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Abstract: Grover’s search algorithm (GSA) offers quadratic speedup in searching unstructured da-

tabases but suffers from exponential circuit depth complexity. Here, we present two quantum cir-

cuits called HX and Ry layers for the searching problem. Remarkably, both circuits maintain a fixed 

circuit depth of two and one, respectively, irrespective of the number of qubits used. When the target 

element’s position index is known, we prove that either circuit, combined with a single multi-con-

trolled X gate, effectively amplifies the target element’s probability to over 0.99 for any qubit number 

greater than seven. To search unknown databases, we use the depth-1 Ry layer as the ansatz in the 

Variational Quantum Search (VQS), whose efficacy is validated through numerical experiments on 

databases with up to 26 qubits. The VQS with the Ry layer exhibits an exponential advantage, in 

circuit depth, over the GSA for databases of up to 26 qubits. 
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1. Introduction 

Quantum search algorithms are a significant area of research in quantum computing 

because of their potential to revolutionize various fields with (exponentially) faster solu-
tions compared with classical algorithms [1,2]. Among these algorithms, Grover’s search 

algorithm (GSA) [3,4] is one of the most well-known, offering a quadratic speedup [5] in 
searching unstructured databases. It has been applied to offer quadratic speedup in solv-
ing critical problems, including NP-complete problems [6–12], cryptography [13,14], 

quantum machine learning [15–19], quantum state preparation [20,21], collision problems 
[22], and more [1,2,23,24]. Moreover, GSA can serve as a sub-routine of many quantum 

algorithms. 
Because of its importance, researchers have explored various aspects of GSA to en-

hance its performance. Generalized GSA [10] and Quantum Amplitude Amplification [25] 

were proposed to tackle GSA’s limitation of handling only one target element. Refs. 
[26,27] revised GSA to ensure finding the target element with certainty. GSA was imple-

mented on a real unstructured classical database [28], on a real quantum computer [29], 
and with fewer gates [30]. Researchers also realized GSA by adiabatic evolution [31,32]. 

Ref. [33] proposed a variational learning Grover’s quantum search algorithm, which 
shows improvement over GSA for three- and four-qubit cases, but lacks improvement in 
larger qubit cases. However, despite the success, GSA faces a drawback in its circuit 

depth, which grows exponentially with qubit numbers, limiting its applicability to larger 
databases. While several variants have been explored, none have reduced the circuit depth 

complexity, and GSA’s optimality remains established [5,6,34]. 
This paper addresses the problem of finding the target element in an unstructured 

database that has one good element and (2𝑛 − 1) bad elements (n denotes the number of 

data qubits). The “target element” and “good element” are used interchangeably in this 
paper. The goal of quantum search algorithms, like GSA, is to amplify the probability of 

the target element to nearly 1. To tackle the challenge of circuit depth, in this paper, we 

Citation: Zhan, J. Shallow-Depth 

Quantum Circuit for an Unstruc-

tured Database Search. Quantum 

Rep. 2024, 6, 550-563. 

https://doi.org/10.3390/quan-

tum6040037 

Received: 7 September 2024 

Revised: 10 October 2024 

Accepted: 21 October 2024 

Published: 25 October 2024 

 

Copyright: © 2024 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Quantum Rep. 2024, 6, 550–563. https://doi.org/10.3390/quantum6040037  2 
 

propose the following algorithms to construct two shallow-depth quantum circuits: HX 
and Ry layers, with depths of 2 and 1, respectively. We prove that either circuit, together 
with a Cn (X) gate, achieves the goal by amplifying the probability of the sole target ele-

ment from 1/2n to over 0.99 for any n greater than seven. However, both algorithms rely 
on knowing the position index of the target element in advance, limiting their use to anal-

ysis purposes only, not for searching unknown databases. 
To overcome this limitation, we use the Ry layer as the ansatz in the Variational Quan-

tum Search (VQS) algorithm [35], designed for unstructured database searches without 

prior knowledge of the target’s position. Our experiments validate the effectiveness of the 
VQS with the Ry layer for n up to 26. This shows that the use of shallow-depth parame-

terized quantum circuits, like the Ry layer, in variational quantum algorithms [36–39], 
such as the VQS, offers an exponential advantage over GSA in circuit depth for up to 26 
qubits. This promising approach opens new avenues for improving the efficiency of quan-

tum search algorithms, potentially leading to quantum supremacy in solving critical prob-
lems mentioned above. 

The VQS algorithm presented in this paper offers practical value, as it can identify 
the desired element in an unstructured database without prior knowledge of its index, 
thereby serving a similar purpose to Grover’s search algorithm. The VQS, utilizing a single 

layer of Ry gates, demonstrates the ability to efficiently amplify the probability of locating 
a good element without any prior information. 

The second contribution of this work is a proof demonstrating that one layer of Ry 
gates is always sufficient to amplify the probability of a desired element from an extremely 
small initial value (1/2𝑛 where 𝑛 is the number of qubits) to a probability close to 1. In 

this proof, the assumption of knowing the index of the good element (which could be any 
value between 1 and 2𝑛) is made to simplify the proof process. Given this assumption, 

the Ry layer or HX layer can be easily constructed, as shown in Algorithms 1 and 2 of this 
paper, to amplify the probability of the desired element. This proof is intended to validate 
the perfect reachability of the ansatz (i.e., the single layer of Ry gates) used by the VQS, 

and the proof itself is solid under the given assumption. Reachability means that using a 
single layer of Ry gates, there always exist parameters in Ry (𝜃) (where 𝜃 is the parame-

ter) such that this layer can amplify the probability of any unknown element from an ex-
tremely small initial value (1/2𝑛) to a probability close to 1. 

Note that the proof and the VQS are independent components of the work, each serv-

ing a distinct purpose. The proof relies on prior knowledge for the sake of simplicity in 
demonstrating the perfect reachability of the ansatz, while the VQS algorithm itself does 

not require prior knowledge and is applicable to practical database search scenarios. 
Therefore, each part holds its own value. 

To provide a more complete context for the reader, we briefly discuss the physical 

implementation of qubits, which plays a crucial role in the realization of quantum algo-
rithms. While this paper primarily focuses on the mathematical modeling of quantum cir-

cuits, it is important to acknowledge the physical aspects related to the construction of 
qubits, as they directly influence the practical feasibility of such models. 

Various physical systems have been proposed and demonstrated for the construction 

of qubits, each with its own advantages and limitations. Charge qubits, spin qubits, light 
qubits, and quantum dots are among the most commonly explored structures. Charge 

qubits typically use superconducting materials to manipulate charge states, whereas spin 
qubits rely on the manipulation of the spin of a single electron, often in a semiconductor 
setting [40]. Light qubits, or photonic qubits, utilize photon polarization, where quantum 

information can be encoded in multiple ways, including the polarization of photons (hor-
izontal or vertical) or their paths of travel (path encoding) [1,40,41]. Quantum dots, on the 

other hand, can trap single electrons and are used as a platform for both charge and spin 
qubits [41–43]. For further details on the different physical structures used to construct 
qubits, we refer the reader to Refs. [1,40,41]. 
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2. Method 

Vector Forms of Three Quantum States. We use n qubits and n Hadamard gates to 

create an equal superposition of all 2𝑛 elements, as shown on the left-hand side of the 
leftmost dashed red line in Figure 1. Here, we provide the vector forms of three quantum 

states, namely, |0,𝜓0⟩ , |𝜓1⟩ , and |𝜓2⟩ , which are respectively indicated in the three 

dashed red lines in Figure 1a. 

 

 

Figure 1. The quantum circuit used to generate an n-qubit database and amplify the probability of 
the only good element in it to nearly 1. (a,b) The quantum circuits in compact form for n-qubit data 

using an HX layer and an 𝑅𝑦  layer (the blue blocks in (a,b)), respectively, where the HX layer con-

sists of Hadamard and X gates and the 𝑅𝑦  layer consists of 𝑅𝑦(𝜃) gates. (c,d) The detailed circuits 

for n = 6 using the HX and 𝑅𝑦  layers, respectively. The yellow block, excluding the label qubit, 

generates a state that is an equal superposition of a single good element and (2𝑛 − 1) bad elements, 
i.e., all elements have the same initial probability. The red block (Oracle) labels the good element as 
|1〉 at the label qubit and assigns |0〉 to all bad elements. The blue block amplifies the probability of 
the good element to nearly 1. The label qubit is the highest (most significant) one. In panel (a), the 
circuit 𝑈(𝐻, 𝑋) consists of Hadamard and X gates. In panels (c,d), 𝑛 = 6 and the position index of 

the good element is 39 (its binary form is 100111). 

The state |0, 𝜓0⟩ is the initial state where the label qubit is in the ∣0⟩ state, and the 
data qubits are in an equal superposition of all possible basis states, as generated by the 
Hadamard gates on each data qubit. Mathematically, it is written as |0⟩ ⊗(|0⟩ + |1⟩)⊗𝑛, 

which is an equal superposition of all 2𝑛 states and can be represented in the following 
vector form: 

|0, 𝜓0⟩ = [10
b,⋯ , 1𝑘−1

b , 1𝑘
g
, 1𝑘+1
b ,⋯ , 1𝑁−1

b
⏟                  

1st half: 𝑁 elements

, 0,0,⋯ ,0⏟    ]𝑇

𝑁 elements

/√𝑁 (1) 

where 𝑁 = 2𝑛, superscripts b and g indicate bad and good elements, respectively, and 

subscripts 0~N−1 represent the index of an element in the vector. Throughout this paper, 

the index always counts from 0. For example, 1𝑘
g
 denotes the kth element as a good ele-

ment. 

(a) (b) 

(d) (c) 



Quantum Rep. 2024, 6, 550–563. https://doi.org/10.3390/quantum6040037  4 
 

The state |𝜓1⟩ is the result of applying the oracle 𝑂𝑟  to the initial superposition state 
|0,𝜓0⟩. The oracle ‘marks’ the ‘good’ state by moving the good element from the first half 
of the vector to the corresponding position in the second half. The relationship between 
|𝜓1⟩ and |0, 𝜓0⟩ can be represented as follows: 

|𝜓1⟩ = 𝑂𝑟|0,𝜓0⟩ = [10
b,⋯ , 1𝑘−1

b , 0𝑘
g
, 1𝑘+1
b ,⋯ , 1𝑁−1

b
⏟                  

1st half: 𝑁 elements

, 0, ⋯ ,0, 1𝑁+𝑘
g

, 0,⋯ ,0⏟            ]
𝑇/√𝑁

2nd half: 𝑁 elements

 (2) 

where oracle 𝑂𝑟  is implemented as 𝐶𝑛(𝑋), an n-qubit-controlled X gate, as shown in Fig-
ure 1b. As indicated in Equation (2), 𝐶𝑛(𝑋) changes the index of the good element from k 
to N + k. 

After the oracle, the HX or 𝑅𝑦 layers are applied to further amplify the probability 

of the “good” state. This results in the state |𝜓2〉, which has an increased amplitude for 
the “good” element, making it more likely to be measured. For ease of analysis, we express 

|𝜓2〉 in the following vector form: 

|𝜓2〉 = [𝛽0, 𝛽1, ⋯ , 𝛽𝑁−1, 𝛽𝑁 , ⋯ , 𝛽2𝑁−1]
𝑇 (3) 

where 

∑ |𝛽𝑖|
22𝑁−1

𝑖=0 = 1  (4) 

Here, we propose Algorithm 1 to construct the HX layer, a two-layer circuit compris-
ing exclusively Hadamard and X gates. The combination of the HX layer and the oracle 

(the red blocks in Figure 1) has the same purpose as GSA: amplifying the probability of 
the good element to nearly 1. 

To better understand Algorithm 1, we provide three examples (k = 5, 8, and 39) of the 
HX layer generated by Algorithm 1 in the next three paragraphs. 

For k = 5, its binary form is 𝑗2𝑗1𝑗0 = 101. Then, we have 𝑌2⊗𝑌1⊗𝑌0. By replacing 

𝑌2 and 𝑌0 with XH as 𝑗2 = 𝑗0 = 1, and replacing 𝑌1 with H as 𝑗1 = 0, we can obtain the 
following: 

𝑋𝐻⊗𝐻⊗𝑋𝐻 =
1

√2
[1    − 1
1         1

] ⊗
1

√2
[1         1
1   − 1

]⊗
1

√2
[1    − 1
1         1

] 

=
1

√8

[
 
 
 
 
 
 
1 −1
1 1

1 −1
1 1

1 −1
1 1

−1 1
−1 −1

−1 1
−1 −1

−1 1
−1 −1

−1 1
−1 −1

1 −1
1 1

1 −1
1 1

1 −1
1 1

1 −1
1 1

−1 1
−1 −1

1 −1
1 1

1 −1
1 1

1 −1
1 1

−1 1
−1 −1 ]

 
 
 
 
 
 

 

(5) 

which shows that row 5 is the only all-1 row (ignoring the coefficient 
1

√8
). It is essential to 

note that throughout this paper, the row index starts from 0, i.e., the first row is row 0. 

Algorithm 1. Pseudo code for generating the HX layer (the blue block in Figure 1a). 

Input: the number of qubits n and the index of the good element in decimal form, k, ∀𝑘 ∈ [0, 2𝑛 − 1]. 

Output: quantum gates in the HX layer. 

1 Convert k into the binary form 𝑏𝑛−1𝑏𝑛−2⋯𝑏1𝑏0. 

2 Add an X gate in the label qubit (the most significant qubit). 

3 Let m = n 

4 while 𝑚 ≥ 1 

5 if 𝑏𝑚−1 = 1 

6      Add a Hadamard gate followed by an X gate to qubit 𝑞𝑚−1. 

7 else 

8     Add a Hadamard gate to qubit 𝑞𝑚−1. 

9 m ← m−1 
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For k = 8, its binary form is 1000. Then we have 

𝑋𝐻⊗𝐻⊗𝐻⊗𝐻

=
1

√2
[1    − 1
1         1

] ⊗
1

√2
[1         1
1   − 1

] ⊗
1

√2
[1         1
1   − 1

]⊗
1

√2
[1         1
1   − 1

] 
(6) 

We can easily confirm that the tensor product shown in Equation (6) has only one all-

1 row (disregarding the coefficient 0.25), positioned in row 8. 
For k = 39, its binary form is 100111. Then, we can use 𝑋𝐻⊗𝐻⊗𝐻⊗𝑋𝐻⊗𝑋𝐻⊗

𝑋𝐻 to obtain a matrix whose only all-1 row is located at row 39. This is shown in Figure 

1c. 

Lemma 1. The tensor product [
𝑎𝑛−1,0
𝑎𝑛−1,1

] ⊗⋯⊗ [
𝑎2,0
𝑎2,1

] ⊗ [
𝑎1,0
𝑎1,1

] ⊗ [
𝑎0,0
𝑎0,1

] results in a column vec-

tor with 2𝑛 elements. The position index of the element 𝑎𝑛−1,𝑖𝑛−1⋯𝑎2,𝑖2𝑎1,𝑖1𝑎0,𝑖0 in the column 

vector is equal to the decimal value of the binary form 𝑖𝑛−1⋯𝑖2𝑖1𝑖0   where 𝑖𝑟 ∈ {0,1}, ∀ 𝑟 ∈

[0, 𝑛 − 1]. 

Proof of Lemma 1 is provided in the Appendix A. To better understand this, we pro-

vide two examples. Consider the column vector associated with [
𝑎3,0
𝑎3,1

] ⊗ [
𝑎2,0
𝑎2,1

] ⊗ [
𝑎1,0
𝑎1,1

] ⊗

[
𝑎0,0
𝑎0,1

]. The position index of the element 𝑎3,0𝑎2,0𝑎1,0𝑎0,1 in this vector is 1, represented by 

its binary form 0001. Similarly, the position index of 𝑎3,1𝑎2,0𝑎1,0𝑎0,1 in the same vector is 

9, with its binary form being 1001. 

Theorem 1. For a given integer 𝑘 ∈ [0, 2𝑛 − 1]  its binary form is 𝑏𝑛−1𝑏𝑛−2⋯𝑏1𝑏0  where n is 

the smallest integer satisfying 𝑘 ≤ 2𝑛 − 1. For a tensor product 𝑌𝑛−1⊗𝑌𝑛−2⊗⋯⊗𝑌1⊗𝑌0  
where 𝑌𝑟 denotes 𝑋𝐻 if 𝑏𝑟 = 1 and 𝐻 if 𝑏𝑟 = 0,∀ 𝑟 ∈ [0, 𝑛 − 1]  we can express the product as 

𝑀/√2𝑛  where 𝑀 is a 2𝑛 by 2𝑛 matrix. Then  M has one and only one all-1 row (i.e.  each element 

in the row is 1) located at the kth row  with the row index k starting from 0. 

Proof. Note that 𝑋 = [
0 1
1 0
] , 𝐻 =

1

√2
[ 1 1
1 − 1

] , 𝑋𝐻 = 
1

√2
[1 − 1
1 1

] . Since each 𝑌𝑟  has exactly 

one row of [1 1]/√2, the all-1 row in M is formed from the tensor product of the [1 1]/√2 

row of each 𝑌𝑟. In other words, if the [1 −1]/√2 row is involved in the tensor product, the 

corresponding result will not yield all 1′s. Since no 𝑌𝑟 has two rows of [1 1]/√2, M has 
only one all-1 row. 

According to Lemma 1, considering 𝑌𝑟 as a two-row vector [
𝑎𝑟,0
𝑎𝑟,1

], the kth row of 𝑀 (the 

binary form of k is 𝑏𝑛−1𝑏𝑛−2⋯𝑏1𝑏0) is the tensor product of row 𝑏𝑟 of all 𝑌𝑟 , ∀ 𝑟 ∈ [0, 𝑛 −

1]. When 𝑏𝑟 = 1, 𝑌𝑟 = 𝑋𝐻 and its row 𝑏𝑟 is [1 1]/√2. When 𝑏𝑟 = 0, 𝑌𝑟 = 𝐻 and its row 

𝑏𝑟 is also [1 1]/√2. Therefore, row k of M is the tensor product of n items of [1 1]/√2, i.e., 
([1 1])⊗𝑛/√2𝑛. Thus, M’s all-1 row is located at the kth row.  

Theorem 2. For the quantum circuit depicted in Figure 1a  where the HX layer is created by 

Algorithm 1  the probability of obtaining the good element by measuring |𝜓2  〉 is (1 − 2−𝑛)2   

where 𝑛 is the number of data qubits. 

Proof. In Figure 1a, the relationship between |𝜓2⟩ and |𝜓1⟩ can be represented as fol-
lows: 

|𝜓2⟩ = [
𝟎 𝑈(𝐻,𝑋)

𝑈(𝐻,𝑋) 𝟎
] |𝜓1⟩ (7) 

Algorithm 1 assumes the kth element is the only good element in the vector form of |𝜓0〉, 
where the binary form of k is 𝑏𝑛−1𝑏𝑛−2⋯𝑏1𝑏0. In the HX layer generated by Algorithm 1, 

the 𝑈(𝐻, 𝑋) in Equation (7) is the same as the 𝑌𝑛−1⊗𝑌𝑛−2⊗⋯⊗𝑌1⊗𝑌0 described in 
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Theorem 1, where 𝑌𝑟 denotes 𝑋𝐻 if 𝑏𝑟 = 1 and 𝐻 if 𝑏𝑟 = 0, ∀ 𝑟 ∈ [0, 𝑛 − 1]. According 
to Theorem 1, the all-1 row of matrix 𝑈(𝐻,𝑋) generated by Algorithm 1 is located at row 

k, i.e., each element in row k of matrix 𝑈(𝐻,𝑋) is equal to 1 √𝑁⁄ , where 𝑁 = 2𝑛 . Now, 
plugging Equation (2) into Equation (7), we can calculate the (𝑁 + 𝑘)th element of |𝜓2⟩ as 

follows: 

𝛽𝑁+𝑘 = (1 √𝑁⁄ )(𝑁 − 1) √𝑁⁄ = 1 − 1 2𝑛⁄  (8) 

The probability of obtaining the good element is equal to 𝛽𝑁+𝑘
2 = (1 − 2−𝑛)2. Note that the 

(𝑁 + 𝑘)th element of |𝜓2〉 corresponds to the kth element of |𝜓0〉, which is the good element 

we are interested in measuring. 

Comments: The goal of designing 𝑈(𝐻, 𝑋) is to let each element in its row k be 1 √𝑁⁄ , 
which leads to a probability of obtaining the good element equal to 𝛽𝑁+𝑘

2 = (1 − 1 2𝑛⁄ )2. 

This probability value is equal to 0.25, 0.5625, 0.7656, 0.8789, 0.9386, 0.9690, 0.9844, 0.9922, 
and 0.9961 for n = 1~9, respectively. 

To summarize, by using a 𝐶𝑛(𝑋) gate and an HX layer, we successfully amplify the 

probability of the good element from 1 2𝑛⁄  to a value larger than 0.95 and 0.99 for n values 
greater than 5 and 7, respectively, where we have prior knowledge of the position index 

of the good element. 

Here, Algorithm 2 details the procedure of generating the 𝑅𝑦 layer (the blue block in 

Figure 1b). 

Algorithm 2. Pseudo code for generating the 𝑅𝑦 layer (the blue block in Figure 1b). 

Input: the number of qubits n and the position index of the good element in decimal form, k, ∀𝑘 ∈ [0, 2𝑛 − 1]. 

Output: quantum gates in the 𝑅𝑦 layer. 

1 Convert k into the binary form 𝑏𝑛−1𝑏𝑛−2⋯𝑏1𝑏0. 

2 Add an 𝑅𝑦(𝜋) gate in the label qubit (the most significant qubit). 

3 Let m = n 

4 while 𝑚 ≥ 1 

5 if 𝑏𝑚−1 = 1 

6     Add an 𝑅𝑦(𝜋 2⁄ ) gate to qubit 𝑞𝑚−1. 

7 else 

8     Add an 𝑅𝑦(3𝜋 2⁄ ) gate to qubit 𝑞𝑚−1. 

9 m ← m−1 

Vector Forms of Quantum State |𝜓2⟩. The states |0, 𝜓0⟩ and |𝜓1⟩ in Figure 1b are 

identical to those in Figure 1a. Hence, only state |𝜓2⟩ in Figure 1b is presented here. The 

𝑅𝑦 layer obtained from Algorithm 2, shown in the blue blocks in Figure 1b, can be ex-

pressed as 

𝑅𝑦(𝜋)⊗ 𝑅𝑦(𝜃)
⊗𝑛 = [

𝟎 −𝑅𝑦(𝜃)
⊗𝑛

𝑅𝑦(𝜃)
⊗𝑛 𝟎

] (9) 

where 𝑅𝑦(𝜃)
⊗𝑛 is an N by N matrix. For the sake of simplicity, we refer to the matrix 

given in Equation (9) as the 𝑅𝑦-layer matrix. 

Similar to Equation (7), based on Equation (9), the states |𝜓2⟩ and |𝜓1⟩ in Figure 1b 

have the following relationship: 

|𝜓2⟩ = [
𝟎 −𝑅𝑦(𝜃)

⊗𝑛

𝑅𝑦(𝜃)
⊗𝑛 𝟎

] |𝜓1⟩ (10) 

Theorem 3. For the quantum circuit given in Figure 1b  where the 𝑅𝑦 layer is generated by Al-

gorithm 2  the probability of obtaining the good element by measuring |𝜓2〉 is (1 − 2−𝑛)2  where 

𝑛 is the number of data qubits. 
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Proof. We are going to establish that the 𝑅𝑦 layer and the HX layer created by Algorithm 

1 are equivalent, proving the theorem. Like Algorithm 1, Algorithm 2 assumes the kth ele-
ment is the only good element in |𝜓0〉. 

Given 𝑅𝑦(𝜃) = [
cos(

𝜃

2
) −sin(

𝜃

2
)

sin(
𝜃

2
) cos(

𝜃

2
)
], we have 𝑅𝑦 (

𝜋

2
) =

1

√2
[1 −1
1 1

], which is identical to 

XH. Thus, step 6 of Algorithms 1 and 2 is equivalent. 

We can express 𝑅𝑦(𝜃)
⊗𝑛 as a tensor product 𝑌𝑛−1⊗𝑌𝑛−2⊗⋯⊗𝑌1⊗𝑌0, where 𝑌𝑟 , 𝑟 ∈

[0, 𝑛 − 1], represents either 𝑅𝑦(𝜋 2⁄ ) or 𝑅𝑦(3𝜋 2⁄ ). 

When the number of 𝑅𝑦(3𝜋 2⁄ ) gates is even, each element in row k of 𝑅𝑦(𝜃)
⊗𝑛 is 1, dis-

regarding the coefficient 1/√2𝑛. Consequently, 𝛽𝑁+𝑘 given in Equation (8) is also the so-
lution of Equation (10), making it valid for Figure 1b. 

When the number of 𝑅𝑦(3𝜋 2⁄ ) gates is odd, each element in row k of 𝑅𝑦(𝜃)
⊗𝑛 is −1, again 

disregarding the coefficient 1/√2𝑛. In this case, we have 

𝛽𝑁+𝑘 = −(1 √𝑁⁄ )(𝑁 − 1) √𝑁⁄ = −1 + 1 2𝑛⁄  (11) 

As the probability is the square of magnitude 𝛽𝑁+𝑘 , Equations (8) and (11) result in the 

same probability. Therefore, regardless of whether the number of 𝑅𝑦(3𝜋 2⁄ ) gates is even 

or odd, the probability of finding the good element from the output, |𝜓2〉, in either Figure 
1a or Figure 1b is the same. Thus, step 8 of Algorithms 1 and 2 is equivalent. In summary, 

Algorithms 1 and 2 are equivalent. □ 

Scalability of Algorithms 1 and 2. The analyses presented for Figure 1a,b above do 

not impose any restrictions or assumptions regarding the number of qubits. Hence, the 
conclusions drawn are applicable for any number of qubits. Specifically, Algorithms 1 and 
2 each can generate a quantum circuit with its corresponding matrix form having only one 

all-1 or all-negative-1 row, located at row k, k∈ [0, 2𝑛 − 1]  for any number of qubits n. 
As the location index, k, of the good element in a database is known in advance, Al-

gorithms 1 and 2 are not used to find location of the good element. Instead, they are uti-

lized to prove that a quantum circuit with a depth of 2 or 3 (i.e., the 𝑅𝑦 layer or the HX 

layer, together with a 𝐶𝑛(𝑋)  gate, as shown in Figure 1) can significantly amplify the 

probability of the good element from 1 2𝑛⁄  to nearly 1 if n is larger than 5. Note that for 
the same task GSA requires a quantum circuit whose depth increases exponentially with 
the number of qubits. This observation highlights the significant advantage of the circuits 

generated by Algorithms 1 and 2, in terms of circuit depth. 
Variational Quantum Search (VQS). The VQS [35] is a type of variational quantum 

algorithm that involves the interaction between classical and quantum computers [38,44]. 
For the completeness of this paper, we provided some basic information about the VQS. 
We employed an iterative process between classical and quantum computers to update 

the ansatz of the VQS, as depicted in Figure 1. We used Equation (12) as the objective 
function for the optimizer in the VQS, guaranteeing that the global minimum objective func-

tion is linked to both the optimal parameters for the ansatz and the total probability of 
good elements being amplified to 1. 

In the classical part, an optimizer is used to update the parameter 𝜽 of the ansatz 

based on the objective function 𝑓(𝜽) 

𝑓(𝜽) = −0.5⟨𝜓1|𝜓2⟩ + 0.5⟨𝜓1|𝑍 ⊗ 𝐼⊗𝑛|𝜓2⟩ (12) 

where |𝜓1〉 and |𝜓2〉 are the states before and after the ansatz, respectively, as shown in 

Figure 1 and Figure 2c, Z and I are Pauli Z and the identity matrix, respectively, and n is 
the number of data qubits. ⟨𝜓1|𝜓2⟩ is obtained by measuring the circuit given in Figure 

2a, i.e., ⟨𝑍1⟩ = ⟨𝜓1|𝜓2⟩ . ⟨𝜓1|𝑍 ⊗ 𝐼⊗𝑛|𝜓2⟩  is obtained by measuring the circuit given in 
Figure 2b, i.e., ⟨𝑍2⟩ = ⟨𝜓1|𝑍 ⊗ 𝐼⊗𝑛𝜓2⟩. More details are available in Ref. [35]. 
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Figure 2. Schematic of the VQS. The VQS uses an iterative process between a, b, and d to find the 
optimal parameters of the ansatz. (a,b) Two quantum circuits used in the VQS, respectively. (c) A 
parameterized quantum circuit that is executed once following the final iteration of VQS, using the 
parameters determined by the last iteration. The ansatz, 𝑈(𝜽), uses the Ry layer given in Figure 1b. 

(d) The classical part of the VQS. The notation with a forward slash and ‘n’ in the upper right corner 
indicates n qubits. In the jth iteration of the VQS, the measurement expectations 〈𝑍1〉 and 〈𝑍2〉 from 
a and b, respectively, are sent to a classical computer (d), which calculates the objective f(𝜽𝒋) and 
new Ansatz parameters 𝜽𝒋+𝟏. Then, 𝜽𝒋+𝟏 is used in the (j+1)th iteration. 

Notably, Equation (12) represents the inner product between the 2nd half of |𝜓1〉 and 

|𝜓2〉. That is, 𝑓(𝜽) = −⟨[0,⋯ ,0, 1𝑁+𝑘
g

, 0, ⋯ ,0⏟            ]
𝑇/√𝑁

𝑁 elements

, [𝛽𝑁 ,⋯ , 𝛽2𝑁−1]
𝑇⟩. 

In the classical part, the optimization problem can be written as 

minimize 𝑓(𝜽) = −∑ 1𝑁+𝑘
g

𝛽𝑁+𝑘
𝑁𝑔
𝑖=1

/√𝑁 (13) 

subject to (4). 

We assume that 𝑘  represents the index of the good element in an unknown, un-
straucture database, though its value is not known a priori, and 𝑘 ∈ [0,𝑁 − 1]. The oracle 
within the quantum circuit can map the index of the good element from 𝑘 to 𝑁 + 𝑘. This 

process is analogous to Grover’s search algorithm, where the oracle modifies the phase of 
the good element without requiring explicit knowledge of the index of the good element. 

It becomes evident that when 𝛽2𝑁+𝑘 = 1 , the objective function 𝑓(𝜽)  achieves its 

global minimum. According to Equation (4), once 𝛽2𝑁+𝑘 = 1, all other 𝛽𝑗  values, where 

𝑗 ≠ 2𝑁 + 𝑘, become 0. This means that when we measure |𝜓2〉, we will observe only one 
state with probability 1. Specifically, the measurement yields 

|𝜓2〉 = [0,⋯ ,0, 1𝑁+𝑘
g

, 0, ⋯ ,0⏟            ]
𝑇

2𝑁 elements

  

with a probability of 1. Based on this result, the value of 𝑘 can be determined with abso-
lute certainty. 

During the transition from |𝜓1〉 to |𝜓2〉, the amplitudes of all bad elements are re-

duced to zero, while the amplitude of the good element is amplified to 1. This results in a 
perfect quantum search. Initially, |𝜓1〉 is a superposition of both bad and good elements, 

but the final state, |𝜓2〉, becomes a pure state containing only the good element. As such, 
the probability of locating the good element becomes 1. 

3. Experimental Results 

In addition to the theoretical analysis given above, we numerically verify the efficacy 

of the VQS in identifying the good element in five different unstructured databases, with 
the results shown in Figure 3. The results related to 2-, 8-, and 14-qubit (20- and 26-qubit) 

Classical Computer
a

b c

dQuantum Computer
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data states were obtained using Pennylane’s default.qubit (lightning.gpu) device on an 
Intel i5-6500 CPU (NVIDIA A40 × 4 48-GB GPU) [45]. For the results given below, a single 

layer of 𝑅𝑦(𝜃) gates was used as the ansatz of the VQS without prior knowledge of the 

position index of the good elements. 

The initial values of 𝜽 in the ansatz are randomly sampled from a uniform distribu-
tion between 0 and 2π. Two termination criteria are employed in the VQS algorithm. (1) 

Iteration Limit: The algorithm concludes when the number of iterations reaches a specified 
threshold (set to 300 in this study). (2) Consecutive Small-Change Event: Alternatively, ter-
mination is triggered if a small-change event occurs consecutively for a defined count (set 

to five in this research). This small-change event is characterized as follows: the absolute 
value of the relative change in objective functions between two successive iterations is less 

than a predetermined small value (set to 1 × 10−4 in this investigation). The VQS process 
terminates upon satisfaction of either criterion, whichever happens first. 

Figure 3 shows that the VQS indeed can find the good element as the amplified prob-

ability is very close to 1 in most runs out of 100 for n = 8, 14, 20, and 26. However, in some 
runs (22, 16, 16, and 16 for the respective cases) out of 100 runs, the amplified probability 

is close to 0. The VQS utilizing the 𝑅𝑦 layer in the ansatz manages to amplify the proba-

bility to nearly 1 in most runs, except for the two-qubit case. The relatively poor perfor-

mance in the two-qubit case aligns with our theoretical analysis, as explained below. 

 
(a) 

 
(b) 

Figure 3. Box plot results from 100 runs of the VQS using the 𝑅𝑦  layer as the ansatz for an n-qubit 

input state. (a) The amplified probability of the good element. (b) The number of iterations used 
when a termination criterion is met. 
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When n equals two and the 𝑅𝑦 layer is used as the ansatz in the VQS, according to 

Equation (8), the probability of finding the good element is (1 − 1 22⁄ )2 = 0.5625, which 
is roughly in the middle of the box result for the two-qubit case (the leftmost one in Figure 
3a). In other words, the numerical results in Figure 3a validate the analysis given above. 

Figure 3b shows the number of iterations required for the VQS to meet the termina-
tion criteria across different qubit sizes. The results suggest that while the number of iter-

ations increases slightly as the qubit size grows, it remains within a reasonable range even 
for larger qubit states like 𝑛 = 26. The median number of iterations for 𝑛 = 26 is approxi-
mately 150, but the spread is larger, indicating that some runs require significantly more 

iterations up to the threshold of 300. For smaller qubit systems, such as 𝑛 = two, the num-
ber of iterations is relatively low, with a median around 100, but with a tighter distribution 

compared with larger qubit states. These results indicate that the VQS is computationally 
efficient across different database sizes and scales, as the increase in required iterations 
does not grow exponentially with the number of qubits. 

Although in some runs, the amplified probability is close to 0, the majority of runs 
successfully amplify the probability of the good element to very close to 1, as shown in 

Figure 3a for 𝑛 = 8, 14, 20, and 26. This implies that if we run the VQS algorithm twice, it 
is highly likely that at least one of the runs will identify the good element. In other words, 
the probability of both runs failing to find the good element is very low. Therefore, we 

recommend running the VQS algorithm multiple times—twice or a few times—to ensure 
that the good element is almost always found, maximizing the algorithm’s reliability. 

The significance of using the VQS with the 𝑅𝑦 layer is that it has been proved above 

that the 𝑅𝑦 layer, together with 𝐶𝑛(𝑋), can effectively amplify the probability of the good 

element from 1 2𝑛⁄  to nearly 1 for any number of qubits being larger than five. This scala-
bility feature allows us to apply the VQS to databases of any size, while still maintaining 

a circuit depth of only two (i.e., one 𝑅𝑦 layer and one 𝐶𝑛(𝑋) layer). The results validate 

that the VQS with the 𝑅𝑦 layer exhibits an exponential advantage over the GSA in terms 

of circuit depth for up to 26 qubits. 

4. Discussion 

The quantum resources used by the VQS primarily include an oracle (we used a 
multi-control CNOT gate as the oracle) to construct the unstructured database, followed 

by an ansatz. We emphasize that the VQS in this paper uses only a single layer of Ry gates 
in its ansatz, which is highly efficient compared with GSA. This is a key advantage of the 

proposed VQS. We need to run the VQS iteratively, and our experiments show that fewer 
than 300 iterations are required. While re-establishing a new quantum state is necessary 
for each iteration, we believe that requiring fewer than 300 runs is efficient and suitable 

for current Noisy Intermediate-Scale Quantum (NISQ) devices. NISQ systems can handle 
repeated runs effectively but struggle with circuits that contain too many layers; the VQS, 

with its shallow depth, is therefore better-suited to NISQ compared with GSA. 
The key to the efficiency of VQS lies in finding the optimal parameters for each Ry 

gate in the ansatz. Regarding the concern about the extensive use of classical computa-

tional resources, we argue that for an 𝑛-qubit VQS, there are only 𝑛 parameters to be 
optimized, which is manageable given that these parameters are used to find good ele-

ments in a 2𝑛-element database. Consequently, the classical resources required are mini-
mal, with limited memory needed because of the small number of parameters. We utilized 
the ADAM optimizer to determine the optimal parameters, and there are other ap-

proaches in the literature to optimize parameters efficiently (though these are beyond the 
scope of this paper). This line of research will be crucial in enhancing the practical value 

of VQS for larger databases, and it will be an important focus of our future work. 

5. Conclusion 
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This paper introduces two algorithms to construct the depth-2 HX layer and the 

depth-1 𝑅𝑦 layer. We prove that either layer, along with the 𝐶𝑛(𝑋) gate, can efficiently 

amplify the probability of the sole good element in any large unstructured databases from 
1/2n to nearly 1, exhibiting an exponential advantage in circuit depth compared with GSA. 

Both algorithms assume prior knowledge of the good element’s position index. 
To find the sole good element without prior knowledge of its position, we use the 

VQS with the 𝑅𝑦 layer as the ansatz. Our experimental results on 8-, 14-, 20-, and 26-qubit 

unstructured databases show that the VQS successfully finds the good element with a 
probability close to 1 in 78 to 84 out of 100 independent runs. The results also validate that 

the VQS with the 𝑅𝑦 layer has an exponential advantage over GSA, in terms of circuit 

depth, for up to 26 qubits. This validation highlights the potential of using low-depth pa-
rameterized quantum circuits, such as the VQS, for an unstructured database search and 
other critical problems, potentially leading to achieving quantum supremacy over classi-

cal computing. 

Appendix A.: Proof of LEMMA 1 

Proof. Here, we use mathematical induction to prove Lemma 1. 
For the convenience of expression, we use 𝑃(𝐴, 𝑇) to denote the position index of 

element A in the column vector of T and use dec(𝑏) to denote decimal value of a binary 
form b. As an example, dec(𝐵𝑚) denotes the decimal value of binary form 𝐵𝑚. 

Base Case (n = 1): For n = 1, the tensor product results in [
𝑎0,0
𝑎0,1

], which is a column 

vector with 21 = 2 elements. The position index of the element 𝑎0,𝑖0 in the column vector 

is equal to the decimal value of the binary form 𝑖0, where 𝑖0∈{0,1}. 
Inductive Hypothesis (n = m): For the convenience of expression, let 𝑇𝑚 =

[
𝑎𝑚−1,0
𝑎𝑚−1,1

] ⊗⋯⊗ [
𝑎2,0
𝑎2,1

] ⊗ [
𝑎1,0
𝑎1,1

] ⊗ [
𝑎0,0
𝑎0,1

]. Assume that for some positive integer m, the ten-

sor product 𝑇𝑚 results in a column vector with 2𝑚 elements, and the position index of 

element 𝐴𝑚 = 𝑎𝑚−1,𝑖𝑚−1⋯𝑎2,𝑖2𝑎1,𝑖1𝑎0,𝑖0 in the column vector of 𝑇𝑚 is equal to the decimal 

value of the binary form 𝐵𝑚 = 𝑖𝑚−1⋯𝑖2𝑖1𝑖0, where 𝑖𝑟 ∈ {0,1}, ∀ 𝑟 ∈ [0,𝑚 − 1], which can 
be expressed as 

𝑃(𝐴𝑚 , 𝑇𝑚) = dec(𝐵𝑚) (14) 

Inductive Step (n = m + 1): Consider the tensor product of m+1 binary vectors 

𝑇𝑚+1 = [
𝑎𝑚,0
𝑎𝑚,1

] ⊗ [
𝑎𝑚−1,0
𝑎𝑚−1,1

] ⊗⋯⊗ [
𝑎2,0
𝑎2,1

] ⊗ [
𝑎1,0
𝑎1,1

] ⊗ [
𝑎0,0
𝑎0,1

] (15) 

Considering that the tensor product 𝑇𝑚  results in a column vector with 2𝑚  ele-

ments, we know 𝑇𝑚+1 = [
𝑎𝑚,0𝑇𝑚
𝑎𝑚,1𝑇𝑚

], which is a column vector with 2𝑚 + 2𝑚 = 2𝑚+1 ele-

ments. 
Part 1: When 𝑖𝑚 = 0, 𝐴𝑚+1 = 𝑎𝑚,0𝐴𝑚. As 𝑃(𝐴𝑚, 𝑇𝑚) =dec(𝐵𝑚), we have 

𝑃(𝐴𝑚+1, 𝑎𝑚,0𝑇𝑚) = 𝑃(𝑎𝑚,0𝐴𝑚 , 𝑎𝑚,0𝑇𝑚) = dec(𝐵𝑚) (16) 

As 𝐵𝑚+1 = 𝑖𝑚𝑖𝑚−1⋯𝑖2𝑖1𝑖0 = 0𝑖𝑚−1⋯𝑖2𝑖1𝑖0, we know that dec(𝐵𝑚+1)=dec(𝐵𝑚). Then, 

considering that 𝑎𝑚,0𝑇𝑚 is in the first half of 𝑇𝑚+1 and according to Equation (16), we 
know 

𝑃(𝐴𝑚+1, 𝑇𝑚+1) = 𝑃(𝐴𝑚+1, 𝑎𝑚,0𝑇𝑚) = dec(𝐵𝑚) = dec(𝐵𝑚+1),    𝑖𝑚 = 0 (17) 

Part 2: When 𝑖𝑚 = 1, we have 𝐴𝑚+1 = 𝑎𝑚,1𝐴𝑚 and 

𝐵𝑚+1 = 𝑖𝑚𝑖𝑚−1⋯𝑖2𝑖1𝑖0 = 1𝑖𝑚−1⋯𝑖2𝑖1𝑖0 (18) 

Then, we know 

dec(𝐵𝑚+1) = dec(𝐵𝑚) + 2𝑚 (19) 
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As 𝑃(𝐴𝑚 , 𝑇𝑚) =dec(𝐵𝑚), we have 

𝑃(𝑎𝑚,1𝐴𝑚, 𝑎𝑚,1𝑇𝑚) =dec(𝐵𝑚) (20) 

Then, considering 𝑎𝑚,1𝑇𝑚 is in the second half of 𝑇𝑚+1, and each half of 𝑇𝑚+1 has 
2𝑚 elements, we have 

𝑃(𝐴𝑚+1, 𝑇𝑚+1) = 𝑃(𝑎𝑚,1𝐴𝑚, 𝑇𝑚+1) = 2
𝑚 +

𝑃(𝑎𝑚,1𝐴𝑚, 𝑎𝑚,1𝑇𝑚) =dec(𝐵𝑚)+2𝑚 ,   𝑖𝑚 = 1 
(21) 

Considering Equation (19), we can reform Equation (21) as 

𝑃(𝐴𝑚+1, 𝑇𝑚+1) = dec(𝐵𝑚+1),𝑖𝑚 = 1 (22) 

In summary, Equations. (17) and (22) indicate that whether 𝑖𝑚 is 0 or 1, we have 
𝑃(𝐴𝑚+1, 𝑇𝑚+1) = dec(𝐵𝑚+1). 

Hence, by mathematical induction, Lemma 1 is rigorously proven. □ 

Funding: This research was supported by the NSF ERI program, under award number 2138702. 

Data Availability Statement: No new data were created or analyzed in this study.  

Acknowledgments: This work used the Delta system at the National Center for Supercomputing 
Applications through allocation CIS220136 from the Advanced Cyberinfrastructure Coordination 
Ecosystem: Services and Support (ACCESS) program, which is supported by National Science Foun-
dation grants #2138259, #2138286, #2138307, #2137603, and #2138296. We acknowledge the use of 
IBM Quantum services for this work. The views expressed are those of the authors and do not reflect 
the official policy or position of IBM or the IBM Quantum team. 

Conflicts of Interest: The author declares no conflicts of interest in writing this manuscript or in the 
decision to publish the results. 

Reference 

1. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University 
Press: Cambridge, UK, 2011. 
2. Giri, P.R.; Korepin, V.E. A Review on Quantum Search Algorithms. Quantum Inf. Process. 2016, 16, 315. 
3. Grover, L.K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 1997, 79, 325. 
4. Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Annual ACM Symposium on 
Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; Volume Part F129452. 
5. Zalka, C. Grover’s quantum searching algorithm is optimal. Phys. Rev. A 1999, 60, 2746. 
6. Bennett, C.H.; Bernstein, E.; Brassard, G.; Vazirani, U. Strengths and Weaknesses of Quantum Computing. SIAM J. Comput. 2006, 
26, 1510. https://doi.org/10.1137/S0097539796300933. 
7. Fürer, M. Solving NP-Complete Problems with Quantum Search. In LATIN 2008: Theoretical Informatics  Proceedings of the LATIN 
2008  Búzios  Brazil  7–11 April 2008; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2008; Volume 4957, pp. 784–792. 
8. Aaronson, S. Guest Column: NP-complete problems and physical reality. ACM SIGACT News 2005, 36, 30–52. 
9. Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Lundgren, A.; Preda, D. A Quantum Adiabatic Evolution Algorithm Applied to 
Random Instances of an NP-Complete Problem. Science 2001, 292, 472. 
10. Byrnes, T.; Forster, G.; Tessler, L. Generalized Grover’s Algorithm for Multiple Phase Inversion States. Phys. Rev. Lett. 2018, 120, 

060501. 
11. Zhan, J. Quantum Feasibility Labeling for NP-complete Vertex Coloring Problem. arXiv 2023, arXiv:2301.01589. 
12. Cerf, N.J.; Grover, L.K.; Williams, C.P. Nested quantum search and NP-hard problems. Appl. Algebra Eng. Commun. Comput. 2000, 
10, 311. 
13. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. 
14. Tutul, I.K.; Karimi, S.; Zhan, J. Shallow Depth Factoring Based on Quantum Feasibility Labeling and Variational Quantum 
Search. arXiv 2023, arXiv:2305.19542. 
15. Du, Y.; Hsieh, M.H.; Liu, T.; Tao, D. A Grover-search based quantum learning scheme for classification. New J. Phys. 2021, 23, 
023020. 
16. Khanal, B.; Rivas, P.; Orduz, J.; Zhakubayev, A. Quantum Machine Learning: A Case Study of Grover’s Algorithm. In Proceed-
ings of the 2021 International Conference on Computational Science and Computational Intelligence, CSCI, Las Vegas, NV, USA, 15–
17 December 2021; pp. 79–84. 



Quantum Rep. 2024, 6, 550–563. https://doi.org/10.3390/quantum6040037  13 
 

17. Lee, B.; Perkowski, M. Quantum Machine Learning Based on Minimizing Kronecker-Reed-Muller Forms and Grover Search 
Algorithm with Hybrid Oracles. In Proceedings of the 19th Euromicro Conference on Digital System Design, DSD, Limassol, Cyprus, 
31 August–2 September 2016; pp. 413–422. 
18. Aïmeur, E.; Brassard, G.; Gambs, S. Quantum speed-up for unsupervised learning. Mach. Learn. 2013, 90, 261. 
19. Liao, Y.; Zhan, J. Expressibility-Enhancing Strategies for Quantum Neural Networks. arXiv 2022, arXiv:2211.12670. 
20. Zhang, X.M.; Yung, M.H.; Yuan, X. Low-depth quantum state preparation. Phys. Rev. Res. 2021, 3, 043200. 
21. Matos, G.; Johri, S.; Papić, Z. Quantifying the Efficiency of State Preparation via Quantum Variational Eigensolvers. PRX Quan-
tum 2021, 2, 010309. 
22. Brassard, G.; Hoyer, P.; Tapp, A. Quantum cryptanalysis of hash and claw-free functions. In LATIN'98: Theoretical Informatics, 
Proceedings of the Third Latin American Symposium  Campinas  Brazil  20–24 April 1998; Lecture Notes in Computer Science (Including 
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 1997; 
Volume 1380, pp. 163–169. 
23. Mermin, N.D. Quantum Computer Science: An Introduction; Cambridge University Press: Cambridge, UK, 2007; ISBN 
9780521876582. 
24. Preskill, J. Lecture Notes for Physics 229: Quantum Information and Computation. Calif. Inst. Technol. 1998, 16, 1–8. 
25. Brassard, G.; Høyer, P.; Mosca, M.; Tapp, A. Quantum amplitude amplification and estimation. Contemp. Math. 2002, 305, 53. 

26. Roy, T.; Jiang, L.; Schuster, D.I. Deterministic Grover search with a restricted oracle. Phys. Rev. Res. 2021, 4, L022013. 
27. Long, G.L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A 2001, 64, 022307. 
28. Broda, B. Quantum search of a real unstructured database. Eur. Phys. J. Plus 2015, 131, 1–4. 
29. Figgatt, C.; Maslov, D.; Landsman, K.A.; Linke, N.M.; Debnath, S.; Monroe, C. Complete 3-Qubit Grover search on a program-
mable quantum computer. Nat. Commun. 2017, 8, 1918. 
30. Gilliam, A.; Pistoia, M.; Gonciulea, C.; Chase, J. Optimizing Quantum Search Using a Generalized Version of Grover’s Algorithm. 
arXiv 2020, arXiv:2005.06468. 
31. Farhi, E.; Goldstone, J.; Gutmann, S.; Sipser, M. Quantum Computation by Adiabatic Evolution. arXiv 2000, arXiv:quant-
ph/0001106. https://doi.org/10.48550/arXiv.quant-ph/0001106. 
32. Roland, J.; Cerf, N.J. Quantum search by local adiabatic evolution. Phys. Rev. A 2002, 65, 042308. 
33. Morales, M.E.S.; Tlyachev, T.; Biamonte, J. Variational learning of Grover’s quantum search algorithm. Phys. Rev. A 2018, 98, 
062333. 
34. Boyer, M.; Brassard, G.; Hoeyer, P.; Tapp, A. Tight bounds on quantum searching. Fortschritte der Phys. 1996, 46, 493. 
35. Zhan, J. Variational Quantum Search with Shallow Depth for Unstructured Database Search. arXiv 2022, arXiv:2212.09505. 
https://doi.org/10.48550/arXiv.2212.09505. 
36. Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al., 

Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625. 
37. McClean, J.R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. 
Phys. 2016, 18, 023023. 
38. Kübler, J.M.; Arrasmith, A.; Cincio, L.; Coles, P.J. An adaptive optimizer for measurement-frugal variational algorithms. Quan-
tum 2020, 4, 263. 
39. Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A variational eigen-
value solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. 
40. Hidary, J.D. Quantum Computing: An Applied Approach; Springer: Cham, Switzerland, 2019. 
41. Wong, T.G. Introduction to Classical and Quantum Computing; Rooted Grove: Omaha, Nebraska, 2022. 
42. Bosco, S.; Benito, M.; Adelsberger, C.; Loss, D. Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power. 
Phys. Rev. B 2021, 104, 115425. 
43. Stavrou, V.N.; Veropoulos, G.P. Significance of an external magnetic field on two-phonon processes in gated lateral semiconduc-
tor quantum dots. Solid State Commun. 2014, 191, 10–13. 
44. Huang, H.L.; Xu, X.-Y.; Guo, C.; Tian, G.; Wei, S.-J.; Sun, X.; Bao, W.-S.; Long, G.-L. Near-Term Quantum Computing Techniques: 
Variational Quantum Algorithms, Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation. Sci. China Phys. 
Mech. Astron. 2023, 66, 250302. 

45. Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, 
A.; et al. PennyLane: Automatic Differentiation of Hybrid Quantum-Classical Computations. arXiv 2018, arXiv:1811.04968. 
https://doi.org/10.48550/arxiv.1811.04968. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


