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The arrows in Figure 2 re�ect the choice of expressing .8 as either .8−1 or .8+1, which has the
e�ect of moving the computation from the 2D domain (triangle) to some of the 1D edges. The
correspondance between Figure 2 and Equations 2 and 3 will be made more explicit in Section 3.
The goal of GR06’s simpli�cation is to explore all such possible rewrites and �nd the ones with
the optimal asymptotic complexity in the presence of reuse. However, as illustrated by the next
example, some rewrites may not be possible.

2.2 Prefix Max

Consider the pre�x max, which is identical to the previous example, except it uses the max operator
instead of addition:

.8 =
9≤8
max
9=0

- 9 (4)

Everything else is the same, the value produced at .8 can be used to compute the next value at .8+1,
allowing it to be rewritten with $ (# ) complexity as:

.8 =

{
8 = 0 : -0

8 > 0 : max(.8−1, -8 )
(5)

exactly like Equation 2. However, the key di�erence here is that only one of the rewrites is possible.
There is no way to express an equation analogous to Equation 3 because the max operator does not
admit an inverse. This is not an issue here since at least one rewrite does not involve the inverse
operation, and thus GR06 can �nd it. However, in general, a rewrite may not exist that does not
involve the inverse operation, and consequently, GR06 may fail, as illustrated by the next example.

2.3 Sliding and Increasing Max Filter

Consider the following equation, which computes an # -element output array from an # -element
input array where the 8’th element of the output is the max over the sliding, and increasing, window
from 8 to 28 on the input:

.8 =
9≤28
max
9=8

- 9 (6)

As written, this has an asymptotic complexity of $ (# 2). Like the previous examples, there is also
reuse. Across two adjacent answers in the output, $ (# ) of the same inputs are read:

.: = max(-: , -:+1, -:+2, ..., -2: )

.:+1 = max( -:+1, -:+2, ..., -2: , -2:+1, -2:+2)

But, neither can .:+1 be expressed in terms of .: nor can .: be expressed in terms of .:+1 because
this would require removing the contributions of either -: or -2:+1 and -2:+2 which is not possible
because the max operator has no inverse.
However, it is still possible to rewrite Equation 6 with an asymptotic complexity of $ (# ). The

solution is to split this reduction into three pieces by the hyperplanes 28 = # and 9 = # . Since
the reduction is commutative, the order of accumulation does not matter, and as we discuss in
Section 4.5, Equation 6 may be rewritten as,

.8 =




28 ≥ # : max

((
9<#
max
9=8

- 9

)
,
(

9≤28
max
9=#

- 9

))

28 < # :
9≤28
max
9=8

- 9

(7)



Maximal Simplification of Polyhedral Reductions 3:5

In this form, we can see three pieces. The two reductions in the top branch 28 ≥ # are both
instances of a standard su�x max and pre�x max in the previous section, 2.2. The reduction in the
second branch is the same reduction as Equation 6 but just over a smaller domain. This leads to a
recursive simpli�cation strategy, which can be further and similarly split into the same number
of pieces. We formulate this more precisely in Section 7, and the rest of this work is dedicated to
generalizing this idea to arbitrary input reductions.

3 Background

In this section, we summarize the simpli�cation transformation of GR06 with an example.

3.1 Terminology and Notation

Generally, simpli�cation operates on computations of the following form:

.5? (I ) =

⊕

I∈D

-53 (I ) (8)

where. is an output variable, and 5? and 53 are a�ne functions. The body is an arbitrary expression
involving other variables in the program, provided they do not depend recursively, even transitively,
on any instance of. . Without loss of generality (our tools handle arbitrary expressions), we abstract
it as an input variable - . We use the terminology of GR06, summarized below:

• Polyhedron: A set of integer points de�ned by a �nite list of inequality and equality con-
straints.

• Reduction body (D): A 3-dimensional polyhedron representing the values of the program
variable indices involved in the reduction’s accumulation.

• Facet (or face): A :-dimensional face of the reduction body described uniquely by a subset
of its inequality constraints treated as equalities.

• Face lattice: The hierarchical arrangement of faces of the reduction body, see Section 3.2.
• Write function (5? ): A rank-de�cient a�ne map from Z3 → Z3−0 de�ning to which element

of the output each point in the reduction body accumulates.1

• Accumulation space (A): The 0-dimensional space characterized by the null space of the
write function.

• Read function (53 ): A (potentially rank-de�cient) a�ne map from Z3 → Z3−A characterizing
from which element of the input each point in the reduction body reads.

• Reuse space (R): The A -dimensional space characterized by the null space of the read function.
• Reuse vector (

⇀

d): Any vector in the reuse space.

Such programs consist of arbitrarily nested loops with a�ne control and a single statement in the
body, plus initialization statements as appropriate. Each statement accumulates values into some
element of an output array using the reduction operator ⊕. The right-hand sides of the statements
are arbitrary expressions evaluated in constant time, reading other array variables via a�ne access
functions. Our reduction operators are associative and commutative, so the execution order of
the loops is irrelevant. Every instance of the loop body (for every legal value of the surrounding
indices) can be treated as a new dummy variable. Simpli�cation is possible when the reuse space is
non-empty (i.e., the read function, 53 , is rank-de�cient).

3.2 Face La�ice

The face lattice [25] is an important data structure for simpli�cation. The face lattice of a polyhedron
D is a graph whose nodes are the facets of D. Each face in the lattice is the intersection of D with

1Rank-de�ciency implies that 0 > 0.
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lattice, starting with D. At each step, we simplify the facets of the current face F . The key idea
is that exploiting reuse along

⇀

d avoids evaluating the reduction expression at most points in F .
Speci�cally, let F ′ be the translation of F along

⇀

d . Then all the computation in F ∩ F ′ is avoided,
and we only need to consider the two di�erences F ′\F and F\F ′, i.e., the union of some of the
facets of F .
At each recursive step down the face lattice, the asymptotic complexity is reduced by exactly

one polynomial degree, as facets of F are strictly smaller dimensional subspaces. Furthermore, at
each step, the newly chosen

⇀

d is linearly independent of the previously chosen ones. Hence, the
method is optimal—all available reuse is fully exploited. This holds regardless of the choice of

⇀

d at
any level of the recursion, even though there may be in�nitely many choices.
Bringing everything together, the residual $ (# 2) computation in Equation 11 of our working

example,

.8 =

9≤8∑

9=0

-8− 9 (12)

can be thought of as a completely new 2-dimensional reduction that may be further simpli�ed. We
do not describe this in detail here, as it is very similar to the pre�x sum described in Section 2.1.

3.7 Simplification Enhancing Transformations

GR06 proposes several simpli�cation-enhancing transformations that can be used to expand the
reuse space. We brie�y summarize one of them, which exploits commutativity, called reduction
decomposition here, as we rely on this heavily in Section 6. Given two functions 5 ′′? and 5 ′? such

that 5? = 5 ′′? ◦ 5 ′? , a reduction of the form in Equation 8 with multi-dimensional accumulation may
be rewritten as the following two reductions,

.5 ′′? (I ) =

⊕

I∈D

/ 5 ′? (I )
(13)

/ 5 ′? (I )
=

⊕

I∈D

-5A (I ) (14)

with the introduction of a new variable / to hold partial answers. We can think of this as decom-
posing a higher dimensional reduction into a lower dimensional reduction of reductions, which is
legal because the order of accumulation does not matter. This transformation is useful because it
a�ects which facets can be ignored. We precisely characterize this in Section 4.2.

An Example. Our working example in Equation 9 has two dimensions of accumulation (i.e., along
9 and :) because 5? = {[8, 9, :] → [8]}. Therefore Equation 9 could be explicitly written as the
following double summation,

.8 =

8∑

9=0

8− 9∑

:=0

-: (15)

where the inner reduction accumulates over : . We have not explicitly separated this into two sepa-
rate equations. Still, the inner reduction should be interpreted as a reduction with an accumulation
characterized by 5 ′? = {[8, 9, :] → [8, 9]} (i.e., producing a 2-dimensional intermediate answer) and

the outer reduction as one characterized by 5 ′′? = {[8, 9] → [8]}. Note that there are many other
decompositions available. For example, the inner reduction could be expressed over 9 instead or any
linear combination of 9 and : , for that matter. We discuss methods for constructing 5 ′? in Section 6.
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exclusively or ⊖-faces, but not both. Before we can describe how to do this, we need to augment
GR06’s original characterization of non-residual facets, i.e., the facets that may be ignored, which
we will call boundary and invariant facets.

4.2 Boundary Facets

Let H denote the linear space of the facet F , de�ned by GR06 as the intersection of the e�ectively
saturated constraints characterizing F . An unsaturated constraint, 28 in F is characterized as a
boundary constraint if the following condition holds:

H ∩A ⊆ H ∩ ker(28 ) (17)

where A is the accumulation space de�ned previously, and ker(28 ) is the null space of the linear
part of the constraint. This says that a facet is a boundary if its linear space contains the entire
accumulation space, i.e., multiple points on that face contribute to one or more answers. Boundary
facets are useful because any boundary facet labeled as an ⊖-face can be ignored since the “answer(s)”
are not needed.

We will make an additional distinction on the degree to which a facet is considered a boundary.
Let us further characterize boundary facets as strong or weak based on the following de�nitions.

De�nition 4.1. Let a facet of F , de�ned by the e�ectively saturated constraint 28 , be called a
strong boundary facet if the following condition holds,

rank
(
A ∩ ker(28 )

)
= rank

(
A
)

(18)

De�nition 4.2. Let a facet of F , de�ned by the e�ectively saturated constraint 28 , be called a
weak boundary facet if the following condition holds,

0 < rank
(
A ∩ ker(28 )

)
< rank

(
A
)

(19)

In other words, a strong boundary facet is one where no other point contributes to the answer(s)
to which the points on the facet contribute. In contrast, a facet whose linear space contains part
of (i.e., has a non-trivial and incomplete intersection with) the accumulation space is said to be a
weak boundary. Note that these are mutually exclusive; a facet can not be simultaneously strong
and weak.

An example. The distinction between strong and weak boundaries only has meaning in 3D and
higher. Look back at the working example from Section 3.3. The accumulation space in this example
is the 9:-plane. Of its four 2-faces, shown in Figure 4, the “{1}” face, at 8 = # , is a strong boundary
because its linear space, the 9:-plane contains the entire accumulation space. The other three 2-faces
are all weak boundaries because the intersection of their linear spaces with the accumulation space
is a 1D subspace.

4.3 Invariant Facets

GR06 does not explicitly characterize what we will call invariant facets. We can think of an invariant
facet as the dual of a boundary facet, but from the perspective of the reuse space instead of the
accumulation space. Let an unsaturated constraint 28 in F be characterized as an invariant constraint
if the following condition holds:

H ∩ R ⊆ H ∩ ker(28 ) (20)

where R is the reuse space. Like boundary facets, invariant facets are useful because the recursion
never proceeds into an invariant facet (i.e., invariant facets are always labeled as ⊘-faces regardless
of the choice of reuse

⇀

d).
Similarly, we distinguish the extent to which a facet is invariant based on the following de�nitions.



3:12 Louis Narmour, Tomofumi Yuki, and Sanjay Rajopadhye

De�nition 4.3. Let a facet of F , de�ned by the e�ectively saturated constraint 28 , be called a
strong invariant facet if the following condition holds,

rank
(
R ∩ ker(28 )

)
= rank

(
R
)

(21)

De�nition 4.4. Let a facet of F , de�ned by the e�ectively saturated constraint 28 , be called a
weak invariant facet if the following condition holds,

0 < rank
(
R ∩ ker(28 )

)
< rank

(
R
)

(22)

Note that a facet may be simultaneously a weak invariant and a weak boundary. This happens
when the intersection of accumulation space, reuse space, and linear space of the facet is non-trivial.

An example. Again, looking back at the working example in Section 3.3, the reuse space is the
8 9-plane. The bottom “{2}” face is„ therefore„ a strong invariant facet, and the other faces are weak
invariant facets. In other words, any vector

⇀

d = ⟨d8 , d 9 , 0⟩ ∈ R labels the bottom 2-face an ⊘-face
because any such

⇀

d is orthogonal to the normal vector of the bottom 2-face, ⟨0, 0, 1⟩.

4.4 Residual Facets

As mentioned in Section 4.1, we can ignore some of the facets during single-step simpli�cation. Let
us refer to the facets which can not be ignored as residual facets, which are de�ned as follows:

De�nition 4.5. A facet of F , de�ned by the e�ectively saturated constraint 28 , will be called a
residual facet if the following condition holds,

(
rank

(
A ∩ ker(28 )

)
< rank

(
A
) )

∧
(
rank

(
R ∩ ker(28 )

)
< rank

(
R
) )

(23)

In other words, residual facets are neither strong boundary facets nor strong invariant facets.
Residual facets are those into which the recursion may need to explore that can potentially be
labeled as ⊖-faces.

4.5 Split Reduction

Le Verge [1992] showed that a reduction in the form of Equation 8, with the body D that can be
partitioned into disjoint subsets D1 and D2 (i.e., D = D1 ∪D2 and D1 ∩D2 = q) may be rewritten
as the following:

.5? (I ) =





5? (D1) ∩ 5? (D2) :

( ⊕

I∈D1

-53 (I )

)
⊕
( ⊕

I∈D2

-53 (I )

)

5? (D1) \ 5? (D2) :

⊕

I∈D1

-53 (I )

5? (D2) \ 5? (D1) :

⊕

I∈D2

-53 (I )

(24)

Even though the domain is only split into two pieces, there may be three branches because the
pieces may overlap in the answer space.

An example. The reduction body in the example from Equation 16 is the parallelogram,D = {[8, 9] |

(0 ≤ 9 ≤ # ) ∧ (8 − # ≤ 9 ≤ 8)}. Consider one split of D by the hyperplane 8 = # , where
D1 = D ∩ {[8, 9] | 8 < # } and D2 = D ∩ {[8, 9] | 8 ≥ # } shown on the left of Figure 7. Spliting the
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De�nition 4.6. Let ℎ be called a strong boundary split if A ⊆ ker(2ℎ).

De�nition 4.7. Let ℎ be called a strong invariant split if R ⊆ ker(2ℎ).

For example, the vertical split at 8 = # shown previously in Figure 7 illustrates a strong boundary
split because the accumulation space of the reduction in Equation 16 is A = {[8, 9] | 8 = 0}, which
is indeed a subset of the null space of the linear part of 8 = # (they happen to be the same space
in this example). Consequently, the resultant reductions in each branch of Equation 25 can be
simpli�ed independently because there exists a labeling involving only residual ⊕-faces for each.
These are indeed both instances of the pre�x max discussed in Section 2.2.

5 Problem Formulation and Hypotheses

As we have discussed, simpli�cation is a powerful transformation that lowers the asymptotic
complexity of the underlying computation. However, it is not always possible as motivated by the
reduction examples in Equations 6 and 16. In this section, we make our primary claim in the form
of Theorem 5.1. Like GR06, we assume that the input program only involves a single size parameter
and any reductions present are independent (i.e., there is no cycle in the dependence graph among
the variables appearing inside the reduction body and the answer variable on the left-hand side of
the container equation).

Theorem 5.1. Given an independent reduction with a 3-dimensional body, an 0-dimensional
accumulation space, and an A -dimensional reuse space, it may always be transformed into an equivalent
reduction with an asymptotic complexity that has been decreased by ; = min(0, A ) polynomial degrees.

The proof of Theorem 5.1 will follow from Sections 6 and 7 where we show how to handle all
possible combinations of the dimensionalities of the accumulation space, reuse space, and reduction
body that can occur. For each case, we will show that the reduction can be split into pieces such
that each piece has at least one possible labeling without any residual ⊖-faces.

5.1 Assumptions

We make several assumptions about the input reductions to justify Theorem 5.1. We emphasize
that this does not introduce any loss of generality and the following assumptions are made solely
to facilitate the proofs in the following sections.

5.1.1 Separate Accumulation and Reuse Dimensions Only. Wemust only consider reductions involv-
ing separate accumulation and reuse dimensions, where 0+A = 3 . Any reduction where 0+A ≠ 3 can
be systematically transformed into one or more instances of reductions where 0 + A = 3 . Therefore,
it is su�cient to only consider reductions with accumulation and reuse dimensions.
First, consider the case where 0 + A > 3 . In such cases, the accumulation and reuse spaces have

a non-trivial intersection, which means that the reduction accumulates the same value at many
points in the body (i.e., along this intersection). GR06 describes special simpli�cation cases that
may be applied to remove this intersection, which they call higher order operator and idempotence
simpli�cations. The working example from Section 3.3 is in an instance of this case; the reduction
body is 3-dimensional while the accumulation and reuse spaces are 2-dimensional, though we did
not employ these special simpli�cations.
Second, consider the case where 0 + A < 3 . Such cases can be viewed as families of reductions,

with 3 − (0 + A ) independent parameters, reading independent slices of the inputs and producing
independent slices of the outputs. For example, the reduction:

. [8, 9] =
28

max
:=8

- [ 9, :]
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has a 3D domain, 1D accumulation, and 1D reuse space. However, the index 9 should be viewed
as an independent parameter. Thus, the overall computation can be viewed as $ (# ) instances of
independent 2D reductions, each with a 1D accumulation and 1D reuse space, one for each value of
9 , embedded in a 3D space. No simpli�cation is possible among the di�erent instances (each of the
$ (# ) reduction instances along 9 must be computed), but further simpli�cation may be possible
within the 8: dimensions).

5.1.2 Orthogonal Accumulation and Reuse Along Canonical Axes. Let us assume that the accumula-
tion and reuse spaces are orthogonal and are oriented along the canonical axes. Let the reuse space
be along the �rst A canonical axes and the accumulation space be along the last 0 axes. The program
variable domains and the indexing expressions can always be reindexed to put the accumulation
and reuse along the canonic axes as described by Le Verge [1992].

5.1.3 Domain of the Reduction Body is a Simplex. We restrict our analysis to domains that are
simplexes (i.e., hyper-triangular) based on the following de�nition, adapted from Gruber [2007].

De�nition 5.2. A (3)-simplex is the (3)-dimensional polytope de�ned as the convex combination
of 3 + 1 a�nely independent vertices.

In practice, decomposing the domain into simplices may not always be necessary. However, we
use properties of simplices to prove that simpli�cation is always possible. There may be heuristic
solutions to decide how to split non-simplices, but we do not consider any such approaches here.
Therefore, in the remaining discussion, we assume that any reductions appearing in the input
program have been preprocessed and initially decomposed into simplices.

Our maximal simpli�cation result directly carries over to general polyhedral sets because any (3)-
dimensional parametric polytope can be decomposed into the union of (3)-dimensional simplices.
Triangulating multi-dimensional polytopes is common in computer graphics [13, 31], for example.
Simplices have useful properties used in our proofs:

• Any (:)-face of an (3)-simplex is itself a (:)-simplex. The number of (:)-faces of a (3)-simplex

are given by the binomial coe�cients,
(3+1
:+1

)
unique combinations of its 3 + 1 vertices.

• A (3)-simplex can be split into two (3)-simplices by adding one new a�nely independent
vertex. See Lemma 5.3.

5.2 Simplex-Preserving Strong Boundary or Invariant Splits

Repeatedly trying to make arbitrary splits runs the risk of falling into an endless loop. We need a
way to guarantee that the process of splitting will terminate. Recall that simpli�cation of a reduction
with the bodyD fails when every possible labeling involves one or more pairs of oppositely labeled
residual facets. Therefore, if we can repeatedly split D in such a way that both preserves the total
number of facets in each piece and strictly decreases the number of residual facets, then it will be
possible to guarantee that each piece has a labeling with no con�icting residual facets.

We combine the following two ideas. First, we will use the fact that splitting a 3-simplex through
any of its (3 − 2)-faces produces two 3-simplices per Lemma 5.3 and therefore preserves the total
number of facets in each piece. Second, we will use the notion of a strong boundary or invariant split,
which introduces a single new non-residual facet, as described in Section 4.6. Combining these two
ideas, by making strong boundary or invariant splits through (3 − 2)-faces of simplices, guarantees
that the process of splitting will produce pieces with strictly fewer residual facets because the
number of total facets in each piece remains the same. Such splits will be called Simplex-Preserving
Strong Boundary (SPB) or Invariant (SPI) splits.

When the accumulation space is one-dimensional, an SPB split can be constructed by in�nitely
extending one of the (3 − 2) faces along it. Similarly, when the reuse space is 1-dimensional,
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extending a (3 − 2)-face along it yields an SPI split. Since there are �nitely many (3 − 2)-faces, there
are �nitely many candidate SPB and SPI splits to process.

Lemma 5.3. Let a splitting hyperplane of a (3)-dimensional polytope be any (3 − 1)-dimensional
hyperplane that has points on both sides of the hyperplane. Any splitting hyperplane that saturates a
(d-2)-face of a (d)-simplex produces two (d)-simplices.

Proof. By de�nition, an (3)-simplex is the convex combination of (3 + 1) vertices. Additionally,
every (:)-face is itself a (:)-simplex, which is just the simplex formed by the (: + 1) vertices of
the (:)-face. Any splitting (3 − 1)-dimensional hyperplane that saturates a (3 − 2)-face contains its
(3 − 1) vertices. There are two remaining vertices, and these, by de�nition, can not be part of the
splitting hyperplane. This is because the hyperplane is itself a (3 − 1)-simplex and if it contained
one of these additional two vertices, then it would saturate an entire (3 − 1)-face of the domain.
Therefore, we can consider these other two vertices as separate from the hyperplane. We will refer
to these as vertex A and vertex B. The convex combination of vertices A and B forms a (1)-simplex
(i.e., a (1)-face or 1-dimensional linear subspace that connects the vertices). Let point C be any point
in this (1)-simplex. We can construct the following two new sets.

(1) The convex combination of the (3 − 1) vertices on the (3 − 2)-face, vertex A, and point C.
(2) The convex combination of the (3 − 1) vertices on the (3 − 2)-face, vertex B, and point C.

Then take the set di�erence of this set with the previous set.

Since both are convex combinations of (3 +1) vertices, they are both, by de�nition, (d)-simplices. □

5.2.1 A 2D Example. The vertical split at 8 = # illustrated previously in Figure 7 is analogous to an
SPB split in the sense that it is a strong boundary split through a vertex. However, a parallelogram is
not a simplex, of course. Regardless, we can compute the constraint 8 = # as follows. First, compute
the linear space, � , of the bottom right vertex of the parallelogram in Figure 7, as the intersection
of the saturated constraints describing this vertex:

� = {[8, 9] | ( 9 = 0) ∧ ( 9 = 8 − # )}

Next, construct the relation characterizing the 1-dimensional basis, 1, of the accumulation space
from the kernel of the write function, 5? = {[8, 9] → [8]} in this example, to obtain the relation:

1 = {[8, 9] → [8, 9 + 1]}

Then compute its transitive closure, 1∗, to obtain the relation:

1∗ = {[8, 9] → [8, 9 ′]}

Then apply 1∗ to the linear space of the vertex, � , to obtain the set:

{[8, 9] | 8 = # }

Finally, the single equality constraint is used to characterize the splitting hyperplane 8 = # .
Extending� by 1∗ e�ectively removes one of the equality constraints because extending it increases
its dimensionality by one. Since we started from a set with two equality constraints (i.e., because �
came from a (3 − 2)-face), its extension is guaranteed to have a single equality constraint. These
operations are available in the integer set library, isl [47].

5.2.2 A 3D Example. In three dimensions, a simplex-preserving split is any plane passing through
an edge of a tetrahedron. Any such plane splits it into two tetrahedra (one of which may be empty)
as illustrated in Figure 8.
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Lemma 6.2. Given 0 dimensions of accumulation, any set of 0 residual facets can be transformed
into 0 − 1 strong boundary facets via reduction decomposition.

Proof. Let [F1, F2, ..., F: ] be a list of : residual facets. Take the �rst residual facet, F1, and let
A1 be the intersection of its linear subspaceH1 and the 0-dimensional accumulation space A,

A1 = H1 ∩ A (27)

A1 is a (0 − 1)-dimensional subspace per Lemma 6.1. Now let A?−1 denote the intersection of the
�rst (? − 1) residual faces and the accumulation space,

A?−1 = H1 ∩H2 ∩ ... ∩H?−1 ∩ A (28)

A?−1 is a (0 − ? + 1)-dimensional subspace. Now we decompose the reduction, per Section 3.7,
where the inner reduction’s accumulation space is precisely along A?−1. This is done for up to 0
residual facets since A?−1 is at least 1-dimensional when ? = 0. The inner reduction now has a
1D accumulation space, and ? − 1 of the residual facets are subsequently strong boundaries (i.e.,
non-residual). □

6.2 Avoid Some Residual Facets With Appropriate Reuse Selection

Any facets labeled as an ⊘-face can be ignored. Multiple facets can be labeled as an ⊘-face by
selecting a reuse vector orthogonal to all of the facet normal vectors. The following proof is
analogous to that of Theorem 6.2.

Lemma 6.3. Given A dimensions of reuse, any set of A − 1 residual facets can be labeled as ⊘-faces
by choosing a reuse vector in their combined intersection with the reuse space.

Proof. Let [F1, F2, ..., F: ] be a list of : residual facets. Take the �rst facet F1 and let R1 be the
intersection of its linear spaceH1 with the A -dimensional reuse space R,

R1 = H1 ∩ R (29)

F1 is an (A − 1)-dimension subspace. Let R?−1 denote the intersection of the �rst (? − 1) residual
facets and the reuse space,

R?−1 = H1 ∩H2 ∩ ... ∩H?−1 ∩ R (30)

R?−1 is a (A − ? + 1)-dimensional subspace. Any reuse vector
⇀

d ∈ R?−1 is orthogonal to the normal
vectors of all ? − 1 facets and therefore labels all as ⊘-faces.

□

6.3 All Possible Scenarios

Now consider an arbitrary reduction over a 3-dimensional simplicial domain with 0 dimensions of
accumulation and A dimensions of reuse. There are 3 + 1 facets on the reduction body because it is
a simplex. We just showed, in the previous subsections, how to avoid up to (0 − 1) + (A − 1) = 3 − 2

of them using reduction decomposition and an appropriate choice of reuse. Consequently, there
are only two possible scenarios that must be considered.

6.3.1 Base Case: 3 −1 or Fewer Residual Facets. In this case, 0−1 residual facets can be transformed
into strong boundaries per Lemma 6.2 and A − 1 facets can be labeled as ⊘-faces per Lemma 6.3.
This leaves at most one remaining residual facet because (3 − 1) − (0 − 1) − (A − 1) ≤ 1. At least
two residual facets must be present for simpli�cation to fail; therefore, simpli�cation succeeds in
this case.
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6.3.2 General Case: 3 or More Residual Facets. Like the base case, 0 − 1 residual facets can be
transformed into strong boundaries, and A − 1 facets can be labeled ⊘-faces. In this case, however,
there can be up to three remaining residual facets since (3 + 1) − (0 − 1) − (A − 1) ≤ 3. Among the
remaining residual facets, two of them may involve opposite labels. In other words, there may be
one ⊕-face and two ⊖-faces, or two ⊕-faces and one ⊖-face. In this case, a single SPB or SPI split
can be made through one of their (3 − 2)-faces to separate the con�icting facets.

7 2-Dimensional Reductions: Fractal Simplification of Triangles

Only one type of reduction can occur in two dimensions: a reduction with a 1D accumulation
and 1D reuse space. Per Section 5.1.2, let the reuse space be oriented horizontally along the 8-axis
and accumulation vertically along the 9-axis. This means that vertical and horizontal edges are
boundary and invariant edges.
There are only three types of triangles that can occur:

(1) 1 residual edge (i.e., a right triangle, which is an instance of a standard scan, e.g., Section 2.2)
(2) 2 residual edges (some of which require fractal simpli�cation)
(3) 3 residual edges, (can be split into two disjoint instances, each with 2 residual edges)

The following sections describe how to make 2-dimensional versions of SBP or SBI splits, previously
described in Section 5.2, to obtain instances of the �rst case.

7.1 Base Case: Right Triangles

Any triangle with only one residual edge can always be simpli�ed. If the residual edgemonotonically
increases, we exploit reuse along

⇀

d = ⟨1, 0⟩. This yields a standard scan (e.g., pre�x-max, pre�x-min,
etc.). Otherwise, we exploit reuse along ⟨−1, 0⟩, producing a backward scan (su�x-max, su�x-min,
etc.)

7.2 Two Residual Edges

In this case, there is either one boundary (vertical) or one invariant (horizontal) edge. Let the
three vertices of the triangle be, {V0,V1,V2}, of which, V0, which we call the corner vertex, is
the intersection of the two residual edges. There are two sub-cases depending on the relative
orientation of the vertices.

7.2.1 Covered Corner. Let the corner vertex (the vertex between the two residual edges) be called
covered if it lands between the other two vertices when all vertices are projected onto either of
the axes. As illustrated by the red point in Figure 9, and by the de�nition ofV0 being covered, its
projection on the other edge is a point on that edge. Hence, an SPB or SPI split through V0 yields
two right triangles. One can be simpli�ed as a forward-scan and the other as a backward-scan.

7.2.2 Corner Vertex Is Not Covered. There is no loss of generality in assuming that the entire
triangle is in the positive quadrant and the corner vertex is at the origin (this can be accomplished
by a simple reindexing of one or both of the input/output arrays). Let us �rst consider that the non-
residual edge is vertical, and let V1 be below V2. If = is su�ciently large, we make one horizontal
cut through the lower vertex, V1, and let V′

2
be its intersection with the upper residual edge. Next,

we make a vertical cut through V′
2
, intersecting the lower residual edge at, say, V′

1
. We now have

three triangles, Δ1 = [V0,V
′
1
,V′

2
], Δ2 = [V′

1
,V′

2
,V1] and Δ3 = [V′

2
,V1,V2]. Of these, the latter

two are right triangles, and Δ1 is geometrically similar to the original triangle as illustrated on the
left side of Figure 10.

Theorem 7.1. The reduction over [V0,V1,V2] can be simpli�ed, i.e., computed with$ (1) reduction
operations per element of the answer variable . .
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vo id f r a c t a l ( i n t ∗Y , i n t ∗X , i n t L , i n t U) {

i f (U < t h r e s h o l d ) { / / do the f u l l i npu t r e d u c t i o n

for ( i =L ; i <U ; i ++)

for ( j = i ; j <=2∗ j ; j ++)

Y [ i ] = max ( Y [ i ] , X[ j ] ) ;

r e t u r n ;

}

for ( i =U ; i >=U / 2 ; i −−) / / backward scan on U/2 <= i <=U

Y[ i ] = max ( Y [ i +1 ] , X[ i ] ) ;

for ( i =U / 2 ; i <=U ; i ++) / / foward scan on U/2 <= i <=U

Y[ i ] = max ( Y [ i −1 ] , X [ 2 ∗ i ] , X [ 2 ∗ i − 1 ] ) ;

f r a c t a l ( Y , X , L , U / 2 ) ; / / r e c u r s e on L<= i <U/ 2

}

Fig. 11. Recursive pseudo-code for fractal simplification of the example from Section 2.3. The complete

working code can be found in the artifact [32].

7.3 Three Residual Edges

In this case any vertical cut through a covered vertex when projected onto the 8-axis will produce
two triangles in case 2. Alternatively, and equivalently, any horizontal cut through a covered vertex
when projected on the 9-axis will achieve the same thing.

8 Simplification With Spli�ing

In this section, we summarize the extended optimal simpli�cation algorithm that incorporates our
previously proposed splitting techniques.

8.1 Maximal Simplification Algorithm

Given an input reduction in the form of Equation 8, the maximal optimal simpli�cation algorithm
is summarized below in Algorithm 1. This should be understood precisely as the dynamic program-
ming algorithm of GR06 (Algorithm 2 in their work) with an additional dynamic programming step
to carry out splitting when necessary. Additionally, we require that the input reduction be initially
preprocessed and separated into the union of disjoint simplices. We assume that has already been
done or viewed as an additional preprocessing step as needed.

As stated previously, arbitrarily splitting reductions can lead to an endless loop; however, we can
guarantee termination by only making simplex preserving strong boundary (SPB) and invariant
(SPI) splits. Furthermore, we only do so when no other valid candidate choices exist. This is because
the dynamic programming algorithm enumerates a �nite number of choices based on the number
of facets at the target reductions. Such splits strictly reduce the number of choices that need to
be explored. Each candidate split in step 6 in Algorithm 1 consists either of a single split, for 3-
dimensions and higher per Section 6, or two splits that expose a repeating pattern, in 2-dimensions
per Section 7.

8.2 Implementation

We provide a proof-of-concept implementation of the individual components of our approach using
the Alpha language [22, 30] and the AlphaZ system [53]. The Alpha language is an equational
language that separates the speci�cation of a program from its execution plan. Additionally, it
supports modeling reduction operations as �rst-class objects with explicit representations of the
write and read functions, 5? and 53 , characterizing the accumulation and reuse space, respectively.



3:22 Louis Narmour, Tomofumi Yuki, and Sanjay Rajopadhye

Algorithm 1:Maximal Optimal Simpli�cation

Input: 3-dimensional reduction with 0-dimensional accumulation and A -dimensional reuse.
Assume that the body is a simplex and that the other preprocessing steps of GR06
have been done to expose the A dimensions of reuse.

Output: Equivalent optimal
(
3 −min(0, A )

)
-dimensional reduction(s)

1 while there are residual reductions with reuse do
2 foreach residual reduction with body D do

3 Construct the set of candidate single-step simpli�cations among facets of D

4 Construct the set of candidate reduction decompositions to transform one (or more)
facets of D into strong boundaries

5 if there are no possible single-step simpli�cation and decomposition candidates then
6 Construct the set of candidate SPB and SPI splits

end

7 Use dynamic programming to optimally choose:

8 (a) A single-step simpli�cation of D along candidate
⇀

d

9 (b) A reduction decomposition candidate

10 (c) A SPB or SPI candidate split to produce two new residual reductions

end

end

Program variable domains are represented as polyhedral sets using isl [47] (the integer set library),
which naturally supports the constraint representations we use to describe our splitting hyperplanes.

Our results in this paper are primarily theoretical. We provide, in our artifact [32], complete
working code for the components of the maximal simpli�cation algorithm, including constructing
the set of all possible labelings and corresponding candidate splits. A complete push-button tool
that implements the extended dynamic programming algorithm and automatically and optimally
simpli�es any reduction requires addressing several practical issues. Speci�cally, it is necessary to
handle two issues: managing the combinatorially large number of possible solutions and developing
methods to compare them using the constant factors, and the existence of parallel schedules with
scalable locality. Putting all this together is outside the scope of this paper and left as future work.

This can be used to produce simpli�ed Alpha programs for all of the examples discussed above.
Additionally, AlphaZ can be used to generate C code that can be subsequently compiled and run.
More information can be found in the accompanying artifact [32].

8.3 A Complete Higher Dimensional Example

Consider the $ (# 2) simpli�cation of the following $ (# 4) reduction over the simplicial domain
D = {[8, 9, :, ;] | 9 ≤ # and 8 ≤ : ≤ 28 and 8 + 9 ≤ ; ≤ 2 9} with 2-dimensional accumulation and
reuse,

. [8, 9] = max
[8, 9,:,; ]∈D

- [:, ;] (31)

This is an interesting example because our splitting extensions are necessary, and among all possible
simpli�cation choices, with splitting, the fractal simpli�cation step of Section 7 is unavoidable.
Since 4-dimensional spaces are di�cult to visualize, we illustrate each step by showing concrete
loops. Due to space constraints, we only describe the details relevant to the key e�ect of each step.
Complete working code can be found with the accompanying artifact [32].
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for (i=0; i<=N; i++)
for (j=i; j<=N; j++)
for (l=i+j; l<=2*j; l++)
for (k=i; k<=2*i; k++)
Z(i,j,l) = max(Z(i,j,l), X(k,l));

for (i=0; i<=N; i++)
for (j=i; j<=N; j++)
for (l=i+j; l<=2*j; l++)
Y(i,j) = max(Y(i,j), Z(i,j,l));

for (i=0; i<=N; i++)
for (j=i; j<=N; j++) {
for (l=i+j; l<2*j-1; l++)
Z(i,j,l) = Z(i,j-1,l);

for (l=max(2*j-1,i+j); l<=2*j; l++)
for (k=i; k<=2*i; k++)
Z(i,j,l) = max(Z(i,j,l), X(k,l));

}

for (i=0; i<=N; i++)
for (j=i; j<=N; j++)
for (l=i+j; l<=2*j; l++)
Y(i,j) = max(Y(i,j), Z(i,j,l));

for (i=0; i<=N; i++)
for (j=i; j<=N; j++)
for (k=i; k<=2*i; k++)
for (l=max(2*j-1, i+j); l<=2*j; l++)
Z(i,j,l) = max(Z(i,j,l), X(k,l));

for (i=0; i<=N; i++) {
Y(i,i) = Z(i,i,2*i);
for (j=i+1; j<=N; j++)
for (l=i+j; l<=2*j; l++)
Y(i,j) = max(Y(i,j), Z(i,(l+1)/2,l));

}

#define Y_outer(i,l) Z(i,(l+1)/2,l)

for(l=0; l<=2*N+2; l++)
for(i=0; i<=l/2; i++)
for(k=i; k<=2*i; k++)
Y_outer(i,l) = max(Y_outer(i,l), X(k,l)); 

for (i=0; i<=N; i++) {
for (k=i; k<=2*i; k++)
Y(i,i) = max(Y(i,i), X(k,2*i));

for (i=0; i<=N; i++)
for (j=i+1; j<=N; j++)
for (l=i+j; l<=2*j; l++)
Y(i,j) = max(Y(i,j), Y_outer(i,l));

#define A(i) Y_outer(i,l)
#define B(k) X(k,l)
for(l=0; l<=2*N+2; l++)
{
for(i=0; i<=l/2; i++)
for(k=i; k<=2*i; k++)
A(i) = max(A(i), B(k));

}
#undef A
#undef B

for (i=0; i<=N; i++)
for (k=i; k<=2*i; k++)
Y(i,i) = max(Y(i,i), X(k,2*i));

#define A(j) Y(i,j)
#define B(l) Y_outer(i,l)
for (i=0; i<=N; i++)
{
for (j=i+1; j<=N; j++) 
for (l=i+j; l<=2*j; l++) 
A(j) = max(A(j), B(l));

}
#undef A
#undef B

Decomposition puts 

inner accumulation 

along k.

A

B

C

D

Exploit one dimension of 

reuse. Note this now has 

cubic complexity.

Z is cubic, but only values 

on some of its facets are 

actually used.

E

#define A(i) Y_outer(i,l)
#define B(k) X(k,l)
for(l=0; l<=2*N+2; l++)
fractal_0(Z, X, 0, l/2)

#undef A
#undef B

for (i=0; i<=N; i++)
for (k=i; k<=2*i; k++)
Y(i,i) = max(Y(i,i), X(k,2*i));

#define A(j) Y(i,j)
#define B(l) Y_outer(i,l)
for (i=0; i<=N; i++)
{
for (j=i+1; j<=N; j++)
A(j) = max(A(j), B(i+j));

fractal_1(Y, Z, i+1, N);
}
#undef A
#undef B

Cast as series of 

independent 2D 

reductions each 

with 1D reuse.

F

Apply recursive simplification. Decompose 

into simplices where necessary. Note this 

now has quadratic complexity.

Cast as 3D 

reductions with 1D 

accumulation and 

1D reuse.

Fig. 12. Illustrating the $ (# 2) simplification procedure of the $ (# 4) reduction in Equation 31.

Step A - reduction decomposition to put the inner accumulation along k. The set of candidate
single-step simpli�cations (step 3 of Algorithm 1) is empty. The only option is to explore reduction
decomposition choices. Choosing a decomposition that puts the inner reduction along : and storing
the partial answer in a temporary intermediate variable / results in the loops shown in box A of
Figure 12.
Step B - simpli�cation of the inner reduction. The set of candidate single-step simpli�cations on

the inner reduction is now non-empty. Applying single-step simpli�cation using the reuse vector
⇀

d = [0, 1, 0, 0] results in the $ (# 3) loops shown in box B.
Step C - recover the residual reductions. The single-step simpli�cation by

⇀

d = [0, 1, 0, 0] in this
instance results in computing a 3-dimensional intermediate answer but GR06 describes and handles
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the post-processing required to read only the needed values in the outer reduction. / is cubic, but
only values on some of its facets are actually used.
Step D - preprocess to cast as series of independent reductions. The residual reductions now have

3-dimensional bodies with 1-dimensional accumulation and reuse, which corresponds to the fact
that we are left with a series of 2D reductions embedded in a 3D space, as described in Section 5.1.2.

Step E - cast as series of independent reductions. There are two residual 2D reductions embedded
in a 3D space. Both of these involve triangular domains that require the fractal simpli�cation of
Section 7.

Step F - Apply recursive fractal simpli�cation. Finally, computing the inner 2D reductions recur-
sively results in the loops shown in box F. We don’t explicitly show the de�nitions of fractal_0
and fractal_1 here, but they have the same structure as the code in Figure 11. The complete
concrete code for this example can be found in the accompanying artifact [32].

9 Related Work

Simpli�cation has garnered renewed interest recently. Asymptotic ine�ciencies are present, even in
deployed codes. Ding and Shen [8] noted that nine of the 30 benchmarks in Polybench 3.0 and two
deployed PDE solvers have such ine�ciencies. Separately, Yang et al. [52] showed that simpli�cation
is helpful for many algorithms in statistical learning like Gibbs Sampling (GS), Metropolis Hasting
(MH), and Likelihood Weighting (LW). Their benchmarks include Gaussian Mixture Models (GMM),
Latent Dirichlet Allocation (LDA), and Dirichlet Multinomial Mixtures (DMM). See their paper
for details of benchmarks, algorithms, size parameters, machine specs, etc. They formulate and
solve a more general problem: the reduction body may use (possibly transitively, through other
variables) the output variable . . So, it is necessary to solve the combined problem of simpli�cation
and scheduling. They propose a simple heuristic that handles all the examples they encounter and
only applies to reduction operators that admit an inverse. Addressing these limitations, possibly
using the techniques we present here, is an open problem.

Simpli�cation is related but complementary to the problems of marginalization of product func-
tions (MPF) and its discrete version, tensor contraction (TC). Such problems arise in many domains.
MPF can be optimally computed using Pearl’s “summary passing” or “message passing” algo-
rithm [35] for Bayesian inference, or the generalized distributive law [2, 19, 45]. Similarly, there is
a long history of research on optimal implementations of TC [18, 36, 43]. In this problem, the sizes
of the tensors in each dimension are known, and we seek the implementation with the minimum
number of operations.
To explain the problem, �rst note that the cost of multiplying three matrices, �, �, and � , is

a�ected by how associativity is exploited: if A and C are short-stout, and B is tall-thin, (��)� is
better than �(��), and if A and C are tall-thin and B is short-stout, the latter parenthesization is.
Indeed, optimizing this for a sequence of matrices is a classic textbook problem used to illustrate
dynamic programming. However, the underlying matrix multiplication uses the standard cubic
algorithm. TC extends this to multiple chains of products (requiring us to optimally identify and
exploit common subexpressions) and to tensors rather than matrices (exposing opportunities to
exploit simpli�cation by inserting new variables).
Speci�cally, consider the following system of equations:

-8,; =

#∑

9,:=1

�8, 9,; × �8,: .9 =

#∑

8,:, 9=1

�8, 9,; × �8,: (32)
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Naively, each equation would have $ (# 4) complexity since each result is the accumulation of a
triple summation, and there are $ (# ) answers. However, if we de�ne two new variables:

)8,; =

#∑

9=1

�8, 9,; ) ′
8 =

#∑

:=1

�8,: (33)

then the following is an equivalent simpli�ed system of equations whose complexity is only$ (# 3):

-8,; = )8,; ×) ′
8 .9 =

#∑

8,;=1

�8, 9,; ×) ′
8 (34)

However, the reuse space, the accumulation space, and the domain constraints (loop bounds)
are simple, and simple transformations like loop permutation can explore the space of all possible
simpli�cations. The space of choices may be combinatorially large but not in�nite, as tackled by
the GR06 algorithm. There may be a need for more sophisticated) simpli�cations if the tensors
have a special structure. Nevertheless, the reduction operation here admits an inverse, and there is
no need for our results in this paper.

10 Conclusions and Open �estions

The ultimate goal is to enable compilers to take a high-level application program speci�cation and
carry it out in the most e�cient way possible, preferably automatically and optimally. This work
takes a step in that direction to enable users (i.e., application scientists and programmers) to focus
less on the engineering aspects (the how) of their algorithms and more on the problems (the what)
that their algorithms are intended to solve. In this work, we have studied reuse-based simpli�cation
of polyhedral reductions. The simpli�cation transformation proceeds recursively down the face
lattice of the domain of the reduction body and attempts to exploit one dimension of available
reuse at each level. Previously, at some point along this traversal, it may not have been possible
to employ the simpli�cation transformation without requiring inverse operations. However, as
we have shown, it is always possible to split the residual reduction at the problematic node in the
lattice in such a way that we can guarantee that the simpli�cation transformation will not fail. We
have provided the mathematical proofs which enable us to make this claim.
We showed how to maximally simplify any arbitrary independent commutative reduction to

obtain the optimal asymptotic complexity. We provided a proof-of-concept implementation of the
individual components of our approach as an accompanying software artifact [32] that can be used
to generate code. Along these same lines, additional work concerning traditional compile-time
scheduling and e�cient code generation is still needed. For example, we rely on the fact that any
polyhedral set can be decomposed into a union of disjoint simplices, but we do not discuss the
implications of the choice of decomposition on the e�ciency of the resulting code. At this point,
for example, it is not obvious why we should prefer one decomposition over another. It may be the
case that one particular simplicial decomposition scheme leads to code that is more amenable to
vectorization. These are interesting questions that require future exploration.
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