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Abstract— Nonlinear model-predictive control has recently
shown its practicability in robotics. However it remains limited
in contact interaction tasks due to its inability to leverage
sensed efforts. In this work, we propose a novel model-predictive
control approach that incorporates direct feedback from force
sensors while circumventing explicit modeling of the contact
force evolution. Our approach is based on the online estimation
of the discrepancy between the force predicted by the dynamics
model and force measurements, combined with high-frequency
nonlinear model-predictive control. We report an experimental
validation on a torque-controlled manipulator in challenging
tasks for which accurate force tracking is necessary. We show
that a simple reformulation of the optimal control problem
combined with standard estimation tools enables to achieve
state-of-the-art performance in force control while preserving
the benefits of model-predictive control, thereby outperforming
traditional force control techniques. This work paves the way
toward a more systematic integration of force sensors in model
predictive control.

I. INTRODUCTION
A. Motivation

Many tasks require accurate control of contact forces
exerted on the environment: polishing, grinding, grasping,
etc. This skill, trivial to humans, remains beyond most robot’s
abilities despite continuous progress in robotics research over
the past decades. While Model Predictive Control (MPC)
affords the online synthesis of complex motions, it remains
fundamentally limited in its ability to control physical in-
teraction. As a matter of fact, although force sensors have
been used since the early days of robotics [1], they remain
notably absent from modern control techniques relying on
model-based optimization.

This is partly because predicting the evolution of contact
forces is challenging in general and involves sophisticated
models [2] that are too specific or impractical for real-time
applications. Hence, the contact models used in practice for
optimization-based control are kept simple for algorithmic
convenience [3]. However, these simplifications hinder the
ability to derive meaningful control policies in contact with
explicit force feedback. To this day, the predictive feedback
control of contact forces remains an open problem.

In this work, we address this issue and show that standard
estimation tools [4] together with a reformulation of the
optimal control problem can provide a simple yet effective
framework to achieve force-output-feedback MPC.
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B. Related work

Force control techniques are classically divided into direct
force control and indirect force control [5]. A full introduc-
tion is out of the scope, so we only provide here a brief
overview and refer the reader to the concise introductory
review on active compliant control proposed in [6].

Direct methods attempt to regulate the force explicitly us-
ing measurement feedback, typically in an integral controller
- which is historically considered the best basic strategy for
force tracking [7]. It can be combined with motion feedback
in complementary task directions [8], or in parallel [9]. While
the use of explicit force feedback enables high accuracy
tracking, the artificial decoupling of force and motion tasks
hides potential conflicts [10], [11] or phenomena such as
contact friction [12] and exchange of mechanical work [13].

On the other hand, indirect methods, such as impedance
control [14] or admittance control [15], [16], aim at reg-
ulating the dynamic relationship between force and motion.
While this allows to generate stable and compliant contact in-
teractions, such techniques are mainly limited by their force
tracking capability: since the force is controlled indirectly
through motion regulation, the tracking performance depends
on a priori unknown environment parameters [17]-[20].

More recently, MPC has shown its ability to accommodate
conflicting objectives through constrained nonlinear opti-
mization [21]. Much research has focused on introducing
MPC into direct [22], [23] and indirect [24]-[28] force
control methods, mainly motivated by its ability to satisfy
constraints. In contrast to [22], [23], [26], [28], [29], the
proposed approach does not require a contact force dynam-
ics model, which greatly simplifies the optimization. Un-
like [24], [25], [27], we use a force sensor to achieve explicit
force tracking rather than impedance/admittance regulation.

Estimation can also be used to improve performance in
force tasks. In [30], external forces are estimated with a
centroidal model. In [31], a state-dependent force correction
model is adapted online. Closer to our work, [32] proposed
an active Kalman observer in MPC to reject unmodeled
disturbances at the input level, which can be viewed as a
form of model-reference (direct) adaptive control. However,
those lines of work do not consider the full dynamics model.

C. Contributions

In this paper, we propose a novel MPC formulation that al-
lows to exploit direct feedback from force sensors. We show
that simple contact models and standard estimation tools
allow to incorporate force feedback in MPC and to achieve
state-of-the-art performance. We claim that force feedback
in MPC is not as challenging as it seems and that it solves
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many issues: it circumvents tedious modeling of complex
phenomena (contact, friction, etc.), boosts performance of
classical MPC in contact tasks, and does not conflict with
optimization contrary to traditional force control methods.
We propose to use force measurements to estimate online
the mismatch between the robot’s dynamics model and
measurements. This mismatch is used to correct directly the
predictive model or the control objective. This idea resembles
that of indirect adaptive control [33], where a model of the
plant is identified online to adapt the controller’s parameters.
Our approach allows high-quality force tracking accuracy in
challenging interaction tasks. Our main contributions are:

« anew framework affording direct force feedback control
inside nonlinear MPC based on online estimation and
feedback linearization

e a systematic comparative experimental study of our
force feedback MPC against traditional techniques.

In particular, we demonstrate that the proposed approach
outperforms integral control: it benefits from the same force
tracking capability without impeding the benefits of MPC.
In particular, in contrast to integral control, our approach
maintains or improves the MPC running cost performance.
It has also the advantage of being conceptually simple and
cheap to implement with existing tools and software.

II. BACKGROUND

In this section, we recall the classical MPC formulation
for torque-controlled robots under rigid contacts, and point
out its inherent inability to provide force-feedback policies.

A. Classical model-predictive control

MPC solves online the Optimal Control Problem (OCP)

) T
i [ G0 0d @@ @)
(1) = Flalt),u(®)

where x(0) = 2™ is the initial (measured) state, f the
dynamics model, and ¢, {7 the running and terminal costs.
Note that hard constraints on the state and control can
be added, as soft penalties or hard constraints - which
may be more challenging for real-time applications. This
OCP is transcripted into a non-linear program, i.e. the cost
and dynamics are discretized using an Euler discretization
scheme. This program is solved online at each control cycle.
For the remainder, and without limitation, we assume that
the robot is fully actuated with n joints, the state vector
x = (q,4) € R®" includes the joint positions and velocities
and the control vector v = 7 € R" includes the joint torques.

s.t. &

B. Rigid contact model

In optimization-based control, it is convenient to assume
that contacts between the robot and the environment are
rigid, i.e., pure kinematic constraints that can be resolved
at the dynamics level. The dynamics of a robot in contact
is given by the following constrained dynamical system

corresponding to the KKT conditions of Gauss’ principle
of least constraint [34]

J(q) 0 —F —a0(q; )
where M(q) € R™ ™ is the generalized inertia matrix,
J(g) € R™*™ the contact Jacobian, F' € R" the contact
force, b(q,¢) € R™ the nonlinear effects of Coriolis, cen-
trifugal and gravity forces, and ag(q,¢) € R™ the contact
acceleration drift. For clarity, the dynamics f in (1), is in fact

the solution map of system (2), ie. f : (¢,¢,7) — (4, F).
The dependencies in ¢, ¢ will be dropped in the remainder.

C. The challenge of force feedback

While the rigid contact model conveniently fits the MPC
framework, it inherently prevents force feedback. The contact
force F' corresponds to the Lagrange multiplier of the contact
constraint, namely J§ + ag = 0 (second row of the system
(2)) [35]. As such, it cannot be controlled in a feedback
sense: once z = (¢,¢) and F are measured, u = T is
already completely determined by (2). Hence, u cannot be
optimized as a function of F' without creating an algebraic
loop. This issue is a typical pathology from control systems
with non-zero input-output feedthrough and can be broken
by introducing delay [36]. This point was discussed and
addressed in our previous work [29], where actuation was
modeled as a low-pass filter, and the joint torques were
treated as part of an augmented state. In contrast, we propose
in this paper to break this coupling thanks to the online
estimation without augmenting the state of the MPC.

III. METHOD

This section presents a new approach using estimation
to leverage force sensor feedback in MPC. It includes an
estimator, a reformulation of the MPC problem to include
force feedback in the MPC model, and a feedback-linearizing
compensation term for unmodeled force directions.

A. Estimation

As explained previously, it is unclear how to achieve
force feedback under the rigid contact assumption without
introducing delays or more complex contact models. We
show here that estimation is a simple way to circumvent this
issue by keeping the rigid contact assumption and correcting
the model. Indeed, due to numerous model inaccuracies, the
force F' predicted by (2) rarely matches the force measure-
ment. Hence a natural idea is to keep track of this mismatch
by estimating online the offset between the model and the
measurement with standard Kalman filtering [4].

The idea of estimating an offset error to improve the
closed-loop performance of the controller is standard in
estimation (e.g., [30]). We show that a disturbance A in
the dynamics can incorporate rich force sensor feedback
information in the MPC. We consider a model of the form:

Mi+b=7+J"F+ M(A),
Jq: —Q.

(3a)
(3b)
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Here, M models how A offsets the dynamics. While the
mismatch can be modeled in many ways, we assume that
M is linear. Specifically, we consider two different models:

« Torque offset (in joint space) : M(A7) = At

« Force offset (in task space) : M(AF) = JTAF
This offset is meant to correct the model mismatch due to
inaccurate modeling of, e.g., the dynamics, contact model,
external disturbance, etc. The idea is to estimate the offset
online, given raw measurement. More precisely, given a
prior on the offset A, we use joint positions, velocities,
accelerations, torque commands, and force measurements to
update the force offset. We assume perfect joint position and
velocity measurements, and Gaussian measurement noise:

A=A +w, w ~ N(0, P), (4a)
q" =g+, v~ N(0,Q), (4b)
F™ =F 4, n~N(O,R), (4c)

where F'™™ is the force measurement and ¢"* the acceleration
measurement. P, () and R are positive-definite covariance
matrices. As it is traditionally done in Kalman filtering, each
disturbance distribution is considered to be Gaussian, which
allows to solve the Maximum Likelihood Estimation (MLE)
problem [4]. Here, the MLE aims at finding the parameters
A, §, F that maximize the probability density function given
the observed measurement and prior force offset:

max p(A, G, FIA,§™ F™) 5)

»qs

subject to constraint (3a)

Applying the negative logarithm and leveraging the normal
distribution assumption, the problem is equivalent to:

. N2 . m 12 m (|12
win |8 = Al + 1= 7731 + |F = F™ -
subject to constraint (3a) (6)

where ||w|%_, = w?P~lw. If M(A) is linear, Prob-
lem (6) becomes an equality QP and can be solved very
efficiently with off-the-shelf solvers. This, in turn, allows
high-frequency online estimation, e.g., 5kHz for a 7 DoF
robot. As in a Kalman filter, the obtained estimate A is used
as a prior at the next time step.

Note that other constraints can be considered in the QP,
such as inequalities on estimated quantities (e.g. force offset).

Remark 1. If additional inequality constraints are unneces-
sary, one may solve the problem using a Kalman filter [4].
More specifically, one can use Recursive Least Squares
(RLS) [37] with the transition equation, A = A + w along
with the observation equation

. . 711 o
qm _ =M b—1—M(A) Il B
F J 0 —Qp n

in order to estimate A online. Note that if M is linear,

this observation model is linear, and one can use the RLS
equations to derive an update rule on A.

B. Force feedback in the MPC via estimation

Once estimated, the force offset must be considered by the
controller. This will break the coupling between forces and
torques discussed in Section II-C by adding a delay between
the measurement and the corrective term AF'.

1) Naive inclusion as a corrective control: A naive ap-
proach is to add a feedforward term to the optimal torque
given by the MPC, mypc, to compensate the estimated offset:

TZTMpc—M(A). (8)

Although this work focuses on MPC, this method is agnostic
to the nature of the controller.

2) Inclusion in the predictive model: Alternatively, the
offset can be considered directly in the model used by the
MPC. More precisely, we can consider that the offset will
be constant over the horizon of the MPC and solve the OCP
using as dynamics Eq. (3a) (instead of Eq. (2)). The MPC
model is then updated online at each offset estimate update.

Remark 2. Interestingly, when M(AF) = JTAF, updating
the predictive model is in fact equivalent to modifying the
force reference in the cost function. More specifically, the
modified dynamics can be written in the following way:

il [-M JT) ' [b-r 0 0

-0 0) L
Therefore, the force offset only biases the predicted forces
and does not affect the acceleration. This means that
this force offset has no impact on the predicted trajec-
tory. The offset will only impact terms of the cost func-
tion that include the predicted force. Given a cost of
the form ((x,u, F(x,u,AF)), we can simply consider
Uz, u, F(x,u)—AF)), and discard AF from the prediction
model. This greatly simplifies the implementation and gives
more interpretation to the method. Interestingly, if the cost
function does not depend on the force, the force offset will
not impact the solution of the OCP.

C. Direct compensation of unmodeled force directions

The above formulation assumes that force can only be
exerted in the n. constrained dimensions. However, in reality,
forces can exist in the other 6 — n. directions and may
interfere with the task if not taken into account (e.g. friction
during a polishing task if only the normal force is modeled).

Following [1], instead of using an explicit 6D force model
to compute a feed-forward compensation term, we propose
to use the force measurements directly. This is in fact a
form of Feedback Linearization (FL) as emphasized in [38].
Concretely, we add to the optimal torque given by the MPC
the following compensation FL term

T = TMPC — Jg;)SFéB, (10)

where Jgp € R™"*C¢ and F7 € RS are the full 6D Jacobian
and measured force, and the selection matrix S : R® — RS
nullifies the n. constrained dimensions. In the experiment
section, we will show that this simple FL term will lead to
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competitive performances with more established yet more
complex friction models such as the Coulomb model.

From a control perspective, it could seem unsafe at first
glance to use measured forces in the control torque because
the robot would always maintain itself in a disturbed state,
which would create divergence of the force (e.g., pushing
harder). But this would happen only if unmodeled forces
are unbounded (i.e. motion is actually constrained by the
environment). If the unmodeled forces are bounded, the
disturbance would simply generate motion in their directions.
For instance, if the normal force on a plane is stably
controlled, the lateral forces are bounded by it through the
friction cone. In that case, a disturbance increasing the lateral
forces would simply make the robot slip. So this FL term is
a safe compensation term to use in practical situations.

Remark 3. The FL compensation term in Eq. (10), could
instead be added directly inside the MPC model, assuming
that it remains constant over the whole horizon.

IV. EXPERIMENTAL STUDY

In this section, we evaluate the performance of the pro-
posed approach through a comparative experimental study on
a torque-controlled manipulator. First, we show the major
advantage in tracking performance of using explicit force
feedback over classical MPC. This benefit is twofold: force
feedback enables to effectively cancel friction, and it corrects
the model mismatch thanks to online estimation. Second, we
demonstrate the benefit of encoding the model mismatch in
the task space (AF) rather than in the joint space (AT).
Finally, we show how the proposed approach outperforms the
most established force control strategy (integral control) by
demonstrating that its force tracking performance is identical,
but that it additionally aligns with the MPC objectives.

A. Experimental setup

All experiments were performed on the torque-controlled
KUKA LBR iiwa R82014. We used an ATI F/T Sensor
Mini40 mounted at the tip of the arm on a custom end-
effector mount piece. A short MPC horizon (4 nodes of 6ms)
allowed to run the MPC and the estimator synchronously
at 1kHz. The estimation QP problem (6) is solved using
ProxQP [39], the OCP (1) is transcripted using Crocod-
dyl [40], and rigid-body dynamics are computed using
Pinocchio [41]. Our code is publicly available'. Moreover,
the accompanying video illustrates the robustness of the
proposed approach to external disturbances.

B. Tasks formulation

1) Polishing task: A constant normal force is exerted on
a horizontal plane (e,,e,) while tracking a circular end-
effector trajectory. The MPC includes a 1D rigid contact
force model (n. = 1) so that the constraint (3b) prevents
motions in the normal direction e,, and ignores tangential

1 https://github.com/machines-in-motion/force_observer

forces in the (e, e,) directions. The cost function is

Uz, u,t) = willa(t) = 2@®))G, +wallult) — ),
+ws[p™ (1) — PG, + wallF(t) — F()I[3,
+ws||[ve (t)]13, + well logs (B()TR*(t)) I3,

where (w;, Q;);=1.¢ are positive scalar weights and positive
diagonal activation matrices, Z(t) = (q(t),0) is a reference
configuration, p*(t), F'(t), R°(t) are the position of the end-
effector, contact force and end-effector orientation respec-
tively, ,p*(t), F(t), R®(t) are their respective references,
v®e(t) is the end-effector velocity, @(t) = g(q(t)) — JTF(t)
is the gravity compensation torque under external forces,
logs : SO(3) — so0(3) is the logarithm map on rotations.
The circular trajectory p(¢) has a diameter of 14 cm and
a speed of 3rad s~!, unless otherwise stated. The reference
normal force is constant F' = 50 N.

2) Force step tracking task: A 3D contact force (n. = 3)
step signal is tracked. Hence the motion of the end-effector
is constrained in normal and tangential directions. The cost
function has the same form as the polishing cost function
(11), with the only differences that F(t), F(t) are 3D, the
reference end-effector position p*(t) is now constant and the
force reference is defined as F'(t) = (F,(t), Fy(t), F.(1)))
where F(t) is a step signal from —10N to 10N, F,(t) =
ON and F,(t) = 100N are constant.

3) Energy minimization: A sinusoidal joint position tra-
jectory is tracked while maintaining a fixed 3D contact with
the horizontal plane and minimizing ||7||?. The cost function
is similar to the polishing (11), except that the reference
configuration ¢(¢) is no longer constant, no end-effector cost
is used (w3 = ws = 0), the control regularization term is
turned into an energy term (#(t) = 0). The reference joint
trajectory is a sine on the A3 joint with an amplitude of
0.2rad and a frequency of 2 Hz. Here the force objective acts
as a regularization term to avoid slipping and large forces (i.e.
wy < wy,ws, wg) and the reference is F(t) = (0,0, 50).

C. Friction model vs direct measurement feedback (FL)

We evaluate the effect of force feedback as a direct
compensation of the contact friction (Section III-C). We
compare its performance on the polishing task against the
classical MPC (i.e., without compensation) and the well-
known Coulomb’s friction model

Fr=—p—Fy, (11)
o]

where Fir € R? is the tangential force, Fiy £ F cRis the

normal force, v € R? is the tangential velocity of the contact

point and g is the dynamic friction coefficient. This model

is clearly discontinuous in v so in order to avoid chattering

phenomena, we consider the following smooth relaxation

tanh(e|lv]]) v
Fr=—p——a—2—Fy, (12)

v2 ol
where we used © = 0.35 and ¢ = 10. Our results

are reported in Table I for several polishing speeds. We
can see that the Coulomb model is slightly better in fast
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Fig. 1: Normal force trajectories of the medium-velocity
polishing task. The blue curve is the classical MPC without
friction compensation, the green curve is the classical MPC
with the Coulomb model compensation, and the red curve is
the classical MPC with FL compensation.

Fig. 2: Normal force (top) and end-effector position error
(bottom) for the polishing task: in blue the classical MPC
(II), in green the classical MPC with the FL. compensation
term (III-C), in red the proposed approach with FL compen-
sation and the force offset in the predictive model (III-B.2).

Default FL Coulomb
Slow (1 rad/s) 7.67 £0.55 3.83+£0.17 | 4.724+0.21
Medium (3 rad/s) 9.66 £+ 1.38 3.92+0.56 | 3.99 +0.33
Fast (6 rad/s) | 16.42+0.79 | 5.22+£0.32 | 4.824+0.25

AT AF
Corrective control | 2.01 +£0.08 | 1.55+0.03
Predictive model 1.95 £+ 0.07 | 1.554+0.04

TABLE I: Mean-absolute error (MAE) of the normal force
(in N) for the polishing task over 10 circles: classical MPC
(Default), FL compensation (10) and Coulomb model (12).

motions but less performing in slow motions. Figure 1 shows
the corresponding force trajectories for the medium-speed
polishing task. Note that the FL. compensation term only uses
the 3D Jacobian as the contact torques a negligible in that
task. These experiments confirm that considering the friction
forces substantially increases performance w.r.t. classical
MPC. Moreover, it shows that explicit force feedback from
sensors can effectively be used as an FL term to directly
to compensate friction effects and that it leads to a similar
performance to well-established friction models.

As pointed out in Remark 3, it would be interesting to use
the Coulomb model inside the MPC so that lateral forces are
predicted using velocity and rigid normal force predictions,
but this raises challenging issues (non-smoothness, insuffi-
cient software, breaks symmetry of KKT (2), etc.).

D. Comparison between force offset and torque offset

In this experiment, we compare the two mismatch models
introduced in Section III-A, namely the torque offset At
and the force offset AF'. Although capturing all disturbances
in A7 seems intuitive, experimental comparisons on the
polishing task reveal a higher tracking accuracy for AF'. For
each model, we implemented the two ways of incorporating
the correction into the MPC, namely

TABLE II: MAE of the normal force (in N) for the polishing
task: force offset AF vs. torque offset A7, used in the
control loop either in the “’predictive model” way of III-B.2
or in the "corrective control” way of III-B.1.

o The “corrective control” way of III-B.1: the correction
is added to the optimal torque as a feedforward input
e The “predictive model” way of III-B.2: the correction
is added directly to the model
Figure 2 illustrates how force feedback improves both the
force tracking and the end-effector position tracking. Our
results are summarized in Table II. There is a notable
performance difference between AF and A7 with a clear
advantage for the force offset. Intuitively, the torque offset
estimates perturbations unrelated to the contact (e.g. joint
stiction) while the force offset only corrects what is necessary
to improve the force tracking. There is, however, no clear
difference in performance between using the estimate as a
corrective control or in the predictive model. There seem
to be a slight advantage for the predictive model, but the
performance gap is too shallow to draw any conclusions.

E. Integral force control

Our approach is now compared to the most established
direct force control approach - integral control. We were
not able to find a difference in performance between using
the integral term in the predictive model or as a corrective
control. This question being out of the scope of this paper,

11507

Authorized licensed use limited to: New York University. Downloaded on March 16,2025 at 21:22:37 UTC from IEEE Xplore. Restrictions apply.



Ao

——- Reference
—— Default
—— Integral
—— AF (PM)

[

-15
0.0

o
N

0.4 0.6 0.8 1.0
Time (s)

Fig. 3: Lateral force trajectories in the e, direction for the
force step tracking task: the blue curve is the classical MPC
(Default), the green curve is the classical MPC with with
integral control (Integral) and the red curve is the force offset
estimation AF included in the predictive model (AF' (PM)).

we propose to consider only the latter:

r = rpe — J(@)" ( K /0 P - P dt’> (13)

Note that we deliberately chose not to include a proportional
and a derivative control term as Volpe et. al. [7] demonstrated
both theoretically and experimentally that pure integral gain
control was the best choice for accurate force tracking.

1) Polishing: We observed the same force tracking per-
formance on the polishing task for the integral controller
(1.69+£0.05 N) than for the proposed approach (cf. Table II,
AF as corrective control).

2) Step experiment: We show in this experiment that the
proposed approach and integral control have equivalent force
tracking performances on a force step tracking task. The
force trajectories are in Figure 3. We also report the average
force tracking error of all the controllers in Table III.

Avg. error
Default 1.99
AF (predictive model) 0.71
AF (corrective control) 0.60
AT (predictive model) 0.80
AT (corrective control) 0.87
Integral control 0.68

TABLE III: MAE of the normal force error for a step tracking
task for different controllers: classical MPC (Default), force
offset estimation (AF), torque offset estimation (A7) and
integral control. AF and A7 are used as corrective control
(III-B.1) or in the predictive model (III-B.2).

3) Energy minimization: In this experiment, we illustrate
the ability of force feedback MPC to achieve contact tasks
with conflicting objectives. Table IV shows how the proposed
force estimation approach aligns with the MPC objectives
by trading off force tracking against energy minimization:
its overall cost is lower than the integral controller, which
conflicts with the MPC and generates a high cost. These
results also show interestingly that somehow, the torque
offset estimation (A7) uses less energy than the force offset
estimation (AF), although it yields a slightly higher cost
overall. This suggests that encoding the mismatch as a

Avg. [[7]]? Total cost
Default 136 £ 21 0.44 + 0.02
AF (predictive model) 139 +13 0.43 £0.01
AF (corrective control) 145 £ 18 0.43 +0.02
AT (predictive model) 131 +£21 0.48 +£0.01
AT (corrective control) 132 + 22 0.51 £0.02
Integral control 1052+ 29 | 0.82 4 0.027

TABLE IV: Average squared torque and total cost for each
controller for the energy task: classical MPC (Default), force
offset estimation (AF), torque offset estimation (A7) and
integral control. AF and A7 are used as corrective control
(III-B.1) or in the predictive model (III-B.2).

joint torque offset may have its own benefits, other than
accurate force tracking. The accompanying video illustrates
the relative importance of wg||7'||é2 w.r.t. the total cost.

V. CONCLUSION

In this work, we proposed a simple approach to achieve
force feedback in MPC that relies on the online estimation
of the mismatch between the predicted forces and the force
measurements. Our experiments showed that force feedback
effectively cancels friction and brings the force tracking
performance to the level of the most established direct
force control strategies. We also studied two variants of our
approach: the estimation of a torque offset in the joint space,
and the estimation of a force offset in the task space. Our
experiments show that the force offset yields a more accurate
force tracking while the torque offset is more generic and can
enhance other criteria (e.g., energy minimization).

In conclusion, our experimental results show that current
optimization-based control and estimation techniques are
sufficient to incorporate force sensors in model-predictive
controllers and suggest a more systematic exploitation of
those modalities on real robots. In future work, it would be
interesting to add the integral error as part of an augmented
state in the MPC. Also, the estimation could be done over a
horizon (although it has not led to any improvement so far
in our trials), and the assumption of perfect joint position
and velocity measurements could be relaxed, although this
would turn the estimation problem into a nonlinear program.
Finally, it would be interesting to extend the proposed
methodology to floating base robots.
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