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ABSTRACT This paper introduces a deep learning-based framework for identifying hand-drawn schematics
of power converter circuits and performing automated simulations. The framework employs cutting-edge
computer vision-based object detection models, such as YOLOv8, to achieve a high mean average precision
(mAP) of 96.7% to accurately identify components. Wire tracing and connectivity are achieved through
a combined architecture built upon classical image processing techniques and deep learning approaches.
Detailed information extracted from a hand-drawn circuit schematic is used to automatically create its
netlist for automated simulation through the spice engine. The proposed framework is successfully tested
on various nonisolated (buck, boost) and isolated (flyback, full-bridge) converters under both continuous
conduction mode (CCM) and discontinuous conduction mode (DCM) operations. In the comprehensive
assessment of the entire framework, its efficacy is tested on 140 newly drawn circuit diagrams. The overall
accuracy in the generation of netlists reaches a high value of 95.71%, utilizing the robust component detection
capabilities of YOLOv8. Moreover, the framework enables the generation of both graphical representations
and adjacency matrices for circuit diagrams. This output serves as a valuable dataset generator, contributing
to the rapidly advancing domains of machine learning, including graph neural networks and geometric
learning, particularly in the application space of power and energy systems. This framework can be further
employed as an educational tool, and the ideas introduced can be developed to generate fully automated and
efficient power converter designs for real-world applications.

INDEX TERMS Automated circuit simulation, computer vision, deep learning, hand-drawn circuit diagram,
NetList, spice, power converter, automated graph generation.

I. INTRODUCTION
Hand-drawing sketches and informal handwritten texts have
been fundamental methods of expressing ideas and facilitat-
ing human-computer interactions throughout history. From
ancient rock carvings to modern blueprints, hand drawing has
evolved as an integral part of human intelligence [1]. Before
the widespread use of computers and digital platforms, hand
drawing and handwriting were the primary means of convey-
ing ideas, from simple concepts to complex thoughts. Randall
Davis [2] emphasizes that sketching provides individuals
with the freedom to explore their thoughts, and cognitive
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sciences support the notion that designers are more adept
at generating diverse design alternatives and ideas through
sketches compared to computer-aided design tools.

Handwritten notes, mathematical equations, numerical
computations, and schematic diagrams represent the innate
and initial manifestation of ideas and brainstorming, pri-
marily within the STEM domain [3]. Researchers and
engineers commonly use hand-drawn schematics to brain-
storm engineering diagrams [4], [5]. However, transferring
these hand-drawn sketches to digital form is time consuming
and prone to human errors. Automated segmentation and
recognition of handwritten schematics for computer-aided
design and manufacturing systems are gaining broad interest
in the research community [6]. This automated mechanism
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has the potential to decrease errors and significantly stream-
line the circuit design and simulation process.

This paper presents a comprehensive computer vision-
based framework designed to tackle the difficulties associated
with digitizing hand-drawn circuit diagrams. The framework
automatically identifies components, traces circuit connec-
tions, and conducts simulations based on the recognized
topology. Using the power of the SPICE simulation engine
and the freedom to sketch on paper, this technique streamlines
the design process from hand sketching to computer simula-
tion. The proposed digitization pipeline uses state-of-the-art
computer vision models, image processing techniques, and
optical character recognition methods to map the inter-
connections of electronic components, nodes, and sources.
Implementing this tool in industries can help automate the
conversion of hand sketches into ready-to-simulate designs,
saving significant time. It can also accelerate the development
and drafting processes. Moreover, it can be scaled to
a computer software or mobile application that digitizes
hand-drawn schematics, expediting the circuit design and
analysis processes and enhancing the brainstorming phase.
Furthermore, this framework is beneficial as a smart teaching
and learning tool for novice engineers in power electronics to
accelerate their learning process.

Electronic Design Automation (EDA) software provides
robustness and user-friendliness for electronics design as
well as automation. Such an automation has not been fully
realizable yet in power converter development; but, further
efforts are being made to advance such technologies. There is
also merit in seamlessly converting hand-drawn schematics
into digital formats and directly performing simulations
from a PC or mobile device, especially for educational
purposes. The tool proposed in this paper takes a step toward
addressing this gap by leveraging advances in machine
learning and computer vision, which make it feasible to
accurately recognize and interpret hand-drawn schematics.
The initial converter development phase of system design
and brainstorming can then be made more flexible and
intuitive. The potential impacts of this approach on the EDA
tools include emphasizing the users to focus on fundamental
understanding of the circuit diagrams and fostering their
creativity, rather than bounding them to use any specific
software interfaces, especially in the early stages of design
phase. Instead of competing with existing EDA software, this
computer vision-driven tool can serve as a complementary
add-on feature to provide an alternative method to assist users
to input their design input, thus bridging the gap between
traditional circuit design methods and modern fully digitized
workflows. Additionally, this tool can serve as a potential
educational tool that offers immediate feedback to users’
designs through quick simulations.

The generated netlist and auto-simulation feature of the
proposedmethod can be integrated with the existing EDA and
simulation software. Additionally, engineers and designers
can quickly sketch their ideas on a piece of paper and this
tool can automate the entire process of converting those raw

information to digital formats for further refinement and
development process, thus accelerating the initial prototyping
phase. In addition to rapid prototyping, it can help students
and educators by easily digitizing hand-sketched diagrams
from textbooks or classroom notebooks for quick simulation
and understanding the working principles of the raw circuit
diagrams. This approach will not only reduce the product
development time but also reduce the learning curve for
novice learners, thus facilitating them to prioritize more on
understanding fundamental principles. Moreover, it makes
power electronics circuit design accessible to hobbyists and
those in regions with limited or no access to such expensive
software and tools.

The remaining sections of this article are structured as
follows: Section II provides a review of related research on
component recognition, auto-netlist generation, and simula-
tion of hand-drawn electrical schematics. Section III outlines
the methodology of the proposed framework. Section IV
discusses the results obtained from the research. Finally,
Section V summarizes the overall results of the work and
highlights potential avenues for future research.

II. LITERATURE REVIEW AND RELATED WORK
Even before the advent of machine learning, recognizing
hand-drawn circuits was a captivating research area. The
techniques used for recognition included the analysis of ink
density, pen strokes [7], pixel gradients, basic geometric
information such as lines and arcs, as well as template
matching and probabilistic graph matching [8] to identify
symbols. Hand sketching has always been a natural and
effective means of communication and problem solving for
designers and engineers [7], [9]. The rise in popularity
of computing devices such as smartphones, tablets, and
touchscreen computers has made handwriting the most
accessible and commonly used interactive tool in academia
and industries. Although there is a substantial body of
literature on component and text recognition, more research
is still needed to address the challenge of identifying
connections between components and simulating circuits
based on observed relationships between components, nodes,
and textual information. This section presents relevant prior
art along with their strengths and weaknesses.

There is limited literature on a comprehensive framework
that combines hand-drawn circuit topology recognition
and automated simulation for power electronic converters.
Existing research primarily focuses on recognizing electronic
components in hand-drawn circuit diagrams. One study [10]
used a composite design integrating local binary pattern
(LBP) and statistical pixel density distribution to extract
features from components, which were then classified using
SVM. Another article [11] proposed a sparse auto-encoder
method based on convolutional neural networks (CNN) for
feature extraction and softmax for component classification,
achieving 95% precision. A hybrid approach was presented
in [12], utilizing a texture feature descriptor based on
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histogram of oriented gradients (HOG) and shape-based
features to recognize analog and digital components, achiev-
ing 93.83% accuracy using sequential minimal optimization
(SMO). In [13], a two-stage system based on CNNs achieved
97.33% accuracy to recognize analog and digital components.
Other methods, such as YOLOv5 [6] and Sketic [14],
focused respectively on handwritten and hand-drawn logic
circuits, demonstrating improved performance in component
detection and simulation. The work in [15] proposed a
combined recognition system for identifying components,
mesh, branches, and nodes in circuit diagrams, while [16]
presented an approach for detecting electrical component
information and interconnections through instance seg-
mentation. Similarly, various other techniques have been
proposed for circuit recognition and sketch understanding,
such as Hidden Markov models (HMMs) [17], [18], [19] to
detect sketches as temporal signals produced by continuous
pen movements. Other approaches involve architectures
like MobileNet SSD [20], CNN classifiers [21], Faster
R-CNN [22], and fully-connected neural networks [23].
Recent studies have expanded beyond component recogni-

tion to automating netlist generation in hand-drawn electrical
circuit diagrams. One paper [24] employed optical charac-
ter recognition (OCR) to detect characters, symbols, and
numeric values in circuits and generate a ready-to-use netlist
for circuit simulation. In another study [25], an artificial
neural network (ANN)-based netlist generator achieved
a component classification accuracy of 98%. Likewise,
a paper [26] introduced a deep neural network algorithm
aimed at detecting hand-drawn circuit diagrams within
digitized electronic circuits and generating corresponding
netlists. In a separate work by [27], a combination of image
processing and machine learning techniques was applied
to derive netlists from hand-drawn circuit diagrams. This
involved utilizing line length ratios to identify components,
as well as employing HOG feature extraction with SVM
classification specifically for resistors, diodes, and inductors.
Moreover, both [25] and [27] integrated optical character
recognition (OCR) techniques to extract textual and numeri-
cal information from the components in order to assign their
values within the netlist.

While a substantial amount of literature is available on
symbol and text recognition, there are comparably fewer
studies that directly tackle the issue of detecting connectivity
and automating the simulation of identified circuit diagrams.
The paper [28] attempts to automate the complete circuit
design process, achieving a 98% accuracy in component
detection and classification using a CNN model and sliding
window techniques. However, it focuses mainly on basic
electrical circuits. Likewise, a circuit simulator called
‘‘Voltique Designer’’ [29] was created for Android devices,
merging the convenience of hand sketching on smartphones
with the capabilities of a SPICE-based simulation engine,
providing a seamless learning experience for students.
There are significantly fewer papers focused on power

converter circuits. One of them [30] presented a Bayesian
Regularization-based artificial neural network (BR-ANN)
and random forest (RF) approach with bootstrap aggregation
to simulate the steady-state responses of power converters.
Another paper [31] proposed an end-to-end framework to
identify and simulate hand-drawn power converter circuits,
but only non-isolated converters are considered. YOLOR is
used to detect components, achieving an mAP of 91.6%.

This paper proposes an end-to-end computer vision-based
framework that generates the netlist of a hand-drawn
schematic for an isolated or non-isolated power converter
(in continuous conduction mode, CCM or discontinuous
conduction mode, DCM) and performs an automatic circuit
simulation. To establish the framework, this research employs
a wide range of state-of-the-art object detection models,
including YOLOR, YOLOv7, and YOLOv8, to accurately
detect electronic components, achieving a significantly
higher accuracy up to 96.7%. Most often a straightforward
Euclidean distance approach is utilized to establish con-
nectivity between the symbols, but this proves inadequate
for intricate and densely structured network architectures.
To overcome this drawback, the proposed framework adopts
a graph traversal technique to identify the shortest connected
paths between the components. Themain contributions of this
paper are summarized as follows.
1) The proposed method encompasses a comprehensive

computer vision-based framework from identifying
circuit topologies for conducting automated simula-
tions targeting power converters that include complex
arrangements of electrical and magnetic elements like
power transistors and transformers.

2) The challenging task of detecting nodes and connectivity
within the converter circuit diagrams is achieved via
a collection of algorithms, encompassing traditional
image processing techniques and deep learning models.

3) The automated graph generation step incorporated
into the framework enables the instant generation of
graphical representations and adjacency matrices for
hand-drawn circuit schematics.

4) The ablation study conducted on various converter
topologies encompassing both non-isolated and isolated
converters operating in both CCM and DCM modes,
utilizing the state-of-the-art object detection models
demonstrates a high net accuracy in netlist generation.

III. PROPOSED METHODOLOGY
The proposed framework comprises eight major stages
for converting the manually drawn circuit diagram into a
digital format and subsequently automating the simulation
process. Each step is briefly described in this section, and
their intermediate outputs, considering a buck converter, are
demonstrated in Fig. 1. The entire operational procedure of
the proposed method is succinctly outlined in Algorithm 1,
highlighting common and custom image processing
functions.
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FIGURE 1. The overall architecture of the proposed framework combining computer vision-based segmentation and identification of hand-drawn
power converter circuit diagram followed by the auto-generation of circuit netlist and the automated circuit simulation is presented. Each stags are
numbered i.e., 1: text detection, 2: component detection, 3: corner detection, 4: line-segment detection, 5: nodes detection and clustering, 6:
connectivity detection, 7: netlist generation, and 8: circuit simulation.

Algorithm 1 : Proposed End-to-End Pipeline
▷Different model options provided for user selection
1: corner-detectors← {Harris operator, Shi-Tomasi operator}
2: component-detectors ← {YOLOR, YOLOv7, YOLOv7-tiny,

YOLOv8m, YOLOv8n}
3: line-segment-detectors← {Hough Transform, MLSD}
4: OCR← {EasyOCR, Tesseract}

▷Sequential Order of Functions used for Circuit NetList Generation
5: grayImage← rgb2gray(rgbImage)
6: texts← OCR(grayImage)
7: components← component-detectors(rgbImage)
8: corners← corner-detectors(grayImage)
9: nodes1, vLines, hLines← line-segment-detectors(grayImage)

10: nodes2← get-point-of-intersections(vLines, hLines)
11: nodes3← terminals-component-matching(grayImage, corners)
12: kNodes← kMeans-clustering(nodes1, nodes2, nodes3)
13: netList ← node-connectivity(components, kNodes, textBoxes, cor-

ners)
▷Run Circuit Simulation

14: converter← identify-converter(components)
15: analysis-results← simulation(netList)

A. DATASET PREPARATION
An open-sourced dataset - Handwritten Circuit Diagram
Images, CGHD (version 6) [32] which consists of 2208 raw
images with nearly 185,641 bounding box annotations,

and 58 object classes is used in this paper to train the
models. To narrow down the scope of the problem, only
14 major classes that frequently appear in most of the
power converter circuits, including helper symbols such
as nodes, junctions, and crossovers, are considered in
this paper. CGHD is the only publicly available dataset
for hand-drawn electrical circuit diagrams. In addition,
176manually annotated power converter circuits and 432 null
images (that do not contain any electrical circuit diagrams)
were added to fine-tune the existing dataset for the problem
at hand. The dataset includes schematics drawn on different
surfaces using various writing instruments and markers
of different colors. The samples also contain distortions
such as buckling, kinking, bending, spots, trans-illumination,
and paper cracks. The images are captured from different
view angles and at various lighting conditions. The data
set combines the IEEE/ANSI and IEC/DIN symbols for
most generic electronic components. In addition, to prevent
memory overloading and enhance model training, the dataset
is modified by excluding irrelevant components (e.g., logic
circuits, texts) and grouping functionally similar components
(e.g., transistors, IGBTs, MOSFETs, and manual switches).
Prior to feeding the images into the neural networks,
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several preprocessing techniques are applied, including
auto-orientation and resizing each image to dimensions
of 640 × 640. Simultaneously, diverse data augmentation
methods were employed to significantly increase the overall
size of the training dataset. These augmentation techniques
encompass orientation flipping, rotation, zooming, shearing,
hue adjustment, brightness modification, image blurring,
and the introduction of occlusions and noises. The purpose
of employing some of these augmentations is to bolster
the model’s robustness against camera artifacts and varying
environmental conditions. Consequently, the training data has
been expanded by more than tenfold, explicitly increasing
the sample count from 2,300 to 23,075. The complete code
repository [33] and a link to the updated dataset [34] can be
accessed online.

B. ELECTRONIC COMPONENT DETECTION
A range of cutting-edge object detection models, primar-
ily from the YOLO family, such as YOLOR, YOLOv7,
YOLOv8, and their corresponding lightweight versions,
are evaluated to detect various components in the images.
These models are trained on a server with NVIDIA Tesla
V100-PCIE-16GB, 16151MiB hardware specifications. The
fully trained models are subsequently tested on a per-
sonal computer equipped with NVIDIA GeForce GTX
1650-4GB.

C. HANDWRITTEN TEXT RECOGNITION
Texts are the vital information displayed on a circuit
diagram through which users can transcribe components’
values and simulation parameters such as switching fre-
quency, duty cycle, simulation run-time, etc. Hence, iden-
tifying, interpreting, and coupling the texts in the dia-
grams to the respective components are the crucial steps
in netList autogeneration and performing circuit simula-
tion. For scene text detection and interpretation, various
open-source optical character recognition (OCR) tools
are available, i.e., Tesseract, EasyOCR, MMOCR, Pad-
dleOCR, etc. In the proposed framework, Tesseract [35]
and EasyOCR [36] are implemented to read the textual
information in the circuit diagram. Thereafter, the association
between the text and the component is obtained using the
Euclidean distance between their respective bounding boxes’
midpoints.

1) EASYOCR
It supports 80+ languages and popular scripts, including
Latin, Chinese, Arabic, Devanagari, Cyrillic, etc. It uses
Character Region Awareness for Text Detection (CRAFT)
for accurate scene text detection and supports multilingual
text recognition. To interpret the detected texts, a CRNN-
basedmodel is used that is built upon three main components:
1) RestNet and VGG for feature extraction, LSTM for text
sequence labeling, and Connectionist Temporal Classifica-
tion (CTC) for text sequence decoding.

2) TESSERACT
It was originally developed by Hewlett-Packard (HP)
between 1984 and 1994 and is now available as an
open-source OCR engine. Tesseract supports more than
100 languages, and it supports Unicode (UTF-8). The recent
version, i.e., Tesseract-4, uses an LSTM-based OCR engine
focused on online text recognition.

D. LINE SEGMENT DETECTION
Detecting line segments and other geometric shapes in
an image has broad application in various fields, such as
robotics, image processing, and computer graphics. There
are several approaches to detect line segments - ranging
from traditional methods such as classical Hough Transform
(HT) [37] to more recently developed deep learning-based
techniques [38]. Line segment detection (LSD) application
in natural scenes has received increased attention, primarily
due to its notable use in the detection of lanes and
structural features within autonomous driving systems and
other computer vision applications. Due to its computational
intensity, unstable performance, and inaccuracies, such as
misdetection of certain nodes in the circuit diagram, HT is
excluded from utilization in this framework. In this paper,
a lightweight deep learning-based model for line segment
detection, named Mobile-LSD (MLSD) [39], is employed
for real-time implementation. MLSD is tailored for resource-
constrained platforms, such as mobile and edge computing
devices, and adeptly identifies lines and curves within circuit
diagrams.

1) MOBILE LINE SEGMENT DETECTION (M-LSD)
A lightweight line segment detection model is used
for real-time implementation, optimized for resource-
constrained platforms, i.e., mobile and edge-computing
devices. A paper [39] has built an efficient and lightweight
deep neural network architecture with minimized backbone
network layers that remove typical multi-module processes
for predicting lines. The proposed architecture uses a novel
training scheme - a combination of SoL (Segments of Line
segment) augmentation, matching, and geometric loss, which
captures additional geometric clues needed for accurate line
predictions. This architecture reduces the model size by
2.5%, whereas the inference speed on the GPU is improved
by 130.5% compared to the previous best real-time LSD,
i.e., TP-LSD-Lite. Consequently, MLSD can achieve higher
model inference time, i.e., 56.8 FPS and 48.6 FPS on Android
and iPhone phones, respectively.

E. CORNER DETECTION
An additional corner detection stage is added in the proposed
framework to detect nodes, junctions, and terminals in
the circuit diagram. Corner detection is explicitly used to
identify the points of interest in the image invariant to
rotation, translation, and scaling. Adding corner detection
provides several benefits: finding the missing circuital nodes,
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locating anode and cathode terminals for each component,
and detecting the components’ placement or orientation in the
circuit diagram. The two algorithms used primarily for corner
detection in computer vision are the Harris operator [40] and
the Shi-Tomasi operator [41]. In this paper, both techniques
are explored; however, the Shi-Tomasi operator is observed to
perform relatively better in the context of hand-drawn circuit
diagrams.

1) HARRIS CORNER DETECTION
In this technique, corners are detected as regions in an image
with significant gradient changes in the intensity of the pixel
in all directions. As an improvement over Moravec’s corner
detector, Chris Harris and Mike Stephens introduced this
method in 1988.

2) SHI-TOMASI CORNER DETECTION
Shi-Tomasi detection is similar to the Harris corner detector
but with slightly different corner selection criteria. Harris
operator picks the corner based on the score computed
by two eigenvalues. In contrast, the Shi-Tomasi operator
uses eigenvalues only to check whether a pixel is a corner.
However, corner selection is based on a score computed with
a different approach.

F. CIRCUITAL NODE AND CONNECTIVITY DETECTION
The detected line segments are classified as horizontal or
vertical based on the slopes, as shown in (1), and (2)
and the circuit nodes are identified through their points of
intersection [31]. It is observed that the chosen LSD models
detect superfluous horizontal and vertical lines, thus leading
to an excessive number of intersection points. To address
this issue, K-means clustering is employed to group closely
located points. However, a drawback of this technique is
that the number of clusters, or nodes in the circuit, must be
predefined, and doing so in the context of a dense circuit
network is tedious and time-consuming. To overcome this
challenge, Kirchhoff’s law [15]: M = B − N + 1 (where M
is no. of meshes, B is no. of branches, and N is no. of nodes
in a circuit) that defines a relationship between node, branch,
and mesh in an arbitrary circuit design is utilized to obtain the
complete topology state for the given circuit.

slope(m) =

∞, if x1 = x2∣∣∣∣y2 − y1x2 − x1

∣∣∣∣ , otherwise,
(1)

Line =

{
horizontal, if m ≤ 0◦ + ϵ

vertical, if m ≥ 90◦ − ϵ or m = ∞

(2)

where ϵ represents a threshold value set by the user to define
the level of alignment of horizontal and vertical lines and
limited to the range ϵ ∈ {0, 5}. A graph traversal (or graph
search) technique is adopted to assign nodes to a particular
component, given that their distance lies within a boundary

Algorithm 2 : Node and Connectivity Detection
1: function node-connectivity(components,kNodes,textBoxes, corners)
2: for all cmp ∈ components do
3: for all node ∈ kNodes do
4: distNodes← Euclidean distance between cmp and node
5: end for
6: sortedNodes← sort indexes and nodes in distNodes
7: if targe-nodes=N then
8: cmp-nodes← kNodes[sortedNodes[0:N]][values]
9: end if
10: for all textbox ∈ text-boxes do
11: distText← Euclidean distance between cmp and textbox
12: end for
13: end for
14: argminText← index corresponding to the minimum distance
15: component-value← texts[argminText][label]
16: end function

of a predefined threshold. Several node detection methods are
stacked sequentially to populate nodes in a list, programmed
so that no nodes are missed. Eventually, an entire pool of
nodes is condensed down to an appropriate number using K-
means clustering. The working mechanism of this technique
is concisely depicted in Algorithm 2.

G. NETLIST GENERATION
Netlist is a textual representation or description of electrical
components and their values and interconnections in a given
circuit. It is compiled with the general circuit information,
including component types, values, node terminals, and
model definitions of compact devices such as diodes,
transistors, MOSFETs, etc. A structural configuration of a
netlist typically consists of three major components: 1) labels
and values, 2) connectivity information, and 3) hierarchical
relationships between the components. Netlist provides a
clear picture of the overall layout and functionality of the
circuit design, which is ultimately fed into various circuit
simulation and PCB design software such as LTSpice,
PSpice, Altium, KiCad, etc. A converter topology can be
acknowledged using the netlist information as demonstrated
in Algorithm 3.

H. GRAPH GENERATION
Graphs serve in the structural representation of complex data
to understand the interaction between different objects in
the real world, such as social networks, biology networks,
citation networks, traffic networks, molecular structures, etc.
[42]. Mathematically, a graph is defined as a tuple G =
(V ,E), where V represents a set of objects, called vertices or
nodes, and E is a set of connections or linkages, called edges,
which are designed to understand complex systems and
relationships between their entities. In the realm of electrical
circuitry, there is currently no publicly available graphical
data suitable for training architectures like geometric deep
learning and graph neural networks (GNN), which are among
the fastest-growing classes in machine learning [43]. The
framework is designed to transform schematic diagrams of
electrical circuits into comprehensive graphical data.
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Algorithm 3 : Converter Identification
1: function identify-converter(components)
2: converter← ‘‘Unknown Converter’’ ▷ define a variable
3: atfcenterx ← abscissa of transformer bounding-box center
4: switches← {‘‘switch’’,‘‘transistor’’,‘‘mosfet’’} ▷ define a set
5: for all cmp ∈ components do
6: if cmp̸=‘‘transformer’’ & (cmp lies between nodes 2 & 6) then
7: if cmp=‘‘diode’’ then
8: converter← ‘‘Buck converter’’
9: else if cmp ∈ switches then
10: converter←‘‘Boost converter’’
11: else if cmp=‘‘inductor’’ then
12: converter←‘‘Buck-Boost converter’’
13: end if
14: break
15: else
16: if bcmpx<tfcenterx & cmp ∈ switches then
17: swtich-count← no. of cmp at left-side of transformer
18: else if cmpx > tfcenterx & cmp=‘‘diode’’ then
19: diode-count← no. of cmp at right-side of transformer
20: end if
21: end if
22: end for
23: if swtich-count=1 & diode-count=1 then
24: converter← ‘‘Flyback Converter’’
25: else if switch-count=2 & diode-count=4 then
26: converter← ‘‘Half-bridge Converter’’
27: else if switch-count=4 & diode-count=4 then
28: converter← ‘‘Full-bridge Converter’’
29: end if
30: end function

atfcenterx is x-coordinate of transformer’s bounding-box center
bcmpx is x-coordinate of the component’s bounding-box center

I. CIRCUIT SIMULATION AND ANALYSIS
SPICE (Simulation Program with Integrated Circuit Empha-
sis) is a general-purpose program that simulates electrical
circuits. It is robust, powerful, and has become the de facto
standard circuit simulation tool in industries. Spice allows
different types of analysis: 1) DC analysis for time-invariant
sources, 2) Transient analysis for time-variant sources, and
3) AC analysis for small-signal analysis of the circuits. The
spice engine parses the textual netList script and, henceforth,
calculates a circuit’s nodal voltages and branch currents.
In the proposed framework, an open source Python circuit
simulator, i.e., PySpice [44], is used to auto-simulate a hand-
drawn circuit diagram. It runs Ngspice and Xyce circuit
simulator engines on the back-end while providing users with
a Pythonic front-end utility for convenient human-computer
interaction. In contrast to the existing Spice-based simulators,
an automated simulation framework offers a broader range of
flexibility and interactive features for circuit design, such as
an intelligent approach using textual and visual input, digital
twin implementation [45], and hardware-in-the-loop (HiL)
simulation.

IV. RESULTS AND DISCUSSION
To assess the performance of the proposed framework,
different power converter topologies designed for a 250 W
DC power system are taken into account. These topologies
encompass non-isolated converters (such as buck and boost

converters) and isolated converters (such as flyback and full-
bridge DC-DC converters).

Comprehensive experiments are conducted using the latest
object detection models, including YOLOR-P6, YOLOv7,
YOLOv8, and their lightweight variants, aiming to enhance
component detection accuracy and accelerate model infer-
ence speed. As detailed in Table 1, YOLOv8m achieves
the highest detection accuracy of 89.90% mAP50 with test
inferences of 13.37 FPS, while YOLOv8n achieves a slightly
lower accuracy of 78% but at the highest FPS of 18.55.Model
training to 100 epochs (number of iterations) for the YOLOv8
series took, on average, 80% less time than YOLOR and
YOLOv7 series. Moreover, the fully trained model size for
YOLOv8n is the least compared to any other architecture,
while having the lowest number of network layers and
trainable parameters. The lighter model size of YOLOv8
allows for conducive implementation even in lower-power
edge computing devices such as FPGAs and smartphones.
YOLOv8m and YOLOv8n are further trained at 250 epochs,
thus improving the detection accuracy to 96.7% and 89.15%,
respectively.

The proposed framework undergoes testing on a total
of 140 freshly hand-sketched circuit diagrams representing
three major non-isolated converters - buck, boost, and buck-
boost. The net netlist generation accuracy, as depicted
in (3), serves as a comprehensive measure of the combined
accuracy across various stages within the framework. This
encompasses the integration of diverse text interpretation,
component detection, corner detection, and line segment
detection models, culminating in the final netlist generation
performance of the entire framework. As illustrated in
Table 2, YOLOR demonstrates its efficiency by accurately
generating netlists for 71 test images, achieving a high
net accuracy of 50.71%. In contrast, YOLOv7 proves to
be less effective, yielding only 56 correct netlists with a
net accuracy of 40%. Remarkably, YOLOv8 stands out by
successfully producing correct netlists for 134 test images,
thereby contributing to the total netlist generation accuracy.

ηnet = ηtext · ηcomponent · ηcorner · ηlsd · ηnetlist (3)

where, ηnet represents the overall netlist generation effi-
ciency for the entire proposed framework, encompassing all
intermediate stages. ηtext denotes the combined accuracy of
text detection and interpretation, while ηcomponent signifies
the average accuracy in component detection. Furthermore,
ηcorner represents the accuracy of corner detection, ηlsd
pertains to line-segment detection accuracy, and ηnetlist
encapsulates the combined accuracy of node detection,
clustering, and connectivity detection stages.of 95.71%.

The computational performance of each of the stages in
the proposed framework has been thoroughly examined and
is presented in both Table 3 and Fig. 4. In Table 3, the
computational time for each stage in the proposed framework
is presented, considering different typologies. It is observed
that each stage takes nearly the same amount of time to
compute, regardless of the converter types. In particular, the
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FIGURE 2. Automated graphical representation along with their respective adjacency matrices obtained for a hand-drawn schematic
diagram for a (a) buck converter, (b) boost converter, and (c) buck-boost converter.

TABLE 1. State-of-the-art models trained for 100 epochs (inter-model comparison study) to detect electronic components.

TABLE 2. Comparative analysis of combined net accuracy in netlist
generation using various component detection models.

circuit simulation stage emerges as the most computationally
demanding, followed by text recognition. In contrast, corner
detection and netlist generation stages impose a relatively
minor computational burden.

An additional ablation study examines both the corner
detection and line segment detection stages, evaluating the
effectiveness of different combinations. Table 4 highlights
that pairing Shi-Tomasi corner detection with MLSD line
segment detection results in the highest netlist generation
accuracy of 95.71%. In contrast, the Harris-HT pairing
demonstrates the lowest accuracy.

When different component detectionmodels are examined,
almost all stages exhibit similar computational speeds,
with the exception of the component detection stage.
As depicted in Fig. 4, YOLOv7 requires an average of
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TABLE 3. Time taken by each process (in seconds) with YOLOv8-based component detection model.

FIGURE 3. Hand-drawn schematic diagram of three level neutral point
clamped (NPC) inverter, showing components and nodes identified, and
the netlist graph constructed using proposed framework.

5.9615 seconds to detect components, followed by YOLOR
with 4.0145 seconds, while YOLOv8 is faster with an average
of 0.3146 seconds. In a comparative analysis, the use of
YOLOv8 as component detection model results in an average
overall computational process time (ranging from component
detection to automated simulation) of 8.87 seconds. This is

TABLE 4. An overall netlist generation accuracy under various
combination of corner detection and line segment detection techniques.

FIGURE 4. Computational Speed for the individual stages of the
framework with different detection models.

followed by YOLOR with an average of 12.97 seconds, and
YOLOv7 with 14.93 seconds.

A notable contribution of this study lies in the ability of the
proposed framework to generate the network or graphical rep-
resentation of hand-drawn schematic diagrams. Fig. 2 shows
the graphs generated for the hand-drawn circuit diagrams
of (a) the buck converter, (b) the boost converter (with the
transistor featuring an anti-parallel body diode), and (c) the
buck-boost converter. The innovative approach presented in
this work involves generating graphs for various electrical
circuit diagrams through hand-drawn sketches, offering the
potential to create datasets for machine learning applications.
The framework’s efficacy in auto netlist generation and
graph representation was also successfully evaluated on a
hand-drawn schematic diagram of a complex three-level
Neural Point Clamped (NPC) inverter [46], depicted in Fig. 3.
Beyond the field of electrical circuits, this methodology can
be potentially extended to other domains such as organic
chemistry, social science, and medical science, enabling the
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FIGURE 5. A hand-drawn schematic of a non-isolated buck converter with components, textual information, and nodes identified (left), and
automated simulation results obtained under CCM mode operation (middle), and DCM mode operation (right).

FIGURE 6. A hand-drawn schematic of a non-isolated boost converter with components, textual information, and nodes identified (left), and
automated simulation results obtained under CCM mode operation (middle), and DCM mode operation (right).

creation of graphical datasets through roughly drawn hand
sketches. The comprehensive set of netlists and graphical data
derived from the complete proposed framework pipeline for
140 test images is available online [47]. Some samples of
the hand-drawn circuit diagrams along with their netlist and
graphical information are presented in Appendix B.
An automated simulation is performed for all these

converters in both continuous-conduction-mode (CCM) and
discontinuous-conduction-mode (DCM) operation. To val-
idate the results obtained from an automated simulation,
the topologies with identical configurations and parame-
ters are simulated in LTSpice, and the resulting voltage
and current waveforms are cross-examined as depicted
in figures 5-9. Open-loop simulations for both automated
and LTSpice-based framework are performed with 50 kHz
switching frequency while fixing the duty cycle to 50%
and maintaining consistent PWM rise/fall signal for all
the considered power converters. The converter sizing
and the component parameters are borrowed from [30].
The inductances and capacitances of the converters are
optimized to maintain the ripple of the peak current of the
inductor within the allowed range of 30% and the ripple
of the peak load voltage within the range of 2%. Detailed
information regarding these adjustments are shown in
Table 5.
Figures 5, 6, 7, and 8 illustrate the hand-drawn schematics

of non-isolated converters i.e., buck, boost, and isolated con-
verters i.e., flyback, and full-bridge converter respectively,
accompanied by the predicted bounding boxes for each of
the components and their identified corresponding parametric
information. The complete netlists obtained for each of the
test converters are presented in Appendix A, i.e., Tables 6,

TABLE 5. Converters design parameters.

7, 8, and 9. The voltages’ and currents’ waveforms obtained
through PySpice-based auto-simulation for the CCM and
DCM modes of operation are displayed alongside the hand-
drawn topologies. In order to compare the performance of
the auto-simulation framework, an example scenario of an
isolated DC-DC full-bridge converter (whose schematic is
depicted in Fig. 9), which is manually built on LTSpice by
replicating the component and simulation parameters from
the handwritten schematic. Comparison of the simulation
results obtained from both the automated and LTSpice
methods reveals a nearly perfect match in voltage and current
waveforms, including the corresponding ripple effects. This
alignment is evident when examining the zoomed sections
as highlighted within the respective figures. This near 100%
match arises because both platforms utilize the SPICE
engine in the background to simulate a provided circuit,
whether it is created manually through schematic design
in LTSpice or generated automatically through hand-drawn
schematics with the proposed framework. In retrospect, it is
important to highlight that despite distinct circuit design
approaches, the shared reliance on the SPICE engine ensures
consistent simulation results. However, minor discrepancies
in simulation outcomes, especially in voltage and current
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FIGURE 7. A hand-drawn schematic of a isolated flyback converter with components, textual information, and nodes identified (left), and automated
simulation results obtained under CCM mode operation (middle), and DCM mode operation (right).

FIGURE 8. A hand-drawn schematic of an isolated DC-DC full-bridge converter with components, textual information, and nodes identified (left), and
automated simulation results obtained under CCM mode operation (middle), and DCM mode operation (right).

FIGURE 9. A schematic diagram of an isolated DC-DC full-bridge converter built on LTSpice with exactly similar parameters as in Fig. 8 (left), and
simulation results obtained under CCM mode opertion (middle), and DCM mode operation (right).

ripple waveforms, can be ascribed to variances in simulation
parameters, including sampling run-time, and the influence
of internal parasitic elements within the circuits.

The proposed framework, the first of its kind in the
field of electrical power conversion, combines various image
processing and machine learning techniques, enhancing them
through hyperparameter tuning. It applies refined methods
in corner detection, MLSD, and YOLOv8 to better detect
electrical components, node identification, and connectivity
analysis. This approach marks a pioneering effort to stream-
line electrical circuit design and analysis.

V. CONCLUSION AND FUTURE WORK
This paper introduces a comprehensive computer vision-
based framework that utilizes deep learning techniques to
identify hand-drawn power electronic circuits. The frame-
work enables the automatic generation of circuit netlists and
facilitates instant simulation. The approach combines object
detection models, OCR, and various image processing and
machine learning techniques to identify components, inter-
pret textual information, and trace connections. It employs

classical techniques, such as Harris, Shi-Tomasi corner detec-
tion, Hough Transform, etc., to machine learning approaches
such as MLSD to detect node and wire tracing through-
out the circuit. Subsequently, K-means clustering groups
neighboring nodes, while graph traversal method associates
the identified text with respective bounding boxes. The
framework is tested on different converters and shows excel-
lent agreement with LTSpice results. The method achieves
a high accuracy of 96.7% using YOLOv8m and 89.15%
using YOLOv8n for component detection. Furthermore, its
performance is assessed using 140 recently drawn hand-
sketched schematics, achieving an overall netlist generation
accuracy of approximately 95.71% with the YOLOv8-based
component detection model. With all these benefits, the
proposed framework can be used as an educational tool
or as a quick-simulation application to learn or evaluate
electrical circuits on computers or mobile devices. Further
enhancement of the features of this framework can include
automating the control circuit design, scaling for PCB board
digitization and simulation, and integrating into HuggingFace
Spaces using Gradio for online demonstrations.
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TABLE 6. NetList obtained for buck converter.

TABLE 7. NetList obtained for boost converter.

TABLE 8. NetList obtained for flyback converter.

TABLE 9. NetList obtained for full-bridge converter.

A critical challenge in hand-drawn circuit recognition is
the risk of missing components or nodes, which can result
in the failure of the entire automated simulation process.
Although the proposed tool for converting hand-drawn
schematics to netlists and simulations offers significant
advantages, it comes with a few limitations that need
to be addressed through future work. The accuracy of
component recognition and schematic interpretation heavily

TABLE 10. NetList for hand-drawn circuit in Fig. 10.

depends on the quality and consistency of the hand-drawn
sketches, potentially leading to errors in complex or poorly
drawn schematics. Integration with existing EDA tools might
encounter compatibility issues, and professionals accustomed
to traditional EDA software may be resistant to adopting new
add-on features andworkflows, especially if this tool does not
seamlessly integrate with their established processes.

APPENDIX A
NETLIST OF THE CONVERTERS CONSIDERED FOR
AUTO-SIMULATION
See Tables 6–9.

APPENDIX B
NETLIST AND GRAPH INFORMATION OF SOME
ADDITIONAL HAND-DRAWN CIRCUIT DIAGRAMS
See Figs. 10–12 and Tables 10–12.

FIGURE 10. A hand-drawn schematic diagram of a non-isolated buck
converter.

Graph Information of circuit drawn in Fig. 10
Nodes: V1, I, Gnd, D1, N1, N2, C1, L1, R1, O, S1
Edges: (D1, N1), (D1, Gnd), (N1, S1), (N1, L1), (Gnd, V1),
(Gnd, R1), (Gnd, C1), (V1, I), (I, S1), (R1, O), (O, N2), (L1,
N2), (N2, C1)
Number of nodes: 11
Number of edges: 13
Average degree: 2.3333
Graph Information of circuit drawn in Fig. 11
Nodes: V1, I, Gnd, D1, N1, N2, C1, L1, R1, O, S1
Edges: (V1, I), (V1, Gnd), (I, L1), (Gnd, C1), (Gnd, R1),
(Gnd, S1), (D1, N1), (D1, N2), (N1, L1), (N1, S1), (N2, C1),
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FIGURE 11. A hand-drawn schematic diagram of a non-isolated boost
converter.

TABLE 11. NetList for hand-drawn circuit in Fig. 11.

FIGURE 12. A hand-drawn schematic diagram of a non-isolated
buck-boost converter.

TABLE 12. NetList for hand-drawn circuit in Fig. 12.

(N2, R0), (R1, O), (O, R0)
Number of nodes: 11
Number of edges: 13
Average degree: 2.3333
Graph Information of circuit drawn in Fig. 12
Nodes: V1, I, Gnd, D1, N1, N2, C1, L1, R1, O, S1

Edges: (V1, I), (V1, Gnd), (N1, L1), (Gnd, C1), (Gnd, R1),
(I, S1), (D1, N1), (D1, N2), (Gnd, L1), (N1, S1), (N2, C1),
(R1, O), (O, N2)
Number of nodes: 11
Number of edges: 13
Average degree: 2.3333
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