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Abstract—We consider Data Centers (DCs) as flexible loads that can alter their power consumption to alleviate congestion in the
electric power network. We model DCs using a queuing-theoretic view and we form a Quality of Service (QoS)-based cost function that
signifies how well a DC can carry out its workload given an amount of active servers. We integrate DCs in a centralized economic
dispatch problem that determines, apart from power generation, DC workload shifting and server utilization, while respecting
transmission line constraints. We further present a tractable decentralized formulation obtained via Lagrangian decomposition, which
we solve using a dual gradient ascent algorithm. Experimental results on a standard power network explore the system-wide benefits
of DC flexibility in “coupled” data and power networks, emphasizing on the trade-offs between the DC location, QoS, and efficiency.

Index Terms—Data centers, flexibility, economic dispatch, Lagrangian decomposition.

INTRODUCTION

1
HE amount of data in the world has been increasing at
T an exponential rate [1] and is predicted to grow to more
than 180ZB by 2025, as compared to 61.2ZB in 2020 [2]. This
growth can be attributed to a myriad of factors, such as the
digitization of many parts of the economy [3], the shift to
remote work due to the Covid pandemic [4], the advent of
internet-connected devices [5], technological advancements
in developing countries, and society’s increased interest in
artificial intelligence [6]. In the data-driven world, Data Cen-
ters (DCs) have emerged as important entities for handling,
storing, stockpiling, and processing data / user-submitted
(computationally demanding) jobs [7], and providing cloud
computing services [8]. With the advancement of cloud com-
puting, DCs have evolved from physical infrastructures to
virtual entities that service workload by harnessing cloud-
based resources [9]. The global DC market is predicted to
grow at compound annual rates of over 2% and increase by
$615.96B from 2020 to 2025 [10]; DC market revenues of over
$69B are expected by 2024, in the US alone [11].
The proliferation of data render DCs more and more
prevalent as heavy power consumers [12]. Globally, DCs
consumed around 200TWh in 2015; in 2021, this amount
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increased to the range of 220 to 320TWh, and it is expected
to grow further [13]. However, DCs can also serve as
flexible loads in the power network that can alleviate net-
work congestion, which is becoming more frequent due to
the increased penetration of intermittent renewable energy
sources (e.g., solar, wind). DCs can offer the much needed
flexibility [14], [15], by shifting workload over time and
space, e.g., by delaying their computing jobs and transfer-
ring jobs between each other (provided they are governed
by a common entity). The tech giant Google has recently
implemented DC workload shifting in time — non-urgent
workloads are delayed to times when renewable energy is
present [16] — and has also proposed workload shifting
over space [17] — where DCs can transfer jobs based on
the availability of renewable energy.

The focus of this paper is on the interaction of DCs
with power networks and the ability of DCs to serve as
flexible loads through alteration of their workloads that
can alleviate network congestion in an economic dispatch
problem. Since DCs can transfer workload between each
other, controlling both DC and generator outputs via some
demand response mechanism that respects power genera-
tion and network constraints, while also accounting for DC
Quality of Service (QoS) can achieve system-wide benefits.
From the DC perspective, we aim to explore the benefits of
their incorporation in an economic dispatch problem, and
demonstrate that they can achieve significant cost savings
for the entire system (data and power networks), enabling
the IT sector to contribute to societal sustainability efforts.

The main contributions of this paper are:

We model DCs leveraging results from queuing the-
ory and form QoS-based cost functions, for which
we provide convexity guarantees under certain con-
ditions.

We introduce a novel centralized economic dispatch
problem with full network representation, which in-
volves DCs as flexible loads with QoS considerations,
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and solves for both DC and generator outputs.

e We provide a decentralized version of the economic
dispatch problem employing Lagrangian decomposi-
tion and a primal-dual algorithm, which can cater for
both the power network constraints, and, most im-
portantly, the DC workload shifting, in a distributed
manner that scales for the “coupled” data and power
networks.

e We present experimental results that provide useful
insights on the system-wide benefits from leveraging
DC flexibility in the economic dispatch problem,
highlighting the trade-offs between the DC locations,
their efficiencies, and QoS costs.

The remainder of this paper is organized as follows.
Section 2 reviews related work, and Section 3 presents the
proposed DC model. Section 4 introduces the centralized
economic dispatch problem, whereas Section 5 provides a
decentralized formulation and solution algorithm. Section 6
presents experimental results and discusses the key insights.
Lastly, Section 7 concludes and provides future research
directions.

2 RELATED WORK

Sustainable/green DCs [18] aim at reducing their carbon
footprint by leveraging their workload scheduling flexibility
to reduce their energy consumption and/or increase the us-
age of renewable energy [19]. Dou et al. [20] propose an on-
line workload scheduling algorithm to trade-off electricity
cost and performance of delay tolerant workloads. Hogade
et al. [21] study the energy minimization problem for geo-
distributed DCs and propose a set of workload management
techniques that account for detailed DC cooling power, co-
location interference, renewable energy, and electricity costs.
Lin et al. [22] estimate cloud DC power consumption —
key for energy-aware scheduling — employing an artificial
neural network, to enhance adaptability to the changes and
fluctuation of different workloads. Zhou et al. [23] optimize
DCs with deferrable computation requests — represented
by a queuing model — and controllable air conditioning to
reduce total operation costs that consider time-varying elec-
tricity prices and server degradation. DC energy efficiency
improvement is also explored via the hybridization of two
effective approaches [24]: (i) combined cooling, heating, and
power, and (ii) waste heat reuse systems. Aiming at reduc-
ing the carbon footprint of cloud DCs by mitigating brown
energy usage and maximizing renewable energy usage,
while ensuring the QoS of workloads, Xu et al. [25] propose
a self-adaptive approach with a brownout-based algorithm
for interactive workloads and a deferring algorithm for
batch workloads. Assuming no grid connection, de Nardin
et al. [26] explore a clean — renewable only — DC archi-
tecture and evaluate scheduling and power capping online
heuristics that can handle fluctuating power profiles while
accounting for job QoS. Considering virtualized networked
DCs, Zhou et al. [27] propose an adaptive algorithm that
minimizes energy consumption by computational resources
as well as virtual machine configuration and communica-
tion and storage resources, while meeting agreed user QoS
requirements. Exploring mini DC, da Silva et al. [28] pro-
pose an optimization approach for energy-efficient resource
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allocation that exploits both virtual machines and energy
migrations between green compute nodes. In order to avoid
server over-provisioning, Ahmed et al. [29] introduce a
reliability index that quantifies the probability of insufficient
spare servers due to failures, while balancing between QoS
and energy consumption.

Early DC demand response works suggest combining
workload scheduling and local power generation to mitigate
load peaks and reduce energy costs [30], and compare the
potential of DCs with large-scale storage [31], presenting a
prediction-based pricing design of DC demand response.
Chen et al. [32] propose a pricing mechanism based on
parameterized supply function bidding for the provision of
emergency demand response from multi-tenant colocation
DCs. Niu et al. [33] use coalitional game theory along with
a fair payoff allocation to model the cooperation of DC
aggregation that mitigates their demand response capacity.
Real-time pricing for DC demand response and a game-
theoretic model are employed by Bahrami ef al. [34], along
with a distributed algorithm that guarantees convergence to
a stable outcome. Chen et al. [35] provide a comprehensive
survey on several aspects of demand response in internet
DCs. An optimal bidding strategy is proposed by Fu et al.
[36], which combines DC demand response while taking
advantage of DC waste heat, as well as various forms of
distributed energy resources. Prior work in the area has
explored the provision of regulation service reserve along
with adaptive policies and QoS assurances [37], [38], and
has focused on price-based models for demand response,
proposing a framework where DCs interact with an ag-
gregator via some price incentive [39], [40], but has not
considered the joint optimization of DCs in a power net-
work architecture. In this work, our attention shifts to the
integration of DCs in an economic dispatch problem with
full network representation.

There are a few works that consider the colocation of
DCs with renewable generation and their interaction with
the power network. Wang et al. [41] propose that the optimal
placement of a new DC should consider — in addition to
capital and operational costs — the cost of transmission
system losses, as well as constraints for avoiding line over-
loading and voltage variations. Interestingly, it is shown that
the colocation of DC and wind generation may not reduce
overall costs; hence, the impact of location on the costs of
both DCs and the grid should be jointly considered. Similar
findings are obtained by Kim et al. [42]. Economic dispatch
principles are used in a DC uninterrupted power supply
control strategy [43] to leverage DC flexibility aiming at
DC operation cost minimization. Recent DC research has
also focused on space-time load shifting in a setting of
geographically-distributed DCs. Zhang et al. [44] model the
ability for shifting computing loads to capture flexibility us-
ing the concept of virtual links in electricity market clearing
processes. Niu et al. [45] formulate a stochastic economic
dispatch problem — solved with Benders decomposition —
as a means of incorporating geo-distributed DCs to assist in
renewable integration, through geographical transferring of
workload via the internet, while considering a QoS require-
ment as a bound on the jobs” average delay. DC flexibility is
also harvested using machine learning models that predict
energy consumption and server temperatures, integrated
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TABLE 1: Main Notation

Symbol Description

DC Data Center

QoS Quality of Service

z Set of I DCs, indexed by i, j

g Set of G generators, indexed by g

D Set of D inflexible loads, index by d

B Set of B buses, indexed by b(-)

K Set of K lines, indexed by k

1Az, 04;  Arrival process statistics for DC 4

WH;,OH;  Service process statistics for DC ¢

uBj,oB;  Per server statistics for departures from DC j

C’?OS QoS-based cost function for DC ¢
QoS cost coefficients for DC ¢

Pl,iy P2,i
i QoS-related parameter for DC 4
Bi Power consumption rate of active server at DC ¢

Ni_; Amount of servers at DC j used by DC ¢ (vector n;)
Vactive Amount of active servers at DC j

N?Cﬂvc Active server capacity limit for DC ¢

C™, k™  Cost/scalar used to prevent 2-way transfer of jobs
cg Cost of generator g

Py Power produced by generator g (vector p)

P, Py Min/max capacity limits of generator g

Py Power used by inflexible load d

ap 1 Shift factor of bus b, line k

Fy Capacity limit of line k.

LW /N Dual variables

within a power system scheduling framework for potential
demand shifting based on (system) carbon intensity [46].
The potential activation of DC temporal, spatial and in-
tegrated energy flexibility is approached via a centralized
electricity—heat coordinated operation problem [47], which
is decomposed into a bilevel model with an incentivized
profit-sharing mechanism. Zhang et al. [48] present a mixed
integer programming model for DC scheduling and tempo-
ral flexibility that results in reduced peak demand charges
carbon emissions.

Arguably, the use of distributed algorithms [49] is indis-
pensable for “coupled” data and power networks, whereas
DC QoS modeling and integration in an economic dispatch
problem is key to properly schedule and inherently price
DC flexibility. To the best of our knowledge, prior work
has not considered QoS-based cost function modeling and
integration in an economic dispatch problem, which jointly
optimizes DC flexibility and power network assets. This
work leverages queuing theory to form a DC QoS cost func-
tion, and integrates this function in a distributed economic
dispatch problem, that effectively discovers system-wide
efficient allocations for both DCs and the power network
assets.

3 DATA CENTER MODEL

In this section, we present preliminary material on stochastic
processes (in Subsection 3.1) that is relevant for the DC QoS
modeling (in Subsection 3.2), and the DC service process
scaling (in Subsection 3.3). We further present our main
analytical results under a normal distribution that is em-
ployed in this paper (in Subsection 3.4), which we extend
to a Poisson distribution (in Subsection 3.5) to showcase the
wider applicability of our queuing theory-based approach.

3.1 Preliminaries

The main notation used throughout the paper is listed in
Table 1. Vectors are represented using bold font (ie., v), E
is used to denote the expectation operation, [P represents
probability, and 1, is the indicator function that takes
the value 1 if the condition a > b is satisfied or 0 otherwise.

Consider a discrete stochastic process X = {X1, Xo, ...}
The Moment Generating Function (MGF), M, (), of some
random variable X,,, with m = 1,2,..., and some real
parameter 0, is defined as follows:

Mx,, (0) = E[e?X]. )

Let S,, denote the n-th partial sum of random variables X,,,
ie, S, =Y"_, X, and define A,,(0) = L logE[e?*"]. Let

Ax () denote the limiting log-MGF of Xtt implying, with
some abuse of notation, that the partial sum process .Sy,
maps to a discrete stochastic process X, with:

Ax(0)2 lim A,(0) = lim lloglli[eezzzl Xnl (@)

n— 00 n—oo n

We make the following assumption, though it can be
relaxed to include stochastic processes with appropriate
mixing conditions:

Assumption A. The random variables X,,,, m = 1,2,..., are
independent and identically distributed (iid), and Gaussian with
parameters jux (mean) and ox (standard deviation).

Lemma 1. If Assumption A holds, the limiting log-MGF of X,
Ax(0), is given by:

1
Ax(0) = px6 + 50%92. @)

Proof. From (2), the limit of the log-MGF is given by:

Since X, is iid, ]E[ 11 eexm} _
and, hence, the limit A x (#) becomes:

— tim L 0X7 _ 06X
Ax(9) = nh_}rrgo ﬁnlogE[e | =logE[e"*]

= log Mx(0). @

If X is Gaussian, the MGF in (1) is given by [50, Example
10.16]:

Mx(e) — 6(#X9+%U§‘02), (5)
By substituting (5) into (4), we get (3). O

We next present the DC QoS modeling, which allows
workload shifting from one DC to another.
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3.2 Data Center QoS Modeling

We model each DC as a G/G/1 queuing system, where jobs
arrive with inter-arrival times following a general (arbitrary)
distribution and are serviced by a (different) general dis-
tribution. This model considers the DC as a pooled (single
server) resource consisting of all active servers at the DC and
maintains generality in terms of the considered probability
distribution.

LetZ = {1,..., I} denote the set of DCs that are indexed
by 4, j, where I is the number of DCs,. Unless otherwise
mentioned, ¢ € Z, j € Z. We prefer to use index ¢ for the
(from) DC that shifts the workload and index j for the (to)
DC that receives the workload. We represent the workload
shifting from DC i to DC j through a shared server quantity
N;_;, which denotes the amount of servers belonging to
(and are physically located at) DC j that are being used by
DC i. We view the idea of workload shifting between DCs
through the lens of server sharing, which occurs when ¢ # j.
We define n; to describe all local and foreign (i.e., shared)
servers being used by DC i, i.e., m; £ (N;;;Vj). We also
define N ;-‘Cti"e to describe the amount of active servers at DC
7, which can be determined as N ;Cﬁ"e = >, Nij, ie, the
sum of all servers that are physically located at DC j and
are being used by DC i, Vi; said differently, all of the active
servers physically located at DC j that are either used by
itself (DC j) or by other DCs (DC 4 # j).

Let A; denote a discrete stochastic process that de-
scribes the arrival process at DC j. Specifically, we have
{A;1,42,...}, where A;, is a random variable represent-
ing the number of jobs that arrive at DC j during time
slot t. Let H; denote a discrete stochastic process that
describes the service process of DC j. Specifically, we have
{H;1,H,2,...}, where H;, is a random variable represent-
ing the (per DC) maximum number of departing jobs from
DC j during time slot ?.

For DC 7, we define an individual QoS constraint using
the aforementioned per DC arrival and service processes, A;
and H,, respectively. Qualitatively, QoS represents the effec-
tiveness of a DC in completing jobs. The QoS is modeled
using the probability that the queue length L in the system
exceeds or equals some value U. We want this probability
to be as small as possible. By applying [51, Theorem 6.1.1],
we can approximate this probability as:

P[L > U] ~ e %Y, (6)

where 6; > 0 is a scalar that depends on the arrival and
service distributions, defined as the positive root to the
following equation:

Aa; (0:) + Mg, (—0;) =0, @)

where the limiting log-MGFs A 4, () and Ag, () are given
by (2) for processes A; and H;.

We then proceed to define a QoS cost function for DC <,
using the QoS parameter §;, also providing the intuition for
our selection. Naturally, we endeavor to make P[L > U]
small. This requires a large 6;. Hence, we use this QoS
parameter to design the cost function for DC ¢ such that
it yields a small cost for a large 6;, and vice versa. Therefore,
a convex, non-increasing cost function for DC i, C;(;), seems
as a natural fit, which can be interpreted as providing better

4

QoS as 0; grows. Examples of valid cost functions include
scaled exponential or negative logarithmic functions.! In
this work, we define the QoS cost function for DC ¢ as:

Ci(0:(ny)) 2 py e P2itimi) (8)

where 0;(n;) expresses the dependence of the QoS pa-
rameter on the workload shifting, and p;; and py; are
empirically defined DC cost coefficients — see e.g., our prior
work [40] where a similar cost function structure was used.

The following proposition elaborates on the convexity of
the QoS function.

Proposition 1. If 6;(n;) is concave in N;_,j, the QoS cost
function C;(0;(n;)) given by (8), is convex in N;_,;, Vj.

Proof. We first show that function C;(0;) is convex and non-
increasing in 0;. The first derivative is:
0C;(6;)
0;
and hence C is a non-increasing function. The second deriva-
tive is:

- 191
= —p1,ip2,e P27 <0,

02C;(0;)

2 — 7,97,
879? = pripa e "7 >0,

and hence C is a convex function. Since C;(6;(n;)) is a
composition of two functions, the outer of which, C;(6;),
is convex and non-increasing, and the inner of which, 6;(n;),
is assumed to be concave, the composition, C;(60;(n;)), is a
convex function [52]. O

3.3 DC Service Process Scaling

So far, we considered the DC as a pooled resource (single
server). However, the DC service process can be modeled
using the per server statistics, scaled according to the
amount of active servers at the DC. Assuming that the
number of jobs serviced per server and per unit of time
is constant, on average, the DC service process, H, can be
determined by linearly scaling the per server statistics with
the amount of active servers.

Let B; denote a discrete stochastic process that describes
the number of jobs that are serviced by each server of DC j.
Specifically, we have {B; 1, Bj 2, ...}, where B ; is a random
variable representing the maximum number of departing
jobs from each server of DC j during time slot ¢.

For the rest of this paper, and since we do not consider
workload shifting over time in this work, we can focus on
a specific time slot and de-clutter the notation by removing
subscript ¢. Hence, we can also refer to A;, H;, and B; as
random variables. To avoid confusion, we reiterate that A;
and H; are defined per DC j, whereas B; is defined per
server of DC j. Random variable H; can thus be considered
as a scaled random variable, with H; = N]i“ﬁvij.

In what follows, we assume that the queuing system
that describes the DC experiences Gaussian arrival and de-
parture processes, noting, however, that other distributions

1. We acknowledge that the exact DC QoS cost structure and
parametrization is a research topic in itself, which is outside the scope
of this paper. Nevertheless, we note that our setup is general and allows
employing any convex and non-increasing (in 6;) cost function that can
be empirically parameterized.
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@ Server used by DC 1
@ Server used by DC 2

() Server used by DC 3
Idle server

pH, = pBN11 + 1B, N12 + 4B N13

Fig. 1: Visualization of DC server partitioning and per DC
service process statistics (mean departure parameter, DC 1).

can be chosen, since the G/G/1 queue model allows for
a general distribution. Our choice allows us to derive the
statistics per server and DC, which describe the arrival and
departure/service processes. Specifically, let ;14, and o4,
denote the mean and standard deviation of random variable
A; for DC 4. Also, let p B, and op; denote the mean and
standard deviation of random variable B;, for each server
of DC j. The service process statistics of the scaled random
variable H;, pp, (mean) and alzgi (variance), for DC i, are
given by:

:LLH,L' = ZIL’LB]NL—)_N (9)

J
o = ZongHj, (10)
J

i.e., the sum (over j) of the per server statistics of DC j, i,
and 01237,, scaled by the amount of servers at DC j that are
used by DC i, Ni—>j~

In Fig. 1, we explain the concept with an example of 3
DCs. Each DC ¢ has a a certain per server mean departure
parameter (up,) and a certain partition of idle (yellow) and
active local servers (green, red, blue). The active server
partition reflects the amount of servers that are used by
itself as well or by other DCs (Ni_,;, No_s;, N3_;). For
illustration, we show how g, , the (per DC) mean number
of jobs departing from DC 1, is formed — see (9). DC 1 uses
some of its local servers, Nj_,1, with each server carrying
out a mean amount of up, jobs, as well as (foreign) servers
that are located at DC 2 and 3 (N;_,2 and Nj_,3), with each
server carrying out a mean amount of pp, and pp, jobs,
respectively. Thus, the aggregate (per DC) service rate for
DC 1, i.e., the mean amount of DC 1 serviced jobs, px,, is
given by the sum of the servers used by DC 1 (see the green
partitions in Fig. 1) weighted by the mean amount of jobs
per server that refers to the physical location of the server.
A similar depiction can be made for the aggregate (per DC)
service rates of DC 2 (see red partitions) and 3 (see blue
partition), as well as for the aggregate (per DC) variance,
JEL_, for i = 1,2, 3, shown in (10).

3.4 Data Center QoS Results under Assumption A
The QoS parameter §; is given by the following Proposition.

Proposition 2. If Assumption A holds for discrete stochastic
processes A, B, and H, the QoS parameter 0; is a function of n;
given by:

6:(ns) = 2 (Zj p; Nisj — HA,;) ' )

2 N 2
Zj UBjNZ—)j +o03,

Proof. If Assumption A holds for processes A, B, and H,
using (3) of Lemma 1, (7) becomes:

1
(ha, — p,)0; + = (04, + 03,07 = 0.

12
5 (12)
From [51], we know that #; > 0, hence (12) becomes:
HH;, — KA,
97; — 2 i i . 13
(G%h o ) (13)
Using (9) and (10), (13) yields (11). O

The non-negativity of 6; implies that DC ¢, which we
model as a queuing system, has the ability to service its
incoming jobs and does not experience an input buildup
where incoming jobs cannot be carried out by the servers
that DC 7 uses. By looking at the structure of 6; in (11) and
using (9), we see that p1gz, > (14, must be satisfied to obtain
a non-negative ;. The preceding inequality signifies that
the mean amount of departing jobs from DC ¢ must exceed
or equal the mean amount of arriving jobs at DC 4. If the
preceding inequality is reversed, ie., pm, < pa,, a queue
buildup occurs and 6; can become negative. For the rest
of this paper, we assume that the non-negativity condition
for 0;(n;), 0;(n;) > 0, is always satisfied. To guarantee the
non-negativity, a lower bound on the amount of servers that
DC i uses, n; = (N,;;;Vj), could be explicitly imposed.
However, we do not explicitly include this constraint in
our forthcoming formulations, as it is implicitly satisfied
because of our QoS cost function, which induces n;, Vi,
to be large so as to avoid high cost penalties for low QoS,
thus discouraging small amounts of active servers. Larger
amounts of active servers result in more jobs being serviced
and, in turn, smaller QoS penalty costs.

The function 6;(n;) in (11) is concave under the condition
discussed in the following Lemma:

Lemma 2. The QoS parameter 8;(n;) is concave in N;_; if the
following condition holds:

— (14)

Proof. For concavity, we check the second derivative of
6;(n;) wr.t. N, ;. For notational simplicity, we use index
j' in the summations of parameter 6;(n;) in (11), and drop
the dependence on n; as follows:

Zj’ez KB, Ni—>j' — HA;

T N o2
2 ez 0, Nisgr + 03,

6, =2 (15)
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We further simplify by denoting the numerator and denom-

inator in (15) as Y and Z, respectively, i.e., 0; = 2%, with
Y = Z wB, Nisjr — 1, (16)
J'ET
Z=Y 0%, Ninjy+0h,, (17)
j'eT
and take the partial derivatives w.r.t. N;_, ;. Since
)4 and 07 9
= un. =03,
ON;_,; HE; ON;_; B;
the first derivative of 0; w.r.t. N;_,; is given by
90, pp, - Z —op Y
9.1 5 (18)
ON;j Z2

For simplicity, we denote the numerator in (18) by W, i.e.,

W =g, - Z —op, - Y. (19)

The second derivative of 0; w.r.t. N;_,; is given by
520, :2agf‘i_j.z2—w-2-z.a%j 0)

ON2, . j zZ4 '
Since the partial derivative of W w.r.t. N;_,; is 81‘?[sz =0,

(20) becomes
3?\22 = —40—?3],%. (21)
8

Concavity of 0; requires 55— < 0, and hence the condition
W > 0, since Z > 0. By replacmg W from (19), the condition
for concavity of 6; is MB -z — 023 Y > 0, which can
; = 2%
preceding inequality 1mpl1es a condltlon on 6; (in addition
to the condition §; > 0); thus, ¢; is convex in N;_,; if:

, we see that the

be rewritten as % <

O

Interestingly, the following Proposition elaborates on the
aforementioned concavity condition:

Proposition 3. The condition for concavity of 6;(n;) in N;_,;
shown in (14) does not depend on the value of N;_, ;.

Proof. Given the expression for 6;(n;) in (11) and the QoS
parameter concavity result presented in (14), we want to
show that the condition in (14) does not depend on N;_,;
itself. Substitute (11) into (14) and get:

Z MB,

i—j T MA; < KB;
— 2 )
2 05, Nisjt + 0%, o,

break the sums into index sets j/ € Z\{j} and {j}, and
incorporate INV;_,; into the rhs to obtain:

(Zj’eI\{j} HBj/Ni—>j/ - ,UAi) + pB, N
(Zj’el'\{j} o, Nisj + U,qu) + 0%, Nisyj

wB; Ni—yj
i 2 3 . .
aBjN1_>]

6
The above inequality [‘Z;—j_':;Y < 31is equivalent to [§ < ],
and we get:
(Zj/ez\{j} gy Niojr — “Ai> 118, Ni—sj
(Zyez\{j}U%j,NHj/ +U,24,) B, Niny
By simplifying the rhs, we have:
Lyer\igy 4By Nimy' — Bas _ i,
e\ U%ijHj’ +oh, T 0B,

The above condition for concavity of 8;(n;) in N,_,;, where
n; = (N,—;;Vj € T), does not depend on the value of N;_,;
itself, but on all other N;_, ;/, where j' € T\{j}. O

The following Proposition elaborates on the convexity of
the QoS cost function.

Proposition 4. Under the condition of Lemma 2, the QoS cost
function C;(6;(n;)) given by (8), where 6;(n;) is given by
Proposition 2, is convex in N;_,;, Vj.

Proof. This result is obtained directly applying Proposition 1
and using Lemma 2 for the concavity of 6;(n;) in N;_,;. O

Considering DCs of the same type (i.e., with same per
server departure process statistics), the following Proposi-
tion proves that the QoS cost function is always convex.

Proposition 5. If all DCs have the same per server departure
statistics, up, = pp, and 0% = O'B Vi, 3, the QoS cost function
C;(0;(n;)) given by (8), where 6; (nz) is given by (11), is convex
in Ny, Vj.

Proof. If all DCs have the same per server departure statis-
tics, pp = pup, = pp; and 0% = J%i = o—%jw €l,jel,
we see that the first derivative of 0;(n;) becomes:

ON;_,j

MBU,%‘,i + pa, 0%
2 232"
(08> jiex Nisjr +05,)2
Next, we compute the second derivative of 6;(n;) and we

see that it satisfies the concavity condition for any positive
values of pp and 0%:

9?0(n;)  —4op(ppoi, + 1a,0%) <0
2 = 3 = U
aNiaj (028 Zj/eI Nisjy + g%i)

3.5 DC QoS Results under the Poisson Distribution

As already noted, we presented the results for the normal
distribution (Gaussian); however, other distributions can be
similarly chosen. In this respect, and although it is beyond
the scope of this paper, we extend our analysis and provide
results for the Poisson distribution to showcase the applica-
bility of our queuing theory-based approach.

Let 4, denote the arrival rate for DC 4, and {p, denote
the per server departure rate for DC j — where we use a
different symbol (£) to avoid confusion with the Gaussian
processes. Similarly to (9), the scaled parameter {g, that
refers to the service process rate of DC i is given by

&, =Y B, Nisyj.

J

(22)

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on February 17,2025 at 20:33:14 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Sustainable Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2025.3538817

Naturally, the illustration in Fig. 1, replacing ;1 by &, applies
straightforwardly to (22).

Proposition 6. If the random variables A, B, and H, follow the
Poisson distribution, the QoS parameter 0;(n;) is given by:

ez(nz) = fA,; - Z fBsz‘—>j~ (23)
J

Proof. From [51, Eq. 2.62], we have

§a; 9:2

Aa (0;) =1 —— ], Ag,(6;) =1 — ).
4:(6:) = log (5Ai —0; i,(0:) = log &, — 0;

Applying (7), similarly to [51, Eq. 2.63], which refers to an
M/M/1 queue, we get:

§ai . &mi  _

§a, =0 Em, +0;

which yields 6; = 0 or 0; = {4, — £n,. Taking the positive
root and using (22), we get (23). O

L

Since we will not further employ the Poisson distribution
in this work, we leave to the interested reader the (arguably
straightforward) proof of the QoS cost function convexity.

4 CENTRALIZED PROBLEM FORMULATION

In this section, we formulate a centralized economic dis-
patch optimization problem, with a full network represen-
tation, and enriched with DCs.

We consider a system with B buses (nodes), K trans-
mission lines, G generators, and D inflexible loads. Let B
denote the set of buses, indexed by b, with B = {1,..., B}
and K denote the set of lines, with = {1,..., K}. Let ap &
denote the fraction of power injected in bus b that flows over
line k, a.k.a. shift factor. Let G = {1,...,G} denote the set
of generators, indexed by g, and D = {1, ..., D} denote the
set of inflexible loads, indexed by d. Let b(¢), b(g), and b(d),
denote the bus at which DC ¢, generator g, and load d is
located, respectively. In what follows, and unless otherwise
mentioned, b € B,k € K, g € G,and d € D.

We aim to minimize the total system cost, which includes
the total QoS costs (for all DCs), the total power generation
costs, and a penalty cost related to DC job transfer:

Total System Cost = Z C5(n;) + Z cgPy + C™, (24)
i g

where P, is the output of generator g, with cost ¢4, and
C'iQOS(ni) is given by (8) and (11) as follows:

QoS _ _ _ 0. (n;
CPP(n;) = Ci(0i(ny)) = p e r2efim)
>j uB,NiijuA:
—2p2,i (42,, 042] N, _+6721 )
= p1 € i 7B JT7A;

(25

In order to prevent two-way transfer of jobs between DCs,
we amend the QoS cost in the objective function (24) with a

penalty cost:

(4,5)€T2Ni#]

O™ = g2 Ni%j Nj%ia (26)

where £?" is a large scalar. Note that C?" is convex in

N;_,; thus preserving the convexity in (24), whereas the

7

minimization of (24) will drive C? to zero, with one of
N;_; or N;_,; going to (26) to zero.

The constraints of the centralized problem are listed
below. Dual variables are shown in parentheses.

The power balance constraint takes the form:

STBY Nisi)+3 Pi=> Py=0,-()) (27
i J d g

where f3; is the power consumption rate of an active server
at DC 4, and P, is the inflexible load d that must be serviced.
The transmission line constraints are:

—F < Zab(g),kpg - Zab(d),kpd

g d
= apiy1B: Y Njsi < Fr, Yk, — (v, vf)
i J

where F'j, is the maximum flow limit of line k.
Each DC has the following active server capacity limit:

—active
E Nj; <N,
J

Vi, = (Gi) (29)

—active . . . .
where N, is the maximum amount of active servers in
DC i.

All generators are subject to bound constraints:

P, <P, <P, Vg, (30)
where P and P, represent minimum and maximum capac-
ity limits for generator g.

Summarizing (24)—(30), the centralized economic dis-
patch problem, which solves for the DC output N;_,;, Vi, j,
and the generator output Py, Vg, with n referring to n;, Vi,
and p referring to P, Vg, is formulated as follows:

Centralized Economic Dispatch problem:

ZjrB; Nisj—ra,
n Y prie S BETR) g
min p1,i€ 7Py i+ cgPy
np “— 7

7

+ g2 Z

(i.5) ET2Ni]
s.t: (27) — (30),

Nij Njsi,

€]

with N;_,; >0, Vi, j,and P, > 0, Vg.

Notably, the centralized economic dispatch problem in
(31) has a convex objective function (under the Assumptions
of Lemma 2 or Proposition 5) and linear constraints. The
sum of the QoS cost functions in the objective (first term)
is not separable for each DC due to the potential server
sharing between DCs, whereas the sum of generation costs
(second term) is separable for each generator. The two-
way DC cost (third term) is not separable as it considers
servers belonging to multiple DCs. The power balance
constraint (27) and transmission constraints (28) couple DC
and generator variables. The DC active server capacity limit
(29) couples variables for each DC; the generator limits (30)
are generator-specific constraints.

Using the dual variables of the economic dispatch prob-
lem, we determine the Locational Marginal Prices (LMPs),
which represent the marginal cost of serving an additional
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unit of load at a given location in the power network. For
bus b, the LMP is defined as:

LMPy = A — > " ap i ( (32)
k

v =),
When there is no network congestion, i.e., all line flow
constraints are not binding, their dual variables will be zero
and all LMPs will be equal across all buses. The equality of
all LMPs signifies that power can flow unimpeded through
the network and the cost of serving an additional unit of
load is the same at every bus.

Next, we transform the centralized economic dispatch
optimization problem into a decentralized problem that can
be solved using Lagrangian decomposition and a primal-
dual algorithm.

5 DECENTRALIZED PROBLEM FORMULATION AND
PROPOSED SOLUTION APPROACH

In this section, we sketch the proposed solution approach
using the Lagrangian and dual functions (in Subsection 5.1),
we derive the closed form gradients (in Subsection 5.2), and
we describe the primal-dual algorithm (in Subsection 5.3).

5.1 Sketch of the Proposed Solution Approach

Using (31), we form the Lagrangian dualizing the power
balance constraint (27), the transmission line constraints
(28), and the DC active server capacity limit (29), as follows:

Ln,p, A\ v,0) =Y C2%ni) + Y cyPy+C™
i g
A{; <5¢ZNH-> +ZPd - Zpg}
+§k:v;( Zamq Py +Zab P
+ Zab(i)ykﬂiZNﬁi - k)
Z (Zab o).k Py — Z%@ xPa
_Zab( k,@ZNHZ )
+Z<1(ZNH - )

where n = {n;;Vi},p = {Py:Vg}h.v = {v,v;Vk},¢ =
{¢;Vi}, The dual problem is given as follows:

max_ ¢(A, v, (),

AER, v, (>0

(33)

(34)

where ¢(A, v, {) is the dual function given by:

aAv, )= inf Ln.pAv.C)
— 3 QOS 2w
_Tng[Zc (n:) +C +AZ@ZNW+

Z(Vk_ — VY )Zab(imﬁi Z i ZQ ZN]_,L}
+;r€1£[z APy +Z -1 ) Zab(g),kpg}

g€eg
+)\ZPd+Z[ v, — v (Zab(d)kpd_Fk)}a (35)

8

with P representing the generator capacity limits, i.e., P, =
[Bg,?g], Vg. Note that the dual function (each infimum) is
separable in the DC and generator variables.

To solve the decentralized problem, we propose a gra-
dient algorithm that iteratively computes estimates of the
primal and dual variables, which are approximate solutions
to (31) and (34). The qualitative procedure is as follows:

1) Compute primal variable estimates using gradient
descent steps that minimize the Lagrangian (33) for
a given set of dual variables.

2) Compute dual variable estimates using gradient
ascent that moves in the direction of maximizing
the dual function (35) given the primal variables.

3) Repeat 1) and 2) until convergence.

Problem (34) can be loosely interpreted, similarly to
[40], considering an aggregator that sends price signals via
optimization of a social cost metric and a set of DCs that
respond to these prices by collectively determining their
server allocations. Specifically, the first inner infimum prob-
lem over the responses 12 in (35) can be viewed as a local
DC optimization for the server responses where generator
output and multipliers (i.e., prices) are fixed. Similarly, the
second inner infimum over the generator output p in (35)
can be viewed as a local generator optimization for the
generator output where server responses and multipliers
(i.e., prices) are fixed.

5.2 Gradient Closed Form Expressions

For the gradient descent steps in primal variables, n and
p, we derive the following closed form expressions from
(33).

For the gradient 5= N , we have:

oL ac?‘ﬁ(m-) »
ON;_; N ON;_,; AT Nisiliiziy
LMP; ()
+ Bi [A Zab()k v =) +Cilgi—gy, (36)
ke
where
9C2®(n;) _ 0CS(ny)  06i(ny) @7
8NHJ~ - 89l(nl) 8Niﬁj ’
Using (25), we get:
aCiQos(ni) QoS
W —p2,iC;7 (ny). (38)
whereas using (15)—(18), we get:
90;(n;) 0%, 2uB,
= : L —0;(ng)].
8Ni*>j Zj’GI 02B{Ni4>j’ + O’%i |: 0‘sz (n )} (39)
For the gradient %, we have:
LMPy,(,)
oL _
T_Pg = Cq — Z ab(g),k(y,j — I/k )] . (40)

kex
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For the gradient ascent steps in dual variables, A, v, and
¢, we derive the following closed form expressions from
(35).

For the gradient %, we have:

Power balance

%:Z(ﬁiZNj—)i)‘i’ZPd_ZPq-

i€l JET deD geg

(41)

For the gradients 2~ and
Ov,,

oli}
we have:
81/,:r 4

9¢

=—F, — Fy,
oy, k F

= Fy, — Fy, (42)

o9
3V2_
where

Flow along line k

by = Z ab(g),k Py — Z ap(d),kFa
geg deD

- Z ay(iy,kBi Z Nj;.

ieT JET

(43)

For the gradient g—é, we have:

Active servers

8(] —active
3, = > NjLi —N;

5.3 Primal-Dual Algorithm Description

(44)
jE€T

Let o denote a stepsize, which can be selected individually
for each variable update, using common stepsize rules.
Let ® denote the number of gradient descent iterations
to obtain primal variable estimates, indexed by ¢. Let 7
denote the iteration counter of the primal-dual algorithm,
with Tihax being the maximum number of iterations. Let
FEin be a threshold used as a termination condition. Let
w|, denote the evaluation of some quantity w at iter-
ation 7; similarly w|y . is evaluated at the ¢-th (inner)
iteration of iteration 7. Let also [w]T = max{0,w}, and
[w]p, = min{max{w, P}, Py}.

Algorithm 1 details the proposed primal-dual algorithm.
The primal updates (45) — see lines 5 to 7 — are executed ®
times, using the gradient expressions in (36)—(40). We note
that each computation within (inner) primal update itera-
tion ¢ in both (45a) and (45b) can be performed in parallel.
The dual updates (46) — see line 8 — are then executed once,
given the primal variable estimates obtained earlier, and can
be also executed in parallel. The algorithm terminates (see
line 4) when the maximum number of iterations Ty,.x is
reached or the maximum norm e (computed in line 9 as the
squared Euclidean norm of the dual variable differences in
adjacent iterations) is below the threshold Eliy.

6 NUMERICAL EXPERIMENTS

In this section, we demonstrate our approach on a standard
power network from the literature and quantify the system-
wide benefits from the incorporation of DC flexibility in
the economic dispatch problem. We compare two settings:
No Sharing (NS), in which the DCs cannot share server
resources, and With Sharing (WS), in which DCs can share
server resources.

Algorithm 1 Proposed Primal-Dual Algorithm

1: Input: « (step size), P (primal iterations), Tax (Maxi-
mum number of primal-dual iterations), E,;, (threshold
for maximum dual norm), n)o, plo, Ao, ¥]o, |o (initial
estimates of primal and dual variables).

2: Output: n, p, A, v, ¢ (primal and dual variables).
3: Sett =0.
4: While € > E i, and 7 < T4« do:
5: Primal Updates:
6: For ¢ = 1...®, do: Using (36)-(40), derive
+
oL .
Ni%le‘Fl = Ni*)j|7' _am’¢ﬂ' ,v’L,], (453)
oL
P)lry1 = |Pylr —a=— ,Vg. 45b
g| +1 |: gl O[an (;5,7':| g ( )
Py
7. end
8: Dual Updates: Using (41)—(44), derive
9q
)\|‘r+1 - )\|T + aﬁ 7" (46&)
dq i
Vk_|7'+1 = |:Vk_|7' + O‘% ‘r:| 7Vk7 (46b)
5 +
V}j|7’+1: |:1/2_|7—+O{%_ :| aVk7 (46C)
81/k T
5 +
q .
Ak = |Gilr , Vi. 46d
Gilr+1 <|+a6§ir [ (46d)

% €= mg:X({H)\‘T-i-l *A|T|2|§, Wi e = v el 05 e —
vl 3, l1Gilran = Gil|[3), 74 7+ 1.

Fig. 2: Depiction of the 5-bus PJM system.

In what follows, we present results for a Base Case with
identical DCs (in Subsection 6.1), we explore variants for
different QoS and efficiency parameters (in Subsection 6.2),
and we validate the performance of our approach for a
higher number of DCs (in Subsection 6.3).
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TABLE 2: Generator and network parameters, 5-bus system.

Generator G1 G2 G3 G4 G5
Cost (3/MWh) 14 15 30 40 10
Capacity (MW) 40 170 520 200 600
Shift Factors: Bus
Line A B C D E
AB 0.1939  -04759 -0.3490 0 0.15954
AD 0.4376 0.2583 0.1895 0 0.3600
AE 0.3685 0.2176 0.1595 0 -0.5195
BC 0.1939 0.5241  -0.3490 0 0.1595
CD 0.1939 0.5241 0.6510 0 0.1595
DE -0.3685 -0.2176  -0.1595 0 -0.4805

6.1 Base Case

In this subsection, we describe the Base Case power network
and the DC allocation and parameters (in Subsection 6.1.1),
we present the computational setup (in Subsection 6.1.2),
and we discuss the Base Case results (in Subsection 6.1.3).

6.1.1 Input Data

The Base Case employs the 5-bus PJM system displayed in
Fig. 2 [53]. The system includes 5 buses (labeled as A, B, C,
D, and E), 6 transmission lines (labeled as AB, BC, CD, DE,
AE, and AD), 5 generators (labeled as G1, G2, G3, G4, and
G5), and 3 inflexible loads (labeled as L1, L2, and L3) located
at buses B, C, and D, with values 300, 300, and 400MW,
respectively. Transmission lines DE and AB have capacity
limits of 240 and 400MW, respectively. Generator costs and
capacities, as well as shift factors, are shown in Table 2.

In the Base Case, we allocated 3 DCs, labeled as DC1,
DC2, and DC3, at buses A, B, and C, respectively, with
identical characteristics. Specifically, Vi, DC ¢ has QoS cost
coefficients p;; = 7,500 and py; = 0.002, arrival and
departure quantities (per hour) g4, = 100, ‘7%1: = 0.5,
wp;, = 10,and U%i = (.02, active server power consumption

rate 3; = 2, and capacity limit W?Cﬁve = 300.

6.1.2 Computational Setup

We implemented Algorithm 1 in Matlab R2024a and ran it
on an i9 processor at 2.4 GHz with 64 GB RAM. Algorithm
1 parameters were set as follows: o« = 0.05, & = 100,
Emin = 1077, and Thax = 10, 000. Initial values of primal
variables were set to zero. Initial values of dual variables
were randomly selected between 0 and 1.

In Fig. 3, we demonstrate the execution of Algorithm 1,
for the Base Case, WS setting. We present the value of the
maximum norm e (stopping criterion) per iteration whose
threshold (Fy,in) is reached in about 150 iterations. We also
show the Frobenius norms (between adjacent iterations)
for DC and generator outputs, which, upon convergence,
reach values in the order of 107 and 1075, respectively.
Furthermore, we present the L1 norm (between adjacent
iterations) for the total cost difference, which reaches values
in the order of 10~3. Computational time for this admittedly
small example was in the order of milliseconds (msec). We
further elaborate on the computational performance of our
approach in Subsection 6.3.

6.1.3 Base Case Results (Identical DCs)

In Table 3, we present the Base Case outputs for LMPs,
generators and DCs. When the DCs do not share server

10

==Frob. Norm (DCs) §
—Frob. Norm (Generators)
—Max Norm (¢)

—L1 Norm (Total Cost Diff.)

Norm Value

0 20 40 60 80 140
Iterations

100 120

Fig. 3: Convergence illustration of Algorithm 1, Base Case,
WS setting.

TABLE 3: LMP, generator and DC outputs; Base Case.

No Sharing (NS)

Bus A B C D E
LMP ($/MWh) 16.98 26.38 30 39.94 10
Generator G1 G2 G3 G4 G5
Gen. (MWh) 40 170 492.77 0 543.75
Tot. Gen. (MWh) ~ 1,246.52 Tot. Gen. Cost ($) 23,300
Avg. Gen. Cost ($/MWh) 18.69
DC1 DC2 DC3 Total
Active Servers 48.60 38.61 36.05 123.26
DC Load (MWh) 97.20 77.22 72.10 246.52
DC Cost ($) 2,627.5 3,050.5 3,194.7 8,872.7
With Sharing (WS)
Bus A B C D E
LMP ($/MWh) 30 30 30 30 30
Generator G1 G2 G3 G4 G5
Gen. (MWh) 40 170 406.3 0 600
Tot. Gen. (MWh) 1,216.3 Tot. Gen. Cost ($) 21,299
Avg. Gen. Cost ($/MWh) 17.51
DC To / From DC1 DC2 DC3 Total
DC1 36.05 32.92 34.29 102.48
DC2 0 3.13 0.16 4.14
DC3 0 0 1.60 1.53
Used Servers 36.05 36.05 36.05 108.15
DC Load (MWh) 204.96 8.28 3.06 216.30
DC Cost ($) 3,194.7 3,194.7  3,194.7 9,584.1

resources, i.e., in the NS setting, line DE reaches its limit
of 240MW, which prevents the full dispatch of the cheapest
generator G5 (note that G5, with ¢; = $10/MWh produces
543.75MWh instead of at full capacity, i.e., 600MWh). LMPs
are different at each bus ranging from $10 to $39.94/MWh,
hence, DCs effectively see a different price at each location,
ie, DC1, DC2, and DC3 see a price of $16.98, $26.38,
and $30/MWh, respectively. Since all DCs have identical
characteristics, DC1 that sees the lowest price has more
active servers (48.6), followed by DC2 (38.61) and then by
DC3 (36.05).

In Fig. 4, we visualize the DC QoS cost function and
scaled derivative (w.r.t. N;_,;) for the Base Case, NS setting
(DCs have the same cost function parameters, hence the
single curve). Derivative scaling is performed with 1+ to
account for the energy consumed (in MWh). Indee , the
magnitudes of the QoS cost scaled derivative at the optimal
amount of servers match the LMP values at the buses where
each respective DC is located at. This is expected since LMPs
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Fig. 4: DC QoS cost function and scaled derivative, Base
Case, NS setting.

represent marginal costs of delivering electricity at a given
location.

When DCs can share resources, i.e., in the WS setting,
we observe that line DE congestion is relieved and LMPs
are equal to $30/MWh at all buses (G3 is the marginal unit).
The cheapest generator G5 is now dispatched at full capacity
producing 600MWh. In addition, the total generation in
the WS setting is about 30MWh less than that of the NS
setting, due to the smaller amount of active servers in
the WS setting. Additionally, server sharing results in the
average generation cost decreasing from $18.69/MWh to
$17.51/MWh. Note that the total amount of active servers
when DCs share resources is equal in each DC. Since all DCs
see the same price and they have identical characteristics,
this outcome is expected. The congestion relief in line DE is
achieved by using more active servers in DC1, indicating
the favorable location of DC1 under the specific system
conditions. In turn, this allows for the cheapest generator
G5 to be dispatched at full capacity. The larger DC cost
(by $711.4) is more than offset by the lower generation cost
(by $2,001), resulting in an overall cost decrease equal to
$1,289.6.

6.2 Base Case Variants

In this subsection, we present and discuss results for Base
Case variants with identical DCs but higher QoS cost (Sub-
section 6.2.1), one DC with higher efficiency (Subsection
6.2.2), and one DC (namely DC1) exhibiting both higher
efficiency and QoS cost (Subsection 6.2.3).

6.2.1 Identical DCs with Higher QoS Cost

In Table 4, we present the results for a Base Case
variant with a higher QoS cost coefficient for all DCs,
p1s = 15,000, Vi. Higher QoS cost coefficients result in
more active servers (175.85 vs. 123.26, and 155.31 vs.
108.15, for the NS and WS settings, respectively) compared
to the results in Table 3, in order to keep QoS costs low. More
active servers result in higher DC loads (by about 105.18
and 94.34MWh, for the NS and WS settings, respectively). In

2. For clarity, set the derivative in (36) equal to zero and discard the
2-way transfer terms (zero) and ¢; (also zero since the active server
capacity limit is not binding), to obtain the aforementioned equality.
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TABLE 4: LMP, generator and DC outputs; higher DC QoS
cost coefficient (p; = 15, 000).

No Sharing (NS)

Bus A B C D E
LMP ($/MWh) 16.99 26.42 30.04 40 10
Generator G1 G2 G3 G4 G5
Gen. (MWh) 40 170 520 3041 591.30
Tot. Gen. (MWh) ~1,351.70 Tot. Gen. Cost (5) 25,839
Avg. Gen. Cost ($/MWh) 19.09
DC1 DC2 DC3 Total
Active Servers 68.88 55.23 51.74 175.85
DC Load (MWh) 137.76 11046  103.48 351.70
DC Cost ($) 4,278.7 48578 5,054.2 14,190.7
With Sharing (WS)
Bus A B C D E
LMP ($/MWh) 30 30 30 30 30
Generator G1 G2 G3 G4 G5
Gen. (MWh) 40 170 500.64 0 600
Tot. Gen. (MWh) ~1,310.64 Tot. Gen. Cost (3) 24,129
Avg. Gen. Cost (3/MWh) 18.41
DC To / From DC1 DC2 DC3 Total
DC1 51.76 0 42.25 118.61
DC2 0.01 51.77 0.38 32.83
DC3 0 0 9.14 3.87
Used Servers 51.77 51.77 51.77 155.31
DC Load (MWh) 237.22 65.66 7.74 310.64
DC Cost ($) 5,522 50522 5,052.2 15,156.6

the NS setting, line DE is congested and the most expensive
generator G4 is dispatched; LMPs at buses A, B, and C
are similar to the Base Case. In the WS setting, the total
generation drops by about 40MWh, congestion is relieved
(all LMPs become equal), and the total amount of active
servers drops (compared to the NS setting). The larger DC
cost (by $965.9), in the WS setting, is more than offset by
the lower generation cost (by $1, 721), thus resulting in an
overall cost decrease equal to $755.1, which is lower than
that of the Base Case (due to the higher amount of servers).

6.2.2 One DC with Higher Efficiency

Next, we present variants that alter the Base Case DC
efficiencies in Tables 5 and 6. Efficiency is defined based on
the value of the power consumption rate of an active server,
B;. Each Table presents DC outputs for variants where a
single DC is set to be the most efficient; it is segmented into
three sub-Tables each denoting in the first column the DC
that becomes the most efficient (gets assigned the smallest
Bi). Conceptually, a smaller 3; denotes more efficient servers
at DC 4, and, in turn, more active servers at DC ¢ can be used
to carry out workload.

Table 5 presents a variant with the most efficient DC
having f = 1. As an example, when DC1 is the most
efficient, it has more active servers than DC2 and DC3 in
the NS setting, whereas all jobs are sent to DC1 in the WS
setting — see the zero active server quantities. Comparing
the WS to the NS setting, the total amount of active servers
is increased, the total DC load is reduced, and both the
total DC and generation costs are reduced. The same trends
appear in variants where DC2 or DC3 are the most efficient.
Notably, however, line DE remains congested under all
variants, although there is some generator re-dispatching
in favor of the cheapest generator G5. Furthermore, we note
that the location of the most efficient DC does matter. In
the NS setting, we observe more active servers when DCl1
(at bus A) is the most efficient, followed by DC2 (at bus
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TABLE 5: DC outputs; one DC with efficiency 3 = 1. TABLE 6: DC outputs; one DC with efficiency, 5 = 1.5.
No Sharing (NS) No Sharing (NS)
DC1 DC2 DC3 Total DC1 DC2 DC3 Total
Active servers 68.91 38.61 36.05 143.57 Active servers 55.26 38.61 36.05 130.92
DC Load (MWh) 68.91 77.22 72.1 218.23 DC Load (MWh) 84.39 77.22 72.1 233.71
Effic. | Tot. DC Cost ($) 8,384.1 Tot. Gen. Cost ($) 22,850 Effic. | Tot. DC Cost ($)  8,647.3 Tot. Gen. Cost (§) 23,113
DC1 With Sharing (WS) DC1 With Sharing (WS)
DC1 DC2 DC3 Total DC1 DC2 DC3 Total
Used servers 68.34 68.34 68.34 205.02 Used servers 45.56 45.56 45.56 136.68
Active servers 205.02 0 0 205.02 Active servers 136.68 0 0 136.68
DC Load (MWh)  205.02 0 0 205.02 DC Load (MWh)  205.02 0 0 205.02
Tot. DC Cost ($)  6,446.1 Tot. Gen. Cost ($) 20,961 Tot. DC Cost () 82119 Tot. Gen. Cost ($) 20,961
Tot. Benefit of Sharing ($) 3,827 Tot. Benefit of Sharing ($) 2,587.4
No Sharing (NS) No Sharing (NS)
DC1 DC2 DC3 Total DC1 DC2 DC3 Total
Active servers 48.60 55.26 36.05 139.91 Active servers 48.60 4490 36.05 129.55
DC Load (MWh) 97.2 55.26 72.1 224.56 DC Load (MWh) 97.2 67.36 72.1 236.65
Effic. | Tot. DC Cost ($) 8,250.2 Tot. Gen. Cost (§) 22,751 Effic. | Tot. DC Cost ($) 8,585 Tot. Gen. Cost ($) 22,751
DC2 With Sharing (WS) DC2 With Sharing (WS)
DC1 DC2 DC3 Total DC1 DC2 DC3 Total
Used servers 55.26 55.26 55.26 165.78 Used servers 44.06 44.06 44.06 132.18
Active servers 0 165.78 0 165.78 Active servers 94.71 37.47 0 132.18
DC Load (MWh) 0 165.78 0 165.78 DC Load (MWh) 18942  56.20 0 245.62
Tot. DC Cost ($) ~ 7,2834 Tot. Gen. Cost (§) 21,854 Tot. DC Cost ($) 8,391 Tot. Gen. Cost ($) 22,178
Tot. Benefit of Sharing ($) 1,863.8 Tot. Benefit of Sharing ($) 767
No Sharing (NS) No Sharing (NS)
DC1 DC2 DC3 Total DC1 DC2 DC3 Total
Active servers 48.60 38.61 51.77 138.98 Active servers 48.60 38.61 42.00 129.21
DC Load (MWh) 97.2 77.22 51.77 226.2 DC Load (MWh) 97.2 77.22 63.00 237.42
Effic. | Tot. DC Cost ($§) 8,204.1 Tot. Gen. Cost (§) 22,721 Effic. | Tot. DC Cost ($) ~ 8,563.6 Tot. Gen. Cost (§) 23,057
DC3 With Sharing (WS) DC3 With Sharing (WS)
DC1 DC2 DC3 Total DC1 DC2 DC3 Total
Used servers 51.77 51.77 51.77 155.31 Used servers 42.00 42.00 42.00 126.00
Active servers 0 0 155.31 155.31 Active servers 102.51 0 23.49 126.00
DC Load (MWh) 0 0 155.31 155.31 DC Load (MWh) 205.02 0 35.22 240.24
Tot. DC Cost () 7,5783 Tot. Gen. Cost ($) 22,140 Tot. DC Cost ()  8,656.8 Tot. Gen. Cost ($) 22,017
Tot. Benefit of Sharing ()  1,206.8 Tot. Benefit of Sharing ($) 946.8

B), followed by DC3 (at bus C), with respective benefits of
sharing (in the WS setting), $3, 827, $1, 863.8, and $1, 206.8.
Table 6 presents a variant with the most efficient DC
having 8 = 1.5, ie, it is less efficient compared to Table
5. Similarly to Table 5, more jobs are directed to the most
efficient DC, however, the amount of active servers is re-
duced — though still higher than the Base Case (see Table 3).
Comparing the WS to the NS setting, we still observe that all
jobs are sent to DC1 when this is the most efficient, however,
DC1 still receives most of the jobs even when DC2 or DC3
are most efficient. Apparently, the location of DC1 plays an
important role in terms of reducing the overall cost, when
the difference in efficiency is smaller, highlighting the trade-
off between the DC location and efficiency. Sharing leads to
a larger amount of active servers when either DC1 or DC2
are most efficient, and to smaller DC load only when DC1
is most efficient. However, the lower generation cost in all
variants results in a positive monetary benefit (higher when
DC1 is most efficient), although congestion is not relieved
(but still re-dispatching reduces the generation cost).
6.2.3 One DC with Higher Efficiency and Higher QoS Cost

Lastly, we present in Table 7 a variant with DC1 having
higher efficiency, 51 = 1, whereas 8y = (3 = 2, but
also a higher QoS cost coefficient p; ; = 37,500, whereas
P12 = p1,3 = 7,500. Essentially, this compares to Table 5
with DC1 most efficient, but with higher QoS cost, which
in turn results in an increase of its active servers (in the NS
setting, 151.40 vs. 68.91). In the WS setting, DC2 and DC3
send their entire workload to the most efficient DC1, and,

TABLE 7: LMP, generation and DC outputs; DC1 higher
efficiency and QoS cost coefficient (5; = 1, p1,1 = 37, 500).

No Sharing (NS)

Bus A B C D E

LMP ($/MWh) 16.98 26.38 30 3994 10
DC1 DC2 DC3 Total
Active Servers 151.40 38.61 36.05 226.06
DC Load (MWh) 151.40 77.22 721 300.72
Tot. DC Cost ($) 13,7923  Tot. Gen. Cost ($) 24,251

With Sharing (WS)

Bus A B C D E

LMP ($/MWh) 30 30 30 30 30
DC1 DC2 DC3 Total
Used Servers 114.78 51.77 51.77 218.33
Active Servers 218.33 0 0 218.33
DC Load (MWh) 218.33 0 0 218.33
Tot. DC Cost ($) ~ 13,426.1 Tot. Gen. Cost () 21,360
Tot. Benefit of Sharing ($) 3,257.2

surprisingly, due to the higher DC load at bus A (as a result
of the higher QoS cost of DC1) congestion is relieved —
see LMPs — illustrating the much involved impact on the
network flows.

6.3 Extensions

In what follows, we present additional experiments that aim
at validating the proposed algorithm for a higher number of
DCs with different characteristics and locations.

In this respect, we increased the DCs at each location
by a factor of 10, i.e.,, 30 DCs in total, and by a factor
of 100, i.e., 300 DCs in total. To keep the costs scaled, we
decreased the QoS cost function parameter p; and efficiency
parameter 3 by the same factors. We further randomly
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TABLE 8: Results for a Higher Number of DCs at 3 locations.
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TABLE 9: Results for a Higher Number of DCs at 5 locations.

Total Number of DCs 30 300 Total Number of DCs 50 500
Sampling Margin 10% 50% 10% 50% Sampling Margin 10% 50% 10% 50%
No Sharing (NS) No Sharing (NS)

Iterations 5,189 5,349 8,605 8.794 Iterations 2,408 2,155 2,419 2,331

Time per Iter. (msec) 0.4 0.5 194 20.2 Time per Iter. (msec) 0.4 0.4 13.5 13.0
Tot. Gen. Cost ($) 23,338 23,220 23,318 23,176 Tot. Gen. Cost ($) 24,776 24,790 24,767 24,738
Tot. DC Cost ($) 9,015 10,094 8,848 9,138 Tot. DC Cost ($) 18,861 20,522 18,723 19,181

With Sharing (WS) With Sharing (WS)
Iterations 5,152 5,734 10,000 10,000 Iterations 5,713 3,435 10,000 10,000

Time per Iter. (msec) 25.2 28.4 551.6 520.6 Time per Iter. (msec) 76.7 62.4 1165.1 11239
Tot. Gen. Cost ($) 21,302 21,020 21,340 21,225 Tot. Gen. Cost ($) 24,710 24,381 24,710 24,359
Tot. DC Cost ($) 8,759 6,226 8,771 6,046 Tot. DC Cost ($) 15,293 10,215 15462 10,676

Benefit of Sharing (§) 2,292 6,069 2,055 5,043 Benefit of Sharing (§) 3,633 10,716 3,318 8,884

selected parameters (14, ptp, and p; by sampling within a
10% and 50% margin around the nominal values of the Base
Case, and we reduced the threshold E,,;, to 10~°. For the
300 DCs, WS setting, we reduced the stepsize « to 0.005, and
the number of primal update iterations ® to 20. The results
are shown in Table 8.

Iterations (7) have now increased in the thousands. For
the NS setting, computational times per iteration 7 are still
minimal (around half a msec) for 30 DCs, whereas they
increase to about 20 msecs for 300 DCs. Note that the
time consuming part of the algorithm per iteration 7 refers
to the primal updates, which are executed multiple times
(® = 100) compared to the dual updates that are executed
only once. An increase from 30 to 300 DCs increases the pri-
mal variables in (45a) by a factor of 10, whereas the gradient
expressions also involve the computations of larger sums
over DCs (also by a factor of 10, which in turn affects the
time per variable update). For the WS setting, computational
times have now increased to about 28 msecs for 30 DCs and
to about 550 msecs for 300 DCs. We note, in a parenthesis,
that we further experimented with different random seeds
and the variations we observed were negligible. Compared
to the NS setting, the WS setting increases the number of
DC primal variables by a factor that equals to the number
of DCs, but executes 5 times less primal update iterations
(because & = 20 instead of 100). Note, however, that the
variable updates are amenable to parallelization. Updating
DC primal variables in parallel would reduce the computa-
tional time of each iteration ¢ by a factor equal to the square
of the number of DCs. For example, the computational
times for 300 DCs could be reduced by at least four orders
of magnitude. Hence, running an algorithm in parallel for
10,000 iterations (which in this case reached a value of the
maximum norm ¢ in the order of 10~*) would converge in
less than 1 sec.

In Table 9, we present results considering 10 and 100
DCs in all 5 bus locations, i.e., in total 50 and 500 DCs,
respectively. The setup and parameters for 50 and 500 DCs
are selected similarly to the aforementioned for 30 and 300
DCs, respectively. In addition, we reduced the limit of line
AB from 400MW to 200MW to increase congestion (which
now also appears in line AB). Although DC sharing does not
eliminate congestion (only line DE congestion is relieved for
the 50 DCs, WS setting), the benefit of sharing is roughly
proportional to the number of DCs (compared to the results
in Table 8). Computational times are in the same order of
magnitude and somewhat increased due to the increase in
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—L1 Norm (Total Cost Diff.)
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Fig. 5: Convergence illustration of Algorithm 1, 50 DCs, 50%
margin, WS setting.

the number of DCs (whereas the impact on performance
from our experimentation with different random seeds was
negligible). However, parallelization can still drastically re-
duce the computational time. For illustration purposes, we
present the convergence of Algorithm 1 for 50 DCs, 50%
margin, WS setting in Fig. 5. The results show that when the
maximum norm e reaches the 107° threshold, the L1 norm
of the total cost difference is already in low values, in the
order of 1072,

7 CONCLUSION

In this work, we proposed a DC model based on queuing
theory and a convex QoS-based cost function. We pre-
sented a novel centralized economic dispatch formulation
involving DCs as flexible loads, whose solution yields opti-
mal generator and DC workload outputs, while respecting
transmission constraints. We then showcased a distributed
approach to solving the economic dispatch problem using
a Lagrangian decomposition and a dual gradient ascent
algorithm. Finally, we presented experimental results and
demonstrated the system-wide benefits from incorporating
DC flexibility in an economic dispatch problem.

Our results highlighted the trade-offs between DC loca-
tion, QoS, and efficiency. Indeed, the location of a DC should
be viewed in the context of “dynamic” power network
conditions. Congestion depends on the location of loads
and generation, and the intermittent nature of renewable
energy creates “unsystematic” congestion and “dynamic”
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conditions, which may render one location more favorable
at a certain time, and another location at another time.
Hence, it is imperative to consider the power network
constraints in an economic dispatch problem, and harvest
the DC flexibility to shift workload over space given the
specific conditions at each time period, to ensure system-
wide efficient and “greener” allocations. Arguably, our re-
sults provided useful insights on the “coupled” data and
power networks.

Future work is directed to fewer assumptions about the
DC models, such as no prior knowledge about the DC cost
function model and/or coefficients, and learning methods
employing network interaction to estimate DC cost function
structure and parameters in the spirit of our prior work [40].
Shifting DC workload over time, thus considering the DC
storage-like capabilities in the economic dispatch problem,
is another interesting direction for further research, which
will also benefit greatly from distributed approaches.
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