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NEAR-OPTIMAL CONVERGENCE OF THE
FULL ORTHOGONALIZATION METHOD∗

TYLER CHEN† AND GÉRARD MEURANT‡

Abstract. We establish a near-optimality guarantee for the full orthogonalization method (FOM), showing that
the overall convergence of FOM is nearly as good as GMRES. In particular, we prove that at every iteration k, there
exists an iteration j ≤ k for which the FOM residual norm at iteration j is no more than

√
k + 1 times larger than the

GMRES residual norm at iteration k. This bound is sharp, and it has implications for algorithms for approximating
the action of a matrix function on a vector.
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1. Introduction. The full orthogonalization method (FOM) [20] and the generalized
minimal residual method (GMRES) [22] are two Krylov subspace methods used for solving a
real or complex non-symmetric1 linear system of equations

(1.1) Ax = b.

Assuming an initial guess x0 = 0, both FOM and GMRES produce iterates from the Krylov
subspace

Kk(A,b) := span{b,Ab, . . . ,Ak−1b}
but according to slightly different formulas. The FOM iterate is of particular interest because it
is closely related to the Arnoldi method for matrix-function approximation for approximating
f(A)b, the action of a matrix function on a vector [9, 11, 15]. We expand on this connection
in Section 3.3.

Denote by Qk = [q1, . . . ,qk] the orthonormal basis for the Krylov subspace Kk(A,b)
produced by the Arnoldi algorithm [2]. Define also the (k + 1)× k upper-Hessenberg matrix
Hk+1,k of coefficients produced by the Arnoldi algorithm, and recall the Arnoldi recurrence
relation

AQk = Qk+1Hk+1,k.

The FOM and GMRES iterates (with zero initial guesses xF
0 = xG

0 = 0) are respectively
defined as

xF
k := ‖b‖2Qk(Hk)−1e1, xG

k := ‖b‖2Qk(Hk+1,k)†e1,

where Hk is Hk+1,k with the last row deleted, the symbol † indicates the pseudoinverse, and
e1 = [1, 0, . . . , 0]T is the first canonical basis vector [18].

Define the FOM and GMRES residual vectors

rF
k := b−AxF

k , rG
k := b−AxG

k .

The norms of these residuals can be used as a measure of how well the iterates xF
k and xG

k

solve the linear system (1.1), and understanding their relationship is the aim of this paper.
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1If A is symmetric, then GMRES is mathematically equivalent to MINRES [19], and if A is symmetric positive

definite, then FOM is mathematically equivalent to the conjugate gradient method [14]. While this is relevant for an
efficient implementation, it does not impact the exact arithmetic theory in this note.
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FIG. 1.1. Residual norms for FOM ‖rFk‖2 (solid) and GMRES ‖rGk ‖2 (dash-dot) for a symmetric matrix with
eigenvalues in [−10,−1] ∪ [1, 20] and the steam2 matrix. All curves are normalized by ‖b‖2. While the residual
norms for FOM jump up and down, they exhibit a generally downward trend which mirrors the convergence of the
GMRES residual norms.

It is well known that the GMRES iterates satisfy a residual optimality guarantee:

(1.2) xG
k = argmin

x∈Kk(A,b)

‖b−Ax‖2.

Hence, the GMRES residual norms are non-increasing and are optimal among Krylov subspace
methods. This optimality guarantee leads to well-known results on the rate of convergence of
the residual norms in terms of quantities such as the condition number of A [21]. On the other
hand, the FOM residual norms often appear oscillatory, with large jumps. In fact, it is easy to
construct examples for which ‖rF

k‖2/‖rF
0 ‖2 can be arbitrarily large [18]!

Typical examples of the convergence behavior of FOM and GMRES are illustrated in
Figure 1.1. Here we consider a symmetric matrix with 500 eigenvalues equally spaced in
[−10,−1] ∪ [1, 20] and the steam2 matrix from the Matrix Market [3]. In both cases we
choose b as the all ones vector. We observe that while GMRES exhibits well-behaved non-
increasing residual norms, the residual norms for FOM are highly oscillatory. In fact, at some
iterations, the FOM residual norms are orders of magnitude larger than those of GMRES.
Remarkably, however, FOM exhibits an “overall downward trend” mirroring the convergence
of GMRES.

2. Convergence bounds. The purpose of this note is to establish the following bound
for the FOM residual norms in terms of the optimal GMRES residual norms:

THEOREM 2.1. For every k ≥ 1,

min
0≤j≤k

‖rF
j ‖2 ≤

√
k + 1 · ‖rG

k ‖2.

The theorem asserts that, while the FOM residual norm at any given iteration k can be
arbitrarily large, the overall convergence of FOM is at most

√
k + 1 times worse than that of

GMRES. In light of the optimality of the GMRES iterates (1.2), this implies that the FOM
iterates are, in a certain sense, near-optimal. While an immediate consequence of existing
work, we have not been able to find this bound in the literature; see Section 3.1 for a discussion
on past work. As we discuss in Section 3, Theorem 2.1 has implications for commonly used
Krylov subspace methods for matrix functions.
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FIG. 2.1. Best FOM residual so far minj≤k ‖rFj ‖2 (solid), bound of Theorem 2.1 (dashed), and residual
norms for FOM ‖rFk‖2 (solid grey) and GMRES ‖rGk ‖2 (dash-dot). All curves are normalized by ‖b‖2. While FOM
exhibits oscillatory convergence, Theorem 2.1 ensures that the best FOM residual norm seen so far matches closely
with the GMRES residual norm.

In many practical situations, the GMRES residual norm is exponential in k, in which case
the factor

√
k + 1 is comparatively unimportant. In Figure 2.1, we show the examples from

Figure 1.1 along with the bound from Theorem 2.1. To emphasize the “overall convergence”
of FOM, we also display the smallest residual norm of FOM seen up to a given iteration k:
minj≤k ‖rF

j ‖2. As expected, this quantity tracks very closely the convergence of GMRES.
Our proof makes use of a characterization of the GMRES residual norms in terms of the

FOM residual norms. Define ϑ1 = 1, and for k ≥ 1 define

ϑk+1 = − 1

hk+1,k

k∑
j=1

ϑjhj,k,

where hi,j is the (i, j)-entry of Hk+1,k. The FOM and GMRES residuals norms are related in
the following sense:

THEOREM 2.2 (Theorem 3.12 in [18]). For every k ≥ 0,

‖rF
k‖2
‖rF

0 ‖2
=

1

|ϑk+1|
,

‖rG
k ‖2
‖rG

0 ‖2
=

(
k+1∑
j=1

|ϑj |2
)−1/2

.

The proof of Theorem 2.1 is an immediate consequence of Theorem 2.2.
Proof of Theorem 2.1. Note that Hk is singular if and only if ϑk+1 = 0. In this case, the

FOM iterate is undefined, and we can define the FOM residual norm to be infinite. Therefore,
defining 1/∞ = 0, we have that

‖rG
k ‖2
‖rG

0 ‖2
=

(
k∑

j=0

‖rF
0 ‖22
‖rF

j ‖22

)−1/2

.

Canceling ‖rF0 ‖2 = ‖rG0 ‖2, we therefore find

(2.1) ‖rG
k ‖2 =

(
k∑

j=0

1

‖rF
j ‖22

)−1/2

.
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Thus, bounding each term in the sum by the maximum, it follows that

‖rG
k ‖2 ≥

(
(k + 1) max

0≤j≤k
1

‖rF
j ‖22

)−1/2

=
1√
k + 1

· min
0≤j≤k

‖rF
j ‖2,

which proves the result.
One may wonder whether the pre-factor

√
k + 1 in Theorem 2.1 is necessary. We show

that no better value is possible:
THEOREM 2.3. For every k ≥ 1 there exists a matrix A and a vector b for which

min
j≤k
‖rF

j ‖2 =
√
k + 1 · ‖rG

k ‖2.

Proof. It is well-known that any sequence of residual norms is possible for FOM; that is,
given any sequence of non-zero positive numbers f0, f1, . . . , fk, there exists a matrix A and
vector b (of dimension n = k + 1) for which ‖rF

j ‖2 = fj [18, Theorem 3.15]. In particular,
there exists a matrix A and vector b for which ‖rF

j ‖22 = 1, for j = 0, 1, . . . , n. In this
case (2.1) implies

‖rG
k ‖22 =

1∑k
j=0 1/‖rF

j ‖22
=

1

k + 1
,

which, since min0≤j≤k ‖rF
j ‖2 = 1, gives the result.

3. Discussion.

3.1. Previous work. Many works have studied the relation between convergence of
FOM and GMRES [4, 7, 12, 16, 17, 6, etc.], particularly with the goal of understanding how
to efficiently estimate the residual/error norms in practice.

Perhaps the best-known [4, 7] relation between the FOM and GMRES residual norms is

(3.1) ‖rF
k‖2 =

‖rG
k ‖2√

1−
(
‖rG

k ‖2/‖rG
k−1‖2

)2 ,
which can be obtained by rearranging (2.1). Informally, (3.1) says that at iterations where
GMRES makes good progress (i.e., for which ‖rG

k ‖2 � ‖rG
k−1‖2), the FOM residual norm is

close to the GMRES residual norm, and at iterations where GMRES stagnates (i.e., for which
‖rG

k ‖2 ≈ ‖rG
k−1‖2), the FOM residual norm is very large. However, it does not provide any

information about at which, if any, iterations GMRES makes good progress. As such, it is
unclear from (3.1) that FOM’s overall convergence must track that of GMRES.

There are at least two bounds reminiscent of Theorem 2.1 in that they aim to understand
the “overall convergence” of FOM rather than the convergence at every iteration [13, 5].
While [13] uses entirely different techniques, [5] uses (3.1) to argue that if GMRES is making
good progress, then there must be some iteration for which ‖rG

j ‖2 is substantially smaller than
‖rG

j−1‖2 and hence for which ‖rG
k ‖2 ≈ ‖rG

k−1‖2. Both bounds are weaker than Theorem 2.1
in that they (i) hold only for symmetric matrices and (ii) are not in terms of the GMRES
residual norm but rather the best approximation of zero on sets of the form [a, b] ∪ [c, b] by a
polynomial taking the value one at the origin, where b < 0 < c.
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FIG. 3.1. Best FOM error so far minj≤k ‖A−1b−xF
k‖2 (solid), error for FOM ‖A−1b−xF

k‖2 (solid grey)
and GMRES ‖A−1b− xG

k ‖2 (dash-dot). All curves are normalized by ‖A−1b‖2. Note that the FOM convergence
is slightly better than GMRES, indicating FOM may be preferable to GMRES in some situations.

3.2. Error norm. We may wish to obtain a solution with small error norm ‖A−1b−x‖2.
It is typically not clear whether GMRES or FOM is preferable, and in many cases the error
norms of FOM are smaller than those of GMRES. In Figure 3.1 we have illustrated the error
norms for the examples from Figure 1.1 and observe that the FOM errors are slightly better.

Using that A−1b− x = A−1(b−Ax), Theorem 2.1 implies

min
j≤k
‖A−1b− xF

j ‖2 ≤
√
k + 1 · κ(A) · ‖A−1b− xG

k ‖2.

Therefore, so long as A is reasonably well-conditioned, the FOM error norms can, on the
whole, never be significantly worse than those of GMRES. The error norms of FOM and
GMRES can be estimated a posteriori to determine when to stop [16].

3.3. Connection to matrix functions. For convenience we will assume A is diago-
nalizable. FOM is closely related to the Arnoldi method for matrix function approximation
(Arnoldi-FA) [9, 11, 15], which approximates f(A)b with the iterates Qkf(Hk)e1. This is
arguably the most widely used Krylov subspace method for approximating f(A)b.

Commonly, f(x) can be expressed in the form

(3.2) f(x) =

∫
Γ

g(x)(x− z)−1dx,

for some weight function g(x) and contour Γ. Common examples of functions which can be
written in the form (3.2) include analytic functions (exponential, indicator function for a region
in the complex plane) for which Γ is a contour in the complex plane, Stieltjes functions (inverse
square root, logarithm) for which Γ is a subset of the real line, and rational functions with
simple poles, which are a special case of Stieltjes functions; see for instance [10]. Arnoldi-FA
is widely used to compute the action of the corresponding matrix functions on a vector in
applications throughout the computational sciences, including quantum chromodynamics,
differential equations, machine learning, etc. [10, 15].
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When f(x) can be written as (3.2) at the eigenvalues of A and Hk, the Arnoldi-FA error
is expressed as

f(A)b−Qkf(Hk)e1 =

∫
Γ

[
(A− zI)−1b−Q(Hk − zI)−1e1

]
dµ(z).

Note that Q(Hk − zI)−1e1 is the FOM approximation to the linear system (A− zI)x = b.
Hence, understanding the behavior of FOM is important to understand the behavior of Arnoldi-
FA.

Empirically, while Arnoldi-FA can sometimes have oscillatory convergence, it tends to
follow a general downward trend approximately matching the best possible approximation
from the Krylov subspace [1]. In fact, we are unaware of any examples for which this is not
the case. Near-optimality guarantees have been proved in the symmetric case for the matrix
exponential [8] and certain rational functions [1]. Theorem 2.1 is a near-optimality guarantee
for Arnoldi-FA with f(x) = 1/x.

4. Conclusion. We have shown that the FOM residual norms are nearly as good as the
GMRES residual norms in an overall sense. This provides theoretical justification for the use
of FOM on linear systems of equations, as well as insight into the remarkable convergence of
the Arnoldi method for matrix function approximation.

Acknowledgements. We thank the editor and anonymous referees for their helpful
feedback which improved the paper.
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