


HPDC ’24, June 3–7, 2024, Pisa, Italy Avinash Maurya et al.

consequences. For example, due to the tightly coupled nature of

distributed training of LLMs, hardware failures, software bugs, or

communication timeouts, can occur, which may lead to globally

corrupted states even if they a�ect a small number of components.

Unicron [12], a recent e�ort from Alibaba, highlights a 43.4% failure

rate of resource-intensive LLM training, out of which 37% were

hardware failures, while the remainder 73% could be �xed by sys-

tem restarts. In both cases, a checkpoint is needed to e�ectively

resume the LLM training.

Even in the absence of failures, the training can take an undesir-

able trajectory that leads to dead-ends, e.g., slow or no convergence,

undesirable learning patterns that need to be “unlearned”, insta-

bility, etc. For example, loss spikes are one type of an undesirable

trajectory. They were reported by PaLM [6] and GLM-130B [46]

and were observed during the training of popular models such as

BLOOM-175B and OPT-175B. Since they are hard to predict and

defend against, the only viable strategy is to roll back to a past

checkpoint and try an alternative strategy, such as skipping over

problematic mini-batches or reorganizing the model, e.g., by switch-

ing some parameters to higher precision or di�erent �oating point

representation.

Additionally, checkpointing of intermediate states during the

training is a fundamental pattern used in several other scenarios:

understanding the evolution of the learning patterns captured by

the model, continuous testing of alternatives without disturbing

production deployments, switching between divergent model states

based on Reinforcement Learning from Human Feedback (RLHF).

Challenges and Limitations of State of the Art. Widely

used deep-learning models (ResNet [11], VGG [38], etc.) of mod-

erate sizes, i.e., hundreds of MBs, and their associated optimizer

state typically �t in the memory of a single GPU. In this case, data

parallelism is often enough to scale the training, which means that

it is enough to checkpoint a single model replica by gathering the

relevant state from a single GPU. On the other hand, LLMs are

sharded across a large number of GPUs, which means that a check-

point needs to gather distributed data structures. Such an operation

involves much larger sizes, i.e., in the order of hundreds of GBs.

Therefore, synchronous checkpointing solutions, e.g. default check-

pointing implemented in DeepSpeed [34], that block the training

until themodel state is captured to stable storage incur high runtime

overheads. Alternatively, one may use a multi-level asynchronous

checkpointing solution that copies the model state to a fast memory

tier and then �ushes it from there to slower tiers in the background

without blocking the training. In general, this is a widely used solu-

tion in the HPC community that successfully reduces the runtime

overheads compared with synchronous checkpointing. However, it

is not straightforward to implement this approach in the context

of LLM training for two reasons. First, there is simply not enough

free memory on the GPUs to hold a full copy of the checkpoint

shards, due to which it is not possible to bene�t from the high GPU

memory bandwidth to reduce the overhead of creating a blocking

copy. Second, while it is possible to create the copy directly on

the host memory (e.g. TorchSnapshot [30], TorchLightning [17],

CheckFreq [24]), this involves data transfers that are an order of

magnitude slower and subject to competition due to shared PCIe

links between multiple GPUs and the host memory. Ultimately,

this results in signi�cant overheads that reduce the bene�t of asyn-

chronous checkpointing to the point where it is not signi�cantly

faster as compared to synchronous checkpointing approach. To

put this in perspective, despite the availability of high speed links

(50+ GB/s network and 25+ GB/s PCIe), the LLM checkpointing

throughput is far from saturating the link capacity (e.g., REFT [42]

reports 38% saturation), and often drops as low as a few GB/s (e.g.,

Nebula [23], Microsoft’s DeepSpeed closed-source implementation

of asynchronous checkpointing reports 1-4 GB/s).

Key Insights and Contributions. In this paper, we propose

DataStates-LLM , a novel asynchronous checkpointing technique

that overcomes the limitations of the aforementioned state-of-the-

art approaches. Our key idea is to leverage the observation that

the model parameters and optimizer state remain immutable for

extended periods of time during an iteration (i.e., during the forward

pass and backward pass) and are updated in bulk at speci�c points.

Speci�cally, we can copy the model state (parameters, optimizer

state) during the forward and backward pass from the GPU to

the host memory without blocking the training iteration. At the

same time, we can hide the overhead of contention for the memory

and storage tiers and guarantee the consistency of checkpoints

asynchronously once the checkpointing data is available on the

host memory. We summarize our contributions as follows:

(1) We perform a gap analysis that highlights the checkpoint

sizes, load-balancing among the checkpoint shards corre-

sponding to 3D parallelism, and when the LLM model pa-

rameters and optimizer state remain immutable during each

training iteration. This analysis is essential in shaping our

contribution (§ 4).

(2) We introduce a series of key design principles, i.e., hybrid

�ushing of GPU model/optimizer shards to host memory,

lazy copy that overlaps with the intervals during which the

LLM remains immutable, streamlined multi-level �ushing

to persistent storage, and asynchronous consolidation of

model/optimizer shards (§ 5.1).

(3) We discuss an architecture that integrates these design prin-

ciples into widely used LLM training runtimes, namely Deep-

Speed and Megatron (§ 5.2).

(4) We design and implement the components of the architec-

ture, insisting on details related to high-performance aspects,

such as, e�cient data movements and serialization of LLM

shards, orchestration of background parallelism, bridging

between high-level abstractions in Python and low-level C++

implementation, coordination and consistency (§ 5.3).

(5) We evaluate our implementation in a series of extensive

experiments in which we train large LLMs (up to 70B param-

eters) on modern HPC systems (512 nodes, each consisting

of four A100 40GB GPUs). We show signi�cant speed-up

of end-to-end runtime and up to 4× higher checkpointing

throughput in a variety of con�gurations (§ 6).

Limitations of the Proposed Approach. By leveraging the

fact that the LLM remains immutable during a signi�cant part of

each training iteration, we can perform lazy device-to-host copies

of the tensors that make up the LLM model state, which reduces

the time each iteration is blocked while waiting for device-to-host

228





HPDC ’24, June 3–7, 2024, Pisa, Italy Avinash Maurya et al.

Model+
Optimizer

Ckpt (2/2)

S-1 S-2

S-2S-1

S-2S-1Opt.

L-1

L-2 S-1 S-2

S-2S-1

S-2S-1Opt.

L-1

L-2 S-2

S-2

S-2Opt.

L-1

L-2

S-1

S-1

S-1

Model+
Optimizer

Ckpt

Model+
Optimizer

Ckpt (1/2)

(a) Conventional DNN
(PP=1, TP=1, DP=1)

(b) Conventional DNN
(PP=1, TP=1, DP=2)

(c) LLM training (PP=1, TP=2, DP=1)
Ckpt. single file per layer shard

(d) LLM training (PP=1, TP=2, DP=2)
Partition each layer shard across DP instances

GPU-0 GPU-0 GPU-1 GPU-0 GPU-1 GPU-0 GPU-1 GPU-2 GPU-3
Replica-1 Replica-2Replica-2Replica-1

Partition to ckpt.
Opt. Optimizer
L-k. Layer-k
S-j. Shard-j

Disk DiskDisk Disk

Figure 2: Sharding of checkpoints during training of conventional DNNs and LLMs for di�erent degrees of pipeline (PP), tensor

(TP), and data (DP) parallelism.

for training LLMs in combination with Megatron [37]. DeepSpeed

o�ers a set of incremental optimization stages: stage-1, stage-2,

and stage-3, which correspond to sharding the optimizer state,

gradients, and model parameters across all data parallel ranks, re-

spectively. DeepSpeed also o�ers additional tunable optimizations

such as out-of-core management of shards using the host memory

for swapping.

2.4 Implications of State Sharding on
Checkpointing

For conventional DNN models, the state captured in the checkpoint

(typically model parameters and optimizer state) is usually serial-

ized as a single �le, as depicted in Figure 2(a).When using data paral-

lelism, since there are many identical DNN model replicas available,

it is possible to split the model into shards and parallelize the I/O

by ensuring each worker captures and �ushes a di�erent shard as

a separate �le, as shown in Figure 2(b). This approach is adopted

by DeepFreeze [25], TorchSnapshot [30], and LightCheck [4]. In

the case of LLMs, sharding can be exploited even without data

parallelism to enable parallel writes of di�erent layers into di�erent

�les, as shown in Figure 2(c). Finally, this can be complemented by

another level of sharding when data parallelism is added, as shown

in Figure 2(d). By default, the DeepSpeed runtime implements the

latter case, which results in a large number of shards being stored

in separate �les. On many HPC systems, this provides the best

I/O performance especially for parallel �le systems. However, it

also raises the problem of managing a large number of shards and

potential metadata bottlenecks [9]. In this work, we assume that

the default DeepSpeed strategy is to serialize the LLM checkpoint

shards into separate �les while leaving the question of how to �nd

better �le aggregation layouts as future work.

2.5 Problem Formulation

For the scope of this paper, we only focus on scenarios consider-

ing 3D parallelism combined with stage-1 (optimizer partitioning

across data-parallel ranks), which corresponds to a con�guration

in which DeepSpeed and Megatron were successfully used to train

the largest LLM models, such as BLOOM [44] (up to 175 billion

parameters). Our goal is to design scalable multi-level asynchro-

nous checkpointing solutions that: (1) capture a globally consistent

checkpoint of LLMs that includes all shards of all GPUs correspond-

ing to both the model parameters and the optimizer state (which is

needed to successfully restart the training); (2) maximize the check-

pointing throughput in order to reduce the amount of time during

which the training is blocked by checkpointing; and (3) minimize

the contention for resources and interference between the training

and the overlapped background data transfer tasks for reducing the

end-to-end training duration.

3 RELATEDWORK

3.1 Checkpointing in Deep Learning

Checkpointing techniques have been extensively explored in the

speci�c context of deep learning for minimizing the I/O overheads

on training. Systems such as CheckFreq [24] aim at performing

�ne-grained iteration-level checkpoints and overlap checkpoint

�ushes with the training phases, but do not support checkpointing

in pipeline parallel training setups and are ine�cient in utilizing the

available network and PCIe interconnect and memory subsystems,

showing only up to 40% peak e�cient checkpointing throughput

across data-parallel replicas. Approaches such as DeepFreeze [25],

TorchSnapshot [30], and LightCheck [4] attempt to mitigate the

checkpointing overheads by both overlapping transfers with train-

ing and partitioning checkpoints across data-parallel replicas, but

do not support hybrid pipeline, tensor, data-parallel training setups.

3.2 Checkpointing for LLMs

Several recent e�orts speci�cally target checkpointing for LLMs

and focus on e�cient asynchronous 2-phase CPU-based snapshot-

ting and lazy persistence. However, the reported checkpointing

throughputs are far from saturating the network (50+ GB/s and

PCIe (25+ GB/s) links. For example, Gemini [43] reports 3.13 GB/s

checkpointing throughput (9.4 GB shard of GPT-100B takes about

3 seconds for checkpointing). REFT [42] reports 38% PCIe band-

width utilization at 6 GB/s, while TRANSOM’s checkpointing en-

gine (TCE) [45] reports achieving a throughput of ∼1.2 GB/s. Neb-

ula [23], which is Microsoft’s DeepSpeed closed-source implemen-

tation of asynchronous checkpointing and is only available on the

Azure cloud, reports achieving 1-4 GB/s (GPT2-XL checkpoint of

20.6 GB takes 5 seconds to checkpoint). These results hint at signif-

icant gaps in existing checkpointing techniques for LLMs.

230



DataStates-LLM: Lazy Asynchronous Checkpointing for Large Language Models HPDC ’24, June 3–7, 2024, Pisa, Italy

3
[4]

7
[8]

13
[16]

30
[32]

70
[80]

Model Size in Billions [Num. GPUs used]

0

200

400

600

800

1000

S
iz

e
 o

f 
a
 s

in
g

le
 c

k
p

t.
 (

G
B

)

45 83
166

444

1065

0

5

10

15

20

A
v
g

. 
c
k
p

t.
 s

iz
e
 p

e
r
 G

P
U

 (
G

B
)

Figure 3: Aggregate checkpoint sizes of di�erent model sizes

and average checkpoint size per GPU.

3.3 High-Performance Checkpointing
Runtimes

HPCworkloads have widely adopted checkpointing runtimes for re-

silience. User-transparent runtimes, e.g., BLCR [10] and DMTCP [1],

capture the entire state of all processes distributed across multiple

nodes, which is exclusively used for restarting from failures. GPU-

based transparent checkpointing runtimes such as CheCUDA [40]

and NVCR [27] provide similar functionality for capturing GPU-

based working state of the application. While these approaches are

transparent, they incur higher checkpointing overhead because the

entire state of the application (including non-critical data struc-

tures) is captured and �ushed to disk. Application-level checkpoint-

restart runtimes such as VELOC [20–22, 26] and FTI [3, 28] re-

quire the application to mark critical data structures necessary

to restart application from failures for both CPU-only and hybrid

CPU-GPU applications. Canary [2] supports containerized check-

pointing. However, none of these runtimes exploit the immutable

phases of LLM training to optimize checkpointing by overlapping

the checkpointing phase with the training phase.

3.4 I/O Optimizations in Data Movement and
Checkpoint Runtimes

Data-movement and checkpoint engines in HPC such as ADIOS [8],

VELOC [19, 26], and FTI [3] support e�cient asynchronous data

movement through multi-level cache hierarchy. VELOC [20], for

instance, reserves a pinned cache on both the device (GPU) and host

memory for bu�ering checkpoints in an overlapping fashion with

the application execution. However, given the large device memory

required for LLM training, the GPU does not have enough spare

capacity to even hold a few tensors that need to be checkpointed;

thereby compelling runtimes to use host memory as the fastest

memory tier to cache/bu�er checkpoints from. Furthermore, unlike

conventional DNNs where the size of the input dataset is typically

larger than the model states (and therefore checkpoints), in the

case of LLMs, the model is usually larger than the micro-batches

consisting of a few thousand integer-based tokens. Therefore, as

highlighted in Gemini [43], the available pool of host memory is

generally large enough to accommodate both the next subset of

prefetched input micro-batches and LLM checkpoints.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Normalized breakdown of iteration time

3

7

13

30

70

M
o
d

e
l 
s
iz

e
 i
n

 b
il
li
o
n

s

0.81s

1.26s

1.85s

3.72s

6.71s

0.79s

1.82s

3.56s

8.58s

16.82s

0.1s

0.12s

0.09s

0.11s

0.07s

Forward Backward Update

Figure 4: Di�erent iteration phases. Model and optimizer

states are immutable during forward and backward passes.

4 ANALYSIS OF LLM CHECKPOINTING
BEHAVIOR

4.1 LLM Checkpoint Sizes and Load Balancing

Unlike the case of lightweight optimizers such as stochastic-gradient

descent (SGD) [35], which are widely used in conventional DNN

models, LLMs adopt advanced adaptive learning rate optimizers

such as Adam (Adaptive momentum estimation) [15]. Such optimiz-

ers need to store additional state information (momentum, variance,

gradients), which leads to an explosion of the optimizer state size.

Unfortunately, this state information cannot be simply left out of the

checkpoint as it is essential for a successful restart of the training

process. Coupled with the already large number of LLM parameters

(billions), the overall checkpoint size becomes massive. Even worse,

while the size of checkpoints grows proportionally to the number

of transformer layers, it grows quadratically with respect to the

number of hidden dimensions [33]. To study this e�ect, we ran a

series of experiments (the setup is explained in detail in § 6.1) that

use DeepSpeed to train the models listed in Table 1. The results

are depicted in Figure 3. As expected, the checkpoint sizes quickly

grow to large sizes and exhibit similar checkpoint size per GPU for

di�erent model sizes, hinting at the fact that DeepSpeed achieves

good load-balancing among the shards as highlighted by the minor

y-axis.

4.2 Immutability of Model Parameters and
Optimizer States During Each Iteration

We also study the behavior of each training iteration at �ne granu-

larity by breaking down the runtime into forward pass, backward

pass, and update duration. The results are shown in Figure 4. We

observe that regardless of the model size, the forward and backward

passes take up the majority of the training iteration duration. In

addition to the increasing computational complexity involved in

training larger models, the long iteration duration can be attrib-

uted to operations, such as, send/recv of activations and gradients

(pipeline and tensor parallelism) and gradient all-reduce (data par-

allelism), are expensive and become a bottleneck. With increasing

the LLM model size, they get ampli�ed and lead to a negligible

update phase. Fortunately, this situation presents an opportunity

231







HPDC ’24, June 3–7, 2024, Pisa, Italy Avinash Maurya et al.

We note that all checkpointing primitives and APIs ofDataStates-

LLM are the same as those used by DeepSpeed’s default checkpoint-

ing engine, except for one additional method which blocks as long

as any previous snapshot capture operations are pending. At the

application level, checkpointing is transparent to the user, and

no code modi�cations are needed to select any of the available

checkpointing approaches, including the one that is proposed in

DataStates-LLM . The integration of DataStates-LLM was performed

through DeepSpeed’s fork of Megatron-LM, which contains ZeRO-

based optimizations for the Megatron framework and does not need

any modi�cations to use our checkpointing approach.

5.3 Implementation

Our checkpointing engine1, is written in C++/CUDA and is exposed

to DeepSpeed through Python and C++APIs. The pinned host bu�er

is managed through a simple lightweight circular bu�er manager,

considering the producer-consumer pattern described in the de-

sign principles (§ 5.1). Dedicated CUDA streams and threads are

used for device-to-host and host-to-�le transfers. Such o�oading

of transfers and �ushes in C++ enables our approach to overcome

the limitations of the state-of-the-art asynchronous approaches

(e.g., CheckFreq [24], LightCheck [4], and Lightning’s AsyncCheck-

pointIO [17]) which perform background checkpointing and �ushes

through Python threads. These Python thread-based implementa-

tions are prone to ine�ciencies arising from Python Global Inter-

preter Lock (GIL), lack of stream-based copies through GPU-copy

engines supporting DMA, and host bu�er re-allocation overheads.

Given a Python object (composed of tensors on both GPU and

host memory, arrays, objects, and other data structures) that needs

to be checkpointed, our checkpointing engine decomposes this

operation into three phases as follows: (1) recursively parse the

Python object, and create a list of large arrays and tensors (across

both GPU and host memory) by storing their memory pointers

and sizes; (2) create a header by computing the �le o�sets for each

tensor/object marked for asynchronous transfer in step (1); and

(3) enqueue asynchronous device-to-host transfer (if required) and

host-to-disk writes of headers, tensors and large objects (obtained

in step-1).

6 PERFORMANCE EVALUATION

6.1 Experimental Setup

Platform: We conduct our experiments on ALCF’s Polaris 2

HPC testbed. It consists of 560 nodes, each equipped with 512 GB of

DDR4 memory (aggregated from four NUMA domains), a 32-core

AMD Zen 3 (Milan) (64 threads), two 1.6 TB SSDs (2 GB/s) and four

Nvidia A100 GPUs aggregating to a total of 160 GB HBM memory.

On each node, the four A100 GPUs are connected with each other

using four NVLinks and with the host memory through a PCIe

Gen 4 interface. The peak unidirectional Device-to-Device (D2D),

and pinned Device-to-Host (D2H) (and vice versa) bandwidths

on each GPU are 85 GB/s and 25 GB/s, respectively. There is a

one-to-one mapping between the GPU and the NUMA domains,

therefore concurrent device-to-host access by multiple GPUs does

1The source code of DataStates-LLM is available at https://github.com/DataStates/
datastates-llm.
2https://www.alcf.anl.gov/polaris

not create contention on the PCIe interface. The checkpoints are

�ushed to persistent storage, which is a Lustre [36] parallel �le

system, composed of 160 Object Storage Targets (OSTs) and 40

Metadata targets, with an aggregated bandwidth of 650 GB/s.

Software: All the nodes run Nvidia CUDA driver 470.103, NVCC

v11.8.89, Python v3.10, PyTorch v2.1, and DeepSpeed v0.11.2 on

top of the Cray SUSE Linux Enterprise Server 15 operating system.

In our experiments, we use up to 128 nodes (512 GPUs) to study

the impact of large model sizes through data, tensor and pipeline

parallelism, and contention of checkpoint �ushes for the parallel

�le system.

6.2 Compared Approaches

DeepSpeed: This is the default checkpointing approach used in

the DeepSpeed [34] LLM training runtime using PyTorch’s default

torch.save() approach. This approach blocks the LLM training

and performs synchronous writes of the checkpoint to the persis-

tence storage, thereby providing consistency guarantees for the

checkpoint (illustrated as (a) DeepSpeed default synchronous check-

pointing in Figure 5).

Asynchronous Checkpointing: This approach is representa-

tive of the in-memory snapshotting techniques adopted by Check-

Freq [24], LightCheck[4], and PyTorch Lightning’s AsyncCheck-

pointIO [17] (illustrated as (b) Asynchronous checkpointing in Fig-

ure 5), and is replicated to mimic AsyncCheckpointIO [31] (we had

to adapt such techniques for LLMs since the original implementa-

tions do not support pipeline and tensor parallelism). Speci�cally,

in the �rst phase, it allocates a bu�er for each shard on the host

memory (red block), then copies the shard from the device to the

host bu�er (green blocks). Once the �rst phase has �nished, it pro-

ceeds to asynchronously �ush the shards from the host memory

to persistent storage (Lustre PFS in our case). This is depicted in

Figure 5(b). The allocation overhead can be signi�cant due to the

need to pin the host memory [20], especially when considering a

large number of shards. It highlights an important limitation of

many state-of-the-art approaches that are not optimized for LLM

checkpointing.

TorchSnapshot: This is a state-of-the-art checkpointing run-

time developed by the PyTorch team (illustrated as (c) TorchSnap-

shot in Figure 5). It optimizes checkpointing by (1) parallelizing

state capture across data-parallel replicas (which is moot for Deep-

Speed/Megatron since the latter shards the checkpoints by default);

(2) splitting tensors in chunks for overlapping transfers in stream-

ing fashion from the device-to-host and host-to-disk; and (3) multi-

threaded write of chunked tensors in di�erent �les on the disk,

thereby utilizing higher disk write bandwidth, but incurring addi-

tional metadata and �ushing overheads because of larger number

of �les [9]. We limit the number of parallel �ush threads per GPU

to 4, which shows peak write throughput to persistent storage in

our experimental testbed.

DataStates-LLM (Our Approach): This is the implementation

of DataStates-LLM based on the design proposed in § 5 and illus-

trated as (d) DataStates-LLM in Figure 5.

234



DataStates-LLM: Lazy Asynchronous Checkpointing for Large Language Models HPDC ’24, June 3–7, 2024, Pisa, Italy

Table 1: Con�guration of models and runtime used for eval-

uations derived from BLOOM [44] (highlighted by gray col-

umn) and LLaMA [41].

Model size in billions 3 7 13 30 70

Layers 30 32 40 60 80

Hidden dim. 2560 4096 5120 6656 8192

Atten. heads 32 32 40 52 64

Num. of nodes 1 2 4 8 20

Tensor parallelism 4 (=Number of GPUs per node)

Pipeline parallelism =Number of nodes

ZeRO optimization Stage 1 (Partition optimizer state)

6.3 Evaluation Methodology

Models, Sharding, and Dataset: We use �ve di�erent LLM

model sizes in our evaluations based on the real-world setups:

BLOOM (3B) [44], LLaMA (30B), and LLaMA2 (7B, 13B, 70B) [41]

model architectures. The models and their runtime con�gurations

are summarized in Table 1.

Tominimize the intra-layer communication overheads, the tensor-

parallel degree is set to 4, which is the number of GPUs in a single

node and all are interconnected through fast NVLinks. To �t the

model across distributed GPU memories, the pipelines are split

evenly across the number of nodes described in Table 1 using the

default partitioning scheme of uniformly balancing the number of

trainable parameters on each pipeline stage. Unless otherwise noted,

the data-parallelism degree is set to 1, representing a single LLM

replica being used for training. For the experiments that involve

the data parallelism approach, the optimizer state is sharded across

the replicas. This corresponds to the con�guration Figure 2(d).

Throughout our experiments, we use a subset of the OSCAR-en

dataset included in the repository of the BLOOM model. It consists

of 79K records, [44], and use the default LLaMA2 [41] tokenizer for

pre-processing the dataset into tokens. Similar to BLOOM training,

the default sequence length is set to 2048, and the micro-batch size

is 16 to avoid out-of-memory (OOM) errors in any con�guration.

Memory and Storage Tiers: Each of the compared approaches

is allowed to use up to a maximum of 64 GB of host memory, the

rest of which is reserved for caching the training data. Since the

average checkpoint size per GPU is 10-15 GB (shown in Figure 3)

and there are four GPUs per node, this is enough to hold a full

checkpoint across all compute nodes. From the host memory, the

checkpoint shards are �ushed directly to Lustre, which acts as the

shared persistent storage.

Key Performance Metrics: Throughout our evaluations, we

measure the following metrics for comparing the aforementioned

approaches: (1) checkpointing throughput of di�erent model sizes

to evaluates the blocking checkpointing overhead on the applica-

tion for a broad range of increasing complex LLMs; (2) impact on

iteration duration during checkpointing to evaluate the slowdown

and interference caused by checkpointing on training iterations;

and (3) end-to-end training runtime to study the broader impact on

overall job completion times. We evaluate the above metrics under

di�erent settings: (a) varying degrees of data parallelism since Deep-

Speed runtime partitions the checkpoints across data-parallel ranks

for faster checkpointing, this setting studies the impact of strong

scaling (more �ushing bandwidth available to capture the check-

point of the same size), and (b) varying checkpointing frequency

to study how the training performs for di�erent degrees of I/O

pressure arising from frequent or sparse checkpointing scenarios.

6.4 Performance Results

Increasing LLM Model Size Without Data Parallelism: In

our �rst set of experiments, we evaluate the following two metrics

for increasing model sizes: (1) the average checkpointing through-

put perceived by the training process, which is de�ned as the total

checkpoint size divided by the time for which the training was

blocked for each checkpointing operation; and (2) the average iter-

ation duration when checkpointing, which shows the overheads

of checkpointing on the training process in both direct form — the

amount of time for which training is blocked to capture check-

point, and indirect form — slowdown in training process caused by

interference from checkpointing I/O. The training is run for �ve

iterations with a checkpoint being taken at every iteration. Such

high-frequency checkpointing at every iteration allows us to study

the performance overheads of di�erent approaches under high I/O

pressure. We note two interesting observations for evaluating this

metric. First, Since the asynchronous checkpoint operations from

device-to-host and host-to-�le overlap with the computations of

the next iterations, from an application perspective, this metric

is important to study the checkpointing stalls experienced by the

application by di�erent checkpointing approaches. Second, the

checkpoint operation is a blocking collective with respect to the

model and optimizer update stage during training, i.e., none of the

processes can start updating the model or optimizer states until all

parts of the previous checkpoint are consistently captured either

on the host memory or on the persistent �le. Therefore, the check-

pointing throughput observed by the application is dictated by the

slowest process across all processes.

As observed in Figure 7, the checkpointing throughput increases

with increasing model size. This is because of two reasons: (1) The

training duration per iteration increases with larger models due

to the higher complexity of transformer layers and higher commu-

nication overheads (for sharing activations, gradients, optimizer

partitions, and model updates) across multiple nodes (as depicted

in Figure 4). The increasing iteration duration allows for more

time to asynchronously �ush the previous checkpoints, thereby

not blocking future checkpoint requests due to pending �ushes.

(2) Larger models are run on more number of nodes (as outlined

in Table 1), leading to more device-to-host interconnects which

can be exploited for parallel �ushing of checkpoints between node-

local memory tiers, and higher write bandwidth available for �ush-

ing checkpoints to the persistent �le system. As a consequence

of the above two factors, we observe a linear scalability trend of

checkpointing throughput in Figure 7 for all approaches. However,

compared to DeepSpeed, Asynchronous checkpointing, or Torch-

Snapshot, DataStates-LLM demonstrates at least 4× and up to 34×

higher checkpointing throughput across various model sizes.

Next, we study the impact on the overall iteration duration. Fig-

ure 8 shows the breakdown of per-process iteration duration as

235



HPDC ’24, June 3–7, 2024, Pisa, Italy Avinash Maurya et al.

3
[4]

7
[8]

13
[16]

30
[32]

70
[80]

Model size in billions [Num. GPUs used]

0

200

400

600
4 7 9

1
3

5

8 1
1

2
0

2
2

3

7 2
3 4
1

2
3

4

1
5 4
4

4
7

3
9

5

5
4 7
8 1

1
7

6
3

8

DeepSpeed

Async. ckpt.

TorchSnapshot

DataStates-LLM

C
k
p

t.
 t

h
r
o
u

g
h

p
u

t 
(G

B
/s

)

Figure 7: Aggregate checkpointing throughput for di�erent

model sizes. Higher is better.

3
[4]

7
[8]

13
[16]

30
[32]

70
[80]

Model size in billions [Num. GPUs used]

0

20

40

60

A
v
g

. 
it

e
r.

 t
im

e
 w

h
e
n

 c
h

e
c
k
p

o
in

ti
n

g
 (

s
)

9 9 7
4

1
3 1
5

7
5

2
9

1
7

1
0

6

4
2

2
4

2
2

1
4

4
7

3
9

3
6

2
9

Training time

DeepSpeed

Async. ckpt.

TorchSnapshot

DataStates-LLM

Figure 8: Average training iteration time for di�erent model

sizes when checkpointing. Lower is better.

1
[16]

2
[32]

4
[64]

8
[128]

16
[256]

Data parallel degree [Num. GPUs used]

0

200

400

600

800

C
k
p

t.
 t

h
r
o
u

g
h

p
u

t 
(G

B
/s

)

DeepSpeed
Async. ckpt.

TorchSnapshot
DataStates-LLM

1
6

1
5 4
1 6
5

2
6 4
3 8

3
2

4
7

4
8 7
3 1

1
8

3
9

7

7
1 1

1
2

1
1

0
4

9
6

8
6

1
7

6
1

2
4

5
2

5

0.0

2.5

5.0

7.5

10.0

12.5
C

k
p

t.
 s

iz
e
 p

e
r
 G

P
U

 (
G

B
)

Figure 9: Aggregate checkpointing throughput for a 13Bmodel

for di�erent data-parallel degrees. Higher is better.

1
[32]

2
[64]

4
[128]

8
[256]

16
[512]

Data parallel degree [Num. GPUs used]

0

500

1000

1500

C
k
p

t.
 t

h
r
o
u

g
h

p
u

t 
(G

B
/s

)

DeepSpeed
Async. ckpt.

TorchSnapshot
DataStates-LLM

1
5 7
5

4
7

3
9
5

2
0 7
1 1
3
7

5
4
9

2
3 1

0
8 2
3
1

8
1
3

2
5

1
8
6

2
2
6

8
3
4

2
5

2
9
5

2
5
6

1
2
0
1

0

5

10

15

C
k
p

t.
 s

iz
e
 p

e
r
 G

P
U

 (
G

B
)

Figure 10: Aggregate checkpointing throughput for a 30B

model for di�erent data-parallel degrees. Higher is better.

training time vs. checkpointing time. We observe that the train-

ing time (consisting of forward pass, backward pass, and update

phases) of smaller models (3B, 7B, 13B, and 30B) are similar for all

approaches except for the Asynchronous checkpointing approach.

This is because of the interference caused by slow host-memory

allocation, slow transfers to unpinned host-memory, and PCIe con-

tention with loading the next micro-batch on the GPU from the

data pipeline. This e�ect is not observed in the larger 70B model

because, for large models with the same amount of checkpoint

data per GPU (shown in Figure 3), the long forward and backward

passes amortize the slow allocation and transfer overheads. With

increasing model size, the training time increases (Figure 4), while

the checkpoint size per GPU remains consistent (Figure 3). There-

fore, the ratio of the training duration to blocking duration while

waiting for checkpoints to �nish increases with the model size.

However, irrespective of the fact that the training phase dictates

the major proportion of the iteration time, DataStates-LLM speeds

up the iteration by at least 23%, and up to 4.5× compared to other

approaches we studied in evaluating DataStates-LLM .

Fixed LLMModel Size with Increasing Data Parallelism: In

our next set of experiments, we evaluate the checkpointing through-

put as a function of increasing degrees of data parallelism. Similar

to the previous set of experiments, we conducted this experiment by

checkpointing during each of �ve consecutive iterations. This eval-

uation is important to study the e�ciency of concurrent �ushing of

the partitioned optimizer state across the data parallel replicas. We

evaluate the checkpointing throughput by scaling the data paral-

lelism degrees from 1 to 16 for two model sizes: 13B and 30B. We do

not consider the smaller 3B and 7B models because at high degrees

of data parallelism, such models are partitioned at excessive levels,

which results in tiny shards that lead to the underutilization of

GPUs. On the other hand, large models such as 70B show similar

trends as the 30B model, but run for much longer. We only scale up

to a data-parallel degree of 16 with 512 GPUs because it is not trivial

to train a large number of data-parallel replicas in practice due to

the high costs of GPU resources — for instance, BLOOM 175B was

trained with 8 data-parallel replicas on a total of 384 GPUs.

Figure 9 and Figure 10 show the checkpointing throughput with

increasing scale of data parallelism for the 13B and 30B models. We

observe that the checkpoint size per GPU, referenced by dashed-red

236



DataStates-LLM: Lazy Asynchronous Checkpointing for Large Language Models HPDC ’24, June 3–7, 2024, Pisa, Italy

10
[5]

5
[10]

4
[12]

3
[16]

2
[25]

1
[50]

Checkpoint freq. [Num of ckpts. created]

0

100

200

300

C
k
p

t.
 t

h
r
o
u

g
h

p
u

t 
(G

B
/s

)

DeepSpeed
Async. ckpt.

TorchSnapshot
DataStates-LLM

9 1
1

1
5

2
4
3

9 1
1

1
5

2
1
2

8 1
1

1
4

2
3
9

8 1
0

1
4

1
7
2

8 1
1 2
5

7
4

9 1
0

1
3

7
6

(a) Aggregate checkpointing throughput.

Higher is better.

10
[5]

5
[10]

4
[12]

3
[16]

2
[25]

1
[50]

Checkpoint freq. [Num. ckpts. created]

0

5

10

15

20

25

A
v
g

. 
it

e
r.

 t
im

e
 w

h
e
n

 c
h

e
c
k
p

o
in

ti
n

g
 (

s
)

Training time

DeepSpeed

Async. ckpt.

TorchSnapshot

DataStates-LLM

1
3

1
1

9
3

1
3

1
2

9
4

1
3

1
3

9
4

1
3 1
4

9
4

1
3 1

4
7

4

1
3

1
9

1
0

4

(b) Per process iteration time when check-

pointing. Lower is better.

10
[5]

5
[10]

4
[12]

3
[16]

2
[25]

1
[50]

Checkpoint freq. [Num. ckpts. created]

0

500

1000

1500

E
n

d
-t

o
-e

n
d

 r
u

n
ti

m
e
 (

s
)

Training time

DeepSpeed

Async. ckpt.

TorchSnapshot

DataStates-LLM

2
0
4

2
3
4

1
7
8

1
6
7 2
5
2 3
3
7

2
0
2

1
7
6 2
7
4 3
6
0

2
1
8

1
7
5 3

1
2 4
1
9

2
4
2

1
9
0

4
0
6 5

6
4

2
4
4

1
8
4

6
3
1

1
0
3
4

4
6
5

2
8
2

(c) End-to-end training time. Lower is better.

Figure 11: Running training for 50 iterations for a 7B model with di�erent checkpointing frequencies.

10
[5]

5
[10]

4
[12]

3
[16]

2
[25]

1
[50]

Checkpoint freq. [Num of ckpts. created]

0

50

100

150

200

C
k
p

t.
 t

h
r
o
u

g
h

p
u

t 
(G

B
/s

)

DeepSpeed
Async. ckpt.

TorchSnapshot
DataStates-LLM

1
7

1
9

4
0

1
5
5

1
7

1
8 3

2
1
5
4

1
7

2
0

4
2

1
4
7

1
7

2
0 3

5
1
4
6

1
7

1
8 3

4
1
4
3

1
7

1
9 3

4
1
4
2

(a) Aggregate checkpointing throughput.

Higher is better.

10
[5]

5
[10]

4
[12]

3
[16]

2
[25]

1
[50]

Checkpoint freq. [Num. ckpts. created]

0

10

20

30

A
v
g

. 
it

e
r.

 t
im

e
 w

h
e
n

 c
h

e
c
k
p

o
in

ti
n

g
 (

s
)

Training time

DeepSpeed

Async. ckpt.

TorchSnapshot

DataStates-LLM

1
5

1
5

1
0

7

1
5 1
6

1
1

7

1
5 1
7

9
7

1
5 1

7
1

0
7

1
5

1
9

1
0

7

1
5

2
5

1
0

7
(b) Per process iteration time when check-

pointing. Lower is better.

10
[5]

5
[10]

4
[12]

3
[16]

2
[25]

1
[50]

Checkpoint freq. [Num. ckpts. created]

0

500

1000

1500

2000

E
n

d
-t

o
-e

n
d

 r
u

n
ti

m
e
 (

s
)

Training time

DeepSpeed

Async. ckpt.

TorchSnapshot

DataStates-LLM

3
2
2

3
6
9

3
0
1

2
8
5

3
7
1 4
8
7

3
2
9

2
9
1

3
9
1 5
2
1

3
2
2

2
9
1 4
2
9 6

1
0

3
4
9

2
9
7

5
1
8

7
9
9

4
0
1

3
1
4

7
5
9

1
3
6
4

5
1
7

3
5
1

(c) End-to-end training time. Lower is better.

Figure 12: Running training for 50 iterations for a 13B model with di�erent checkpointing frequencies.

lines on the minor y-axis, shows a linear decrease of checkpoint size

per GPUwith increasing degrees of data parallel replicas. Therefore,

this study captures the strong scalability of checkpoint performance,

i.e., how well can various checkpointing approaches perform when

the same checkpoint is distributed across multiple ranks, such that

they can be �ushed in parallel. More speci�cally, the checkpoint

size per GPU drops from ∼10.4 GB to ∼650 MB per GPU for the

13B model, and from ∼13.8 GB to ∼870 MB per GPU for the 30B

model, when scaling the data parallel degree from 1 to 16. When

comparing the 13B and 30B models for the same number of GPUs

(e.g., the 13B model with DP=4 and 30B model with DP=2 for 64

GPUs), we see that the checkpointing throughput of the 13B model

is lower than the 30B model even though both approaches have the

same number of parallel channels for �ushing the checkpoint. This

is because the training iteration of the 13B model is signi�cantly

faster than the 30B model and therefore needs to stall training for

checkpointing more frequently as compared to the long-running

iteration of the 30B model. While all approaches scale well to the

increasing data parallel replicas due to concurrent �ushes, our ap-

proach outperforms the DeepSpeed synchronous, Asynchronous

checkpointing approach, and TorchSnapshot by 2.8×, 1.75×, and

1.78×, respectively for the 13B model; and for the 30B model by 48×,

4.12×, and 4.7×, respectively. In terms of end-to-end training run-

time of the 30B model, we observe that DataStates-LLM shows up

to 2.5× to 1.86× faster training completion time when scaling from

DP=1 to DP=16 as compared to other approaches. Similar trends

are observed for the 13B model. Therefore, our approach excels at

strong scalability experiments of checkpointing and demonstrates

signi�cant speedup in end-to-end training runtimes.

Increasing Checkpointing Frequency: Next, we study the

impact of scaling the checkpoint frequency, i.e., the number of

iterations elapsed between consecutive checkpoint operations. This

allows us to understand the e�ciency of overlapping between the

training and asynchronous checkpoint �ushes such that the large

intervals between subsequent checkpoint operations would allow

for more time to complete the �ushes to persistent storage and free

up the host-memory bu�er for the next checkpoints.

In particular, we evaluate the checkpointing throughput, itera-

tion slowdown caused due to checkpointing, and the end-to-end

runtime for a variable number of checkpoints captured during a 50-

iteration run of the 7B and 13B models. Thanks to fast forward and

backward passes, the 7B model presents less opportunities to over-

lap asynchronous I/O with the training iterations. Therefore, we

chose it to highlight the di�erence between the approaches when

the I/O pressure dominates. Conversely, the 13B model captures

the opposite trend observed in larger model, where slower forward

and backward passes enable more opportunities for overlap.

For the 7B model, we observe in Figure 11a that the checkpoint-

ing throughput of DataStates-LLM decreases with an increasing

checkpointing frequency due to higher I/O pressure, which arises

237



HPDC ’24, June 3–7, 2024, Pisa, Italy Avinash Maurya et al.

due to the bottleneck of slow checkpoint �ushes to the disk. On

the other hand, the 13B model, depicted in Figure 12a, does not

exhibit this e�ect. Instead, the checkpointing throughput remains

high regardless of the checkpointing frequency. In any case, the

other approaches su�er from I/O bottlenecks regardless of model

size. As a consequence, DataStates-LLM achieves at least 3× higher

checkpointing throughput for the 7B model and 4.2× higher check-

pointing throughput for the 13B model.

Furthermore, we observe in Figure 11b and Figure 12b, respec-

tively, that with increasing checkpointing frequency, the Asyn-

chronous checkpointing approach slows down the training phase

signi�cantly, due to slow host memory allocation and transfers,

similar to the e�ect illustrated in Figure 8. On the other hand, the

other compared approaches do not increase the duration of the

training iteration. However, thasnks to better overlapping with the

forward and backward pass, DataStates-LLM achieves at least 1.3×

and up to 3.8× faster iteration duration during checkpointing as

compared with the other approaches.

Lastly, we study the end-to-end time taken to complete the en-

tire training process, including the pending �ushes towards the

end of training. Figure 11c and Figure 12c depict the end-to-end

runtime of the 7B model and the 13B model, respectively. The end-

to-end training runtime shows performance trends similar to those

observed in iteration-scale analysis (Figure 11b and Figure 12b).

Speci�cally, our approach remains up to 3.86× faster in end-to-end

training as compared to the other approaches even for an increasing

checkpointing frequency.

7 CONCLUSIONS

In this work, we address the problem of high overheads incurred due

to checkpointing in large-scale distributed LLM training running

with advanced hybrid parallelism strategies using widely adopted

runtimes such as DeepSpeed. State-of-the-art checkpoint engines,

speci�cally designed for LLMs slow down the training while check-

pointing because (1) they do not exploit the characteristics of vari-

ous training phases to overlap checkpoint I/O e�ciently; and (2)

they underutilize the available interconnects andmemory resources,

leading to signi�cant stalls during training. The checkpointing over-

heads are exacerbated when model and/or optimizer states need to

be frequently checkpointed for defensive and productive use cases.

To address these limitations, we design and develop DataStates-

LLM , which e�ciently and transparently overlaps the checkpoint

I/O with the immutable phases of forward and backward passes

during training. DataStates-LLM proposes key design ideas to mit-

igate checkpoint overheads in LLMs, such as preallocating and

reusing pinned host bu�er for fast DMA transfers, coalescing of

model/optimizer shards while transferring checkpoints from GPU

to host-memory, lazy non-blocking checkpoint snapshotting over-

lapping with forward and backward training phases, streaming

multi-level �ushing to persistent storage, and asynchronous dis-

tributed consensus of checkpoint persistence. We ran extensive

evaluations with varying model sizes derived from production-

grade runs of BLOOM and LLaMA2, di�erent data parallelism con-

�gurations, and checkpointing frequency intervals. Results show

that DataStates-LLM checkpoints 3× to 4.2× faster than existing

state-of-the-art checkpointing runtimes, which achieves a speedup

of the end-to-end training by 1.3× to 2.2×.

Encouraged by these promising results, in future we plan to

explore data reduction techniques such as di�erential checkpointing

and compression to further minimize the network and storage

costs when checkpointing at high frequencies. Furthermore, we

will explore e�cient checkpointing strategies when model and/or

optimizer states are o�oaded across multiple memory tiers. Finally,

we did not study the metadata overheads resulting from storing

each shard as a separate �le. This may lead to interesting trade-

o�s that justify investigating novel aggregation and consolidation

strategies.

ACKNOWLEDGEMENTS

This work is supported in part by the U.S. Department of Energy

(DOE), O�ce of Science, O�ce of Advanced Scienti�c Computing

Research under contract DEAC02-06CH11357/0F-60169 and the Na-

tional Science Foundation (NSF) under award no. 2106634/2106635.

Results presented in this paper are obtained using Argonne’s ALCF

HPC systems, and NSF Cloudlab and Chameleon testbeds.

REFERENCES
[1] Jason Ansel, Kapil Arya, and Gene Cooperman. 2009. DMTCP: Transparent

checkpointing for cluster computations and the desktop. In IPDPS’09: International
Symposium on Parallel & Distributed Processing. IEEE, Rome, Italy, 1–12.

[2] Moiz Arif, Kevin Assogba, and M. Mustafa Ra�que. 2022. Canary: Fault-Tolerant
FaaS for Stateful Time-Sensitive Applications. In SC22: International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, Dallas,
TX, USA, 1–16.

[3] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,
Naoya Maruyama, and Satoshi Matsuoka. 2011. FTI: High performance Fault
Tolerance Interface for hybrid systems. In SC’11: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, Seattle, WA, USA, 1–12.

[4] Menglei Chen, Yu Hua, Rong Bai, and Jianming Huang. 2023. A Cost-E�cient
Failure-Tolerant Scheme for Distributed DNN Training. In ICCD’23: Proceedings
of the International Conference on Computer Design. IEEE, Milan, Italy, 150–157.

[5] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. 2021. NVIDIA A100 Tensor Core GPU: Performance and Innovation.
IEEE Micro 41, 2 (2021), 29–35.

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways.
JMLR’23: Journal of Machine Learning Research 24, 240 (2023), 1–113.

[7] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:
scaling to trillion parameter models with simple and e�cient sparsity. JMLR’22:
Journal of Machine Learning Research 23, 1, Article 120 (jan 2022), 39 pages.

[8] William F Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisen-
hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck,
et al. 2020. Adios 2: The adaptable input output system. a framework for high-
performance data management. SoftwareX 12 (2020), 100561.

[9] Mikaila Gossman, Bogdan Nicolae, and Jon Calhoun. 2023. Modeling Multi-
Threaded Aggregated I/O for Asynchronous Checkpointing on HPC Systems. In
ISPDC’23: Proceedings of the International Conference on Parallel and Distributed
Computing. IEEE, Bucharest, Romania, 101–105. https://hal.inria.fr/hal-04343661

[10] Paul H Hargrove and Jason C Duell. 2006. Berkeley lab checkpoint/restart (blcr)
for linux clusters. IOP Publishing 46, 1 (2006), 494.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, Las Vegas, USA, 770–778.

[12] Tao He, Xue Li, Zhibin Wang, Kun Qian, Jingbo Xu, Wenyuan Yu, and Jin-
gren Zhou. 2023. Unicron: Economizing Self-Healing LLM Training at Scale.
arXiv:2401.00134 [cs.DC]

[13] Heidi Howard and Richard Mortier. 2020. Paxos vs Raft: have we reached con-
sensus on distributed consensus?. In PaPoC’20: The 7th Workshop on Principles
and Practice of Consistency for Distributed Data. ACM, Heraklion, Greece, Article
8, 9 pages.

[14] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng

238



DataStates-LLM: Lazy Asynchronous Checkpointing for Large Language Models HPDC ’24, June 3–7, 2024, Pisa, Italy

Chen. 2019. GPipe: E�cient Training of Giant Neural Networks using Pipeline
Parallelism. In NeurIPS’19: Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.), Vol. 32. Curran Associates, Inc., Vancouver, Canada.

[15] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs.LG]

[16] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Je� Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
Proc. VLDB Endow. 13, 12 (2020), 3005–3018.

[17] PyTorch Lightning. 2023. Welcome to PyTorch Lightning — PyTorch Lightning
2.1.0 Documentation. https://lightning.ai/docs/pytorch/stable/.

[18] Junyang Lin, An Yang, Jinze Bai, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang,
Jie Zhang, Yong Li, Wei Lin, Jingren Zhou, and Hongxia Yang. 2022. M6-10T: A
Sharing-Delinking Paradigm for E�cient Multi-Trillion Parameter Pretraining.
https://openreview.net/forum?id=TXqemS7XEH

[19] Avinash Maurya, Bogdan Nicolae, Mustafa Ra�que, Thierry Tonellot, and Franck
Cappello. 2021. Towards E�cient I/O Scheduling for Collaborative Multi-Level
Checkpointing. In MASCOTS’21: The 29th IEEE International Symposium on the
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.
IEEE, Virtual, Portugal, 1–8. https://hal.inria.fr/hal-03344362

[20] Avinash Maurya, Bogdan Nicolae, M. Mustafa Ra�que, Amr M. Elsayed, Thierry
Tonellot, and Franck Cappello. 2022. Towards E�cient Cache Allocation for High-
Frequency Checkpointing. In HiPC’22: The 29th IEEE International Conference
on High Performance Computing, Data, and Analytics. IEEE, Bangalore, India,
262–271.

[21] Avinash Maurya, Mustafa Ra�que, Thierry Tonellot, Hussain AlSalem, Franck
Cappello, and Bogdan Nicolae. 2023. GPU-Enabled Asynchronous Multi-level
Checkpoint Caching and Prefetching. In HPDC’23: The 32nd International Sympo-
sium on High-Performance Parallel and Distributed Computing. ACM, Orlando,
USA, 73–85. https://hal.inria.fr/hal-04119928

[22] Avinash Maurya, M. Mustafa Ra�que, Franck Cappello, and Bogdan Nicolae. 2023.
Towards E�cient I/O Pipelines using Accumulated Compression. In HIPC’23:
30th IEEE International Conference on High Performance Computing, Data, and
Analytics. IEEE, Goa, India, 256–265.

[23] Microsoft. 2023. Optimize Checkpoint Performance for Large Models - Azure
Machine Learning. https://learn.microsoft.com/en-us/azure/machine-learning/
reference-checkpoint-performance-for-large-models.

[24] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021. Check-
Freq: Frequent, Fine-Grained DNN Checkpointing. In FAST’21: The 19th USENIX
Conference on File and Storage Technologies. USENIX Association, Boston, USA,
203–216.

[25] Bogdan Nicolae, Jiali Li, Justin M. Wozniak, George Bosilca, Matthieu Dorier, and
Franck Cappello. 2020. DeepFreeze: Towards Scalable Asynchronous Checkpoint-
ing of Deep Learning Models. In CCGrid’20: The 20th International Symposium on
Cluster, Cloud and Internet Computing. IEEE/ACM, Melbourne, Australia, 172–
181.

[26] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck
Cappello. 2019. VeloC: Towards High Performance Adaptive Asynchronous
Checkpointing at Large Scale. In IPDPS’19: IEEE International Parallel and Dis-
tributed Processing Symposium. IEEE, Rio de Janeiro, Brazil, 911–920.

[27] Akira Nukada, Hiroyuki Takizawa, and Satoshi Matsuoka. 2011. NVCR: A trans-
parent checkpoint-restart library for NVIDIA CUDA. In IPDPS’11: Proceedings
of the International Symposium on Parallel and Distributed Processing Workshops
and Phd Forum. IEEE, Anchorage, AK, USA, 104–113.

[28] Konstantinos Parasyris, Kai Keller, Leonardo Bautista-Gomez, and Osman Unsal.
2020. Checkpoint restart support for heterogeneous hpc applications. In CC-
GRID’20: The International Symposium on Cluster, Cloud and Internet Computing

(CCGRID). IEEE/ACM, Melbourne, Australia, 242–251.
[29] Sreeram Potluri, Khaled Hamidouche, Akshay Venkatesh, Devendar Bureddy,

and Dhabaleswar K Panda. 2013. E�cient inter-node MPI communication using
GPUDirect RDMA for In�niBand clusters with NVIDIA GPUs. In ICPP’13: The
International Conference on Parallel Processing. IEEE, Lyon, France, 80–89.

[30] PyTorch. 2024. Welcome to the TorchSnapshot documentation. https://pytorch.
org/torchsnapshot/stable/.

[31] PyTorch-Lightning. 2024. AsyncCheckpointIO– PyTorch Lightning.
https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.plugins.io.
AsyncCheckpointIO.html.

[32] Samyam Rajbhandari, Je� Rasley, Olatunji Ruwase, and Yuxiong He. 2020.
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models.
arXiv:1910.02054 [cs, stat]

[33] Samyam Rajbhandari, Olatunji Ruwase, Je� Rasley, Shaden Smith, and Yuxiong
He. 2021. ZeRO-in�nity: breaking the GPU memory wall for extreme scale deep
learning. In SC’21: The International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, St. Louis, Missouri, Article 59, 14 pages.

[34] Je� Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
Speed: System Optimizations Enable Training Deep Learning Models with Over
100 Billion Parameters. In KDD’20: The 26th SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, Virtual Event CA USA, 3505–3506.

[35] Sebastian Ruder. 2017. An overview of gradient descent optimization algorithms.
arXiv:1609.04747 [cs.LG]

[36] Philip Schwan et al. 2003. Lustre: Building a �le system for 1000-node clusters. In
Proceedings of the 2003 Linux symposium, Vol. 2003. Linux symposium, Ontario,
Canada, 380–386.

[37] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2020. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. arXiv:1909.08053 [cs]

[38] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:1409.1556 [cs.CV]

[39] Shuaiwen Leon Song, Bonnie Kruft, Minjia Zhang, Conglong Li, Shiyang Chen,
et al. 2023. DeepSpeed4Science Initiative: Enabling Large-Scale Scienti�c Discov-
ery through Sophisticated AI System Technologies. arXiv:2310.04610 [cs]

[40] Hiroyuki Takizawa, Katsuto Sato, Kazuhiko Komatsu, and Hiroaki Kobayashi.
2009. CheCUDA: A Checkpoint/Restart Tool for CUDA Applications. In PD-
CAT’09: The International Conference on Parallel and Distributed Computing, Ap-
plications and Technologies. IEEE, Higashi-Hiroshima, Japan, 408–413.

[41] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat Models.
arXiv:2307.09288 [cs]

[42] Yuxin Wang, Shaohuai Shi, Xin He, Zhenheng Tang, Xinglin Pan, Yang Zheng,
Xiaoyu Wu, Amelie Chi Zhou, Bingsheng He, and Xiaowen Chu. 2023. Reliable
and E�cient In-Memory Fault Tolerance of Large Language Model Pretraining.
arXiv:2310.12670 [cs.DC]

[43] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, T. S. Eugene Ng,
and Yida Wang. 2023. GEMINI: Fast Failure Recovery in Distributed Training
with In-Memory Checkpoints. In SOSP’23: The Proceedings of the 29th Symposium
on Operating Systems Principles (SOSP ’23). ACM, Koblenz, Germany, 364–381.

[44] BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilić, et al. 2023. BLOOM: A 176B-Parameter Open-Access Multi-
lingual Language Model. arXiv:2211.05100 [cs]

[45] Baodong Wu, Lei Xia, Qingping Li, Kangyu Li, Xu Chen, Yongqiang Guo, Tieyao
Xiang, Yuheng Chen, and Shigang Li. 2023. TRANSOM: An E�cient Fault-
Tolerant System for Training LLMs. arXiv:2310.10046 [cs.DC]

[46] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding,
Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Peng Zhang, Yuxiao Dong, and Jie Tang.
2023. GLM-130B: An Open Bilingual Pre-trained Model. arXiv:2210.02414 [cs.CL]

239


	Abstract
	1 Introduction
	2 Background
	2.1 Data Parallelism
	2.2 Pipeline and Tensor Parallelism
	2.3 State Sharding to Eliminate Redundancy of Data-Parallel Replicas
	2.4 Implications of State Sharding on Checkpointing
	2.5 Problem Formulation

	3 Related Work
	3.1 Checkpointing in Deep Learning
	3.2 Checkpointing for LLMs
	3.3 High-Performance Checkpointing Runtimes
	3.4 I/O Optimizations in Data Movement and Checkpoint Runtimes

	4 Analysis of LLM Checkpointing Behavior
	4.1 LLM Checkpoint Sizes and Load Balancing
	4.2 Immutability of Model Parameters and Optimizer States During Each Iteration

	5 DataStates-LLM: System Design
	5.1 Design Principles
	5.2 DataStates-LLM Architecture
	5.3 Implementation

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Compared Approaches
	6.3 Evaluation Methodology
	6.4 Performance Results

	7 Conclusions
	References

