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Abstract— Designing robust algorithms in the face of esti-
mation uncertainty is a challenging task. Indeed, controllers
seldom consider estimation uncertainty and only rely on the
most likely estimated state. Consequently, sudden changes in
the environment or the robot’s dynamics can lead to catas-
trophic behaviors. Leveraging recent results in risk-sensitive
optimal control, this paper presents a risk-sensitive Extended
Kalman Filter that can adapt its estimation to the control
objective, hence allowing safe output-feedback Model Predictive
Control (MPC). By taking a pessimistic estimate of the value
function resulting from the MPC controller, the filter provides
increased robustness to the controller in phases of uncertainty
as compared to a standard Extended Kalman Filter (EKF).
The filter has the same computational complexity as an EKF
and can be used for real-time control. The paper evaluates
the risk-sensitive behavior of the proposed filter when used
in a nonlinear MPC loop on a planar drone and industrial
manipulator in simulation, as well as on an external force
estimation task on a real quadruped robot. These experiments
demonstrate the ability of the approach to significantly improve
performance in face of uncertainties.

I. INTRODUCTION

Adapting the decisions robots make based on their percep-
tion of the world is key to deploying robots outside factories
and laboratories. More precisely, controllers should adapt to
the degree of certainty or confidence of the robot’s belief
of the world. For instance, it is important that a quadruped
chooses conservative footholds and slows body movements
when its confidence in the location of the ground decreases.
Robust output feedback Model Predictive Control (MPC)
studies methods that can adapt robot decisions based on the
confidence of the perception module. However, the general
nonlinear problem is very difficult, and practical algorithms
remain often limited to linear systems [1].

The common practice in robotics is to decouple estimation
and control, i.e., assume that the certainty equivalence prin-
ciple holds [2]-[6], due to the availability of separate and
tractable control and estimation algorithms. The estimation
module is often a variation of a Gaussian filter, such as an
Extended Kalman Filter (EKF) [7], which computes both
the mean and uncertainty of the state estimates from sensor
information. In control, an increasingly popular approach is
MPC, which consists in solving an optimal control problem
(OCP) numerically at each time step or at a fixed frequency
[3], [8]-[11]. The controller can then adapt its behavior based
on the current state of the robot and its environment. During
deployment, an estimator is used to compute the mean of the
state estimate, which is then passed on to the controller to
compute the optimal behavior [2]-[6]. Unfortunately, relying
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on the most likely outcome can lead to catastrophic behavior.
For instance, on a load-carrying task with a quadruped where
the load’s mass is unknown, the notion of mean might not
be appropriate as this could lead the quadruped to apply
insufficient force on the ground and then fall.

Some approaches address this issue by adding robustness
or safety bounds in either the estimation or control block
while keeping them independent. For instance, Robust Ex-
tended Kalman filtering [12] adds robustness to inaccuracies
of the EKF or the model. However, the control objective
is disregarded, and thus the controller cannot be robust to
estimation uncertainties. Robust MPC has been studied and
applied to robots, e.g. to control a biped robot using tube-
based MPC [13] or linear stochastic MPC [14]. However,
this line of work assumes the state to be known. In contrast
to such approaches, we aim to link estimation and control by
adding into the estimation module a notion of control perfor-
mance to improve robustness to the estimation uncertainty.
While robust output-feedback MPC controllers have been
investigated [15], [16], they have not been deployed on robots
due to their high computational cost. In [17], we proposed an
efficient algorithm to solve the dynamic game control with
imperfect state observation formulation introduced by [18].

In this paper, we leverage this result to introduce the
Risk-Sensitive Extended Kalman Filter (RS-EKF), a novel
filter that enables online risk-sensitive output feedback MPC
at a low computational cost. The RS-EKF computes state
estimates robust to measurement uncertainty while taking
into account the value function provided by the controller,
i.e., the estimator tailors risk reduction to the control objec-
tives. This, in turn enables automatic modification of robot
decisions to be cautious in times of high environmental
perturbation. To demonstrate the ability of the filter, we use it
together with an online non-linear controller to perform risk-
sensitive output-feedback MPC on various simulated robots,
such as a quadrotor subjected to arbitrary changes in its
mass, and a KuKa robot facing unforeseen environmental
disturbances. Finally, we test the filter on a real quadruped
robot Solol2 [19] to perform an external force estimation
and balancing task. These experiments demonstrate that the
robots are more robust to perturbations with the RS-EKF
algorithm than a classical EKF. To the best of our knowledge,
this is the first time that a non-linear risk-sensitive output-
feedback MPC controller has been deployed on a robot.

II. BACKGROUND

A. Dynamic game output feedback MPC

To design a controller sensitive to the risk related to
estimation uncertainty, Whittle [18] introduced a zero-sum
game that aims at solving jointly the estimation and control
problem. Given a history of measurements ¥;.;, a history of
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control inputs, ug.;—; and a prior on the initial state ¢, we
aim to find a control sequence u;.7—1 that minimizes a given
cost ¢ while an opposing player aims to find the disturbances
(wo.T,71:¢) that maximize this cost £ minus a weighted norm
of the disturbances. Such a problem is formally written as:

T-1
min maxmax {p(zr)+ Z Ci(xq,u;) (D
Ut:T—1 WO:T Y1:t i—0
1 t T
=g (@B P+ 30T R + 3w Q5 ey
K j=1 j=1
subject to  xg = Ty + wo, (2a)
rip1 = fi(zj,u5) +wijp, 0<j5<T, (2b)
Y = hj (337) + 755 1<5<t. (20

where ;1 > 0. z; is the state, w; the process disturbance,
y; the measurement,?y; the measurement disturbance, 1" the
time horizon, ¢ the current time. The transition model f;, the
measurement model h;, and the cost ¢; are assumed to be
C?. The measurement uncertainty R;, the process uncertainty
Q; and the initial state uncertainty P are positive-definite
matrices. This weighted sum of the disturbances can be seen
as the estimation of maximum a posteriori probability (MAP)
under Gaussian assumption. Hence, R;, (); and P can be
thought of as the covariance matrix of Gaussian noise.

Interestingly, this problem encompasses both formulations
of control and estimation. If ¢ = 0, in the limit where  tends
to zero, we find the generic OCP formulation [20] which
directly minimizes the cost function assuming standard de-
terministic dynamics. And, if ¢ = T and if we consider all
costs /; to be null, then, (1) is equivalent to maximizing the
estimation maximum a posteriori probability (MAP). Here,
the parameter p is referred to as the risk-sensitive parameter
and regulates how adversarial the problem is.

Whittle [18] provided a solution to this min-max problem
for linear dynamics and quadratic costs. This solution is itera-
tively obtained with two recursions, one on past disturbances
and one on future ones. Recently, [17] showed how this
solution could be used to implement an efficient Newton’s
method that iteratively searches for a saddle point of the
more general Problem (1). Exploiting the sparsity of the
problem, the proposed Newton step has a linear complexity
in the time horizon (a naive optimization has at least a cubic
complexity [15]). The solution can then be interpreted as
a risk-sensitive Kalman smoother non-trivially coupled to
minimax differential dynamic programming (DDP) [21].

Here, we aim to use these insights to derive a computation-
ally efficient risk-sensitive extended Kalman filter that can be
used for output feedback MPC. This is done by simplifying
Problem (1) to match assumptions common to EKF and DDP
while keeping the adversarial min-max formulation.

B. Extended Kalman Filter

The EKEF is usually derived by computing the probability
a posteriori of the state given measurements, using the
linearized dynamics and a Gaussian noise assumption [22].
However, from an optimization point of view, the EKF

also corresponds to a Gauss-Newton step around a well-
chosen point on the log-likelihood of the MAP [23], i.e.
log(p(xs, xt—1|y¢)). Assuming Gaussian disturbances, v; ~
N0, Ry), wy ~ N(0,Q;), the MAP is written as:

max

Juax  —(ye = he(@e)" Ry (e = he())
—(@e = feor(@e-1,u-1))T QY (we — fror(we1, 1))
— (o1 = &) TP (Tem1 — 1) 3)

where ;1 is the prior knowledge on the past state and P;_
its associated covariance matrix. As shown in [23], a Gauss-
Newton step around ;1 and Z; = fi—1(Z¢—1,us—1) on (3)
leads to the well-known recursion [22]:

P, =Q+ F,_\P1F-, “4)
K;=PH!' (R, + HP,H')™* (3)
P, =(I - K,H)P, (6)
Azy = Ki(ye — he(Z)) (N
Ty =Ty + Ay ®)

where F;_1 = 8Ift,1(:%t,1,ut,1), H; = &Cht(@), Ty 18
the most likely estimate and P; the covariance uncertainty.

Notice the similar structure of the costs of Problem (1) and
Eq. (3), except that the EKF only uses one measurement and
does not include the control cost £;. Eq. (1) can be seen as
a maximization of the estimation log-likelihood up to some
cost terms. We leverage this similarity to derive our risk-
sensitive EKF. More precisely, we will add cost-dependent
terms in the maximization (3) to allow the filter to adapt its
estimation to the control objective.

C. Nonlinear MPC

The estimated state can then be used in the MPC module.
At each time step, a stagewise cost defined over a horizon
H is minimized over future control inputs:

t+H—1
ﬁt(ut, ey ’LLH,1) = £t+H($T+H) + Z Ej(xj7uj) 9
j=t

where the state sequence is implicitly defined by the dynam-
ics ;41 = f;(x;,u;) and where z is the state estimated by
the filter. At each time step, we only use the first control
u;. At the next time step, the state estimate is updated
given a new measurement and the OCP is solved again.
There are various ways to solve efficiently this problem. A
popular algorithm is DDP [24] which reassembles the New-
ton method but with linear complexity in the time horizon.
Additionally, DDP provides a quadratic approximation of the
value function which we exploit in our derivation of the risk-
sensitive filter.

ITI. RISK SENSITIVE FILTER

We now introduce RS-EKF, which builds on the dynamic
game defined in Eq. (1). First, we modify the game to
account for the typical assumptions made for MPC while
keeping the adversarial part to ensure a risk-sensitive be-
havior. Then, we show how to compute the solution with
a Gauss-Newton step similar to the EKF, leading to an
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algorithm of the same complexity. This results in a modified
update step of which the standard EKF is a limit case.
First, as for the EKF, we consider a history of measure-
ments of length one. Then, we disregard future uncertainties
and assume deterministic dynamic equations for the future as
is done in classical MPC formulations. Indeed, we expect that
the high-frequency re-planning will compensate for model
discrepancies. Hence, we seek to be adversarial only with
respect to the estimation uncertainties. This is written as:

(10)

min maxmaxmax L(uy,..
Ut:t+H—-1 Wt We—1 Yt

'auH—l)

T (’775TR;1’Yt +w! Q Mwy +th—1Pt:11wtfl)
St. Ty = CEt_l + wg—1, (lla)
Ty = fro1(Teo1, up—1) + wy, (11b)
Y = he(xe) + - (11c)
Tj+1 Zf]‘(.iﬂj,uj‘), t<j<T. (11d)

As presented in [17], one of the key features of the dynamic
game is that some of the constraints can be removed with an
appropriate change of variable. Indeed, we can use the equal-
ity constraints, Eqgs. (11a), (11b) and (11c), to replace the
disturbance maximization into a maximization over x;_1, T;:

(12)

min  max Li(uy,..
Ut:t+H—1 Tt—1,Tt

1

. 7uH71)

- ﬂ(yt — he(@e)) Ry (ye — he(w))
- 21# (20 — fr1 (w1, 1)) Qp Ny — fro1(zp—1,u4-1))
- i(mt—l — &) TP (w1 — 1)

subject to 241 = fj(wj,u;),

By definition of the MAP [22], this can be written:

t<j<T,

min  max L;(uy,..
Ut:t+H—1 Tt—1,Tt

subject to  x;41 = fi(z;,u;),

1
SUH-1) — m log(p(@s, z1-1yt))

t<j<T. (13)

Problem (13) is intractable in the general case. However,
by taking the concave-convex assumption, the minimization
and maximization can be interchanged according to the min-
imax theorem. Consequently, the problem is equivalent to:

Jnax log(p(@i—1,T¢|ye)) + pVi(wy), (14)
where V, is the value function of the OCP:
Vi(xy) = min  Ly(ug, ..., ug—1) (15)

Ut:t+H—1

Note that in the simplification from Eq. (1) to Eq. (10), it is
not necessary to disregard future uncertainties as the value
function could be the one resulting from minimax DDP [21].
If 4 = 0, we will obtain the unbiased estimate of Kalman
filtering and the estimate will be independent of the control
objective. Otherwise, if p > 0, the term pV () will bias the
estimate towards regions with higher value function, which
in turn will force the controller to be more conservative.
We now take a Gauss-Newton step on the objective of
Eq. (14) around the prior: ;1 and Z; = fi—1(Z¢—1, Ur—1).

Vi(z¢) is independent of x;_; therefore, as shown in the
Appendix, the maximization over z;_; can be simplified to:

1 . _ .
max — §($t — &) TP (2 — &) (16)

1
+ Hg(iﬁ — &) VI (= &) + e — 20) T}

where £, and P, are defined as in Eq. (8) and (6). where V;**
(respectively vy) is the hessian (respectively the gradient) of
the value function. Those are typically provided by optimal
control algorithms such as DDP. In the end, the solution on
the maximization over x; is:
&85 = 2, 4+ (I — uPVES) YAz, + pPo®)  (17)

Interestingly, if 4 = 0, we recover the EKF. This was
to be expected as, when p tends to zero, the solution of
Problem (1) is exactly the solution of the neutral case
where estimation and control are solved independently [18].
Otherwise, the estimate is shifted towards regions with higher
cost values. Importantly, the magnitude of the shift depends
on P, the covariance matrix of the estimation. Note that p
cannot be arbitrarily large as (I — puPy1V/%%) needs to be
positive definite. Larger values of p would make the min-
max problem defined in Eq. (1) ill-posed. More details on
this limit value can be found in [18]. In the end, the estimate
is shifted towards P,v7, i.e. towards a region with a larger
cost function, and the magnitude of this shift is increased in
the direction corresponding to large eigenvalues of P V,*".

We obtained the solution to the maximization prob-
lem (13). Therefore, the cost function can now be minimized
with respect to the control inputs by taking i"fs as an initial
condition of the OCP, which can be solved with DDP.

Algorithm 1 summarizes the estimation procedure. It can
then be used to do output-feedback MPC efficiently. At
each time step, given a measurement, past control input,
and a quadratic approximation of the value function, a risk-
sensitive estimate can be computed. This estimate is then
used to minimize the cost function (9) for MPC and the
first control input is applied to the real system. Lastly, the
quadratic approximation of the value function at ¢ + 1 is
saved as it will be used at the next estimation step.

Algorithm 1: Risk Sensitive EKF

Imput: Z; 1, us—1,y, Pi—1,Q, By, V¥, vf

/* Predict */
1 P+ Qi+ F, 1P F,
2 Ty f(Te—1,up—1)

/+ Classical Update */
3 K+ ptH;T(Rt + HtPtH%)_l
4 Pt%(I—Kth)pt
5 Ai‘t — Kt(yt — ht(i‘t))

/% Value function bias x/
6 Pz, < (I — pPVE) " (A + pPof)
7 Ii'fls — Ty +p7’t
Output: /%% P,
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IV. EXPERIMENTS

We study three problems where we deploy the RS-EKF
inside a MPC loop: a planar quadrotor with a load estima-
tion task, a push-recovery experiment on a 7-dof industrial
manipulator and lastly, an external force estimation task on
a real quadruped robot. In all experiments, we provide a
comparison to the nominal case, i.e. the standard EKF with
a nominal MPC. To the best of our knowledge, the proposed
filter is the first attempt to deploy a robust output-feedback
controller on a robot. In each experiment, the OCP is solved
with DDP [25]. All the code is available online!.

A. Planar quadrotor carrying an unknown load

First, we consider a planar quadrotor moving from position
(pz, py) = (0,0) to position (1, 0) while carrying a unknown
load during the first half of the itinerary. The robot mass is
2 kg and the mass’s load which is unknown a priori is 3kg.
The system dynamics is:

mp, = —(u1 + ug) sin(6),

mpy = (u1 + uz) cos(d) — mg, (18)

mdf = r(uy — us),

where m is the mass of the robot, d the distance between the
rotors, 6 the orientation of the quadrotor. u; and wuy are the
control inputs representing the force applied at each rotor.

In this experiment, we want to estimate online the mass
parameter that changes in the middle of the flying phase. As
it is standard in parameter identification [26], we augment the
system’s state with the unknown parameter and let it be esti-
mated recursively by the filter (EKF or RS-EKF). The state
of the system is thus: 2 = (p, p, 6 p. p, 0 m)T
and it is assumed that 7o = 0 up to some random Gaussian
noise. The dynamics are integrated with an Euler scheme
and a time step of 0.05. We set Py = 107%I;, R = 107 4I5.
Q@ is a 7 x 7 diagonal matrix where all terms are equal
to 10~* except the last one that we set to 2 to represent
the uncertainty in the changes of the load. Lastly, we set
1t =4 x 1073, The stagewise cost describing the task is:

Ua,u) = ar (lpa = P21 + by — Py [12) + a2 6]
+ ag (lBall? + 15y |2 + 102) + aalu—al®  (19)

where @ = (%,%)T and where: a7 = 100, ay = 10,
az = 0.01 and a4 = 0.1. We consider a horizon of
20 nodes and re-plan at each new measurement, i.e. ever%/
0.05s. Furthermore, we only measure: y = ( z Dy 0)
to illustrate the estimator capabilities. We simulate 4s with
both output-feedback MPC controllers: one relying on the
standard EKF and the other relying on the RS-EKF.

Figure 1 shows the real mass variation and the estimates of
both methods and Figure 2 show the state space trajectories
of the quadrotor. It can be seen that the RS-EKF is more
reactive when the load is added or dropped. The increase of
uncertainty on the components of the state that are important
in the cost function leads to mass estimate spikes in the

]https ://github.com/machines—in-motion/risk-sensitive—-EKF

RS-EKF. This overestimation of the mass change in turns
leads to an improved control performance (Figure 2). In
other words, some of the eigenvalue of P,V;** become larger
in the phases of uncertainty, which augments the shift on
the estimate as shown in Equation (17). The average Mean

7 —— Ground truth
’ -== RS-EKF estimate
--- EKF estimate

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Time [s]

Fig. 1. Mass estimation for both EKF and RS-EKF.

Square Error (MSE) relative to the reference trajectory is
0.0011 for the RS-EKF and 0.0024 for the EKF. Hence, risk
sensitivity in the estimator brings a 54% improvement in
tracking performance. Furthermore, the average cost along
the trajectory is 0.0569 for the RS-EKF-based controller
and 0.0880 for the EKF-based controller, yielding a 35%
improvement. This illustrates how a filter informed of the
cost objective can improve the controller’s performance.

. A
0.0

-0.1

—— RS-EKF
— EKF
—-= reference

pz[m]

0.0 0.2 0.4 0.6 0.8 1.0
px [m]

Fig. 2. Quadrotor trajectory for both the EKF-MPC and the RS-EKF-MPC.

B. Kuka robot subject to large external disturbances

Now, we consider the 7-DoF torque-controlled KUKA
LWR iiwa R820 14 which needs to track an end-effector
reference trajectory. We consider the following task cost:

Ok (@h, ) = 1072 ||z, — 213 + 1074wy, — ()|
target  —

+ 10% (| — plze) 13 (20)
tr(zr) = 10°|[p7=" — p(ak)||3 + 1073 (|z), — Z[I3,

Z, the initial state, is used for regularization and is the
concatenation of the initial robot configuration and a 7-
dimensional zero vector for the velocity. @(xy) is the gravity
term given by the rigid body dynamics. p(xy) is the end-
effector position obtained through forward kinematics. pj
defines an end effector circle trajectory in the xy plane. We
use a horizon of 20 collocation point with an integration step
of 0.05s and re-plan at 500 Hz. We use Pinocchio [27] to
compute the robot dynamics and its analytical derivatives.
This experiment aims to showcase the ability of the
risk-sensitive filter in bringing conservatism during phases
with large environmental perturbations (large forces applied
on the end effector). We assume all states are observed
with high accuracy, therefore, we set R = Py = 1076714.
However, to model the disturbances in the dynamics, we set
Q=10"114. Finally, we consider p = 7.5 X 10%.
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Unexpected push

—— EKF measurement L
------ EKF estimate

—— RS-EKF measurement
------ RS-EKF estimate 1

PEE [m]

w J \
SN 0.50 j \

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

Fig. 3. End effector trajectory on a tracking task for both the EKF-MPC
and the RS-EKF-MPC. An unexpected force is applied between 1s and 2s.

Figure 3 depicts the end effector trajectory for both
controllers and their respective estimates. An external force
of norm 80/ is applied on the end-effector in the x and 2
direction from time 1s to 2s. The RS-EKF overestimates the
distance between the reference and the end-effector which
leads to a more aggressive response of the controller and
results in the end-effector remaining closer to the reference.
This illustrates how taking a pessimistic estimate with respect
to the cost can improve control performance. Note that both
estimates are state estimates that we projected in the end
effector space, the space where the cost function is defined,
to draw Fig. 3. This illustrates the ability of the method to
handle nonlinear dynamics and cost functions.

— EKF

w 0.005 . —— RS-EKF
wo.
=

0.000 m
+0.02

Q@

o

O

0.00 - / - S -
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Time [s]

Fig. 4. Median MSE on the tracking over 10, 000 experiments with random
external disturbances. The envelope represents the 25th and 75th percentiles.

To validate the consistency of the filter, we performed
10,000 experiments where the timing and direction of the
forces are uniformly sampled with a fixed perturbation
duration of 1s and force magnitude of 80/NV. Fig. 4 shows
the median end effector error trajectory. In average, RS-EKF
brings a 32% improvement in the MSE and a 22% reduction
of the mean cost.

C. Load estimation on a quadruped robot

Finally, we deploy the RS-EKF on a real 12-DOFs, torque-
controlled quadruped robot - Solo12 [19]. We demonstrate
the superior performance of the RS-EKF in estimating ex-
ternal wrenches while the robot is standing. A non-linear
MPC scheme is used to generate the standing behavior. At
each control cycle, we minimize a cost function using a
centroidal model to compute the optimal forces and trajectory
that keep the robot’s base at a desired height and orientation.

T —— RS-EKF measurement
—:= RS-EKF estimate 7
= 05 ==== T, —— EKF measurement
2 \'\ —-— EKF estimate
H ~..
¥ Srsia -
=1
@
o
O
o
0 1 2 4 5 6

3
Time [s]

Fig. 5. Comparison of both methods after an external force of 20N is
applied by pulling the robot vertically. Top figure: overlay of the robot
movements using both the EKF (dark blue) and the RS-EKF (solid). Bottom
figure: RS-EKF and EKF estimates and real measurements. The vertical line
indicates the moment when the robot is dropped.

Additionally, we use an augmented state to estimate the
external wrench applied to the robot as in [28]:

1 .
c= 717 Fext:Oa 7'-ext :0; (21)
m
M, M.
I=mg+Y Fi+Fou k=) (pi—¢)xFi+Ten
=1 =1

where m denotes the mass, M. the number of end effectors
in contact andp; are contact locations. The state is x =
(c Ik Fey Tex[)T which includes the center of mass
(¢), linear momentum (/), angular momentum (k) and external
wrench (Fe, Text). The measurement is y = (¢ 1 k;)T up
to some noise. Motion capture measures the base position,
velocity, and orientation and an IMU gives the orientation
velocity. Joint encodings are provided and their velocities
are derived with finite differences. Given ¢, ¢, we compute
¢, l, k which are used as the measurement b% the filter.

The control input, u = (F1 FMC) ,isa M, x 3
dimensional vector, representing the force applied at each
end effector. For this experiment, the robot is standing,
therefore, M. = 4. The cost function for the OCP is:

M,
G, u) = o — 2*[| o, + v — ul|m, +10° " loarrier (usi)
i=1

lr(x) = (z — )T Hy(z — 2¥) (22)

where H, = BlockDiag(10%15,101s) and H, is a diagonal
matrix where the diagonal terms are made of M. times the
following sequence (10~%,107%,1076). Lastly, fparier is a
quadratic barrier function that creates a soft constraint on the
maximum forces the robot can apply on the ground. More
specifically, fpamier(u) is equal to u? if u < 0, (u — 10)? if
u > 10 or 0 otherwise. Here, * is designed to keep the CoM
at constant height above the ground and the base horizontal,
u* is gravity compensation. The reference desired angular
momentum for the OCP is adapted to bring the base back to
a horizontal position as in [29]. We set k* = Flogs(R;RL,),
where R; and Ry are the current and desired base rotation
matrices respectively and 7' the horizon length. logs is the
matrix logarithm mapping an element of SO(3) to so(3).
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We solve this OCP at 100 Hz using the DDP solver
Croccodyl [25] and track the desired forces using a task space
inverse dynamics QP [30] that we solve at 1 kHz using [31]:

1
o Ll — |2 23
min o [|f — F| (23)
subject to  Ma+g=J f+ST7 4+ 57 friction
Ja = —Jq,

where J is the contact Jacobian, )M the mass matrix, S
the selection matrix that projects on the actuated joints,
and g is the generalized gravity vector at the current
time step. Static friction in each joint was estimated to
0.07. However, to keep a continuous model, we write
Sriction = —0.07% arctan (25¢). The first constraints en-
sure dynamics consistency and the second ensures that
the end effectors do not move. We update our state es-
timate using the filters at 200 Hz with ¢ = 6. For
both filter, we consider the following parameters: Py =
Q = BlockDiag(lO_?’IG, 10_4[37 10_113, 10_213) R =
BlockDiag(10™413,107 213,107 *I3).

Fig. 5 shows results from the first experiment where the
base of Solol2 is pulled up (in the z direction) until an
external estimate of 20N is computed by both filters (vertical
line at time 1.4s). The base is then released to let Solo12
recover and bring its base back to the desired height. The
RS-EKEF helps the OCP to react quicker and bring the base
to the desired location sooner. This happens because the RS-
EKF, during periods of high uncertainty, underestimates the
base height in z as compared to EKF, which makes the OCP
generate higher ground reaction forces to bring the base up
sooner. As it can be seen in Fig. 5, the external vertical force
does not converge exactly to zero. We find experimentally
that this is due to friction. Lastly, the cost of the RS-EKF-
based controller is lower after the robot is dropped. The
average cost of the RS-EKF is 0.065 while the one of the
EKF is 0.130, which corresponds to a 50% improvement.

To get rid of the human error, we perform two additional
experiments where the filters are initialized with exactly the
same priors. First, we initialize both filters with a wrong
prior on the external vertical force of 20 N, while in reality,
no force is applied on the robot. This experiment creates
an identical situation as the previous experiment while also
ensuring the exact same initial conditions. The results are
shown in Fig 6, where the RS-EKF still performs better.
In that experiment, we obtain a 62.9% improvement in the
average cost. In the second experiment, we initialize the

—— RS-EKF measurement
—:= RS-EKF estimate
—— EKF measurement
—:= EKF estimate

3
Time [s]

Fig. 6. Comparison of the RS-EKF and EKF when initialized with a wrong
prior of 20N on the estimated vertical external force.

filters with a wrong prior of —10 N on the external force,

while, in fact, there is no force on the robot. The RS-EKF
reacts sooner than EKF once again. It brings the base of
Solo12 back to the desired location sooner than EKF (Fig. 7).
We also obtain a 58.9% improvement in the average cost.

0.05}
E
40.00
P ]
—_ T —— RS-EKF measurement
2 0 S .
= = —-— RS-EKF estimate
b f./ —— EKF measurement
10 // —-= EKF estimate
0 1 2 3 4 5 6
Time [s]

Fig. 7. Comparison of the RS-EKF and EKF when initialized with a wrong
prior of —10 N on the estimated vertical external force.

V. CONCLUSION

Leveraging recent results in dynamic game control, we
introduced a risk-sensitive variation of the EKF which biases
estimates towards high regions of the control cost which
result in more robust controllers. Furthermore, the complex-
ity of this filter is similar to the EKF. Experiments both in
simulation and a real robot show the benefits of this filter
for output-feedback MPC in face of high uncertainty.

APPENDIX

By taking a quadratic approximation of the value function,
the Gauss-Newton step can be written as:

max max pi(ay — ) VI (g — 2) 4 2u(wy — 20) 0]
t—1 t

— (Ay — HtAxt)TRt_l(Ay — HiAxy) — Axf_lPt__llet_l
— (Azy — FAny )T Qy (Awy — FoiAxy_y))  (24)

where Ay = y; — h(@), Axp 1 = 241 — Ty1, Ay =
x¢ — &y. It can then be found that 2,_; = Q~'§, where:

Q=P+ FLQ 'Fy (25)
G=—-P &1 — F Q7 Nay — &) — FL Q7 ' Fy1dyy
by using the Woodbury lemma [22], It can be shown that:

1 = T = = T
max iz (e — 2) TV (0 = 20) + plae — 34) o]

1
2
where P, is defined as in (4). Finally, we can show that:

1 _
(Ay — HiAz)" RN (Ay — HyAwy) — §A33tTPt_1Amt

T

1 . _ _
max po (Tt — Z) TV (@ — T) + plae — 3) o]
1

- §($t — JATt — Ait)TPt_l(CCt — it — Ai‘t) (26)

where P;, AZ; are defined as in (6), (7).
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