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ABSTRACT

Sepsis is the leading cause of in-hospital mortality in the USA. Early

sepsis onset prediction and diagnosis could signi"cantly improve

the survival of sepsis patients. Existing predictivemodels are usually

trained on high-quality data with few missing information, while

missing values widely exist in real-world clinical scenarios (espe-

cially in the "rst hours of admissions to the hospital), which causes

a signi"cant decrease in accuracy and an increase in uncertainty

for the predictive models. The common method to handle missing

values is imputation, which replaces the unavailable variables with

estimates from the observed data. The uncertainty of imputation

results can be propagated to the sepsis prediction outputs, which

have not been studied in existing works on either sepsis prediction

or uncertainty quanti"cation. In this study, we "rst de"ne such

propagated uncertainty as the variance of prediction output and

then introduce uncertainty propagation methods to quantify the

propagated uncertainty. Moreover, for the potential high-risk pa-

tients with low con"dence due to limited observations, we propose

a robust active sensing algorithm to increase con"dence by actively

recommending clinicians to observe the most informative variables.

We validate the proposed models in both publicly available data

(i.e., MIMIC-III and AmsterdamUMCdb) and proprietary data in

The Ohio State UniversityWexner Medical Center (OSUWMC). The

experimental results show that the propagated uncertainty is domi-

nant at the beginning of admissions to hospitals and the proposed

algorithm outperforms state-of-the-art active sensing methods. Fi-

nally, we implement a SepsisLab system for early sepsis prediction

and active sensing based on our pre-trained models. Clinicians

and potential sepsis patients can bene"t from the system in early

prediction and diagnosis of sepsis.
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1 INTRODUCTION

Sepsis, de"ned as life-threatening organ dysfunction in response

to infection, contributes to up to half of all hospital deaths and

is associated with more than $24 billion in annual costs in the

United States [13]. Existing studies [14] have shown that a sepsis

patient may bene"t from a 4% higher chance of survival if they

are diagnosed 1 hour earlier, so developing an early sepsis onset

prediction system can signi"cantly improve clinical outcomes.

Existing machine-learning-based predictive models [7, 10, 21, 38]

are usually trained on high-quality data with few missing informa-

tion, while missing values widely exist in emergency department

(ED) and emergency medical services (EMS) settings, which would

cause most existing sepsis prediction models to su!er from perfor-

mance decline and high uncertainty. In addition, existing studies

[22, 30] have shown that for sepsis cases, most patients have already

progressed into sepsis before the admissions to hospitals or during

the "rst hours of admissions. Thus it is critical to develop accurate

sepsis prediction systems that can handle high missing-rate settings

(e.g., cold-start setting with only several limited vital signs).

A common method to handle missing variables is imputation, in

which missing values are replaced by estimates from the observed

data. To use the existing methods, we will need data imputations,

which come with a new problem for the downstream sepsis predic-

tion tasks: the uncertainty of imputation results can propagate to

the sepsis prediction models. Especially for deep learning models, a

small perturbation in the input variables might cause a signi"cant
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Figure 1: Work!ow of SepsisLab system.

change in the predicted risk [15, 20]. When the prediction models

are sensitive to the highly uncertain input (i.e., imputed variable),

the generated outputs are not reliable, so it is critical to quantify and

reduce such kind of uncertainty. However, unlike epistemic uncer-

tainty [28] and aleatory uncertainty [4], the propagated uncertainty

from the (imputed) input has not been investigated.

In this study, we develop an early sepsis prediction system Sep-

sisLab that can quantify and reduce such kind of propagated un-

certainty from missing value and imputation. Figure 1 displays the

work#ow of SepsisLab system. Given a patient’s data with limited

observations, we "rst adopt an imputation model to estimate the

distribution (i.e., mean and standard deviation) of missing values.

The standard deviation can be treated as the uncertainty of the

imputed results. Then we propose a time-aware sepsis prediction

model to predict whether the patients will su!er from sepsis in the

coming hours. The prediction model can generate sepsis risk and

uncertainty simultaneously. Given the estimated uncertainty, we

further propose a robust active sensing algorithm to recommend

clinicians observe the most informative lab test items that can max-

imally reduce the uncertainty for the potential high-risk patients.

The active sensing module can signi"cantly improve downstream

sepsis prediction performance by providing more accurate observa-

tion and reducing the propagated uncertainty.

To demonstrate the e!ectiveness of the proposed models, we

conduct experiments on real-world clinical datasets (including

two publicly available datasets MIMIC-III [9] and AmsterdamUM-

Cdb [29], and proprietary data from The Ohio State University

Wexner Medical Center (OSUWMC)). Experimental results show

that the developed system can successfully work on both high-

and low-missing-rate settings and achieve state-of-the-art sepsis

prediction performance. Finally, we develop a SepsisLab system for

deployment to integrate into clinicians’ work#ow, which paves the

way for human-AI collaboration and early intervention for sepsis

management.

We summarize our contributions as follows:

● We introduce propagated uncertainty to deep learning mod-

els, a new source of uncertainty di!erent fromwidely studied

aleatoric uncertainty and epistemic uncertainty

● We adopt uncertainty propagation to successfully qualify

the propagated uncertainty, and the experimental results

demonstrate the propagated uncertainty is dominant at the

beginning of patients’ admissions to hospital.

● We propose a new active sensing framework RAS, which

could e!ectively select variables to observe, and the experi-

ments demonstrate the e!ectiveness of the proposed propa-

gated uncertainty quali"cation method.

● We design an interactive system SepsisLab1 to make clin-

icians able to easily use and e!ectively interact with the

models.

2 RELATEDWORK

In this section, we brie#y review the existing studies related to sepsis

prediction systems, uncertainty quali"cation and active sensing.

2.1 Sepsis Prediction Systems

Sepsis is a heterogeneous clinical syndrome that is the leading

cause of mortality in hospital intensive care units (ICUs) [24, 33].

Early prediction and diagnosis may allow for timely treatment

and lead to more targeted clinical interventions. Screening tools

have been used clinically to recognize sepsis, including qSOFA

[25], MEWS [27], NEWS [26], and SIRS [3]. However, those tools

were designed to screen existing symptoms as opposed to explicitly

early predicting sepsis before its onset, and their e$cacy in sepsis

diagnosis is limited. With recent advances, deep learning methods

have shown great potential for accurate sepsis prediction [7, 10, 21,

38]. Although the methods achieved superior performance, they

face a critical limitation: the models need to take the complete

observation of a list of variables (including vital signs and lab tests),

while lots of variables are missing in real-world data (especially in

the "rst hours of admissions). Existing studies [7, 10, 38] usually

impute the missing values before the prediction, which raises a

new problem that the sepsis prediction models will heavily rely on

the imputation methods. The imputation uncertainty would also be

propagated to downstream prediction models. Thus it is necessary

to quantify the propagated uncertainty, especially for high-stakes

sepsis prediction tasks.

2.2 Uncertainty Quali"cation

Understanding what a model does not know is a critical part of

many machine learning systems. Despite the superior performance

deep learningmodels have achieved in various domain, they are usu-

ally over-con"dent about the predictions, which could limit their

applications to real-world risk-sensitive settings (e.g., in health-

care). Uncertainty quanti"cation methods play a pivotal role in

reducing the impact of uncertainties during both optimization and

decision making processes [1]. Existing uncertainty quali"cation

work [4, 6, 11, 23] has widely studied epistemic uncertainty and

1https://github.com/yinchangchang/SepsisLab
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Figure 2: Model framework. (A) The imputation model takes observed variables and corresponding timestamps as input,

and generates the distribution of missing values. (B) Sepsis prediction model produces the patients’ sepsis onset risks with

uncertainty based on the imputed data. (C) shows the uncertainty quanti"cation method with Monte-Carlo sampling. (D)

displays the uncertainty propagation method that can estimate propagated uncertainty by multiplying models’ gradient over

imputed variables and the imputation uncertainty.

aleatoric uncertainty. However, most existing uncertainty quali-

"cation studies ignore an important uncertainty source: the un-

certainty propagated from the uncertainty of input (e.g., widely

existing missing values). In this study, we aim to investigate and

reduce the propagated uncertainty.

2.3 Active Sensing

Active sensing aims to improve the target tasks’ performance by

actively selecting most informative variables with the minimal cost.

Yu et. al [37] propose to select the informative variables based on

mutual information and predictive variance. However, the model

is based on Bayesian co-training framework, the prediction ability

of which is not as good as deep neural networks when handling

large-scale time serial data. Yoon et. al [36] attempt to solve the

active sensing problem by proposing an RNN-based model (i.e.,

Deep Sensing). The Deep Sensing framework involves learning

3 di!erent networks: an interpolation network, a prediction net-

work and an error estimation network. Each network is separately

optimized for its own objective and then combined together after

training to be used for active sensing. Jarrett et. al [8] propose an

Inverse Active Sensing (IAS) to require negotiating (subjective)

trade-o! between accuracy, speediness, and cost of information.

Yoon et. al [35] propose an RL-based framework (Active Sensing

using Actor-Critic models, ASAC) to directly optimize the predic-

tive power after active sensing. Although the methods achieved

superior performance in the target prediction tasks, they failed to

measure the uncertainty of both missing values and model output

risks, which limit their application in high-stakes clinical settings.

In this study, we aim to develop an accurate sepsis prediction

system with propagated uncertainty quanti"cation and incorporate

active sensing algorithms to reduce the propagated uncertainty.

3 METHODOLOGY

In this section, we present the proposed sepsis prediction system

SepsisLab, including a missing value imputation model, an early

sepsis prediction model, and an active sensing algorithm.

3.1 Notation and Problem Statement

In this study, we aim to predict sepsis onset with limited clinical

variables observed. We consider the following setup. A patient has

a sequence of clinical variables (i.e., lab test data and vital sign

data) with timestamps. Let ! ∈ {" ∪ ∗}!×" denote the observa-

tions of variables, where ∗ represents missing values, # denotes the

number of collections of observations and $ denotes the number

of unique clinical variables. % ∈ "! denotes the observation times-

tamps. & ∈ {0, 1}! denotes the ground truth of whether the patient

will progress to sepsis in the coming hours. Following [10, 38], we

set the prediction window as 4 hours. Due to the existence of miss-

ing values, we impute the missing values "rst and use ' ∈ "!×" to

denote the imputed results.

Given a loss function L and a distribution over pairs (' , Y), the

goal is to "nd a function ( that minimize the expected loss:

(
∗
= argmin

#
)[L(( ('),&)] (1)

We list the important notations in Table 1.
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Table 1: Basic Notations.

Notation Description

! Observed variables with missing values.

' Imputed variables.

& Labels for sepsis prediction.

*$ Predicted sepsis risk at +%ℎ collection.

% Timestamps for observations.

, Masking indicator for imputation training.

# The number of collections of variables.

$ The number of unique variables.

-%$ Time embedding vector for +%ℎ collection.

-$ The embedding for +%ℎ collection.

. Mean of missing values.

/ Standard deviation of missing values.

0∗,1∗ Learnable parameters.

2$ Hidden state of imputation model.

ℎ$ Hidden state of the sepsis prediction model.

4 Computed uncertainty.

4' Propagated uncertainty.

4( Epistemic uncertainty.

5+ 6 Correlation between +%ℎ and 6%ℎ789+81:- .

:9 Learning rate.

3.2 Missing Value Imputation

We assume the missing values follow the Gaussian distributions

and impute the missing values by estimating the distribution of

variables (i.e., the mean and covariance). Figure 2(A) shows the

framework of our imputation model.

Following [31], we "rst use mean-imputation to preprocess the

observational data ! and send the embedding of ! to LSTM to

model the patient’s health states.

Embedding layer. In the +%ℎ collection, we have observational

values !$ , observation time %$ . We use a fully connected layer to

embed the observed variable in the collection:

-$ =0)[!$ ;-
%
$ ] + 1) , (2)

where [●; ●] denotes concatenation operation.0) ∈ "
("+2*)×* and

1) ∈ "
* are learnable variables. -%$ ∈ "

2* denotes the time embed-

ding and is computed as follows:

-
%
$, + = 2+#(

%$ ∗ 6

%,-' ∗ ;
), -%$,*++ = <=2(

%$ ∗ 6

%,-' ∗ ;
), (3)

where 0 ≤ 6 < ; , and %,-' denotes the max value of % .

Time-aware LSTM encoder. Given the embedding vectors

[-1, -2, ..., -!], we use LSTM to model the patients’ states:

21, 22, ..., 2. = >?%,(-1, -2, ..., -!) (4)

Missing value distribution estimation. A fully connected

layers is used to generate the parameters of the missing value

distribution:

.$ =0/2$ + 1/ , /$ = "->4 (002$ + 10), (5)

where0/ ,00 ∈ "
" and 1/ ,10 ∈ " are learnable variables.

We train the imputation model with the mean square error loss

function:

L$,1(! ,,, .) =
!

∑
$=1

"

∑
+=1

,$, +(.$, + −!$, +)
2
, (6)

where, ∈ {0, 1}!×" denotes the indices of masked variables.,$, +

is 1 if the 6%ℎ variable in +%ℎ collection is observed and masked;

otherwise, 0. Replacing the missed values ∗ with the estimates .,

the observed variables ! become ' ∈ ".×! .

After the imputation model is well-trained with Equation 6, we

further learn to estimate the standard deviation / by "netuning00

and 10 and "xing other parameters. We minimize the following

loglikelihood loss:

L0(! ,,, .,/) =
!

∑
$=1

"

∑
+=1

,$, + [
(.$, + −!$, +)

2

2/2$, +
+
/2$, +

2
] (7)

3.3 Sepsis Prediction Model

With the imputed results to replace the missing values, we con-

tinue to predict whether the patients will su!er from sepsis in the

coming hours. The framework of sepsis prediction model is shown

in Figure 2(B).

Similar to Equation 8 in the imputation model, we use the same

embedding layers in the imputation model.

-
′

$ =0)['$ ;-
%
$ ] + 1) , (8)

where the time embedding -%$ is the same as in Equation 3.

Then we use LSTM [5] to model the patient’s health states. A

fully connected layer and a Sigmoid layer is followed to generate

the sepsis risks:

*$ = ?+@A=+;(02ℎ$ + 12), where B = 1, 2, ...,% (9)

ℎ1,ℎ2, ...,ℎ! = >?%,(-
′

1, -
′

2, ..., -
′

!), (10)

where02 ∈ "
* and 12 ∈ " are learnable parameters.

The model is trained by minimizing the binary cross-entropy

loss:

L342(*,&) =
1

#

!

∑
$=1

−C$ log(*$) − (1 −C$) log(1 − *$) (11)

3.4 Sources of Uncertainty

When applying deep learning methods to high-stakes sepsis pre-

diction tasks, the lack of uncertainty quanti"cation will make the

models less reliable. In this subsection, we investigate two main

sources of uncertainty.

Uncertainty from the model parameters. Existing uncer-

tainty quali"cation work [4, 6, 11, 23] has widely studied epistemic

uncertainty, which accounts for uncertainty in the model parame-

ters, especially for the huge amount of parameters in deep learning

models. Following [11], we use drop-out during the test phase and

run the inference many times to quantify such kind of uncertainty.

Uncertainty from missing values. Superior risk prediction

models in the healthcare domain heavily rely on high-quality com-

plete input. However, missing values (e.g., vital signs and lab test

results) widely exist in real-world clinical settings. Most risk pre-

diction methods [7, 10, 21, 38] "rst impute the missing values and

then make predictions based on the imputed values. The accuracy
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of the imputation methods can directly a!ect the performance of

the predicted sepsis risks. The uncertainty from the imputation

results can be directly propagated to downstream sepsis prediction

models.

3.5 Uncertainty De"nition

We use the variance of prediction models’ output to de"ne the two

kinds of uncertainty mentioned above. Patients’ data ' contains a

sequence of collections of variables. We can use all the observations

until the current collections to make predictions. When applying

active sensing algorithms to reduce the propagated uncertainty

with additional observations, we can only request the variables in

the current collection.

In the active sensing task, we only focus on the uncertainty

related to the latest collection. In the following subsections, for

simplicity, at a given time %$ , we use D to represent the +%ℎ obser-

vation (i.e., '$ ), and use (((D) rather than (((') to denote the

predicted risk, where0 means all the learnable parameters in the

sepsis prediction model.

We assume the input variables D ∈ "" and model parameters0

follow Gaussian distributionsN (.' ,/') andN (.( ,/(). .' ∈ "
"

and /' ∈ "
" can be estimated with Equation 5. Let C denote the

sepsis prediction label for the patient at current time.

Following existing studies [11], we de"ne the uncertainty of

predicted risk as the variance of model outcomes:

4 = ∫
(
∫
'
((((D) − .5)

2
5(D);D5(0);0 = 4' +4( (12)

where4' = ∫
(
∫
'
((((D) − .5! )

2
5(D);D5(0);0 ,

4( = ∫
(
(.5! − .5)

2
5(0);0 ,

.5! = ∫
'
(((D)5(D);D,

.5 = ∫
(
∫
'
(((D)5(D)5(0);D;0 ,

where 5(●) denotes the density function.

We split the uncertainty into two terms. The second term 4( is

caused by the model uncertainty from the model parameters, so we

just focus on the "rst term4' when actively selecting unobserved

variables.

When the model parameter0 is "xed, we can estimate the prop-

agated uncertainty as:

4
(()
' = ∫

'
((((D) − .5! )

2
5(D);D (13)

3.6 Propagated Uncertainty Quanti"cation

3.6.1 Propagated Uncertainty for Linear Target Prediction. When

the sepsis risk prediction function is a linear function, (((D) =

∑+ 0 +D + , following [12], we compute the uncertainty in Equation 13

as:

4
(()
' =∑

$

0
2
$ /

2
'" +∑

$
∑
+≠$

0$0 +5$ +/'"/' # , (14)

where 5$ + denotes the correlation between +%ℎ and 6%ℎ variable. It

is easy to compute the propagated uncertainty for linear function

based on Equation 14 for linear function. The calculation details

Algorithm 1 Adversarial Training

Input: observations ' , missing value distribution .' , /' ,

outcome & , step size 2-*6 , step #-*6 , learning rate :9 ;

1: repeat

2: Sample a batch of patients’ data, D , /' , C;

3: Initialize the perturbation E with Gaussian distribution

F (0,/') and constraint −2/' < E < 2/' ;

4: Compute (((D) and the "rst order gradient ∇' ;

5: for + = 1, ...,#-*6 do

6: Calculate @ = ∇7@(E,D)
7: Update E = E + 2-*6 × @

8: end for

9: Calculate loss > in Equation 19 and gradient ∇(>;

10: Update0 =0 − :9 ×∇(>;

11: until Convergence.

for Equation 14 can be found in subsection A.1 in supplementary

materials.

The propagated uncertainty reduction after observing +%ℎ vari-

able is:

4
(()
' (+) =02

$ /
2
'" +∑

$≠+

0$0 +5$ +/'" (15)

3.6.2 Propagated Uncertainty for Non-Linear Target Prediction. For

the non-linear sepsis prediction function, we use the Taylor expan-

sion as approximate function:

(̃((D + E) = (((D) + E
.
∇' (((D) (16)

We can use the uncertain propagation in Equation 14 as the ap-

proximation of the uncertainty of non-linear function (( . However,

the propagated uncertainty estimation for non-linear functions are

biased on account of using a truncated series expansion. The extent

of this bias depends on the nature of the function.

The absolute di!erence between the two values (̃((D + E) and
(((D + E) is:

@(E,D) = ∣(((D + E) − (((D) + E
.
∇' (((D)∣ (17)

When @(E,D) is small enough in the neighborhood near .' (i.e.,

(( is locally linear), the propagated uncertainty in Equation 14 is

still accurate and able to guide the active sensing.

3.7 Robust Active Sensing

3.7.1 Adversarial Training for Local Linearity. Existing studies [18,

19] have shown that adversarial training can encourage the local

linearity of the learned functions. In this study, we adopt adversarial

training to make the target prediction function locally linear in a

neighborhood near the mean value of input D .

L-*6 = min
(

max
7

@(E, .'), where − 2/' < E < 2/' (18)

The risk prediction model is trained with a weighted sum of

classi"cation loss and adversarial loss:

L = GL342 + (1 − G)L-*6, (19)

where 0 < G < 1 is a hyper-parameter.
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We consider the quantity:

H(/,D) = max
−20≤7≤20

∣(((D + E) − (((D) − E
.
∇' (((D)∣ (20)

to be a measure of how linear the surface is within a neighbor-

hood near D . We call this quantity the local linearity measure. The

missing variables follow Gaussian distribution, so E lies within two

standard deviations with more than probability 95%. The uncer-

tainty estimation error would be less than H(/' ,D)with probability

more than 95%.

Algorithm 1 describes the training process of the sepsis predic-

tion model.

3.7.2 Active Sensing. The approximate uncertainty of the risk pre-

diction outcome is de"ned as:

4
(()
' =∑

$

∇
2
'"/

2
'" +∑

$
∑
+≠$

∇'"∇' # 5$ +/'"/' # (21)

The propagated uncertainty reduction after observing +%ℎ vari-

able is:

4
(()
$ = ∇

2
'"/

2
'" +∑

+≠$

∇'"∇' # 5$ +/'"/' # (22)

Considering the distribution of0 , we use Monte-Carlo dropout

to sample model parameters and use the average uncertainty of

4
(()
' (+) to approximately compute 4'(+):

4'(+) = ∫
(
4
(()
' (+)5(0);0 (23)

We can select the unobserved variables based on the maximal

uncertainty criterion.

+
∗
= argmax

$
4'(+), (24)

where +∗ is the best variable to observe. Figure 2(D) shows the work-

#ow of propagated uncertainty quanti"cation and active sensing

methods.

4 EXPERIMENT SETUP

To demonstrate the e!ectiveness of the proposed method, we con-

ducted experiments on real-world datasets.

4.1 Datasets

Datasets.We validate our system on two publicly available datasets

( MIMIC-III2 and AmsterdamUMCdb3) and one proprietary dataset

extracted from OSUWMC4. We "rst extracted all the sepsis patients

with sepsis-3 criteria [24] in the datasets. For each sepsis patient,

we select 1 control patient with the same demographics (i.e., age

and gender). We extracted 26 vital signs and lab tests from the

datasets. A detailed list of clinical variables can be found in supple-

mentary materials. The statistics of the three datasets are displayed

in Table 2.

Variables Used for Sepsis Prediction. Following [33], we use

following variables tomodel sepsis patients’ health states: heart rate,

Respratory, Temperature, Spo2, SysBP, DiasBP, MeanBP, Glucose,

Bicarbonate, WBC, Bands, C-Reactive, BUN, GCS, Urineoutput,

2https://mimic.physionet.org/
3https://amsterdammedicaldatascience.nl
4https://wexnermedical.osu.edu/

Table 2: Statistics of MIMIC-III and AmsterdamUMCdb

MIMIC AmsterdamUMCdb OSUWMC

#. of patients 21,686 6,560 85,181

#. of male 11,862 3,412 41,710

#. of female 9,824 3,148 43,471

Age (mean ± std) 60.7 ± 11.6 62.1 ± 12.3 59.3 ± 16.1

Missing rate 65% 68% 75%

Sepsis rate 32% 35% 29%

Figure 3: Settings of sepsis onset prediction.

Creatinine, Platelet, Sodium, Hemoglobin, Chloride, Lactate, INR,

PTT, Magnesium, Aniongap, Hematocrit, PT.

The "rst 8 variables are immediately available vital signs. The

missing rates of the variables can be found in Table 7 in subsec-

tion A.2.

4.2 Setup

We mimic the cold-start environment where only vital signs are

immediately available, while all the lab tests can be observed after

the assignment. Figure 3 displays the setting of the experiments.

After the patients arrive at the hospital, we start to predict whether

the patients will su!er from sepsis in 4 hours. We run the prediction

process hourly until the patients have been diagnosed with sepsis

or discharged. When the model’s output has a high uncertainty

due to the limited observations, the active sensing algorithms can

select the missing lab tests to observe. Based on the lab testing turn-

around times policy of OSUWMC, most lab results will be available

in less than 30~60 min5 (or even sooner for sepsis patients with

high priority), so the observation results for the selected lab items

can be used in the same hour to update the predicted sepsis risk.

Note that when active sensing algorithms select some variables that

are not collected at the corresponding time, we use the estimates

from other observed variables as the active observation results.

4.3 Methods for Comparison

We compare the proposed model with following methods:

● Random sensing: We randomly select the masked values to

observe for random sensing.

● Active sensing MI [37]: The method selects the most informa-

tive variables based on the mutual information.

5 https://rb.gy/s4jiif
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● Virtual adversarial training (VAT) [17]: VAT proposes to make

the learned function locally linear with local a smoothness reg-

ularization method. Then we use the same variable selection

method as ours to select missing values.

● Monte Carlo sampling: Existing studies [11] use Monte-Carlo

dropout to measure the epistemic uncertainty. Similarly, we use

Monte-Carlo sampling to estimate the propagated uncertainty

by sampling the values of the unobserved variables based on

the Gaussian distribution and select the variable with maximal

variance in generated output, as Figure 2(C) shows.

● Robust active sensing (RAS): RAS is the proposed method.

To demonstrate the e!ectiveness of the adversarial training, we

implement three versions of RAS. RAS is the main version. RAS8

uses the linear constraint to make the learned function locally

linear. RAS9 means the model is only trained by minimizing the

classi"cation loss in Equation 11 without any linearity constraint.

For fair comparison to the baselines, all active sensing algorithms

use the same deep-learning sepsis prediction model backbone. Our

previous works [33, 38] have shown that LSTM can successfully

model the time series EHR data and achieve superior performance in

the sepsis prediction tasks, so we use LSTM as the model backbone.

Note that the proposed active sensing methods are generalizable to

various deep learning frameworks.

5 RESULTS

We now report the performance of SepsisLab in the three datasets.

We focus on answering the following research questions by our

experimental results:

● Q1: How does the model uncertainty a#ect the sepsis pre-

diction performance?

● Q2: How does the active sensing algorithm reduce the prop-

agated uncertainty?

● Q3: How does the active sensing algorithm improve the

sepsis prediction performance?

5.1 Q1: How does the model uncertainty a#ect
the sepsis prediction performance?

The existence of uncertainty makes AI models less reliable and

less accurate when applying the models to real-world high-stakes

scenarios. In this subsection, we aim to show how the model un-

certainty a!ects sepsis prediction performance by analyzing the

relation between uncertainty and prediction performance.

5.1.1 Prediction Performance over Uncertainty Scales. We compute

the uncertainty of the sepsis onset prediction model’s output with

Equation 12 and split the patients into 6 sets with di!erent uncer-

tainty scales. Then we calculate the sepsis onset prediction perfor-

mance on AUROC inside each set. Figure 4 displays the model per-

formance over the di!erent uncertainty scales in the three datasets.

We conducted experiments in two settings. In active sensing set-

ting, we compute the AUROC after active sensing algorithms are

used. In the observed data setting, we directly run the data in the

observed data (including all the recorded vital signs and lab tests)

and compute the AUROC. The results in both settings show that

when uncertainty is higher, the model performance becomes less

Figure 4: Sepsis onset prediction performance with di#erent

uncertainty.

Figure 5: Uncertainty distribution over times after admission.

Figure 6: Uncertainty over di#erent active sensing ratios.

accurate, so a good active sensing framework can improve the pre-

diction performance by reducing the uncertainty of the prediction

model’s output.

5.1.2 Uncertainty Scales over Time. We quantify the model uncer-

tainty at di!erent times from admissions. Figure 5 displays the

average uncertainty scales.

Figure 5 shows that in the "rst 15 hours, propagated uncertainty

is dominant in sepsis onset risk prediction models. We speculate

the reason is that at the beginning most variables have not been

observed and the missing values cause the main uncertainty, which

is consistent with our clinical experts’ experience. With more vari-

ables collected, the propagated uncertainty decreases a lot after 15

hours of the admissions.

Because the missing variables can cause high uncertainty during

the "rst hours, it is critical to quantify the propagated uncertainty

when applying risk prediction models to high missing-rate settings.

5.2 Q2: How does the active sensing algorithm
reduce the propagated uncertainty?

Based on the estimated uncertainty, we propose active sensing

algorithms to further reduce the prediction uncertainty by recom-

mending clinicians collect more unobserved variables. We conduct

experiments to show whether uncertainty can be signi"cantly re-

duced with minimal additional variables observed.

����



KDD ’24, August 25–29, 2024, Barcelona, Spain Changchang Yin et al.

Figure 7: Inference time cost over times after admission.

5.2.1 Uncertainty with Di!erent Active Sensing Ratio. Figure 6 dis-

plays the average uncertainties for sepsis prediction results with

di!erent active sensing ratios. The results show that with more

missing variables observed, the uncertainty on the predicted sep-

sis risks are signi"cantly reduced. Besides, all the versions of the

proposed RAS reduce more uncertainty than the baselines, which

demonstrates the e!ectiveness of the proposed active sensing algo-

rithms on uncertainty reduction.

5.2.2 Uncertainty "antification E!iciency. We also investigate

the time cost for uncertainty quanti"cation during the inference

phase. Figure 7 displays the inference time cost for uncertainty

quanti"cation. The results show that RAS can achieve much less

time than the baselines, which makes the SepsisLab system work

more e$ciently during the active sensing phase.

5.3 Q3: How does the active sensing algorithm
improve the sepsis prediction performance?

The goal of SepsisLab is to accurately predict the sepsis so as to

provide reliable decision-making support to clinicians. We conduct

experiments to show sepsis prediction performance improvement

with the active sensing algorithms.

5.3.1 Sepsis onset Prediction Results. Table 3 displays the risk pre-

diction performance with di!erent active sensing ratios (i.e., 2%-8%).

With additional variables observed, all the methods can achieve

more accurate prediction performance for sepsis onset. Moreover,

all the active sensing algorithms outperform the random sensing

baseline with the same observation rate, which demonstrates that

active sensing can improve downstream tasks’ performance. Among

the active sensing algorithms, the proposed RAS achieved the best

performance with di!erent active sensing ratios, which demon-

strate the e!ectiveness of the proposed model.

5.3.2 Ablation Study. We have three versions of the framework.

RAS9 directly uses the gradient to estimate propagated uncertainty.

RAS8 uses a linear regularization term to make the model locally

smooth, while RAS uses adversarial training. For RAS8 and RAS

versions, the additional terms change the loss functions.We conduct

experiments to show whether the additional terms can improve

model training.We train the three versions of models independently

and test them on all the observed data (without active sensing). As

Table 4 shows, RAS8 and RAS outperform RAS9 , which demon-

strates local linearity can further improve prediction performance.

With adversarial training, RAS can achieve better local linearity

than RAS8 and thus perform the best, which also explains why the

RAS outperforms better than Monte-Carlo sampling in Table 3 in

the active sensing.

Figure 8: User Interface of Our SepsisLab System. (A) Patient

list with sepsis risk prediction score. (B) The patient’s de-

mographics and the dashboard of the patient’s historical

observations. (C) Predicted sepsis risk score with uncertainty

range and recommended lab test items to observe.

We also conduct more experiments with di!erent backbones

(e.g., RNN, GRU, FC) and display the performance in Table 6 in

subsection A.3. The experimental results show that the proposed

model can consistently improve the prediction performance for all

the backbones by recommending the most informative variables

for observation.

5.3.3 Hyper-parameter Optimization. The proposed RAS have four

important hyper-parameter: weight G in Equation 19, step size 2-*6 ,

step #-*6 , learning rate :9 in Algorithm 1. We use grid-search to

"nd the best parameter (with active sensing ratio equal to 8%). Table

5 displays the searching space and the optimal values used in the

training process.

6 DEPLOYMENT

Based on the sepsis prediction model and active sensing algorithm,

we implement a system SepsisLab. Figure 8 and Figure 9 shows how

the system is deploed in the Epic EHR Systems6 at OSUWMC.

SepsisLab starts to collect patients’ data after the patients arrive

hospital and automatically predicts sepsis risks hourly. Figure 8(A)

displays a list of patients with di!erent sepsis risk prediction scores,

colored from no risk as Green, to medium risk as Yellow, to high

risk as Red. When picking a patient’s data, Figure 8(B) shows the pa-

tient’s demographics and the dashboard that includes the patient’s

vital signs, lab test results, and medical history, which are helpful

for clinicians to understand the patient’s health states. Figure 8(C)

shows the patient’s sepsis risk (solid line) and uncertainty range

6https://www.epic.com/software/
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Table 3: AUROC of risk prediction with the active sensing (cold-start).

MIMIC-III AmsterdamUMCdb OSUWMC

2% 4% 6% 8% 2% 4% 6% 8% 2% 4% 6% 8%

Random Sensing 0.761 0.772 0.779 0.785 0.772 0.781 0.788 0.793 0.785 0.794 0.805 0.811

Monte Carlo 0.771 0.789 0.797 0.812 0.782 0.795 0.802 0.817 0.797 0.818 0.855 0.886

Active Learning 0.773 0.791 0.804 0.817 0.780 0.800 0.805 0.816 0.802 0.820 0.857 0.889

VAT 0.783 0.801 0.812 0.822 0.786 0.802 0.815 0.823 0.809 0.844 0.889 0.916

RAS9 0.770 0.788 0.796 0.810 0.780 0.793 0.802 0.814 0.795 0.816 0.853 0.881

RAS8 0.783 0.801 0.812 0.824 0.785 0.801 0.818 0.822 0.814 0.848 0.877 0.917

RAS (Ours) 0.792 0.810 0.823 0.835 0.795 0.809 0.828 0.840 0.823 0.857 0.889 0.929

Table 4: Sepsis prediction performance of three versions of

RAS on observational data.

Method MIMIC-III AmsterdamUMCdb OSUWMC

RAS9 0.820 0.820 0.903

RAS8 0.832 0.834 0.925

RAS 0.837 0.849 0.934

Table 5: The search space of hyper-parameters and optimal

parameters utilized during the model training.

Parameters Search Space Optimal Value

Weight G [0.1, 0.3, 0.5, 0.7, 0.9] 0.5

Learning rate :9 [1e-3, 1e-4, 1e-5] 1e-4

Step size 2-*6 [1e-2, 1e-3, 1e-4, 1e-5] 1e-3

Step #-*6 [1,2,5, 10, 15, 20] 15

(gray area) at di!erent times and an actionable lab item test rec-

ommendation list from SepsisLab. The items are ranked by their

importance to reduce the uncertainty of the sepsis future prediction.

The interactive process with our system is visualized in Figure 9.

This UI currently illustrates that a clinical expert is examining a

high-risk patient’s data who was admitted 4 hours ago. The Sep-

sisLab suggests the expert collect more lab results. The expert is

interacting with the visualization to see if Lactate and Creatinine

lab results were added, and how the sepsis prediction and its uncer-

tainty would change. The clinician can select a lab item (Figure 9(b))

or multiple lab items (Figure 9(c)) and see the expected in#uence

of the lab test result on the model uncertainty via a counterfactual

prediction. By comparing di!erent combinations of the lab test

items, the clinician can obtain a better understanding of the model

and make the decision to order appropriate lab tests to collect the

actual item values, which then truly update the model’s prediction

trajectory and uncertainty range.

Note that we used OSUWMC data for our algorithm illustration.

All patients’ names and demographic info in this Figure 8 are ran-

domly generated for illustration purposes. Ongoing deployment

also includes recruit clinicians for usability evaluation to quantita-

tive and qualitativelymeasure clinical outcome and user satisfaction

of SepsisLab (OSUWMC IRB#: 2020H0018).

Figure 9: The Interactive Lab Test Recommendation Module

in SepsisLab System.

7 CONCLUSION

In this work, we study a real-world problem that how to accu-

rately predict sepsis with limited variables available. Missing values

widely exist in clinical data and can cause inaccurate prediction and

high uncertainty for the sepsis prediction models. To the best of our

knowledge, it is the "rst work that studies the model uncertainty

caused by missing values. We de"ne a new term propagated uncer-

tainty to describe the uncertainty, which is the downstream models’

uncertainty propagated from the uncertain input (i.e., imputation

results). We further propose uncertainty propagation methods to

quantify the propagated uncertainty. Based on the uncertainty quan-

ti"cation, we propose a robust active sensing algorithm to reduce

the uncertainty by actively recommending clinicians to observe

the most informative variables. The experimental results on real-

world datasets show that the introduced propagated uncertainty is

dominant at the beginning of patients’ admissions to the hospital

due to the very limited variables and the proposed active sensing

algorithm can signi"cantly reduce the propagated uncertainty and

thus improve the sepsis prediction performance. Finally, we de-

sign a SepsisLab system for deployment to integrate into clinicians’

work#ow, which paves the way for human-AI collaboration and

early intervention for sepsis management.
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A APPENDIX

A.1 Uncertainty Propagation for Linear
Function

For a linear function (((D) = ∑$ 0$D$ (1 ≤ + ≤ #), the uncertainty

is de"ned as the variance:

I89((((D)) = ∫
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Table 6: AUROC of risk prediction of the propose RAS with di#erent backbones.

MIMIC-III AmsterdamUMCdb OSUWMC

2% 4% 6% 8% 2% 4% 6% 8% 2% 4% 6% 8%

FC 0.760 0.772 0.782 0.792 0.772 0.785 0.792 0.801 0.785 0.801 0.823 0.841

RNN 0.782 0.790 0.810 0.821 0.787 0.799 0.816 0.825 0.814 0.842 0.873 0.910

GRU 0.789 0.799 0.822 0.833 0.792 0.806 0.826 0.837 0.821 0.855 0.887 0.928

LSTM 0.792 0.81 0.823 0.835 0.795 0.809 0.828 0.840 0.823 0.857 0.889 0.929

+∑
$
∑
+≠$

(0$D$ −0$.$)(0 +D + −0 + . +);D

= ∫
'
∑
$

0
2
$ /

2
$ +∑

$
∑
+≠$

0$0 +5$, +/$/ +;D

where .' denotes the mean of variable D . + and 6 denote the indices

of variables or parameters. 5 denotes the correlation coe$cient. /

denotes the standard deviation.

A.2 Missing Rates of Clinical Variables

We display the missing rates of lab test variables in Table 7.

Table 7: Missing rates of observed lab tests.

variable AmsterdamUMCdb OSUWMC MIMIC-III

WBC 67% 78% 69%

BUN 63% 76% 66%

GCS 29% 50% 33%

Urineoutput 23% 39% 33%

Creatinine (CRT) 75% 85% 80%

Platelet (PLT) 76% 88% 82%

Glucose (GLC) 34% 49% 36%

Sodium (SDM) 55% 72% 65%

Hemoglobin (HMG) 56% 75% 69%

Chloride (CLR) 62% 70% 66%

Bicarbonate (BCB) 69% 74% 67%

Lactate (LCT) 88% 90% 89%

INR 78% 84% 80%

PTT 76% 83% 79%

Magnesium 66% 76% 69%

Aniongap (AG) 62% 78% 67%

Hematocrit (HMT) 60% 76% 64%

PT 78% 92% 80%

A.3 Model Performance with di#erent
backbones

Our model is applicable to various models, including LSTM, GRU,

and fully-connected networks (FC). LSTM has shown superior per-

formance in modeling clinical time series data in multiple tasks,

including missing value imputation [32, 34], clinical prediction

[16], and patient subtyping [2], so we choose LSTM as the model

backbone.We also conducted more experiments with di!erent back-

bones as shown in Table 6. The experimental results show that the
proposed model can signi"cantly improve the prediction perfor-

mance for all the backbones by recommending the most informative

variables for observation.
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