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Abstract—Immersive Virtual Reality (VR) applications de-
mand low network latency, large bandwidth, and substantial
computational resources. Despite significant progress in ad-
dressing these challenges, creating Distributed VR environments
remains complex. Existing VR deployments are predominantly
centralized. Extending VR to a distributed setup requires solving
scalability challenges of the network support needed for VR
servers distributed across a network. In particular, the scale of
traffic between distributed VR servers and the interaction of this
VR traffic’s size with various features of the VR applications are
unexplored. In this study, we present and evaluate a distributed
multi-server VR environment based on Mozilla’s popular open-
source platform, Hubs, on a local area network (LAN). By
conducting traffic measurements, we evaluate how the network
traffic volume to support such distributed VR setups may evolve.
Our work assesses the feasibility of creating such distributed
VR environments. We find that the inter-server traffic exhibits
logarithmic increase with respect to the client count when the
clients make human-like movements, pointing to the scalability
potential of Distributed VR environments. Additionally, the study
lays the foundation for future optimizations, aiming to enhance
the distributed VR experience for users.

I. INTRODUCTION

Immersive VR applications offer users rich, interactive
environments mirroring the real world. These environments,
however, pose formidable challenges in delivering seamless
user experiences, primarily due to their stringent network
latency requirements to make sure the VR user does not get
dizzy [1], large network bandwidth requirements [2] to transfer
volumes of rendered 360-view to the VR headsets, and high
computational resources for the VR server performing 3D
rendering tasks. Addressing these challenges becomes more
complex when attempting to create VR-based environments
with increased user load and dispersed users. Despite signifi-
cant advancements in VR technologies, developing distributed
VR environments remains an ongoing research endeavor. Tra-
ditional client-server architectures, while widely used, may
struggle to maintain responsiveness and scalability as the
number of concurrent users increases. To overcome these
limitations, we explore the potential of distributed multi-server
architectures for VR applications in a local environment.

In this study, our primary objective is to enhance VR
experiences by harnessing the potential of distributed multi-
server setups built upon the widely popular Mozilla Hubs’ [3]
open-source VR platform. Our proposed system is especially
suitable for local or metro area network environments due to
the low latency requirements between servers. By embracing

this innovative architecture, we aim to significantly improve
overall system performance, reduce latency, and create a
seamless and immersive user experience within shared virtual
spaces. Notably, the distributed multi-server approach offers
the advantage of locating servers closer to users and dividing
the workload, thereby allowing for hosting more clients and
reducing client-server latency compared to the conventional
central server approach due to a smaller round trip time
between the VR user and the closest VR server. While Hubs
is a social VR platform, the approach we mention can be
applied to other types of VR environments as well. We focus
on optimization in data transmission, ensuring faster and more
responsive interactions, enhancing the realism and immersion
for users.

The central goal of our research is to provide a technical
solution to distributed VR that is tailored towards local area
usage. We propose a setup that utilizes concepts that are widely
used in global systems, such as the Publisher/Subscriber
model, for synchronization in a local area VR environment. We
evaluate the effectiveness of this distributed multi-server VR,
focusing especially on the server-to-server synchronization
and scalability. To achieve this, we conducted experiments
measuring traffic patterns and data exchanged between servers
as the number of users within a shared virtual room increased.

Our findings present insight into the potential of distributed
multi-server architectures for scalable VR experiences. We
showcase the advantages of efficient data synchronization
mechanisms, which help optimize the system’s performance
under high user concurrency. The contributions of this research
extend beyond a simple evaluation of the proposed architec-
ture. We introduce a novel approach for creating distributed
VR environments, providing valuable data and empirical ev-
idence to support the viability of this setup in real-world
applications. By offering a foundation for future optimizations,
our work seeks to inspire further research and development to
enhance the VR experience for users worldwide.

In the following sections, we delve into the setup & method-
ology used for our experiments, present our measured data,
and discuss the implications of our findings. We conclude by
highlighting the potential impact of distributed multi-server
architectures on the future of scalable and responsive VR
applications.



II. BACKGROUND AND RELATED WORK

VR applications demand stringent network latency to en-
sure a smooth and immersive experience for users. Previous
studies have established that the latency requirement for most
immersive VR applications is around 20 ms [4]. Conventional
threshold inter-frame time for VR headsets is 15 ms, which
includes the rendering of frames at the VR server, their transfer
to the VR headset, and the headset’s processing time. Increased
latency can lead to motion sickness, making it crucial to
address latency issues effectively.

To tackle these latency requirements, researchers have ex-
plored various optimization techniques. For instance, some
works have focused on using viewport prediction and leverag-
ing machine learning techniques to pre-render VR viewports
[5]. Additionally, [6] conducted a comprehensive measurement
study on five widely-used VR worlds, analyzing network
measurements, frames per second, and optimizations. The
study revealed that most VR environments lack scalability,
server-side rendering, and adequate graphics optimization,
highlighting the need for further improvements. The VR
environments assessed in [6] include Worlds [7], VR Chat [8],
AltSpaceVR (now discontinued) [9], Hubs [3], and Rec Room
[10]. Furthermore, [6] conducted an in-depth analysis of these
environments, identifying common limitations such as static
backgrounds, pre-downloaded backgrounds, simplistic avatars,
and limited user interaction gestures. Anycast, a technique
used to assign users to the closest servers, was found to be
underutilized across these platforms.

There have been several previous architectural studies on
Distributed VR. DIVE [11] operates on a peer-to-peer (P2P)
architecture where synchronization is achieved through a dis-
tributed event system. Another approach involving a P2P VR
setup was published in [12]. Although this approach aims to
reduce the overhead of client-server communication, it ignores
the benefits of server-side rendering, poses higher security
risks, and faces challenges in terms of scalability. A P2P
approach would scale quadratically as the number of users
in the VR system increase. Also, server-side rendering has the
potential to improve the VR experience by enabling wireless
and lightweight VR headsets and reducing latency through
faster pre-rendering.

Client-server designs also received notable attention. MAS-
SIVE [13] manages multi-user interactions through the spatial
mode of interaction where a client-server architecture is used,
and each server manages an area-of-interest, thereby reducing
the amount of data being synchronized between the servers.
NSPNET [14] focuses on large-scale, networked virtual en-
vironments primarily for military simulation. It also employs
a distributed client-server architecture, with each server being
responsible for a different segment of the virtual environment.
These existing works provide insights into different distributed
architectures and their application domains, laying a founda-
tion for further exploration in this area. Hybrid architectures
utilizing both P2P and client-server components were also
considered. [15] proposed a hybrid design to handle large
virtual worlds, including military simulations, but without any
empirical results in an actual VR environment.
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Fig. 1: Overview of Hubs’ architecture and the server
synchronization components.
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Most of the prior studies relevant to distributed VR have
focused on creating globally distributed virtual environments.
While globally distributed virtual environments remains a
complex challenge, there are distributed networking techniques
that can help aid in the creation of virtual environments
hosted over local- or metro-area network. Despite various
attempts to address VR latency, there is a noticeable gap in
research evaluating distributed multi-server VR approaches.
Our study aims to fill this gap by providing a detailed analysis
of network measurements and synchronization-related traffic
between servers in a distributed multi-server architecture. By
conducting a comprehensive evaluation of a distributed multi-
server VR setup, our research seeks to contribute to the
growing body of knowledge on VR latency reduction and
enhance the overall VR user experience.

III. DISTRIBUTED VR ARCHITECTURE

We utilize Mozilla’s Hubs, a widely-used open-source VR
platform. Whilst Hubs was designed to be a global VR
environment, we adapt it to support a locally distributed VR
environment. Our choice of Hubs is driven by its wide adop-
tion and open-source nature, which allows for customization
and exploration of the underlying architecture.

Hubs is a social VR application that allows users to create
rooms, invite other users to join rooms, and interact with other.
Hubs employs a web-based client-server architecture, featuring
two main server-side components:

o Reticulum: The primary Elixir/Erlang server that utilizes
the Phoenix framework.

e Dialog: A NodelS server which handles audio data using
the mediasoup framework and WebRTC.

On the client side, Hubs utilizes ReactJS (a popular client-side
web framework), and a-frame (a JavaScript VR framework
built on top of WebGL) [16] to manage graphics process-
ing, enabling users to access the environment through web
browsers or VR headsets. Hubs stores persistent state data
(e.g., room names, authentication, and avatar information) in-
side a PostgreSQL database. The communication of real-time
audio data between clients and servers employs the WebRTC
protocol, utilizing the UDP protocol for transport. Meanwhile,
control information, such as user profiles and names, is ex-
changed via HTTP requests, while the transmission of real-



time avatar coordinates and orientation within the VR world
space is achieved through TCP websocket connections.

Hubs has the capability of hosting multiple Dialog servers.
Hubs also has the capability of hosting multiple Reticulum
servers. However, one room in Hubs can be hosted by one
server only. This bottlenecks the number of users that are able
to join a room. A solution to this problem is to implement
mechanisms within Hubs’ architecture to support multiple
clients. Including another server, however, would mean that
the servers would need to synchronize information related
to clients. While this problem is hard to solve in a globally
distributed setup due to network bottlenecks and the stringent
latency requirements in VR, we have more options when
solving it for environments spanning smaller geographical
span such as local and metro-area networks.

To facilitate this transfer of synchronization data, includ-
ing user orientation information, across servers, we employ
the Publisher/Subscriber (Pub/Sub) feature and cluster man-
agement capabilities provided by Elixir. Our strategy pri-
oritizes the use of Elixir’s built-in functionalities owing to
their advantages in terms of low latency, adaptability, and
minimal resource consumption. This method ensures that all
server hosts are interconnected, maintaining these connections
through protocols such as gossip protocols based on UDP or
the Erlang Port Mapper Daemon (epmd) [17] based on TCP.
For our experiments, we utilize epmd due to its reliability
and robustness. The integration of additional server hosts
into the system is streamlined, underscoring the scalability of
our setup. Instead of depending on external messaging queue
systems such as RabbitMQ [18], we leverage Elixir’s Pub/Sub
and clustering modules. Each message received by a server
pertaining to a particular room is sent to all the connected
servers that are subscribed to the room.

We also factor in the synchronization of the PostgreSQL
database. As we show in our evaluation section later on, the
amount of database data that needs to be synchronized is very
low when compared to the volume of coordinate/orientation
data synchronization. We employ Bucardo [19], a database
replication tool, for multi-master PostgreSQL database replica-
tion. We choose Bucardo over other approaches since it offers
multi-master replication alongside reliable conflict resolution.
More popular tools such as PostgreSQL’s native support for
synchronization do not offer multi-master replication. Using
Bucardo ensures that crucial information, including room
details, user profiles, and logs, remain consistent and available
on both servers.

Since Dialog, used by Hubs for audio data transfer, already
has the capability for horizontal scaling, we do not perform
experiments concerning synchronization of audio data and
shift our focus more towards synchronization related to user
movement.

Figure 1 provides an overview of our architectural setup,
as well as the synchronization techniques employed to en-
sure seamless communication between the servers and the
clients. The figure shows the Reticulum server, the PostgreSQL
database, and the Dialog server. The Dialog server is shown
separately in the figure since clients connect with the Dialog
servers directly. The Dialog servers facilitate WebRTC con-
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Algorithm 1: JavaScript code that automates the movement
of a client avatar.

nections between clients for audio communication. The Dialog
server can be run on the same instance as the Reticulum server,
or it can be run separately. There can be multiple Dialog
servers for horizontal scalability. The PostgreSQL database is
managed by the Reticulum server. This comprehensive setup
allows us to evaluate the feasibility and effectiveness of a
distributed multi-server VR environment, assess the traffic
patterns between servers, and identify potential areas for
optimization and performance enhancement. The following
sections detail our evaluation of the proposed setup, the
implications of our findings for the future development of
scalable VR experiences, and potential limitations of our work.

IV. EVALUATION

We conducted a comprehensive evaluation of our distributed
VR setup, focusing on measuring the traffic between the two
servers across different configurations.

A. Experimental Setup

We configured two VR servers that are hosted over the
same LAN, and we utilized Wireshark to perform precise
traffic measurements. Each server hosted a Reticulum instance,
a PostgreSQL database, and a webpack server to host the
client VR app. One of the servers included a central Dialog
server. Our evaluation is centered on data synchronization
related to movement and orientation, crucial aspects of the
VR experience.

To evaluate how the traffic between the two servers scales
with increasing client connections, we conducted a series of
runs, each spanning 250 seconds. These runs involved varying



numbers of clients connected to the servers. We consider two
scenarios, one where the number of clients connected to both
the servers increases, and another where the number of clients
connected to only one of the servers increases whilst the other
server has only one client connected to it. In both cases, the
maximum number of clients connected to a server is 12. To
ensure consistent conditions, we automated client movement,
updating user coordinates each frame with a script. The script
ensured that clients moved at a constant speed of 0.1 units
per frame. This automation script was executed directly in the
browser’s console window. The movement was random, such
that the clients kept moving in the z and z planes without
following any specific pattern. This random movement is the
worst-case scenario where the client continuously sends server
requests, requiring synchronization. The script used is shown
in Algorithm 1. The script runs in the client’s browser console.
It uses a-frame, an open-source framework that Hubs uses for
its VR rendering.

Since users in the real-world do not move like the motion
described in the script shown in Algorithm 1, we also perform
an experiment where we simulate human-like movement by
using the MineRL [20] dataset, which is a dataset compris-
ing of actions that players perform while playing the game
Minecraft [21]. Minecraft [21] is a popular sandbox game
consisting of a large 3-dimensional environment where users
can perform various tasks. MineRL [20] contains user activity
data, including user movement, for various scenarios within
the Minecraft world. To simulate human-like movement, we
utilize data from a small subset of the activities in MineRL
to make the users move using a script running in the user’s
browser. This script is a modified version of the script shown
in Algorithm 1. We compare the synchronization data traffic
under this scenario with the random movement scenario for
up to 12 clients.

Measuring synchronization traffic between the two servers
necessitates accounting for the Frames Per Second (FPS) of
clients, a metric closely linked to rendering capabilities. Avatar
coordinate updates occur frame by frame, requiring server s
to transmit coordinates for client ¢ at an FPS f every 1/f sec-
onds to relevant servers for synchronization. Inaccurate traffic
measurements could arise from FPS variations in different
experiments. To ensure consistent FPS rates across clients, we
adopted a methodology where all clients accessed the VR envi-
ronment through individual browser sessions hosted on virtual
operating systems running on the same machines through-
out the experiment. This approach maintained synchronized
client movement and FPS, ensuring consistent parameters for
synchronization-related traffic measurements, irrespective of
system load or user activity fluctuations.

B. Results

We start by dissecting and analyzing the synchronization
traffic between the two Reticulum servers, database synchro-
nization, and the incoming traffic to the Dialog server. As
stated earlier, we mainly focus on traffic synchronization
related to movement of the clients within the VR room. As
such, all clients in the VR room have their audio muted during
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Fig. 2: Dissecting synchronization data traffic between the
two servers over 250 seconds, with 1 client connected to
each server.

the experiments. Since all audio communication happens via
the WebRTC protocol and connections are maintained by a
mediasoup-based server (Dialog), we see incoming traffic to
Dialog, albeit not very significant, despite the clients being
muted. This is because Hubs keeps connections between the
clients and the servers alive, which requires some bandwidth.
For the database related synchronization, the traffic between
the VR servers is almost negligible. Figure 2 shows a through-
put comparison over 250 seconds, with one client connected
to each server (2 clients, total).

To measure scalability of our distributed VR system, we
measure the traffic between the two servers against the number
of clients. Our analysis, depicted in Figure 3, reveals a linear
trend in server-to-server synchronization throughput between
the two servers as the number of clients connected increases.
The figure shows two scenarios, one where the number of
clients connected to each server is increased, and another
where the number of clients connected to only one of the
servers is increased (the other server has only one client
connected to it at all times). In both of these scenarios the
movement is automated using the script shown in Algorithm
1. We observe that the rate at which the throughput increases
when the number of clients connected to both the servers is
varied is 1.9 times higher than when the number of clients
connected to only of the servers is increased. In both of the
cases, we observe a linear trend in throughput. This correlation
highlights user additions’ consistent impact, offering insights
into the system’s scalability. This trend aligns with the obser-
vations made in [6] where a central server architecture was
used to show that an increase in users resulted in a linear
upsurge in downlink throughput per user.

Whilst the experiments in Figure 3 were performed using a
constant speed and movement such that updates to the clients’
coordinates were made before the rendering of each frame, we
also perform an experiment where we simulate movement that
is closer to how real users would act inside a virtual world.
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Fig. 3: Average synchronization throughput between the two
servers over 250 seconds vs. the number of clients.

This movement was based on a subset of the activity data
from the MineRL [20] dataset. We collect synchronization
traffic data under this scenario for up to 12 users connected
to each server, and compare the average throughput with the
aforementioned random movement scenario. Figure 4 shows
this comparison. As can be seen from Figure 4, there is a
significant difference in the average throughput between the
two scenarios. The movement based on real users follows a
sub-linear trend, reminiscent of a logarithmic curve. This is
because real users are seldom constantly moving, and usually
have movement that is more sporadic and spatially localized.
This trend implies that the increase in traffic would reduce as
the number of clients connected to the servers increases, as
opposed to the linear trend where the addition of clients adds
a constant load on the system. This is a promising outcome, as
it shows that the multi-server distributed VR system can scale
well in terms of inter-server traffic as the number of clients
increases.

Comparing the trends in these findings with [6] and observ-
ing the similarity between the trends in central and distributed
server traffic, it becomes evident that there is minimally added
overhead from synchronization processes in the distributed
approach. Also, the logarithmic relationship between inter-
server traffic data and the number of clients when the clients
mimic movement that is closer to that of real users suggests
that the system would scale well as more clients are added.

[6] also highlights the potential for optimization strategies
such as sending coordinates based on Field-of-View (FoV)
and spatial positioning, as opposed to broadcasting to all
users. Implementing similar optimizations in our system would
mitigate the effect of client numbers on inter-server traffic, thus
enhancing scalability. Also, making our system synchronize
only the relevant data between the two servers instead of all
the data would further curb the logarithmic growth that we
observe in Figure 4.

The identified trends show the significance of effective load
balancing strategies within our distributed multi-server VR en-
vironment. By equitably distributing user traffic across servers,
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Fig. 4: A comparison of the server-to-server throughput
when the client movement mimics real-user movement vs.
when the movement is random.

we can ensure consistent performance and responsiveness, es-
pecially during periods of increased user activity. Our findings
can be used as a foundation to further improve and optimize
the performance of the distributed VR system. We briefly look
at some of the potential optimizations that can be performed
as part of the future work to further improve the multi-server
architecture in terms of scalability, load balancing, latency, and
facilitating server-side rendering. These advancements hold the
potential to elevate the VR experience, offering users seamless
interactions within immersive virtual environments.

V. LIMITATIONS

While a distributed multi-VR server architecture offers
a more scalable approach to a VR world system, it does
have some disadvantages compared to the central server ap-
proach. A significant drawback is the overhead from server
synchronization in distributed setups. Real-time server-side
synchronization consumes a significant amount of data, which
can impact the overall performance of the system. In contrast,
a central server architecture involves data transmission only
between clients and the central server, which then broadcasts
the data to all clients, potentially reducing the overall data
traffic.

Another limitation of our study is that we only tested the
setup with two servers. Although we demonstrated that the
traffic between servers scales sub-linearly as the number of
connected clients increases under scenarios where user move-
ment is realistic, testing the architecture with more servers
deployed over a larger area could provide more insights.
Conducting a study over a wider area, such as in a MAN area,
may present additional challenges such as network latency and
potential communication delays between distant servers. It is
worth noting that, within real-time applications like Mozilla
Hubs and many other VR metaverses, the impact of minor
packet loss due to network delays is not markedly detrimental
to the overall user experience. This parallel can be drawn



from real-time multiplayer games, wherein marginal packet
loss typically has limited repercussions on game play quality.

VI. FUTURE WORK

The distributed multi-server architecture we explored in this
research demonstrates substantial promise for the evolution of
VR metaverse applications. While our experiments highlight
the benefits of reduced client-to-server latency due to smaller
round trip time and studies scalability of the multi-server
distributed VR system, there are still avenues for further
exploration and improvement.

Future work in this field could focus on developing more
sophisticated prediction algorithms to better anticipate user
actions and optimize data transmission between servers. Using
techniques such a FoV and selectively synchronizing only the
required state between the servers would reduce the traffic
between the servers significantly. Additionally, investigating
advanced load balancing techniques and dynamic resource
allocation strategies could enhance the scalability and fault
tolerance of the distributed system.

Moreover, a realm of substantial potential in enhancing the
VR experience lies in the domain of server-side rendering.
The notion of delegating rendering-related computations to
servers, catering to multiple users concurrently, resonates
powerfully within the framework of the distributed multi-
server architecture. A particularly advantageous aspect of our
architecture surfaces here — the proximity of servers to clients
results in diminished latency due to reduced round-trip times.
This effect is amplified when compared to more centralized
setups. The ripple effects are manifold: enriched graphics
quality, seamlessly fluid frame rates, and an enhanced, uniform
experience spanning an array of user devices.

Our research has broader implications for the VR industry,
paving the way for the development of more immersive and
responsive virtual experiences. As the demand for realistic and
seamless VR environments continues to grow, the distributed
multi-server architecture, along with server-side rendering and
potential optimizations, offers a compelling solution to address
the challenges of user concurrency and performance.

VII. CONCLUSION

In this paper, we presented a detailed analysis of inter-server
traffic in distributed VR environments using Mozilla Hubs.
Our results demonstrate that a multi-server VR architecture
can effectively scale within a LAN, managing increased user
loads with linear and sub-linear synchronization overhead,
depending on the complexity of user interactions and the
frequency of synchronization events. This suggests that dis-
tributed architectures can support large-scale VR applications
with multiple servers, provided synchronization mechanisms
are optimized.

We highlighted the critical role of server-to-server synchro-
nization in maintaining a consistent and immersive VR experi-
ence. By simulating real-world user movements, we provided
empirical evidence on the network traffic and synchronization
overhead between servers.

Despite the promising results, our experiments were limited
to a controlled LAN environment with two servers and 12
clients. Future work will involve expanding the experimental
setup to include more servers and diverse network conditions,
as well as exploring advanced synchronization techniques to
further enhance scalability and efficiency. We acknowledge
that the study would benefit from a deeper analysis with more
clients and servers.

In conclusion, our research provides valuable insights into
the design and optimization of distributed VR systems over
LANSs. By addressing the challenges of inter-server traffic and
synchronization, we contribute to the development of more
scalable, responsive, and efficient VR architectures, paving
the way for future innovations in distributed virtual reality
environments.
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