, the positioning accuracy. Figure 4 illustrates
how increasing the number of RIS elements results in a lower
theoretical CRLB, throughout different SNR values.

This relation between RIS elements and RMSE can be
empirically validated, for both iterative methods, as shown in

—&— Min. CRLB phases method
—e&— Max. SNR phases method

1 2 3 4 5 6 7 8 9 10
Iterations

Fig. 3: Evolution of the SNR throughout iterations
(with N¥ = 40 and SNR = 20dB) for the three
methods.

Figure 5. However, this behaviour persists only until N % = 40,
beyond which the RMSE stabilizes *.

Notice that the CRLB is inversely proportional to the
number of RIS elements. Hence, this observation implies that
the RMSE deviates further from the theoretical bound as N
increases.

Moreover, Figure 5 leads to a further result. In comparison
to Max. SNR phases method, obtaining RIS phases through
the proposed method is particularly more efficient when the
number of RIS elements is increased, showing a significantly
lower RMSE value. However, the difference stabilizes after
the aforementioned N = 40.

C. Impact of the SNR

Examining now the relation between the SNR and the
CRLB, Figure 4 justifies a theoretical relationship of inverse
proportionality between the CRLB and the SNR, holding
consistently across different dimensions of the RIS.

In Figure 6, the influence of SNR on RMSE is presented
for the two distinct methods. Notably, employing the proposed
method yields a substantial reduction in RMSE as SNR in-
creases, converging towards the theoretical bound. In contrast,
utilizing the methodology introduced in [I5], results in a
difference of one order of magnitude between RMSE and the
CRLB even for high SNR.

V. CONCLUSION

In this work, we have developed a RIS phase optimization
method based on the minimization of the Cramér-Rao Lower
Bound, for 5G systems in a near-field scenario.

The proposed method has shown an improvement with
respect to our baseline (i.e. phase optimization through SNR
maximization), in terms of positioning accuracy. This outper-
formance has proven to be robust to the variation of some
key system parameters (RIS size N* and transmission SNR).
In addition, we have achieved positioning accuracy values
comparable to the theoretical CRLB.

4This effect could be attributed to the specific resolution parameters that
have been applied to the OMP recovery method.

Authorized licensed use limited to: Northeastern University. Downloaded on March 16,2025 at 16:50:23 UTC from IEEE Xplore. Restrictions apply.



T T T
—e— Min. CRLB phases method
—&— Max. SNR phases method

10 2‘0 30 40 5‘0 60 70 8(‘)
NR

Fig. 5: RMSE as a function of the RIS size for

the two studied methods with SNR = 20.

These results definitely have room for improvement, spe-
cially in terms of computational cost. Hence, further methods
could be explored to speed up the minimization process.
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