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Abstract—This work introduces a machine learning approach
for developing Digital Twins (DTs) for DC-DC converters,
focusing on in-situ implementation in real-world operational
conditions. A system based on a boost converter has been
developed in MATLAB Simulink. To mirror real-world scenarios,
commercial datasheets along with a range of input parameters,
health degradation elements, temperature influence, and random
noises have been considered. The study employs Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN), and
Recurrent Neural Network (RNN) for predicting critical circuit
responses of the boost converter, including inductor current,
output voltage, and efficiency. Investigations show that MLP
performs relatively poorly in the presence of noise. The CNN
and RNN outperform the MLP under various noise levels, with
the RNN exhibiting the best performance. This work advances
DTs technology in power electronics, aiming to improve converter
system optimization and enable predictive maintenance.

Index Terms—Health Degradation, Temperature Influence,
Noise Resilience, Multi-Layer Perceptron (MLP), Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN),
Digital Twins (DTs), Predictive Maintenance

I. INTRODUCTION

Digital Twin (DT) technology, emerging in the early 2000s,
has become a cornerstone of Industry 4.0, significantly en-
hancing production efficiency, particularly in conjunction with
the Internet of Things (IoT) [1]. By creating virtual replicas
of physical entities, DTs enable real-time monitoring and
optimization, facilitating predictive maintenance and reducing
downtime. This integration is pivotal in modern industrial
applications, where the synchronization of physical and digital
realms can lead to significant improvements in operational
efficiency and resiliency.

In power electronics, DTs are instrumental in merging hard-
ware with computational models, offering a viable alternative
to traditional simulation techniques [2]. Power converters that
are crucial in energy management systems benefit immensely
from DTs by being provided insights into their performance
and health status. DTs that are lighter in memory use can
significantly assist in monitoring and improving the health
and performance of power converters by enabling in-situ
implementation. This aspect is critical for converters, where
real-time and rapid data processing is essential for maintaining
stability and efficiency.
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Modeling is the first step involved in the development
of DTs. Conventional converter modeling methods, including
circuit theory and state-space averaging, face challenges in
providing a quick response while accurately simulating real-
world scenarios [3]. However, for dynamic analysis of the
circuit’s performance as well as reliability, the evaluation
must happen quickly. Hence, this work proposes a data-
driven approach to develop a model for DTs for DC-DC
converters, taking a system based on a boost converter in
MATLAB Simulink as an example. This paper incorporates
commercial device specifications, switching losses, compo-
nent health degradation, temperature influence, and external
noise, to closely emulate practical operational conditions.
By integrating these factors, the system provides a realistic
representation of the converter’s performance, enhancing the
reliability and robustness of the DTs. This approach ensures
that the DTs for the boost converter can deliver valuable
insights for system optimization and predictive maintenance.
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Fig. 1. Boost converter modeling flowchart.

As demonstrated in [2], the Multi-Layer Perceptron (MLP)
has been effectively utilized for training models of power
converters. This work also employs Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) models
for DTs in performance prediction, with a specific focus
on noisy environments. Both CNN and RNN architectures
offer unique advantages. This diversified approach ensures
that the model can adapt to different types of input data and
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operational conditions, providing a comprehensive solution for
performance prediction.

This approach not only advances DTs in power electronics
but also enhances system optimization and maintenance capa-
bilities. By leveraging machine learning techniques, the model
can continuously learn and adapt, improving its accuracy over
time. This dynamic adaptability is essential for maintaining
optimal performance in varying conditions, making it a valu-
able tool for predictive maintenance. Methodology and key
contributions (highlighted in blue) of the study are outlined in
Fig. 1, with subsequent sections discussing Simulink system
construction (II), data-driven approaches comparison (III) and
a conclusion with directions for future work (IV).

II. STRUCTURE AND DESIGN DETAILS OF THE BOOST
CONVERTER SIMULINK SYSTEM

In this study, a boost converter’s MATLAB Simulink model,
detailed in Fig. 2, is considered, utilizing specifications of
commercially available components to ensure practicality. The
selection of these components is crucial as they directly impact
the circuit responses of the converter.

The components chosen for the simulation include:

o Diode: CLHO5(T6L.NKOD,Q) from Toshiba Semicon-

ductor and Storage.
— Specifications: Voltage rating: 200 V, Current rating:
5 A, Forward voltage drop: 0.85 V, Peak reverse
current: 107° A, Reverse recovery time: 3.5 x 1078
s [4].
e MOSFET: RCDO50N20TL from ROHM.

— Specifications: Voltage rating: 200 V, Current rating:
5 A, Drain-source on resistance: 0.47 €2, Rise time:
1.5 x 1078 s, Fall time: 1.1 x 1078 s [5].
o Inductor: C-60U from Triad Magnetics.

— Specifications: Current rating: 22.5 A, Inductance:
0.005 H, DC Resistance: 0.06 Q2 [6].

o Capacitor: ALS70A822QC250-ND from KEMET.

— Specifications: Voltage rating: 250 V, Capacitance:
0.0082 F, Equivalent Series Resistance: 0.041 € [7].
The specifications of these components impact switching
loss, efficiency, voltage gain, and other circuit responses.
Additionally, the Simulink system integrates switching losses,
health degradation, temperature influence, and noise, simulat-
ing real-world conditions more accurately. By incorporating
these factors, the simulation provides a comprehensive view
of the boost converter’s performance, accounting for practical
challenges that may arise during actual operation.

A. Integration of Noise

The simulation’s robustness is enhanced by incorporating
stochastic elements, which are crucial for addressing uncer-
tainties arising from manufacturing variances and environmen-
tal factors. These factors include electromagnetic interference
and thermal fluctuations, both of which can significantly
impact the performance of power converters in real-world
applications. To accurately reflect these conditions, the system,

as depicted in Fig. 2 (‘Controlled Voltage Source’ block),
includes a configurable random white noise source. This noise
source is designed to mimic various noise levels, thereby
further aligning the simulation with practical scenarios.

The noise level in the simulation is represented by the
signal-to-noise ratio (SNR) parameter. SNR is a critical metric
in signal processing, quantifying the ratio of the power of
a signal to the power of background noise. For Gaussian-
distributed white noise, which is commonly used in simula-
tions to represent random noise, the mean value is zero. In
this context, the standard deviation of the noise is equal to
the noise root mean square (RMS) value. This RMS value is
instrumental in calculating the SNR, providing a standardized
measure of noise level in the system [8].

B. Integration of Switching Loss

An accurate system of boost converters necessitates the
integration of switching losses, especially when the system is
based on commercial device datasheets. MATLAB Simulink’s
standard system typically omits these losses in MOSFETs
and diodes, thus requiring a tailored system for incorporating
them. Switching loss equations, sourced from Toshiba [9] and
ROHM [10] for the specific diode and MOSFET used, facil-
itate the calculation of energy dissipation during switching.
The diode’s switching loss is represented as:

1
PswmiiTrXterVRxfsw (1)

where i,, is peak reverse current, t,,. is reverse recovery
time, Vg is steady-state reverse voltage and fs,, is switching
frequency. Similarly, the MOSFET’s switching loss is given
by:

1
P@w = §VDS X ID X (tr +tf) X fs’w (2)

where Vpg denotes drain-to-source voltage in off-state, Ip
is drain current in on-state, ¢, is rise time, t; is fall time
and f, is switching frequency. (1) and (2) are integrated
into the Simulink system via ‘MATLAB Function’ blocks,
enhancing the simulation’s precision and reflecting real-world
operational conditions more accurately, as illustrated in Fig. 2
(‘Efficiency’ subsystem). This approach significantly enriches
the simulation’s fidelity, offering insights into the converter’s
efficiency and thermal performance, which are key in the
development of high-fidelity DTs for power electronics.

C. Integration of Health Degradation

The reliability of power conversion systems is closely linked
to the health status of individual components, which play a
pivotal role in ensuring system longevity and performance
stability. Among these components, capacitors, and MOSFETs
are particularly critical due to their susceptibility to early
degradation. The failure of these two components can lead to
significant performance issues and system downtime, which
underscores the importance of monitoring their health status
closely [11].

Given the highest failure rates of these two components in
static power converters, it is essential to utilize key degradation
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Fig. 2. MATLAB Simulink system of a boost converter.

indicators such as capacitance (C), equivalent series resis-
tance (ESR), and drain-source on resistance (Rgs,n) to assess
health degradation effectively. The degradation fault limits
for electrolytic capacitors and MOSFETs are summarized in
Table I [12]. These limits provide a benchmark for determining
when a component has degraded to a point that it may no
longer function effectively within the system. In the MATLAB
Simulink system, the parameter ‘useful health’ is employed to
represent the health level of the devices.

At a given temperature (say, room temperature), 100%
‘useful health’ corresponds to the nominal value of the
health indicator, indicating that the component is in optimal
condition. Conversely, 0% ‘useful health’ corresponds to a
‘close-to-a-fault’ value, signifying that the component has
reached a critical level of degradation and may fail in the
near future or may not meet certain performance criteria. By
incorporating these degradation indicators and fault limits into
the simulation, the model can more accurately reflect the real-
world performance and longevity of the power converter.

TABLE I
DEGRADATION FAULT LIMITS (BASED ON AMBIENT TEMPERATURE
MEASUREMENTS)
Degradation indicator Limit
ESR Increase to twice the nominal value
C Decrease to 80% of the nominal value
Rason Increase to 125% of the nominal value

D. Integration of Temperature Influence

The performance of components in the boost converter
is significantly influenced by temperature variations. For the
diode, the forward voltage drop (V) serves as a temperature

influence indicator. The relationship between temperature and
V¢ can be referenced from the datasheet [4]. For the MOS-
FET, the drain-source on resistance (Rgs0n) is selected as
the temperature influence indicator, with its relationship to
temperature detailed in the datasheet [5].

For capacitors, both equivalent series resistance (ESR)
and capacitance (C) are chosen as indicators of temperature
influence. The relationship between temperature and these
indicators can be obtained from [13] and through reasonable
assumptions. For inductors, the direct current resistance (DCR)
is the indicator, with changes due to temperature represented
by the temperature coefficient of copper.

All relevant information is summarized in Table II.

TABLE I
TEMPERATURE INFLUENCE ON INDICATORS

Indicator Change per °C'
Vi Decrease by 0.24%
Rason Increase by 0.37857%
ESR Decrease by 1%
C Increase by 0.1%
DCR Increase by 0.393%

III. CONVERTER PERFORMANCE METRICS MODELING
WITH DATA-DRIVEN APPROACHES

This study focuses on modeling the dynamic behavior of
a boost converter using data-driven methodologies. The aim
is to simulate responses such as output voltage, inductor
current, and efficiency, based on various converter parameters
including input voltage, frequency, duty cycle, load resistance,
initial output voltage, temperature, and useful health. The
specific ranges for these parameters are detailed in Table III.
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Additionally, the system incorporates varying levels of noise,
aiming to simulate realistic operating conditions.

TABLE III
RANGE OF PARAMETERS FOR BOOST CONVERTER MODELING
Parameter Range
Vin (V) 15 - 45
Duty cycle (%) 40 — 60
Frequency (kHz) 10 — 30
Load Resistance (€2) | 60 — 100
Initial Vout (V) 0-10
Temperature (°C') -20 - 80
Useful health (%) 0 - 100

A. Data Collection and Processing

High-quality simulation data, crucial for model accuracy,
was gathered from MATLAB simulations. This data spanned
key parameters (input voltage, duty cycle, switching frequency,
load resistance, initial output voltage, temperature, and useful
health) and circuit responses (temporal responses of the in-
ductor current, output voltage, and efficiency). The original
high-resolution dataset of 800,000 data points for each circuit
response was recorded (resolution of 1 us over a span of 0.8
s). Due to the risk of overfitting with high-resolution data,
a thorough pre-processing regimen involving downsampling
and normalization was carried out to facilitate effective neural
network training [2].

B. Brief Introduction to Various Data Driven Techniques
Adopted

For the data obtained from the simulations, CNN and RNN
were selected due to their unique characteristics and strengths
compared to MLP, with the potential to improve upon the
results. The MLP is a class of feedforward artificial neural
networks that consists of multiple layers of nodes, with each
layer fully connected to the next one. It is particularly effective
for general-purpose pattern recognition problems and has been
extensively used due to its simplicity and effectiveness in
approximating continuous functions [14].

The CNN is designed to automatically and adaptively learn
spatial hierarchies of features from input data. Additionally,
CNN has shown robustness in environments with noise vari-
ability, as their deep architectures can filter out noise more
effectively than MLP, enhancing prediction accuracy under
noisy conditions [15].

The standard RNN (SimpleRNN) architecture is employed
for training, characterized by its straightforward recurrence
mechanism, distinguishing it from other RNN extensions.
RNN are particularly well-suited for sequential data due to
their connections that form directed cycles, allowing them
to maintain a memory of previous inputs. This makes RNN
particularly powerful for time-series prediction and data with
temporal dependencies [16]. Given the dynamic nature of the
boost converter’s operation, RNN provides a robust framework
for capturing temporal correlations. Compared to CNN, RNN
are not only effective in environments with noise but are also
more appropriate for tasks involving sequential data, such

as predicting the behavior of the boost converter over time.
This ability to handle time-dependent data makes RNN highly
suitable for the given application.

Figure 3 presents the architectures of MLP, CNN, and RNN,
showcasing their structural differences in this study.

Hidden Layer1, relu |Hidden Layer2|
(128 neurons) (64 neurons)

MLP:

Conv Layerl
Flatten
CNN: (ConviD fy rel gi“;‘:ul;;ﬁ;
128 filters)
RNN Layerl " RNN Layer2 | .
RNN: (SimpleRNN relu, | (SimpleRNN
128 units) 64 units)

Fig. 3. Structures of MLP, CNN and RNN.

C. Comparison of MLP, CNN, and RNN Under Variable Noise
Conditions

Initially, the performance of the neural networks was eval-
uated in the absence of noise to establish a baseline. Figure 4
presents the training and validation results for the Multi-
Layer Perceptron (MLP). Figure 5 shows the results for the
Convolutional Neural Network (CNN). Figure 6 illustrates the
results for the Recurrent Neural Network (RNN). Part (a)
of these figures illustrates the progression of model training,
highlighting convergence in minimizing the cost function.
Additionally, the training duration is displayed, indicating that
the training times for all three models are comparable. Part (b)
shows performance on regression plots. Parts (c), (d), and (e)
display the validation results with specific parameter settings
— [Vin = 35V; Duty cycle = 40%; Frequency = 30kH z,
Load resistance = 73.3$; Initial Vout = 10V'; Temperature =
80°C; Useful health = 100%], depicting the simulated and
predicted inductor current, output voltage, and efficiency. The
inductor current and output voltage are shown in waveforms.
The mean of the final 100 efficiency data points is used to
determine the simulated and predicted efficiency.

Extensive simulations were then conducted to evaluate the
performance of MLP, CNN, and RNN under varying levels of
noise. The results, presented in Table IV, highlight the distinct
features and advantages of each neural network model.

TABLE IV
R? VALUES FOR VARIOUS MODELS UNDER DIFFERENT NOISE LEVELS
Noise level/SNR (dB) MLP CNN RNN
oo (without noise) 0.97926 | 0.98059 | 0.98531
40 0.97940 | 0.98078 | 0.98643
35 0.97787 | 0.98236 | 0.98571
30 0.97883 | 0.98289 | 0.98402
25 0.97724 | 0.98112 | 0.98640
20 0.97564 | 0.98195 | 0.98482

The results demonstrate that while MLP, CNN, and RNN
have similar training duration and high performance, the
RNN outperforms both CNN and MLP. The MLP, known
for its simplicity and effectiveness in general-purpose pattern
recognition, showed a decline in performance with increased
noise. In contrast, the CNN maintained stable R? values,
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Fig. 4. Training and validation results of MLP for data without noise: (a)
Model loss over epochs and training duration (b) R? value (c) Simulated
and predicted inductor current (d) Simulated and predicted output voltage (e)
Simulated and predicted efficiency.

demonstrating its enhanced noise immunity and suitability for
modeling power converters in noisy environments. The RNN
slightly outperformed the CNN across various noise levels,
exhibiting higher R? values and stable performance in noisy
conditions. This can be attributed to the RNN’s ability to
capture temporal correlations and maintain the memory of
previous inputs, making it particularly effective for time-series
prediction and data with temporal dependencies.

Additionally, variants and extensions of RNN such as Gated
Recurrent Units (GRU), Long Short-Term Memory (LSTM),
and Bidirectional Long Short-Term Memory (BiLSTM) were
also explored. Hybrid neural network architectures like CNN-
LSTM and CNN-BiLSTM were tested as well. Despite the
increased complexity of these models, their performance did
not surpass that of the standard CNN and RNN models.
Consequently, these more complex models were not included
in the final results presented in this study.

D. Efficiency Prediction with RNN

Based on previous results, the RNN demonstrated superior
performance in predicting converter efficiency. A trained RNN
model for data without noise is utilized to predict efficiency
under various conditions. For efficiency analysis, a set of fixed
inputs is assumed: [Duty cycle = 50%; Frequency = 20kH z;

Output
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Fig. 5. Training and validation results of CNN for data without noise: (a)
Model loss over epochs and training duration (b) R? value (c) Simulated
and predicted inductor current (d) Simulated and predicted output voltage (e)
Simulated and predicted efficiency.

Initial Vout = 5V; Temperature = 80°C'; Useful health =
100%]. The Load resistance is varied in a range for each Vin.

Figure 7 presents the simulated and predicted efficiency
against the load power at different Vin values. For each Vin,
the varying effective load resistance results in differing load
power and correspondingly, efficiency. The results indicate that
the efficiency prediction accuracy is satisfactory, demonstrat-
ing that the RNN performs well under these conditions.

IV. CONCLUSION AND FUTURE WORK

This work introduces a data-driven approach for devel-
oping digital twins (DTs) for power converters using MAT-
LAB Simulink simulations. Critical factors such as switching
losses, component health degradation, temperature influence,
and noise interference are incorporated. The study employs
CNN, RNN, and MLP models to predict critical responses,
highlighting the performance of each model under various
noise conditions. RNN perform best in handling temporal
dependencies and maintaining stability in noisy environments,
while CNN provides enhanced noise immunity. MLP, although
effective for general-purpose pattern recognition, showed a
decline in performance with increased noise.

These advancements can contribute to the development of
DTs in power electronics, enabling improved system optimiza-
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Fig. 6. Training and validation results of RNN for data without noise: (a)
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Fig. 7. Efficiency against Load Power at different input voltages.

tion and predictive maintenance. The proposed approaches are
expected to enhance in-situ DTs (by making them lighter in
memory use), automated design, and software-defined net-
works, providing efficient modeling solutions. The compatibil-
ity of these models with GPUs or FPGAs aligns with advance-
ments in edge computing for power converters, presenting
promising avenues for future research and implementation.
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