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Abstract—This work introduces a machine learning approach
for developing Digital Twins (DTs) for DC-DC converters,
focusing on in-situ implementation in real-world operational
conditions. A system based on a boost converter has been
developed in MATLAB Simulink. To mirror real-world scenarios,
commercial datasheets along with a range of input parameters,
health degradation elements, temperature influence, and random
noises have been considered. The study employs Multi-Layer
Perceptron (MLP), Convolutional Neural Network (CNN), and
Recurrent Neural Network (RNN) for predicting critical circuit
responses of the boost converter, including inductor current,
output voltage, and efficiency. Investigations show that MLP
performs relatively poorly in the presence of noise. The CNN
and RNN outperform the MLP under various noise levels, with
the RNN exhibiting the best performance. This work advances
DTs technology in power electronics, aiming to improve converter
system optimization and enable predictive maintenance.

Index Terms—Health Degradation, Temperature Influence,
Noise Resilience, Multi-Layer Perceptron (MLP), Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN),
Digital Twins (DTs), Predictive Maintenance

I. INTRODUCTION

Digital Twin (DT) technology, emerging in the early 2000s,

has become a cornerstone of Industry 4.0, significantly en-

hancing production efficiency, particularly in conjunction with

the Internet of Things (IoT) [1]. By creating virtual replicas

of physical entities, DTs enable real-time monitoring and

optimization, facilitating predictive maintenance and reducing

downtime. This integration is pivotal in modern industrial

applications, where the synchronization of physical and digital

realms can lead to significant improvements in operational

efficiency and resiliency.

In power electronics, DTs are instrumental in merging hard-

ware with computational models, offering a viable alternative

to traditional simulation techniques [2]. Power converters that

are crucial in energy management systems benefit immensely

from DTs by being provided insights into their performance

and health status. DTs that are lighter in memory use can

significantly assist in monitoring and improving the health

and performance of power converters by enabling in-situ

implementation. This aspect is critical for converters, where

real-time and rapid data processing is essential for maintaining

stability and efficiency.

Modeling is the first step involved in the development

of DTs. Conventional converter modeling methods, including

circuit theory and state-space averaging, face challenges in

providing a quick response while accurately simulating real-

world scenarios [3]. However, for dynamic analysis of the

circuit’s performance as well as reliability, the evaluation

must happen quickly. Hence, this work proposes a data-

driven approach to develop a model for DTs for DC-DC

converters, taking a system based on a boost converter in

MATLAB Simulink as an example. This paper incorporates

commercial device specifications, switching losses, compo-

nent health degradation, temperature influence, and external

noise, to closely emulate practical operational conditions.

By integrating these factors, the system provides a realistic

representation of the converter’s performance, enhancing the

reliability and robustness of the DTs. This approach ensures

that the DTs for the boost converter can deliver valuable

insights for system optimization and predictive maintenance.

Fig. 1. Boost converter modeling flowchart.

As demonstrated in [2], the Multi-Layer Perceptron (MLP)

has been effectively utilized for training models of power

converters. This work also employs Convolutional Neural

Network (CNN) and Recurrent Neural Network (RNN) models

for DTs in performance prediction, with a specific focus

on noisy environments. Both CNN and RNN architectures

offer unique advantages. This diversified approach ensures

that the model can adapt to different types of input data and
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operational conditions, providing a comprehensive solution for

performance prediction.

This approach not only advances DTs in power electronics

but also enhances system optimization and maintenance capa-

bilities. By leveraging machine learning techniques, the model

can continuously learn and adapt, improving its accuracy over

time. This dynamic adaptability is essential for maintaining

optimal performance in varying conditions, making it a valu-

able tool for predictive maintenance. Methodology and key

contributions (highlighted in blue) of the study are outlined in

Fig. 1, with subsequent sections discussing Simulink system

construction (II), data-driven approaches comparison (III) and

a conclusion with directions for future work (IV).

II. STRUCTURE AND DESIGN DETAILS OF THE BOOST

CONVERTER SIMULINK SYSTEM

In this study, a boost converter’s MATLAB Simulink model,

detailed in Fig. 2, is considered, utilizing specifications of

commercially available components to ensure practicality. The

selection of these components is crucial as they directly impact

the circuit responses of the converter.

The components chosen for the simulation include:

• Diode: CLH05(T6L,NKOD,Q) from Toshiba Semicon-

ductor and Storage.

– Specifications: Voltage rating: 200 V, Current rating:

5 A, Forward voltage drop: 0.85 V, Peak reverse

current: 10−5 A, Reverse recovery time: 3.5× 10−8

s [4].

• MOSFET: RCD050N20TL from ROHM.

– Specifications: Voltage rating: 200 V, Current rating:

5 A, Drain-source on resistance: 0.47 Ω, Rise time:

1.5× 10−8 s, Fall time: 1.1× 10−8 s [5].

• Inductor: C-60U from Triad Magnetics.

– Specifications: Current rating: 22.5 A, Inductance:

0.005 H, DC Resistance: 0.06 Ω [6].

• Capacitor: ALS70A822QC250-ND from KEMET.

– Specifications: Voltage rating: 250 V, Capacitance:

0.0082 F, Equivalent Series Resistance: 0.041 Ω [7].

The specifications of these components impact switching

loss, efficiency, voltage gain, and other circuit responses.

Additionally, the Simulink system integrates switching losses,

health degradation, temperature influence, and noise, simulat-

ing real-world conditions more accurately. By incorporating

these factors, the simulation provides a comprehensive view

of the boost converter’s performance, accounting for practical

challenges that may arise during actual operation.

A. Integration of Noise

The simulation’s robustness is enhanced by incorporating

stochastic elements, which are crucial for addressing uncer-

tainties arising from manufacturing variances and environmen-

tal factors. These factors include electromagnetic interference

and thermal fluctuations, both of which can significantly

impact the performance of power converters in real-world

applications. To accurately reflect these conditions, the system,

as depicted in Fig. 2 (‘Controlled Voltage Source’ block),

includes a configurable random white noise source. This noise

source is designed to mimic various noise levels, thereby

further aligning the simulation with practical scenarios.

The noise level in the simulation is represented by the

signal-to-noise ratio (SNR) parameter. SNR is a critical metric

in signal processing, quantifying the ratio of the power of

a signal to the power of background noise. For Gaussian-

distributed white noise, which is commonly used in simula-

tions to represent random noise, the mean value is zero. In

this context, the standard deviation of the noise is equal to

the noise root mean square (RMS) value. This RMS value is

instrumental in calculating the SNR, providing a standardized

measure of noise level in the system [8].

B. Integration of Switching Loss

An accurate system of boost converters necessitates the

integration of switching losses, especially when the system is

based on commercial device datasheets. MATLAB Simulink’s

standard system typically omits these losses in MOSFETs

and diodes, thus requiring a tailored system for incorporating

them. Switching loss equations, sourced from Toshiba [9] and

ROHM [10] for the specific diode and MOSFET used, facil-

itate the calculation of energy dissipation during switching.

The diode’s switching loss is represented as:

Psw ≈ 1

2
irr × trr × VR × fsw (1)

where irr is peak reverse current, trr is reverse recovery

time, VR is steady-state reverse voltage and fsw is switching

frequency. Similarly, the MOSFET’s switching loss is given

by:

Psw =
1

2
VDS × ID × (tr + tf )× fsw (2)

where VDS denotes drain-to-source voltage in off-state, ID
is drain current in on-state, tr is rise time, tf is fall time

and fsw is switching frequency. (1) and (2) are integrated

into the Simulink system via ‘MATLAB Function’ blocks,

enhancing the simulation’s precision and reflecting real-world

operational conditions more accurately, as illustrated in Fig. 2

(‘Efficiency’ subsystem). This approach significantly enriches

the simulation’s fidelity, offering insights into the converter’s

efficiency and thermal performance, which are key in the

development of high-fidelity DTs for power electronics.

C. Integration of Health Degradation

The reliability of power conversion systems is closely linked

to the health status of individual components, which play a

pivotal role in ensuring system longevity and performance

stability. Among these components, capacitors, and MOSFETs

are particularly critical due to their susceptibility to early

degradation. The failure of these two components can lead to

significant performance issues and system downtime, which

underscores the importance of monitoring their health status

closely [11].

Given the highest failure rates of these two components in

static power converters, it is essential to utilize key degradation
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Fig. 2. MATLAB Simulink system of a boost converter.

indicators such as capacitance (C), equivalent series resis-

tance (ESR), and drain-source on resistance (Rdson) to assess

health degradation effectively. The degradation fault limits

for electrolytic capacitors and MOSFETs are summarized in

Table I [12]. These limits provide a benchmark for determining

when a component has degraded to a point that it may no

longer function effectively within the system. In the MATLAB

Simulink system, the parameter ‘useful health’ is employed to

represent the health level of the devices.

At a given temperature (say, room temperature), 100%

‘useful health’ corresponds to the nominal value of the

health indicator, indicating that the component is in optimal

condition. Conversely, 0% ‘useful health’ corresponds to a

‘close-to-a-fault’ value, signifying that the component has

reached a critical level of degradation and may fail in the

near future or may not meet certain performance criteria. By

incorporating these degradation indicators and fault limits into

the simulation, the model can more accurately reflect the real-

world performance and longevity of the power converter.

TABLE I
DEGRADATION FAULT LIMITS (BASED ON AMBIENT TEMPERATURE

MEASUREMENTS)

Degradation indicator Limit
ESR Increase to twice the nominal value

C Decrease to 80% of the nominal value
Rdson Increase to 125% of the nominal value

D. Integration of Temperature Influence

The performance of components in the boost converter

is significantly influenced by temperature variations. For the

diode, the forward voltage drop (Vf ) serves as a temperature

influence indicator. The relationship between temperature and

Vf can be referenced from the datasheet [4]. For the MOS-

FET, the drain-source on resistance (Rdson) is selected as

the temperature influence indicator, with its relationship to

temperature detailed in the datasheet [5].

For capacitors, both equivalent series resistance (ESR)

and capacitance (C) are chosen as indicators of temperature

influence. The relationship between temperature and these

indicators can be obtained from [13] and through reasonable

assumptions. For inductors, the direct current resistance (DCR)

is the indicator, with changes due to temperature represented

by the temperature coefficient of copper.

All relevant information is summarized in Table II.

TABLE II
TEMPERATURE INFLUENCE ON INDICATORS

Indicator Change per ◦C
Vf Decrease by 0.24%

Rdson Increase by 0.37857%
ESR Decrease by 1%

C Increase by 0.1%
DCR Increase by 0.393%

III. CONVERTER PERFORMANCE METRICS MODELING

WITH DATA-DRIVEN APPROACHES

This study focuses on modeling the dynamic behavior of

a boost converter using data-driven methodologies. The aim

is to simulate responses such as output voltage, inductor

current, and efficiency, based on various converter parameters

including input voltage, frequency, duty cycle, load resistance,

initial output voltage, temperature, and useful health. The

specific ranges for these parameters are detailed in Table III.
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Additionally, the system incorporates varying levels of noise,

aiming to simulate realistic operating conditions.

TABLE III
RANGE OF PARAMETERS FOR BOOST CONVERTER MODELING

Parameter Range
Vin (V) 15 – 45

Duty cycle (%) 40 – 60
Frequency (kHz) 10 – 30

Load Resistance (Ω) 60 – 100
Initial Vout (V) 0 – 10

Temperature (◦C) -20 – 80
Useful health (%) 0 – 100

A. Data Collection and Processing

High-quality simulation data, crucial for model accuracy,

was gathered from MATLAB simulations. This data spanned

key parameters (input voltage, duty cycle, switching frequency,

load resistance, initial output voltage, temperature, and useful

health) and circuit responses (temporal responses of the in-

ductor current, output voltage, and efficiency). The original

high-resolution dataset of 800,000 data points for each circuit

response was recorded (resolution of 1 μs over a span of 0.8

s). Due to the risk of overfitting with high-resolution data,

a thorough pre-processing regimen involving downsampling

and normalization was carried out to facilitate effective neural

network training [2].

B. Brief Introduction to Various Data Driven Techniques
Adopted

For the data obtained from the simulations, CNN and RNN

were selected due to their unique characteristics and strengths

compared to MLP, with the potential to improve upon the

results. The MLP is a class of feedforward artificial neural

networks that consists of multiple layers of nodes, with each

layer fully connected to the next one. It is particularly effective

for general-purpose pattern recognition problems and has been

extensively used due to its simplicity and effectiveness in

approximating continuous functions [14].

The CNN is designed to automatically and adaptively learn

spatial hierarchies of features from input data. Additionally,

CNN has shown robustness in environments with noise vari-

ability, as their deep architectures can filter out noise more

effectively than MLP, enhancing prediction accuracy under

noisy conditions [15].

The standard RNN (SimpleRNN) architecture is employed

for training, characterized by its straightforward recurrence

mechanism, distinguishing it from other RNN extensions.

RNN are particularly well-suited for sequential data due to

their connections that form directed cycles, allowing them

to maintain a memory of previous inputs. This makes RNN

particularly powerful for time-series prediction and data with

temporal dependencies [16]. Given the dynamic nature of the

boost converter’s operation, RNN provides a robust framework

for capturing temporal correlations. Compared to CNN, RNN

are not only effective in environments with noise but are also

more appropriate for tasks involving sequential data, such

as predicting the behavior of the boost converter over time.

This ability to handle time-dependent data makes RNN highly

suitable for the given application.

Figure 3 presents the architectures of MLP, CNN, and RNN,

showcasing their structural differences in this study.

Fig. 3. Structures of MLP, CNN and RNN.

C. Comparison of MLP, CNN, and RNN Under Variable Noise
Conditions

Initially, the performance of the neural networks was eval-

uated in the absence of noise to establish a baseline. Figure 4

presents the training and validation results for the Multi-

Layer Perceptron (MLP). Figure 5 shows the results for the

Convolutional Neural Network (CNN). Figure 6 illustrates the

results for the Recurrent Neural Network (RNN). Part (a)

of these figures illustrates the progression of model training,

highlighting convergence in minimizing the cost function.

Additionally, the training duration is displayed, indicating that

the training times for all three models are comparable. Part (b)

shows performance on regression plots. Parts (c), (d), and (e)

display the validation results with specific parameter settings

– [Vin = 35V ; Duty cycle = 40%; Frequency = 30kHz,

Load resistance = 73.3Ω; Initial Vout = 10V ; Temperature =
80◦C; Useful health = 100%], depicting the simulated and

predicted inductor current, output voltage, and efficiency. The

inductor current and output voltage are shown in waveforms.

The mean of the final 100 efficiency data points is used to

determine the simulated and predicted efficiency.

Extensive simulations were then conducted to evaluate the

performance of MLP, CNN, and RNN under varying levels of

noise. The results, presented in Table IV, highlight the distinct

features and advantages of each neural network model.

TABLE IV
R2 VALUES FOR VARIOUS MODELS UNDER DIFFERENT NOISE LEVELS

Noise level/SNR (dB) MLP CNN RNN
∞ (without noise) 0.97926 0.98059 0.98531

40 0.97940 0.98078 0.98643
35 0.97787 0.98236 0.98571
30 0.97883 0.98289 0.98402
25 0.97724 0.98112 0.98640
20 0.97564 0.98195 0.98482

The results demonstrate that while MLP, CNN, and RNN

have similar training duration and high performance, the

RNN outperforms both CNN and MLP. The MLP, known

for its simplicity and effectiveness in general-purpose pattern

recognition, showed a decline in performance with increased

noise. In contrast, the CNN maintained stable R2 values,
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Fig. 4. Training and validation results of MLP for data without noise: (a)
Model loss over epochs and training duration (b) R2 value (c) Simulated
and predicted inductor current (d) Simulated and predicted output voltage (e)
Simulated and predicted efficiency.

demonstrating its enhanced noise immunity and suitability for

modeling power converters in noisy environments. The RNN

slightly outperformed the CNN across various noise levels,

exhibiting higher R2 values and stable performance in noisy

conditions. This can be attributed to the RNN’s ability to

capture temporal correlations and maintain the memory of

previous inputs, making it particularly effective for time-series

prediction and data with temporal dependencies.

Additionally, variants and extensions of RNN such as Gated

Recurrent Units (GRU), Long Short-Term Memory (LSTM),

and Bidirectional Long Short-Term Memory (BiLSTM) were

also explored. Hybrid neural network architectures like CNN-

LSTM and CNN-BiLSTM were tested as well. Despite the

increased complexity of these models, their performance did

not surpass that of the standard CNN and RNN models.

Consequently, these more complex models were not included

in the final results presented in this study.

D. Efficiency Prediction with RNN

Based on previous results, the RNN demonstrated superior

performance in predicting converter efficiency. A trained RNN

model for data without noise is utilized to predict efficiency

under various conditions. For efficiency analysis, a set of fixed

inputs is assumed: [Duty cycle = 50%; Frequency = 20kHz;

Fig. 5. Training and validation results of CNN for data without noise: (a)
Model loss over epochs and training duration (b) R2 value (c) Simulated
and predicted inductor current (d) Simulated and predicted output voltage (e)
Simulated and predicted efficiency.

Initial Vout = 5V ; Temperature = 80◦C; Useful health =
100%]. The Load resistance is varied in a range for each Vin.

Figure 7 presents the simulated and predicted efficiency

against the load power at different Vin values. For each Vin,

the varying effective load resistance results in differing load

power and correspondingly, efficiency. The results indicate that

the efficiency prediction accuracy is satisfactory, demonstrat-

ing that the RNN performs well under these conditions.

IV. CONCLUSION AND FUTURE WORK

This work introduces a data-driven approach for devel-

oping digital twins (DTs) for power converters using MAT-

LAB Simulink simulations. Critical factors such as switching

losses, component health degradation, temperature influence,

and noise interference are incorporated. The study employs

CNN, RNN, and MLP models to predict critical responses,

highlighting the performance of each model under various

noise conditions. RNN perform best in handling temporal

dependencies and maintaining stability in noisy environments,

while CNN provides enhanced noise immunity. MLP, although

effective for general-purpose pattern recognition, showed a

decline in performance with increased noise.

These advancements can contribute to the development of

DTs in power electronics, enabling improved system optimiza-
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Fig. 6. Training and validation results of RNN for data without noise: (a)
Model loss over epochs and training duration (b) R2 value (c) Simulated
and predicted inductor current (d) Simulated and predicted output voltage (e)
Simulated and predicted efficiency.

Fig. 7. Efficiency against Load Power at different input voltages.

tion and predictive maintenance. The proposed approaches are

expected to enhance in-situ DTs (by making them lighter in

memory use), automated design, and software-defined net-

works, providing efficient modeling solutions. The compatibil-

ity of these models with GPUs or FPGAs aligns with advance-

ments in edge computing for power converters, presenting

promising avenues for future research and implementation.
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