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Abstract. We develop randomized matrix-free algorithms for estimating partial traces, a gen-
eralization of the trace arising in quantum physics and chemistry. Our algorithm improves on the
typicality-based approach used in [T. Chen and Y-C. Cheng, J. Chem. Phys., 157 (2022), 064106]
by deflating important subspaces (e.g., corresponding to the low-energy eigenstates) explicitly. This
results in a significant variance reduction, leading to several order-of-magnitude speedups over the
previous state of the art. We then apply our algorithm to the study of the thermodynamics of several
Heisenberg spin systems, particularly the entanglement spectrum and ergotropy.
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1. Introduction. The state of a quantum system is described by a density ma-
triz of dimension exponential in the system size. Often we are interested in the state
of a subsystem of the total system. This can be obtained by taking the partial trace of
the total system density matrix, which yields a density matrix of dimension depend-
ing only on the size of the subsystem of interest (called the reduced system density
matrix). This matrix can then be used to understand important properties of the
subsystem, for instance, its entanglement with the rest of the total system [44]. Re-
cently, a number of numerical methods have been developed to estimate partial traces
[66, 13, 10].

If the total system density matrix is known explicitly, computing the partial trace
is trivial. Unfortunately, owing to the exponential dependence of the total system
density matrix on the system size, it is typically prohibitively expensive to obtain
(or even store) the total system density matrix. Hope is not lost; in many situations,
the total system density matrix has an implicit representation in terms of a (typically
sparse) Hamiltonian H describing the configuration of the system of interest. For
instance, the total system density matrix may be proportional to exp(—SH) for some
parameter S > 0 or might be obtained from H by solving the Schrédinger equation
with a given initial condition.

Mathematically, this means that the task of computing reduced density matrices
can often be viewed as computing the partial trace of a matriz function of H. In
many situations, the Hamiltonian is sparse and admits implicit matrix-vector products
(i.e., we can compute the map x — Hx). Thus, for moderately sized systems for which
it is possible to store dense vectors, Krylov subspace methods offer an attractive
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potential approach. Indeed, such methods are widely used for the closely related task
of trace estimation [60, 31, 58, 67, 57, 56, 32, 5].

2. Background. We begin by providing some background on a natural setting
in which partial traces arise, as well as on existing methods for implicit partial trace
approximation.

2.1. Equilibrium reduced density matrices. Throughout, the total system
is defined on a finite dimensional Hilbert space H; = Hs ® Hyp, where Hg and Hy, are
the Hilbert spaces for subsystem (s) and subsystem (b), respectively. We assume the
total system is governed by a Hamiltonian

(2.1) H =H, + Hy, + Hy,

where H, = H, ® I, corresponds to the Hamiltonian of subsystem (s), H,=1,oH,
corresponds to the Hamiltonian of subsystem (b), and Hg}, accounts for nonnegligible
interactions between the two subsystems.

When the total system is in thermal equilibrium at inverse temperature 8 (due to
weak coupling with a “superbath”), the state of the system is described by a density
matrix

e2)  =am =" 22 2(9) = w(e(-sH),

see, for instance, [22, 64, 1]. The quantity Z;(3) is called the partition function and
provides insight into a number of thermodynamic properties of the system.

Often, we are interested in the state of subsystem (s) rather than the total system.
If subsystem (s) did not interact with subsystem (b) (i.e., if Hg, = 0), then the density
matrix for subsystem (s) would simply be proportional to exp(—SHy). However, when
the interactions between subsystems (s) and (b) are nonnegligible, the density matrix
p* for subsystem (s) is instead obtained by “tracing out”! the effects of subsystem

(b), ie.,

where try,(-) is the partial trace over subsystem (b) [9, 30, 61].

2.2. Partial traces. Let dg and d, be the dimension of Hg and Hy,, respectively,
so that dy = dgdy, is the dimension of Hy = Hs ® Hy. A general matrix A : Hy — Hy
can be partitioned as

Air A - Ay,
A1 Ass - Agyg,
(24) A= . . . . )
Ag1 Ag2 - Ag.a
where A; ; : Hy, — Hy, for each ¢,j. The partial trace of A over Hy, is defined as
tl“(Al’l) tr(Al,g) s tr(Al,ds)
tI‘(A271) tI‘(Ag)g) e tI'(A27dS)
(2.5) try(A) := . . . .
tr(Ag 1) tr(Ag2) - tr(Agq)

1This is analogous to “integrating out” variables from a joint probability distribution to obtain
the marginal distribution for a variable of interest.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/16/25 to 128.122.149.92 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FASTER RANDOMIZED PARTIAL TRACE ESTIMATION A3429

From (2.5) it is clear that the partial trace is easy to compute if we have an explicit
representation of A. However, we are most interested in the case A = exp(—FH),
where H is so large that storing and/or computing an explicit representation of A is
intractable. As such, we will consider only methods which access A through matrix-
vector products, which can then be approximated using Krylov subspace methods.

2.3. Stochastic trace estimation. Consider a real matrix M : Hy — Hy,. If
v € Hy, is a random vector whose entries are independent and identically distributed
(i.i.d.) standard real Gaussian random variables, it is straightforward to show [39]
that

(2.6) E[vIMv]=tr(M), V[v'Mv|= %HM +MT||2 <2|M|2.

The use of estimators of this form? (although possibly with a different distribution)
for approximating the trace of implicit matrices has been used since the late 1980s
[23, 60, 29]. Theoretical tail bounds appear in the physics [52, 53, 24] and numerical
analysis [3, 54, 40, 14] literature. These bounds control the probability that the
estimator v Mv is far from the trace in terms of properties of M, such as ||M||r and
M.

Standard trace estimators can be extended to partial traces [10]. In particular,

vTAl,lv VTALQV VTAldeV
: VTA2,1V VTAQ’QV e VTAg’dSV

(2.7) (Io, ®@v) Al ®@v) =
vTAdS,lv VTAdSQv VTAdSVdSV

provides an unbiased estimator for try,(A) when v is sampled as described above.
Given i.i.d. copies vy,...,Vv,, of v, we arrive at an estimator

1 m
(2.8) tr, (A EZ: L, ©vi)TA(Ig, @ ;).

This estimator was studied in [10] for approximating reduced density matrices and
will serve as the backbone of the algorithms developed in this paper.
The variance of a random matrix X can be defined as

2
(2.9) V[X] ::EMX - JE[X]HF].
This is equivalent to the sum of the variances of the entries of X, so assuming v has
i.i.d. standard normal entries, we find that

o b & P
(210) V[T (a)| = V[0 e v AM ev)] <SS oA lE= AR

i=1 j=1

As with all Monte Carlo estimators, which output a sample average, the estimator
(2.8) often suffers from large variance with fluctuations about the mean on the order of
|A||F/+/m. When computing quantities of the form try(A)/tr(A), we see that these

2In quantum physics, such estimators are closely related to the idea of quantum typicality [59, 65],
which refers to the idea that, in many cases, a random state is representative of the overall state of
a system; see [25] for a review.
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variance of partial trace estimator after deflating top k singular values
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Fig. 1. Let o1 > 02 > --- > 04, be the singular values of A. Then the variance of the partial
trace estimator (2.7) is bounded above by 2||A||2 =2(c? +---+ crgt ). By deflating the top k singular
values, we can reduce the variance to at most 2(0‘%+1 + -+ Uﬁt) (see section 3). Here we take
A = p, = exp(—LH)/ tr(exp(—LH)), where H corresponds to the solvable spin chain with N = 10
and h = 0.3 (described in subsection 5.5). We then plot the variance bound 2(0i+1 +o 4 Ugt) for
several values of k and a range of B. Takeaway: The k = 0 curve exhibits high variance at low
temperature. Through the use of deflation, the variance can be reduced significantly.

effects become particularly pronounced when A has a very quickly decaying spec-
trum. Indeed, if A has one dominating (positive) eigenvalue, then ||A||g/tr(A) =1,
whereas if A is close to the identity, then ||A|g/tr(A) ~ 1/y/d;. In the case A =
p. = exp(—pH)/tr(exp(—SH)), this corresponds to difficulties when S is very large
(low temperature). We visualize how the variance depends on the temperature for
this matrix in Figure 1.

In the zero-temperature limit § — oo, the trace tr(exp(—fH)) is determined
entirely by the smallest (most negative) eigenvalue of H, and the partial trace try,
(exp(—=SH)) by the corresponding eigenvector (assuming a one dimensional
eigenspace). This means a randomized estimator such as (2.8) is not needed! Rather,
one can simply apply classical techniques for obtaining extremal eigenvectors. This
paper is built on the fact that at low (but nonzero) temperatures, knowledge of the
eigenvectors corresponding to small eigenvalues is still very useful. In particular, we
provide a deflation-based technique, which can significantly reduce the variance of
(2.8) at low temperatures. Our approach is closely related to [43] and other deflation-
based approaches for regular trace estimation [67, 55, 21]. The potential for variance
reduction is also visualized in Figure 1.

2.4. Contributions. The primary contribution of this paper is a variance re-
duction technique for (2.7). This results in several order-of-magnitude speedups over
the current state-of-the-art algorithm for approximating partial traces of matrix func-
tions [10]. As such, we are able to study properties of quantum systems too large
for existing methods. While similar variance reduction approaches have been used
for regular trace estimation [23, 67, 38, 69, 21, 43, 40], partial traces do not satisfy
a cyclic property, which makes generalizing past work (numerically) difficult. We
propose some solutions to this difficulty.

Another contribution of this paper is highlighting some important problems from
quantum physics which have been under-explored by the scientific computing com-
munity. We feel that there is significant potential for increased collaboration be-
tween these fields which is currently limited by a lack of cross-disciplinary knowledge
transfer.

3. A variance reduced algorithm. We now describe a general technique for
reducing the variance of the estimator (2.8) for an arbitrary matrix A. By the linearity
of the partial trace, for any matrix A,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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(3.1) trp(A) = try(A) + trp (A — A).

If we are able to compute the partial trace of the first term exactly, we can estimate
the partial trace of trp(A) by applying the randomized estimator (2.7) to the residual
term, that is, by

(3.2) tr(A) ~ try,(A) + try (A — A).

The variance of such an estimate is entirely due to the variance of ﬁ{)n(A — A) Thus,
if ||A—AJ|2 < ||A||Z, then the variance of the estimator on the right-hand side of (3.2)
is reduced compared to that of try (A).

Splittings similar to (3.2) have previously been used as a variance reduction tech-
nique for regular trace estimation [23, 67, 38, 69, 21, 43]. Perhaps the most widely
known approach in the numerical analysis and theoretical computer science commu-
nities is the Hutch++ algorithm [40], which produces a 1 & € relative approximation
to the trace of a positive semidefinite matrix using just O(e~!) matrix-vector prod-
ucts with A. Several improvements to this algorithm have been proposed [49, 18],
including for the case A = f(H) [50, 11].

3.1. Partial trace of low-rank matrices. The partial trace of rank-1 matrix
can be computed efficiently given a factorization as an outer product. In particular,
for any x € H we can write the outer product as

X(1)XT1) X(l)XTQ) o X(l)XTdS) X(1)
X(Q)X X(Q)X cee X(Q)X 3 X(2
(3.3) xxT = . 1) . (2) ' . (ds) 7 = (2
X(nu)xz—l) X(ds)x-(g) X(dﬁ)x-(rds) X(ds)
Using the fact that tr(x(i)x(Tj)) = X(Ti)x(j), we find
XT1)"(1) XT2)"(1) o XTdS)X(l)
X X(2 X X(2 e X X (2
(3.4) trb(xxT): (1). (2) (2)' (2) (ds). (2)
X()X(d) XX 7 X(g)X(d)

This observation and the linearity of the partial trace allow us to efficiently compute
the partial trace of a generic symmetric rank-k£ matrix

k
i=1

given access to the factors (6;,x;), i=1,2,...,k.

3.2. Implicit partial trace estimation. It is clear that choosing A as a rank-
k approximation to A will suit our needs. In particular, let Q € R¥** be a matrix
with orthonormal columns (Q'Q =1;), and define

(3.6) A:=QQTAQQ".

We can efficiently obtain a factorization of the form (3.5) using just k& matrix-vector
products with A. Indeed, form G := QTAQ, compute an eigendecomposition

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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Algorithm 3.1 Variance reduced partial trace estimation.
1: procedure PARTIAL TRACE(A, Q,m)
2:  ©,8 =rG(QTAQ) > k X k matrix
X=QSs > X =[x1,...,Xg]
fori=1,2,...,k do

B((fc)ﬁ =0; trp(x;x]) > using (3.4)
fori=1,2,...,m do

Y = (I4, ® v), v is length dy, i.i.d. Gaussian vector

B, =YTAY - YTXOXTY
return 'EFZL(A; Q) =>_, Bfile)ﬂ + % D Bl(fé)m

G = El L 0;s;8], and set x; := Qs; to obtain a rank-k approximation to (3.6) of
the form (3.5).
Then, rewriting (3.2), we arrive at a computationally feasible estimator,

(3.7) tr (A;Q): Za trp(x,x) ) + 1, (A — QQTAQQ).

We provide pseudocode for computing (3.7) and a corresponding error estimate
in Algorithm 3.1. The total number of matrix-vector products with A is k + mds; k
products are used to compute AQ in Algorithm 3.1, and in each of the m loops, dg
products are used to compute AY in Algorithm 3.1.

3.3. Choosing the projection space. Algorithm 3.1 takes as input the matrix
Q, which determines the projection space used for deflation, and the quality of the
output depends strongly on Q. For regular trace estimation, a natural approach is to
obtain Q by sketching A [40]. While sketching can be used to generate Q for use in
Algorithm 3.1, there are some practical difficulties for the case A = f(H), which is
the focus of this paper. We discuss these difficulties in section 4.

Another reasonable choice is to take Q aligned with eigenvectors of A. In fact,
the choice of Q with k columns, which minimizes the variance of Algorithm 3.1 is
to take Q as the eigenvectors corresponding to the k eigenvalues of A with largest
magnitude (i.e. corresponding to the top k singular values of A). In this case

(3.8) IA - QQTAQQ |} = min IA— A= Za

ran i=k+1

where {o;} are the singular values of A arranged in non-increasing order. In the case
A = exp(—fH), the singular values of A are exp(—g\;), where \; are the eigenval-
ues of H. When f is large (low-temperature), several of these singular values are
significantly larger than the others, and deflation is effective at decreasing the norm.

To illustrate this idea quantitatively, suppose that, for some fixed constants ¢, a €
(0,1) and ¢/, ¢’ >0,

(3.9) d(ca) <o; <o, i=1,2,...,ds.

Then, if Q contains the k eigenvectors of A corresponding to the largest magnitude
eigenvalues, the variance reduced estimator (3.7) satisfies

(3.10) V[ (A Q)] V2 CatV[a(a)] i

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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for some C = C(a,c,c,c’) that does not depend on k or the dimension d;.> In other
words, if the singular values of A decay exponentially, deflating the top k eigenvalues
results in an exponential decrease in the magnitude of the fluctuations of the partial
trace estimator (3.7) over the basic estimator (2.8) from [10].

4. Partial traces of matrix functions. The primary focus of this paper is
on estimating try, (exp(—GH)); i.e., the partial trace of a matrix proportional to the
density matrix p describing the state of the total system in thermal equilibrium at
inverse temperature 5. In this section, we describe an implementation of Algorithm
3.1 for general f(H), with a particular focus on the case f(x)=exp(—pSxz). In the case
of the standard trace tr(f(H)), this is commonly addressed using a combination of the
typicality estimator v' f(H)v and Krylov subspace methods [60, 31, 67, 63, 28, 57, 56,
32, 12].

Algorithm 3.1 requires computing quantities like

(4.1) YTAY - Y (QQTAQQNY, Y:=(I;®vV),

which can be difficult to compute accurately due to the potential for cancellation er-
rors. In particular, each term of the difference may be much larger than the difference
itself, so an accurate approximation to each term in a relative sense need not yield a
good relative (or even additive) approximation to the difference. For Algorithm 3.1,
where products with A are assumed to be exact, this is not an issue. However, ef-
ficient methods for computing products with A = exp(—SH), such as time-stepping
and Krylov subspace methods [17, 20, 41], result in some level of approximation error.

We will consider mainly the case where Q contains eigenvectors of H and hence
of A = f(H). In subsection 4.2.3 we discuss how one may be able to avoid the
cancellation errors of (4.1) for other Q with orthonormal columns. We also discuss
some pros and cons of various choices of Q and potential implementation difficulties,
particularly in the context of f(z)=exp(—pSz).

Write the eigendecomposition of H as

(42) u-la q][* ;|[&]

where Q contains r eigenvectors and A the corresponding r eigenvalues. We will
assume that Q and A can be computed exactly. Since there are many black-box
and problem-dependent techniques for this, we do not discuss particular methods for
obtaining these quantities.

Using (4.2), we see that f(H) can be decomposed as

(43) /(H)=QQ"f(A)QQ" +QQ"f(A)QQ".
This implies
(4.4) QQ'f(H)QQ"=Qf(A)QT,
3Since n > 1 and ¢,a € (0,1), 2™ >0, and (ca)?™ < (ca)? < a?. Therefore,
dg 2 n 24 .
ek 1% it (@ —a?) (1~ (ca)?) ' Pk
10 S O S (et O A a?)(l— (o)) ¢ 21— a?)?

Rearranging and taking a square root gives (3.10).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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which can be easily computed given Q and A. Thus, using (4.3) and the fact that
the orthogonal projector QQ' can equivalently be written (I — QQT), we obtain the
following alternate expression of the difference (4.1):

45 Y fHY-Y'QQ'fH)QQ'Y=ZTfH)Z, Z:=(1-QQ")Y.

This allows us to avoid cancellation errors by ensuring that our approximation to
Z" f(H)Z respects the fact that Z is orthogonal to Q.

4.1. The Lanczos algorithm with deflation. In order to approximate the
quantity

(4.6) Z'fH)Z, Z:=(1-QQ"),Y

we make use of the block-Lanczos algorithm with explicit deflation. The block-Lanczos
method implicitly constructs an orthonormal basis V =[Vy,..., V;_1] for the block-
Krylov subspace

(4.7) span{Z,HZ,... H'"'Z}

such that for all j=0,1,...,t—1,

(4.8) span{Vo,...,Vj}:span{Z,HZ,...,HjZ}.

In addition, the algorithm outputs a symmetric block-tridiagonal matrix
My R]

(4.9) T |R

R/,
Rio M;_;

satisfying T = VTHV. Here we assume that the block-Krylov subspace does not
become degenerate.

Since the input Z is orthogonal to the eigenvectors Q, in exact arithmetic V will be
entirely orthogonal to Q as well. However, in finite precision arithmetic this cannot be
guaranteed, and rounding errors might introduce small components in the directions
of the Q. These errors can grow rapidly. Thus, the block-Lanczos algorithm should be
implemented to explicitly maintain orthogonality against Q. Such an implementation
is given in Algorithm 4.1.

In exact arithmetic, the Lanczos approximation to Z' f(H)Z is given by
(4.10) 27 f(H)Z~RJE] f(T)ERq,

where E; =e; ® I and Ry is the R factor in the QR factorization of Z. This approxi-
mation is a block-Gauss quadrature approximation and is exact if f is polynomial of
degree at most 2¢ — 1 [26, section 6.6], [19, Theorem 2.7]. From this, we can obtain a
simple bound for the convergence.

Let Error = | ZTf(H)Z — RJE] f(T)E;1Ry||, and suppose p is a polynomial of
degree at most 2¢t — 1. Then, with Pq =1-QQT,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Algorithm 4.1 Block-Lanczos algorithm with deflation.
1: procedure BLOCK-LANCZOs-DEFL(H, Z, Q,t)

2 Vo, Ry =QrR(Z — QQ'Z),

3 for 7=0,1,...,t—1do

4 X=HV; —Vj,lR}-_l >if j=0, X=HV,
5: M, = VJTX

6: X=X- Vij
7.
8

9
0

X=X-QQ'X > Explicit deflation
optionally, reorthogonalize X against Vg,...,V;_;
Vi1, R; =Qr(X)

10: return T, Ry > T as defined in (4.9)

(411)  Error=| 2" f(H)Z — Z"p(H)Z + RJEp(T)EiRy — RJE] /(T)E, Ry |
(4.12) <||1Z7 f(H)Z — ZTp(H)Z|| + |RJETp(T)ERo — RJE] /(T)ERo|
(4.13) <||Z|?|Pq(f(EL) — p(H))Pq| + [Ro|2[l/(T) — p(T)]|

Note that, with A denoting the diagonal entries of A defined in (4.2),
(4.14) IPq(f(H) - p(H))Pql| = max|f(z) - p(x)].

Likewise, since T=VTHV = VTPQHPQV, the eigenvalues of T are contained in
the convex closure conv(A) of A. Thus,

(4.15) [£(T) —p(T)|| = e |f(x) —p(@)] < Werts |f(x) = p(=)].

Then, using the facts that ||Z|| = ||Rol|| and that p was arbitrary, we obtain the
bound

(4.16)  [|1Z"f(H)Z — RoE]{ f(T)EiRo| <2||Z|| min ~ max |[f(z)—p(z)].
deg(p)<2t zcconv(A)

Without deflation, note that A = A, the set of eigenvalues of H. However, even
when 7 is small, conv(A) can be much smaller than conv(A). In such cases, deflation
helps not only with variance reduction of the partial trace estimator but also with the
matrix function approximation. This will also be an important consideration when

we discuss the use of other projection spaces in subsection 4.2.3.

4.1.1. A note on finite precision arithmetic. In exact arithmetic, the re-
orthogonalization step of Algorithm 4.1 is unnecessary as X is already orthogonal to
Vo,..., V;_1. However, in finite precision arithmetic, failure to orthogonalize against
these vectors at each iteration can lead to a drastic loss of orthogonality in V. In
practice the formal expression (4.5) still converges in all examples we have observed.
This has been rigorously justified for the standard Lanczos method for approximating
quadratic forms of matrix functions (ds = 1) without deflation [34]. The analysis in
[34] is based on a careful analysis of the Lanczos algorithm in finite precision arith-
metic [47, 48]. However, to the best of our knowledge there is no similar analysis of
the block-Lanczos algorithm or the Lanczos algorithm with deflation.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Algorithm 4.2 Variance reduced partial trace estimation for matrix functions.

1: procedure PARTIAL TRACE-FUNC(H, f,k,m,t)

2 Compute eigenvectors/values Q,A > Q=[qy,...,qx], A=diag(A1,...,\x)

3 for:=1,2,...,k do

4 B = F(\i) tro(qiaq)) > using (3.4)
5: fori=1,2,...,m do
6
7
8
9

Y = (I, ® v), v is length dy, i.i.d. Gaussian vector
Z=1-QQ"Y > Deflation
T, Ry =BLOCK-LANCZOS-DEFL(H, Z, Q, t)
: B{th = RIETf(T)E:Rg _ >E =e ®I
10:  return tr, (A;Q) = Zle ngﬂ +Ly B,

4.2. Algorithm. We now have all the tools required to implement a version
of Algorithm 3.1 in the case A = f(H). The resulting algorithm is summarized in
Algorithm 4.2. In the context of regular trace estimation (ds = 1), similar approaches
have been used successfully [21, 67, 43]. In particular, [43] studies the task of com-
puting the partition function Z(3) for a range of 3, a task closely related to our main
application of focus.

4.2.1. Computational costs. Algorithm 4.2 requires computing the k eigen-
values/vectors of H, the cost of which is context dependent. The remaining number
of matrix-vector products with H is mtd,: in each of the m loops, ds products are
required to compute HV; in each of the ¢ iterations of the block-Lanczos algorithm.
The parameters m and t, respectively, control the statistical variance of the partial
trace estimator and the accuracy with which products with f(H) are approximated.
We note that the matrix-vector products for each of the m samples can be computed
in parallel.

4.2.2. Limitations and extensions. The Lanczos-based method described in
this section requires the storage of roughly ds dense vectors of length d;, as well as
repeated matrix-vector products with the total system Hamiltonian H;. Since d;
depends exponentially on the system size, this approach is only viable for moderately
sized systems far from the thermodynamic limit.

The partial trace estimator (2.7) uses v € Hy, drawn from the uniform distri-
bution on the hypersphere of radius v/d,. However, the analogous estimator is still
unbiased so long as E[vv'] =I;,. This opens the possibility of using an appropriate
distribution on tensor network states [45, 46]. While tensor network versions of the
Lanczos algorithm have been studied [16], a more common imaginary time evolution
approach [45, 51, 15, 35] is likely suitable for approximating the action of exp(—SHy)
for sufficiently low temperatures, at least as long as the total system has sufficiently
local interactions.

4.2.3. Using arbitrary projection matrices. We hope to obtain a matrix
Q which reduces the variance of the partial trace estimator nearly as much as when
using the exact top eigenspace more efficiently than computing the top eigenspace
exactly. For any matrix Q with orthonormal columns, it can be verified that

(117 A-QQTAQQT=_[(1+QQNA(I-QQ")+ (1~ QQTAT+QQ")].
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Introduce matrices
(4.18) Z:=1I-QQN"Y, W =1I+QQ"Y.

Then, in place of (4.1), we can use the mathematically equivalent expression
1
(4.19) 5 [WTAz + ZTAW} .

We expect this expression to be less prone to rounding errors so long as WTAZ is far
from skew-symmetric.

A common way to efficiently obtain an orthonormal matrix Q for which the error
A - QQTAQQT||Z is small is to take Q = orth(A€), where £ is a d; x k random
matrix with standard normal entries. The resulting approximation is commonly called
the randomized SVD and requires k& matrix-vector products with A. When A has
quickly decaying eigenvalues, the resulting Q results in an approximation nearly as
good as the exact top eigenspace. For matrices with more slowly decaying eigenvalues,
there are more complicated algorithms [27, 62].

When A = exp(—8Hy)/ tr(exp(—SHy)), there are a number of challenges to using
an approximate top subspace rather than the true top eigenspace. First, computing
matrix-vector products with A requires the use of some sort of iterative method using
products with Hy. While there are tools for this [17, 20, 41], these tools are not
as mature as eigensolvers. Second, we would like to use a single matrix Q for all
values of 8 in some range of interest. The best Q will be obtained by applying the
randomized SVD to the matrix corresponding to the largest value of §; in fact, as
8 — oo, this will result in obtaining exactly the top subspace. Finally, and perhaps
most subtly, when we exactly deflate the top eigenspace of A, as noted in (4.16), the
convergence of the iterative method used to compute products with A is accelerated.
This acceleration is often significant, especially when S is large. This means the cost
savings of using an approximate top subspace must be compared with the additional
overhead of subsequent products with A.

In Figure 2 we plot the quantity

T T2 _
(4200 2/A-QQTAQQTIE A —exp(—BH,)/ tr(exp(—FH,),
variance of partial trace estimator after deflating RSVD eigenvalue decay for RSVD
| 10° 4
R —
S 107°
107104 o
1044 -
1071 4 ~
6 ~
107° 4 10-20 4 ~
_— .
1075 4 k=2 10-25 \
k=20 \
10710 T T T T T 10730 T T T
102 107! 10° 10! 102 10° 10! 102
temperature: J/3 eigenvalue index

Fic. 2. Using the same example as Figure 1, we plot the approximate variance of the partial
trace estimator for A = exp(—fHy)/ tr(exp(—SH¢)) when Q = orth(exp(—BoH:)S2) is an approzi-
mate top subspace. We use J/Bo=0.1 (dotted vertical line) and sample Q € R4%*¥ with independent
standard normal entries. The greyed out curves are those of Figure 1 and correspond to the optimal
rank-k subspace. While the approzimate top subspace does reduce the variance, the variance does
not go to zero in the zero-temperature limit 3 — oo. The right plot shows the normalized singular
values of exp(—pPoH¢), which decay rapidly.
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where Q is obtained by applying the randomized SVD to exp(—FyH:) for some fixed
value [y. This is compared to Figure 1, where we plot the analogous quantity when
the projection space is taken as the top subspace. For 8 < 3y, the variance reduction
is essentially the same as if the exact top eigenspace were used. For § > [ there is
still some variance reduction; it does not result in a zero-variance approximation in
the zero-temperature limit 5 — oc.

A deeper exploration of the trade-offs between the cost to compute Q, the quality
of the variance reduction, and the costs of computing f(H)Q is beyond the scope of
the present paper but is an important topic for future work.

5. Numerical experiments. Our experiments focus on Heisenberg spin sys-
tems in an isotropic magnetic field oriented in the positive z-direction:

N N
h
(5.1) H:= E [J,?fja'fa;? + JZjO'zO';-, + Jijafa'ﬂ + 5 E o’
i=1

2,j=1

Here a’f/ ¥/% s defined by

(5.2) o'z.(/y/Z:I®~--®I®O-X/Y/Z®I®...®I’
i—1t N—it

where */¥/% are the Pauli spin—% matrices

e P A

We remark that while 0¥ is Hermitian, oo (and thus H) is real symmetric.

5.1. Experimental setup. Our experiments are implemented in Python using
double precision arithmetic. We use SciPy’s sparse library to represent Hamiltonians
and SciPy’s sparse.linalg.eigsh to compute the top eigenvectors. The latter is a
wrapper for ARPACK’s dsaupd, which is an implementation of the implicitly restarted
Lanczos method, and computes the eigenvectors to machine precision [36].

We set the number of Lanczos iterations to ¢ so that products involving exp(—GH)
are computed to a relative error of roughly 1071, The statistical noise from the
random samples is much larger, so computing the matrix functions to any additional
accuracy does not impact the results in any noticeable way. Reorthogonalization is
not used, but we do explicitly orthogonalize against the deflated subspace.

Code used to generate the data plotted in the figures is available at https://
github.com/tchen-research/faster _partial trace.

5.2. Quantities of interest.

5.2.1. Entanglement spectrum and von Neumann entropy. The von Neu-
mann entropy is an information theoretic measure of the entropy of a quantum system
and can be viewed as a measure of how far a quantum state is from being pure. Thus,
the von Neumann entropy of subsystem (s) provides information about the entangle-
ment between subsystems (s) and (b).

The von Neumann entropy of subsystem (s) is defined by the formula

(5.4) S=25(8,h):=—tr (p*In(p*)),

where p* is the reduced density matrix defined in (2.3).
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The set of eigenvalues of —In(p*) is sometimes referred to as the entanglement
spectrum and provides a more complete picture of the entanglement of subsystems
(s) and (b) than the von Neumann entropy [37]. Up to a scaling factor 1/8, —In(p*)
is the same as the Hamiltonian of the mean force and is an important quantity in
equilibrium thermodynamics [61].

5.2.2. Ergotropy of quantum batteries. Quantum batteries use quantum
systems to store energy and offer the potential for faster charging and higher effi-
ciency than classical batteries [8]. We consider the setup of [6] in which the battery
consists of the spins in subsystem (s) and charges the spins in subsystem (b). Once
the total system (battery+charger) is in thermal equilibrium, the battery is instanta-
neously disconnected from the charger and is therefore in state p* with internal energy
tr(Hgp*). We can extract energy from the battery by evolution with a unitary U,
which brings us to state Up*UT with internal energy tr(H,;Up*UT). The ergotropy
[2, 7] E=E(B, h) is defined as the total possible energy which could be extracted from
the battery:

(5.5) E=E(B,h) = Jhax_ (tr (Hgp*) —tr (HsUp*UT)) .

The unitary U minimizing tr (HsUp*UT) can be obtained explicitly [2]. Specifically,
if Hy and p* are diagonalized (with eigenvalues in nonincreasing order) as Hy =
QSASQ;r and p* = Q,,APQ;7 then

(56) U= QSPQ—prv

where P is the reversal permutation matrix (identity with columns reversed).

5.3. Kagome-strip chain. In this experiment, we consider Kagome-strip chain
systems [4, 68, 42] as show in Figure 3. We take subsystem (s) to be the five spins
indicated in Figure 3.

We choose several values of Jy and fix J; = J3 = J. For each choice of Jo, we
consider a range of h and [ for each system. To determine the values of h at which to
run our algorithm, we use bisection on the von Neumann entropy of the ground state
to determine intervals where the von Neumann entropy appears constant. We then
run our algorithm at values of h corresponding to Chebyshev nodes shifted and scaled
to each interval. Throughout, we use k =25 and m = 5. The results are illustrated in
Figure 4.

We also consider the entanglement spectrum at a fixed value of 5. This is illus-
trated in Figure 5.

R T J
...._........_..;......_1....2..._....
Jo
° o ° °

Fi1c. 3. Kagome-strip chain with N = 20 sites and periodic boundary conditions. Subsystem (s)
is encircled.
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v.N. entropy J>/J = 0.3 v.N. entropy J»/J = 0.5 v.N. entropy Jo/J = 0.8 temp: J/8

10!

T
0 2 4 0 5 10 15
magnetic field strength: h/.J magnetic field strength: h/.J magnetic field strength: h/J

Fic. 4. Von Neumann entropy for Kagome-strip chain at varying values of J2, h, and (3.

entanglement spec. J/J = 0.3 entanglement spec. Jo/J = 0.5 entanglement spec. Jo/J = 0.8

0.7 1 .
0.6 1 1 .
0.5 1 .
0.4 1 1 .
0.3 1 —— . ]
0.2 1 —= . Eg =)
=2 i
0.0 1 1 B

T
0 2 4 0 2 4 0 10 15
magnetic field strength: h/.J magnetic field strength: h/.J magnetic field strength: h/.J

ot o

Fic. 5. Entanglement spectrum for Kagome-strip chain at varying values of J2 and h at fized
temperature J/f =2 x 1072,

5.4. Long range spin chain. We now consider the XX spin chain with long-
range power-law interactions

(5.7) ijj:sz:|i—j|_a, J?;=0.

Here we take subsystem (s) to be the first two spins and subsystem (b) to be the
remaining spins. We remark that in the case a = oo, this system is exactly solvable,
and we use this to verify the accuracy of our algorithm in subsection 5.5.

Within this framework, we set N =16 and vary the parameters «, h, and 5. We
use the same bisection-based approach to determine suitable values of h at which to
run our algorithm. For each value of a and h, we run our algorithm with &= 25 and
m = 5 and again use enough Lanczos iterations to accurately compute the matrix
functions for each value of 5.

In Figure 6 we visualize the von Neumann entropy of subsystem (s) for several
values of a. We observe that at zero temperature, the von Neumann entropy appears
piecewise constant. In the solvable model, the steps in the zero-temperature von Neu-
mann entropy correspond to values of h/J for which a fermionic eigenmode vanishes
[9, eq. (69)]. The inset panel of Figure 6 shows a plot zoomed in to the right edge of
the top “plateau” and illustrates that the von Neumann entropy of the ground state
changes continuously in this region.

In Figure 7 we show the ergotropy of subsystem (s) for several values of a. We
use the same values of h as used for the von Neumann entropy. While the sharp
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v.N. entropy, @ = 1.0 v.N. entropy, @ = 2.0 v.N. entropy, @ = 10.0 temp: J/3
141 0.71 1 1 0.71 4 7 0.71 10'
1.2 4 i? § E k E S? § 100
0.67 0.674 0.67.4
1.0 4 T T | T T — | ] T T T 10~
1.099311 1.145643 1.204946
081 1 ) 1072
0.6 1 E E -2
0.4 , 4
10-*
0.2 1 1 B
10-°
0.0 4 B B
T T T T T T T T T 1076
0 1 2 0 1 2 0 1 2
magnetic field strength: h/J magnetic field strength: h/J magnetic field strength: h/J

Fic. 6. Von Neumann entropy for long-range spin chain with N =16 and the system taken as
the first two spins at varying values of o, h, and B. Inset figure shows the transition to the right of
the top “plateau.”

ergotropy, a = 1.0 ergotropy, a = 2.0 ergotropy, a = 10.0 temp: J/8
0.200

1
0.175 10

0.150
0.125 -
0.100
0.075
0.050

0.025 -

0.000

T T T T T T T T T 104
0 1 2 0 1 2 0 1 2

magnetic field strength: h/J magnetic field strength: h/.J magnetic field strength: h/.J

F1G. 7. Ergotropy for long-range spin chain with N =16 and the system taken as the first two
spins at varying values of a, h, and B. Observe the nonpiecewise continuous behavior to the right
of 1, despite the von Neumann entropy appearing constant in this region.

increases appear to happen in the same places as in the von Neumann entropy, the
regions between jumps appear linear rather than constant. In addition, there is an
apparent discontinuity in the derivative of the 8 = oo curve at h/J = 1, which does
not appear in the von Neumann entropy.

5.5. Validation on the solvable XX spin chain. In the special case where

’ 0 [i—jl#1
the system (5.1) is exactly solvable via the “Bethe ansatz” [33]. That is, it can be
diagonalized analytically. In addition, expressions for the partial trace of the first
two spins have been obtained [9]; see also [10, Appendix C]. This allows us to test
our algorithm against a known solution for problem sizes where exact diagonalization
is intractable.

5.5.1. Variance study. We begin by studying the variability of the output of
our algorithm. We use N =18 and h/J = 0.3 and run the algorithm at varying values
of k and m and compute the eigenvalues of p* for a range of 5. For each choice of
k and m, we repeatedly and independently run our algorithm 10 times. This gives
some indication of the variance in the algorithm. In all cases, we use enough Lanczos
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eigenvalues of p* eigenvalues of p* eigenvalues of p*

100 { === k=0,m=1

k=1, m=1 k=10, m=1

1 T T T T T T T T

k=0,m=4 k=1,m=4 k=10, m =4

T T T T T T T T T

k=1, m=10 —=10,m=10

k=0, m=10

u T ™ T T v» T T T
10 10! 10% 10! 10t 10° 1071 10! 10%
temperature: J/3 temperature: J/8 temperature: J/3

Fic. 8. Comparison of k = 0 (equivalent to [10]), k = 1, and k = 10 for several values of m
when our algorithm is run on the solvable model with N =16 and the system taken as the first two
spins. Lines correspond to repeated runs of our algorithm. Takeaway: As k and m increase, the
variance decreases. However, while the variance decreases linearly with m, it may decrease more
quickly with k.

eigenvalues of p* eigenvalues of p* eigenvalues of p*

10° 4 . k=01 4 k=11 A k=10

1072 4

T T T T T T T T T
10~ 10 10% 10~* 10 10% 10~ 10 10%
temperature: .J/3 temperature: .J/8 temperature: J/3

FiG. 9. Leave-one-out estimator for standard error obtained from a single run of the algorithm
(same setup as Figure 8) with m =10. Takeaway: Using just the information from a single run of
the algorithm, we can get reasonable estimates for the variability of the output.

iterations to accurately compute the matrix functions for each value of 5. Figure 8
shows the results of this experiment. Note that the k =0 plots in Figure 8 correspond
to the algorithm from [10], which does not use deflation; see [10, Figure 1].

5.5.2. Jackknife variance estimates. Generating plots like Figure 8 is not
practical, as it requires multiple runs of the algorithm for each parameter setting.
However, since our estimator (3.7) involves averaging m i.i.d. samples of an unbiased
random matrix, we can use a jackknife (leave-one-out) estimator for the variance. We
visualize the error estimated by the jackknife method for a single run of the algorithm
in Figure 9. Here, the estimated standard error seems to align well with the true error
of the algorithm.

5.5.3. Von Neumann entropy. In this experiment, we set N =16 and Ny =2
and vary the magnetic field strength h/J. Figure 10 shows the exact von Neumann
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von Neumann entropy temp: J/f3

1.04

0.8

0.6 -

0.4 4

0.2

0.0

T T T T 104
0.0 0.5 1.0 15 2.0 2.5

magnetic field strength: h/.J

Fic. 10. Approxzimation of von Neumann entropy on the solvable model with N = 16 and the
system taken as the first two spins. Smoothing is used to reduce noise at moderate temperatures (raw
data shown as dots). We use k =25 eigenvectors for deflation and m =5 copies of the stochastic trace
estimator. Compared to [10, Figure 3] (k= 0,m = 400), our approach not only is computationally
cheaper but also results in a much more accurate approximation. Takeaway: Deflation allows the
low-temperature parts of the curve to be obtained very accurately. While the algorithm’s output
has some noise at intermediate temperature, this is easily overcome by smoothing, which naturally
averages the randomness of nearby points.

entropy as a function of h/J for a range of § as well as the values computed by our
algorithm with the parameters k = 25 and m = 5. In the right panel of Figure 10,
we show a cropped version of the left panel. In this plot, the low-variance behavior
of the algorithm at low but nonzero temperatures is clearly visible. This is in sharp
contrast to [10], in which high variance is observed at low temperatures, even with
m = 400.

For high temperatures 3/J < 5, we simply fit a degree 10 polynomial with least
squares. While the raw data deviates considerably from the true von Neumann en-
tropy, the least squares fit seems extremely accurate. This suggests that the bias
of the algorithm’s output is fairly small. For low temperature 5/J € (5,500), we
use cubic splines. Here the algorithm’s output has little noise, and the smoothing is
mainly to interpolate the data to values of h/J, which we did not run the algorithm
on. Finally, for very low temperature 3/J > 500, we do not do any smoothing.

6. Conclusion and outlook. We have incorporated projection as a means of
variance reduction in typicality estimators for the partial traces. Since the partial
trace does not satisfy the cyclic property, there is a potential for cancellation if the
partial trace estimator cannot be computed exactly. To avoid this, we use deflation
(projection of top eigenspace) in combination with the block-Lanczos algorithm and
explicitly orthogonalize against the projected subspace. Our approach significantly
reduces the runtime required to obtain accurate estimates, often by several orders of
magnitude.

In the future, we would like to take further advantage of the structure of the
systems we are dealing with. For example, in many situations, one would like to
compute a quantity of interest over a range of parameter values (e.g., magnetic field
strength, coupling strength, etc.). Presently, we apply our algorithm independently
at each parameter setting. This leaves open the potential for a faster algorithm
which can take advantage of the fact that many of the quantities may not change
significantly.
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