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ABSTRACT

Forward error correction (FEC) is a key component of mod-
ern high-bandwidth networks. Typically implemented at the
physical layer, FEC attaches error-correcting codes to blocks
of transmitted data, allowing some corrupted blocks to be re-
paired without retransmission. We outline a synthesis-based
approach for automatic exploration of the FEC-code design
space, focusing on Hamming codes. We formally verify the
correctness of a Hamming (128, 120) code used for FEC in
the recent 802.3df Ethernet standard, and provide prelimi-
nary evidence that our prototype synthesizer can leverage
user-provided formal properties to generate FEC codes that
are highly robust, efficiently implementable, and tuned to
support specific data formats such as IEEE floating points.
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1 INTRODUCTION

Block codes such as Hamming [13], Reed-Solomon [33], low-
density parity check (LDPC) [10], etc. have been used for
error detection and correction in communication and data
storage since the advent of digital computing. Recently, these
types of block codes are making a strong resurgence in the
form of forward error correction (FEC), which has become
a key component of modern networks as speeds increase
in optical and cellular links. For example, a (128, 120) Ham-
ming code (120-bit data plus 8-bit check) has been exten-
sively analyzed [3, 29, 31] and adopted alongside KP4 (a
Reed-Solomon code) in the recent 802.3df standard (400- and
800-Gb/s Ethernet). A huge amount of manual design went
into constructing this Hamming FEC code, including low-
level analysis related to hardware implementation [4, 40],
but detailed arguments were also made in favor of an al-
ternative Reed-Solomon FEC code [39]. The questions that
motivated this paper were twofold: (1) How can we provide
formal guarantees about the “right” FEC code? (2) How
can we help to automate the FEC design process?
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Figure 1: Avg. magnitude of num. error vs. bit position

A key observation is that the “right” code is heavily de-
pendent on the type of data being transmitted. Consider Fig-
ure 1, which shows the (normalized) average magnitude of
numeric error across all possible numeric 32-bit integers and
floating points when a bit at each index is flipped. This sug-
gests that a floating-point-specific FEC code may be able to
better balance between robustness and computation/trans-
mission overhead by focusing primarily on the upper 8 bits,
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especially since many distributed applications have some de-
gree of tolerance to low-magnitude numeric error, e.g., cer-
tain scientific computing simulations [19], distributed ma-
chine learning (ML) training [27], etc. Conceivably, we could

use one FEC code for integers and another for floating points,
tuned to their per-bit characteristics, and existing work could
allow us to dynamically exchange codes [18].

In this paper, we outline a prototype system which is
the first to use counterexample-guided inductive synthesis
(CEGIS) to automatically explore the FEC design space, fo-
cusing specifically on Hamming codes. Our tool supports
user-specifiable properties, allowing application-specific de-
sign of FECs, and can function as both a verifier and synthe-
sizer. For example, we can efficiently verify that the 802.3df
(128,120) Hamming code has minimum distance 3. We show
that our tool can automatically extend the standard Ham-
ming (7,4) code to much higher robustness, while minimiz-
ing the necessary additional check bits. We synthesize a stan-
dard Hamming code with minimum distance 3 that is usable
for 32-bit data, and synthesize an alternative floating-point-
specific code with increased overall error rate, but drasti-
cally decreased average magnitude of error, as well as sig-
nificantly fewer check bits. Finally, we show how our tool
can optimize codes by reducing the number of used bits, and
demonstrate the encode/check performance improvement
and compressibility advantages of this optimization.

2 BACKGROUND

Many codes have been proposed for FEC (see [37] for an
overview of FEC and survey of specific codes). In this paper,
we focus on Hamming codes, but the techniques developed
here could be readily applied to other types of block codes.

2.1 Hamming Codes

The following error detection and correction method was
first described by Hamming [13]. Although the coding scheme
can be applied in arbitrary finite fields, the 2-element finite
field GF(2) is most commonly used, due to the prevalence
of binary data. An (n, k) Hamming code encodes each k-bit
data word d into an n-bit codeword w. This computation is
performed via matrix multiplication w = dG.Thekxn gen-
erator matrix G is of the form G = (I | P), where I is the
k X k identity matrix, and P is a k X (n—k) coefficient ma-
trix that determines the (n — k) check bits within the code-
word. In this paper, we will denote a generator matrix as G¥,
where k is the data length, and ¢ = (n — k) is the number
of check bits. To determine whether a codeword w has been
corrupted, we perform matrix multiplication b = (H w')7,
where H = (=PT | I(,_1)) is a (n — k) X n check matrix. In
the finite field GF(2), —PT=P7, i.e., simply the transpose of
the coefficient matrix P. If I; = 6 the codeword is valid (no
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Figure 2: Hamming encode (07 G = w) and check

Hw! = I;T) example calculations

error detected). If b7 equals a column j of H, this indicates a
single error at position j of the codeword, allowing error cor-
rection. Multi-bit errors can be detected but not corrected.
Fig. 2 shows how Hamming (7, 4) encoding works. Here,
4-bit data word d is multiplied by generator G; to form 7-bit
codeword w. Note that in GF(2), addition behaves as xor,
and multiplication behaves as and, so to produce the first
bit of the codeword, we bitwise-and data 0011 with the first
generator column 1000 to get 0000, then xor across these
bits to get (((0 @ 0) ® 0) ® 0) ® 0 = 0 (this xor operation
produces 1 when an odd number of bits are set). To check
codeword w, we multiply H w” to get 3-bit check bits bT.

2.2 Hamming Code Robustness

An undetectable error occurs when bit-errors have altered a
valid codeword into another valid codeword. The minimum
distance md(G) of a generator G is the smallest number of
bit-errors needed to transform any valid codeword into an-
other valid codeword, i.e., the smallest number of bit errors
needed to produce an undetectable error. For example, the
Figure 2 generator G; has minimum distance 3. The proba-
bility P, of an undetected error is given by the formula

n

PGH =) (;;) e (1-p)" s (:1) ",

J=m

where n = k + ¢ is the codeword length, m = md(G) is
the minimum distance, and p is the channel bit-error prob-
ability. Altering characteristics of the generator such as the
number of check bits and minimum distance can change its
robustness, i.e., its likelihood of detecting errors. In Section
3, we describe an automated approach for producing robust
generators, and provide preliminary experimental evidence
demonstrating the utility of this approach in Section 4.
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n €z (integer constant)
r € R (real constant)
f u= leny | len. | len; | md (function)
¢ u=true | false |c |~ | pAP | dV P (property)
| $ = ¢ | minimal(e) | maximal(e)
ex=n|r|le+e|e—e|exe| —e (expression)
| Ge(e,e) | leng | leny | w(e) | sumy | f(Ge)
cu=e#ele=e|le>ele<e (condition)

Figure 3: Property language for Hamming generators

3 SPECIFYING AND SYNTHESIZING
GENERATORS

We outline a program synthesis approach to automate the
construction of application-specific Hamming codes.

3.1 Property Language

Figure 3 details our specification language for properties of

generators. Numeric expressions e include value at a spe-
cific location within a specific generator G (e, €), number of

generators leng (we use G to represent the set of all genera-
tors), number of weights len, (discussed in §3.2), value of a

specific weight w(e), weighted sum of bit-error probabilities

sum,, minimum distance of generator md(G.), data length

of generator leng(Ge), check length of generator len.(Ge),

and number of set bits (ones) in the generator’s coefficient

matrix len; (G.). The two pseudo-propertiesminimal(e) and
maximal(e) indicate that numeric expression e should be

minimized/maximized during synthesis. As an example,

leng =1 A leng(Gp) = 4 A lenc(Gy) < 4
A md(Gp) =3 Aminimal(lenc(Go)),
instructs the synthesizer to produce a single G, having 4-bit

data length, at most 4 check bits, and minimum distance 3,
while also minimizing the number of check bits.

3.2 SMT-Based Property Checking

Satisfiability modulo theories (SMT) [11] extends Boolean
satisfiability checking with the ability to efficiently handle
various theories such as arithmetic. All properties specified
via the Figure 3 property language can be translated into for-
mulas within the decidable SMT theory quantifier-free unin-
terpreted functions and linear real arithmetic (QF_UFLRA). We
begin by declaring function symbols

leng €2, ZXZXZ—B,h:ZXZXZ— B,
leng:Z — Zlen. : Z —>2Z,md:7Z — Z,len, : Z — Z,
datay : ZX7Z — B, ency : ZXZ — B, checky : ZX Z — B,
data, : Z.X7Z — B, enc, : ZX7Z — B, check; : ZX7Z — B,
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len,, € Z,sum,, e R w:Z >R map:Z — Z.

The g, h, datay, ency, checky symbols represent matrices/vec-
tors associated with the generators, with the first parameter
identifying a specific generator. For example, g(0, 2, 5) rep-
resents the Boolean value at position (2, 5) of generator Gy.

Given user-defined upper-bound constants Lg, Ly, L., and
L,,, we assert well-formedness constraints. For example, (1)
ensures that the identity matrix of each G; is set properly,
and (2) ensures that the coefficient matrix of each H; is set to
properly match G;. These formulas are implicitly existentially-
quantified — the SMT solver will search for a satisfying as-
signment, giving a concrete function for each symbol.

Lg Ld Ld
AN N\ < lena(i) Ay < Teng(i)) =
i=0 y=0 x=0
g(i, Y, x)=(x= y)) 1)
Lg Lg La+Lc
/\ /\ /\ ((y < lenc(i) Ax < leng(i)) =
i=0 y=0 x=0
h(i,y,x) = g(i, x, y + lena(i))) @)

There are various other straightforward well-formedness
constraints, including ensuring that enc; = datay G and that
checky = (H encZ)T. Due to space limitations, we elide these.
Constraint (3) ensures that len; properly counts the number
of set bits (ones) in the coefficient portion of each generator.

Lg  Lg Lg+Lc

/\ (Z Z ite(i < leng A g(i,y,x) Ay < leng(i) A

i=0  y=0 x=0
leng(i) < x < leny(i) + len. (i), 1, 0)) = len (i) (3)

The user can specify len,, weights w. In this case, the
data words of the generators are considered to be permuta-
tions of bits from a larger len,,-bit word where real-valued
weights determine the relative criticality level of each bit
(further details in §4.3). Constraints (4) and (5) allow map to
assign each of the len,, bits to a specific generator. In con-
straint (6), chooseTimesPow(n, m) represents the approxima-
tion for undetected error probability from §2.2, i, (") - p™
(we pre-compute this for the possible values of n, m, p, with
p being a user-specifiable constant), and this ensures that
sum,, tracks the weighted sum of the undetected error prob-
abilities resulting from the mapping. of bits to generators.

L‘V
/\0 < map(j) < leng (4)
j=0

Lg Ly

/\(i < leng = leng(i) = Z ite(map(j) =1,1,0))  (5)

i=0 j=0
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LV/
( Z w(j) - chooseTimesPow(leng(map(j)) +
=0
lene(map())), md(map())))) = sum,, ~ (6)

Constraint (7) ensures that the check bits are set to zero
for the two codewords corresponding to each generator. This
is used in combination with constraint (8) to ensure that the
verifier can check constraints related to minimum distance.

Lg 1 Le
/\ /\(i < leng = - \/j < len.(i) A checki (i, j)) (7)
j=0

i=0 k=0

Formula ¢,,4 states that there are two distinct codewords
that differ by fewer bits than the minimum distance.

Lg Lg+L.
Prmd = \/(i < leng A (0 < ( Z ite(x > leng (i) + len (i)
i=0 x=0
V ency (i, x) = ency (i, x), 0, 1)) < md(i))) (8)

As we will see in Section 3.3, the SMT solver can be used
as either a synthesizer, in which case we assert a conjunc-
tion of constraints and ask for a satisfying assignment that
solves them, or as a verifier, in which case we assert the
negation of a conjunction of properties, and ask for a sat-
isfying assignment corresponding to a property violation
(counterexample). When we are given a list of properties
props = o, -+, Y to verify, if one of them refers to the
minimum distance, we append —¢,,4 to props, and the veri-
fier then checks the assertion = (o A+ - - A A= ma), which
is equivalent to =fy V - - - V =i V Ppmq. In other words, the
verifier will search for a satisfying assignment that either
causes one of the properties to be violated, or satisfies ¢ ;4.

3.3 Checking Quantified Properties

We have seen how existentially-quantified properties can be
efficiently checked using an SMT solver. In general, check-
ing more complex quantifier alternations is undecidable, but
we will consider how to efficiently check arbitrary proper-
ties of the form Ik € K.Vi € I.¢4(i, k) utilizing an ap-
proach known as counterexample-guided inductive synthe-
sis (CEGIS) [36, 35]. In this approach, we utilize two SMT
solvers operating in a loop. The first solver functions as a
synthesizer, trying to satisfy the property

Tk € K. Aier $(i, k)

for an initially-empty finite set I. If the property is satisfiable,
the k from the satisfying assignment is provided to the other
solver, which functions as a verifier, handling the property
Vi € I.¢(i, k) by checking that its negation 3i € 7. -~ (i, k)
is unsatisfiable. If this negation is instead satisfiable, the i
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Algorithm 1: Synthesis Algorithm
Input: list of properties props; list of optimization
constraints opts; solver timeout timeout
Result: generator G satisfying props, or L on failure
// initialize SMT solvers (§3.2)
(syn, ver) « initSolvers(props, opts); G « L
1 for o € opts do

2 while o.canBeFurtherOptimized() do

3 syn.push()

4 syn.assert(o.getNextBound())

5 G« 1; t « time()

6 while time() — t < timeout do

7 G" « L; syn.push()

8 status < syn.checkSat(timeout)

9 if status = SAT then G”’ « syn.model()
10 else break // synthesizer failed
1 syn.pop(); ver.push()

12 ver.assert(makeAssertion(G’"))

13 status «— ver.checkSat (timeout)

14 if status # SAT then

15 G «G”

16 L break // verifier succeeded
17 else syn.assert(makeCex(G""))

18 ver.pop()

19 if G’ # 1 then

20 L o.success(); G «— G’

21 else o.failure()

2 || synpop()

23 return G

from the satisfying assignment (counterexample) is added
to the set I, and the synthesize-verify loop repeats.

3.4 Synthesis Algorithm

Algorithm 1 shows pseudocode for our synthesis approach.
The initSolvers function asserts well-formedness constraints
such as (1)-(2) into both solvers, asserts (3)-(6) into syn, and
asserts (7) into ver. All properties in props except those re-
ferring to minimum distance are asserted into syn, and the
remaining ones are asserted into ver as mentioned in the dis-
cussion of ¢4 in Section 3.2. The function makeAssertion
produces an assertion matching the synthesizer’s current
candidate G”, and makeCex produces an assertion ensuring
that the synthesizer will not synthesize this G” again.

4 IMPLEMENTATION AND
EXPERIMENTS

We built a prototype implementation of the synthesis frame-
work outlined in Section 3. Our implementation contains
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l min_dist H check_len H iterations [ time (s) [ RAM (GB) [

8 12 11,395 151.80 1.52
7 12 9,046 121.65 1.53
6 8 15,109 183.86 1.56
5 7 12,334 121.77 1.57
4 5 15,662 126.02 1.55
3 3 682 5.16 0.81
2 2 637 4.72 0.81

Table 1: Generators with given minimum distance

around 2,500 lines of Java code, and utilizes two instances of
the Z3 [7] SMT solver (version 4.8.11) for the synthesizer and
verifier components. Our code compiles and runs on Ubuntu
22.04.4 Linux using OpenJDK 11.0.23.

For all experiments, we used a Dell OptiPlex 7080 work-
station with the following hardware configuration: 10-core
(20-thread) Intel i9-10900K CPU at 3.70GHz, 128 GB DDR4
RAM, and a 2TB PClIe NVME Class 40 SSD.

4.1 Verifying Real-World Generators

Algorithm 1 can also be used as a stand-alone verifier, in
which case, optimization constraints are ignored, the syn-
thesizer steps are skipped, and all props are provided to the
verifier. We used our tool to formally verify that the 802.3df
Hamming (128, 120) code generator provided in [4] has min-
imum distance 3. Runtime was 14.40 s, and maximum RAM
used was 1.38 GB. To demonstrate negations of properties,
we also verified that the (128, 120) code does not have min-
imum distance 4. This runtime was 122.58 s, and maximum
RAM used was 1.37 GB.

4.2 Synthesizing Robust Generators

In this experiment, we measured the ability of our synthe-
sizer to produce generators with higher levels of robustness.
We fixed a data length of 4, as in the commonly-used Ham-
ming (7, 4) code, but explored other minimum distances from
8 down to 2, minimizing the check length for each value m
of minimum distance via the following property:

leng(Go)=m A 2 < len(Gp) < 14 Aminimal(len.(Gy)).

We used a solver timeout of 120s. Table 1 shows results
and synthesizer performance. For example, for minimum
distance 4, we synthesized the following generator G;:

100001111
G4=010010110
3 0010(10101
000111100

To test the robustness of each of our synthesized genera-
tors, we produced a sequence of random 10,000,000 four-bit
data words. For each of these data words, we used a given
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Figure 4: Generator robustness

generator G to encode it, and then randomly flipped each bit
in the codeword with channel bit-error probability p = 0.1.
Figure 4 shows the results. The upper line shows the number
of codewords that had more bit-flips than the generator’s
minimum distance, and this closely matches the theoretical
undetected error count, P,(G)-10,000,000 (Section 2.2). The
lower line shows the actual undetected codeword errors —
codewords transformed into other codewords by bit errors.

As seen in the figure, our synthesized generator G}, hav-
ing minimum distance 8 reduced the number of undetected
corrupted codewords to zero.

4.3 Synthesizing a Floating-Point-Specific
Generator

As we saw in Figure 1, different types of data can be af-
fected in different ways by bit errors. In this experiment,
we leveraged the characteristics of IEEE floating-point data
to synthesize a floating-point-specific generator which re-
duced the average numeric magnitude of undetected errors,
and utilized only a small number of added check bits.

We considered a 32-bit data word as two 16-bit words. For
16-bit data, we first synthesized a generator with a single
check bit and minimum distance of 2. After 479 iterations
(6.09 s), our synthesizer produced the following generator
G1°, which functions in exactly the same way as an even-
parity bit, allowing detection of all single-bit errors.

Gy = : . | 16 rows

We then synthesized a generator G!® with 6 check bits and
minimum distance 3, which took 210 iterations (6.66 s). Fi-
nally, we used the data from Figure 1 to produce weights for
each of the upper 16 bits of a 32-bit IEEE floating point, rep-
resenting the relative average magnitude of numeric errors
resulting from each bit being flipped:

w; = 100, 100, 100, 100, 99, 98, 82, 45,17,17,8,4,2,1,1, 1.

We increased the number of generators to two (one with 5
check bits and min. dist. 3, and the other with 1 check bit and
min. dist. 2), and allowed mapping map : N—{0, 1} of each
bit i within the 16-bit data to a generator. Starting with an
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generators ’ check || undetect.

avg. err. | non-num.

Gl6 G 2 || 2333,996 | 2.14-10% 5744
Gl6 Gl° 12 12,383 | 1.59 - 10% 21
GEGY G 7| 585979 | 0.24-10% 248

Table 2: Float32-specific generator robustness

initial bound of 1000, we asked the synthesizer to minimize
sumy, (§3.2), where md(map(i)) is the minimum distance of
the generator that bit i is currently mapped to:

15 . .
B _(leng(map(i))+lenc(map(i))\  ma(map(i))
e = ZO i ( md(map(i)) P '

After 997 iterations (355.48 s), the synthesizer produced
G? and G?, and a mapping where the upper 8 bits of the
data are mapped to Gf and lower 8 were mapped to G¥.

Similar to our approach in Section 4.2, we randomly gen-
erated 10,000,000 32-bit data words, making sure that each
represented a numeric floating point value. For each combi-
nations of generators listed in Table 2, we encoded the data
and flipped each bit of the resulting codewords with proba-
bility p = 0.1. Table 2 shows that our Float32-specific com-
bination G§ G? G!° containing the generators synthesized
using per-bit weights had more undetected errors than the
approach having solely minimum distance 3, but less than
the simple parity-bit approach. Additionally, it has 7 check
bits, more than the 2 for the parity approach, but fewer than
the 12 for the minimum distance 3 approach. Most impor-
tantly, when considering the magnitude of the numeric er-
ror caused by bit flips within the floating-point values, our
Float32-specific combination had the lowest average magni-
tude, while also providing a number of non-numeric errors
(numeric data being corrupted into not-a-number or infinite
values) between the other two approaches.

4.4 Synthesizing High-Performance
Generators

In this experiment, we optimized generators by minimizing
the number of set bits in their coefficient matrix:

d d+c
md(Gg)=m Aminimal (Z Z Gr(J, l)) .

70 i=d
Specifically, we synthesized a generator G32 with minimum
distance m = 3, and minimized the number of set bits in the
coefficient matrix from 200 down to 100. At 1210 iterations
(419.06 s), the synthesizer timed out on a sum equal to 118,
resulting in 82 generators having sums between 119 and 200.
For each of these generators, we automatically emitted a
C implementation that could perform efficient encoding and
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Figure 5: Encode/check performance of generators
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Figure 6: Compressability of generators

checking for that specific generator using and and xor bit-
wise operators. Each C program cycled through all possible
32-bit words in increments of 21, resulting in 204,522,253 to-
tal data words — the program performed encode/check for
each. We used GCC 11.4.0 to compile each program, using
both the —00 and —03 compiler optimization levels. Perfor-
mance results are shown in Figure 5 — each runtime data
point is an average across 5 runs of the program. Note that
minimizing the number of ones can also have benefits at the
hardware level by decreasing the gate count [34].

Besides affecting performance, the sum of bits in the per-
mutation matrix also influences compressibility. For each of
the 82 generators, we iterated through each column of the
permutation matrix, writing the bits into a file. As a basic
demonstration regarding compressibility, we created a GZIP-
compressed TAR archive from each of these binary files, and
measured the resulting archive sizes (see Figure 6).

5 RELATED WORK

Program Synthesis for Networks. Network programming lan-
guages [2, 26, 22] and associated program synthesis tech-
niques have been used to solve a variety of orthogonal prob-
lems, such as synthesis of network updates [25, 23, 17] and
synthesis of control-plane operations [5]. Our work on syn-
thesis of FEC codes is complementary to these approaches.
Application-Specific FEC Codes. There are various projects
that have manually designed application-specific codes, e.g.,
for 100G Ethernet [6], low-delay 5G [15], and repair of 802.11
packets [14]. Our work seeks to automate such design.
Verification of FEC Codes. There are works on verification
of error-correction codes (ECCs) at the hardware level [8],
including approaches using BDDs [12], computational ge-
ometry [20], and first-order logic (via the ACL2 theorem
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prover) [28]. In contrast, our approach uses an SMT-based
verification/synthesis technique.

Synthesis of FEC Codes. There are works on synthesis of
Trellis codes [9] and Reed-Solomon codes [21], but these
do not benefit from an efficient counterexample-guided im-
plementation and user-specifiable properties. There is also
work on exhaustive exploration of CRC polynomials [16],
but this does not provide formal guarantees. Work on syn-
thesis of Hamming-based DRAM ECCs [30] uses repeated
calls to a SAT solver, but does not allow the customizability
and flexibility of our SMT-based CEGIS approach.

Alternative Uses for Hamming Codes. Hamming codes have
seen other uses in networking. For example, recent works
have used Hamming codes for synthesis of congestion con-
trol algorithms [1] and in-network compression [38].

6 FUTURE WORK

There are many potential lines of work that can build on our
prototype approach. We outline two potential directions.

Scaling Synthesis to Other Codes

There are many ways the CEGIS approach used in our pro-
totype tool could be optimized. For example, we could seek
to produce smaller (more general) counterexamples, rather
than using the entire candidate generator matrix, to speed
up the synthesize-verify loop. Additionally, we are explor-
ing integration with other approaches for scaling up synthe-
sis, such as using rewrite rules [24], and synthesizing merge
functions [32] to combine multiple codes together.

Synthesizing Codes with Multi-Bit Error
Correction.

As mentioned in Sec. 2.1, a single-bit error in a Hamming
codeword can be detected by obtaining the check bits l_; and
observing whether b matches a column in the check matrix.

If there are multiple bit-errors, b will be the sum of multi-
ple columns, meaning the bit-error positions can no longer
be uniquely identified. Consider the Figure 2 example, but
assume the highlighted bits of the codeword are flipped.

1000[/101
0100110
(0011)0010111:(0011\100)
0001|011
0
1
1110[100)]1 1 0 1
(0111010)1=(1)+(0)=(1)
1011(001)]|1] 0 1 1
0
1
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In this case, we cannot discern this two-bit error from a
single-bit error, since the sum of the corresponding check
matrix columns matches another column. For this reason,
Hamming codes are typically only used to detect single-bit
errors. However, by increasing the number of check bits and
carefully adjusting the generator, we can ensure that each
pair of columns in the check matrix has a unique sum. The
following extends the previous example with 8 additional
check bits to exhibit this property. This new generator still
has minimum distance 3 (verified by our tool), but can now
be used to detect both 1-bit and 2-bit errors.

1110/10000000000
0111/01000000000O0
1011/00100000000
100000010000000
0100/00001000O00O0O0
H=(0010/00000100000
0001/00000010000O0
100000000001000
0100/0000000O0100
0010/00000000O0OT1TO0
0001/00000000O0O0T1

Based on this observation, we are working to add num-
ber of correctable bit errors as a property in our synthesizer,
which may allow us to correct multi-bit errors using fewer
check bits than the above manually-crafted check matrix.

7 CONCLUSION

In this paper, we present a novel approach for constructing
FEC codes automatically via program synthesis. Our tool
allows the user to tune Hamming codes for specific applica-
tions, through the use of customizable formal specifications.
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