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Table 1: Model and optimizer state sizes for di�erent models.

Model size (Billions) 7B 13B 30B 70B 130B 175B

Model states (GB) 24 46 120 240 473 640

Optimizer states (GB) 96 187 475 960 1890 2572

and the gradients at the end of each forward and backward pass in

traditional deep learning model training. However, the adoption of

data, tensor, and pipeline parallelism introduces expensive synchro-

nization points necessary for the updates, e.g., gradient all-reduce

in the case of data parallelism. As a consequence, a frequent opti-

mization is gradient accumulation, where the gradients are summed

up over multiple forward and backward passes, then they are av-

eraged, and the average gradients are used in a separate update

step. In our study, when gradient accumulation is used, we refer to

the last forward and backward pass before the update of the model

parameters as the gradient boundary pass. By contrast, any forward

or backward pass that is not followed by a model parameter update

is referred to as non-gradient boundary.

Host-o�loaded update phase using mixed precision: With

the model and optimizer state sizes exploding (Table 1) [4, 5, 7],

approaches such as DeepSpeed ZeroIn�nity [11], CoTrain [19], etc.

have explored the idea of moving large data structures required

during training to the host memory, notably the optimizer state.

This makes it feasible to train LLMs on much smaller aggregated

GPU memory footprint, albeit at the cost of performance penalty.

Speci�cally, by keeping a master copy of the optimizer state and

model parameters on the host memory in high 32-bit �oating point

(FP32) precision, the forward pass and backward pass can operate

with model parameters in lower 16-bit �oating point (FP16) pre-

cision to calculate FP16 gradients, which are then �ushed to the

host memory and upscaled to FP32 precision. Then, the update of

the parameters can proceed directly on the CPU and a downscaled

FP16 copy can be transferred to the GPUs for the next iteration. In

this case, an important bottleneck is the I/O bandwidth between

the host memory and the memory of the GPUs, which is limited

by PCIe links. This bottleneck is further exacerbated by competi-

tion for the PCIe links due to inter-node communication needed to

implement tensor, pipeline, and data parallelism, which results in

additional overheads during the forward pass (waiting for the copy

of model parameters from the host to the GPU) and the backward

pass (waiting to �ush the gradients from the GPU to the host). An-

other important bottleneck is the low computational capability of

the CPUs, which are orders of magnitude slower than the GPUs.

Under such circumstances, despite being simple and embarrassingly

parallel, the operations involved in updating the model parame-

ters and the optimizer state lead to a signi�cant runtime overhead,

which otherwise is negligible when running them on the GPUs.

Sharding of partitions into subgroups: When the partitions

corresponding to the model parameters, gradients, and activations

are so large that they do not �t on the GPUmemory even at low FP16

precision, a common mitigation strategy is sharding the partition

into subgroups. Speci�cally, the forward pass can serially process

each subgroup one after another, while accumulating (and/or check-

pointing) the activations. Then, during the backward pass, the same

process can be repeated to compute the gradients. If the subgroup is
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Figure 2: Subgroup sharding of model parameters, gradients,

and activations on GPUs.

large enough to saturate the GPU compute capability, the serial pro-

cessing of multiple subgroups incurs minimal overhead compared

with processing the whole partition at once, but with the added

bene�t of reduced memory utilization. This strategy is illustrated

in Figure 2.

Hybrid GPU-CPU partitioning and update phase process-

ing: Once the gradients have been computed by the backward pass,

model parameters are updated that involve embarrassingly parallel

computations since each model parameter only depends on its own

corresponding gradient and optimizer state, e.g., momentum and

variance in the case of Adam [11]. This property is exploited by

techniques such as ZeRO-O�oad++ [13] in order to partition the

optimizer state between the CPU and GPU, instead of completely

o�oading the optimizer state to the CPU, which enables the update

step to proceed in parallel. However, such techniques require that

the model parameters and optimizer state are pre-partitioned on

the CPU and GPU using a �xed ratio that is determined at the start

of the training process. The problem of how to choose the �xed

ratio is di�cult, because there is a �ne balance between avoiding

out-of-memory (OOM) errors on the GPUs, while at the same time

maximizing the GPU memory utilization to improve performance

and scalability. With increasing mini-batch size and therefore ac-

tivation sizes, a �xed ratio results in a majority of the optimizer

state ending up on the CPU, thereby negating the bene�ts of hybrid

computations.

Motivation of the study: The sheer complexity of modern

training runtimes for LLMs and transformers, as summarized above,

makes it unfeasible to study all combinations of optimizations.

However, some observations can be made to narrow down the

scope of the study. First, the training process is iterative in nature,

which means the behavior is repetitive and therefore it is su�cient

to study a single iteration in detail. Second, each iteration consists

of one or more forward and backward passes, followed by an update

step. Thus it is important to study the di�erences in the behavior as

the iterations transition between the steps. Intuitively, we expect

�uctuations in resource utilization that prompt the need for �exible

solutions to adapt the o�oading to the training behavior. Third, to

enable e�cient hybrid CPU-GPU partitioning and processing of the
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(a) GPU memory utilization.
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(b) Device-to-host transfers.
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(c) Host-to-device transfers.

Figure 4: Memory and PCIe utilization statistics of single iteration when training 13B model.

microbatch training. In this context, the forward-backward pair

that are not immediately followed by an update step are termed

as non-gradient accumulation boundaries (�# in Table 2) ; while

the backward passes immediately preceding an update step are

termed as gradient boundary (�� in Table 2). The backward pass

behaves di�erently for non-gradient accumulation boundaries as

compared to the gradient accumulation boundary. In particular,

this distinction comes from the blocking D2H copy of accumulated

gradients which happens at the last backward pass. These accumu-

lated gradients are �ushed to the CPU and are used by the o�oaded

CPU optimizer to run the update step.

The backward phase and the all-reduce computations are per-

formed in multiple buckets/chunks, which is determined by the

reduce_bucket_size parameter of the DeepSpeed con�guration

(we used the default value of 0.5B). The overlap_comm further al-

lows overlapping gradient reduction of the previous bucket with

the backward pass of the next bucket. For each all-reduce bucket,

the following I/O and memory operations take place:

�
� : Gradient accumulation bu�er initialization: During the

backward pass of the �rst microbatch, the host-resident gradi-

ent accumulation bu�er is initialized with the GPU-resident gra-

dient values of the �rst microbatch (D2H copy). To accelerate

the accumulation operations (tensor.add_), the gradient accu-

mulation bu�er corresponding to a single bucket is copied to the

GPU (H2D). Then for each parameter that needs to be reduced,

if its corresponding accumulation bu�er exists on the GPU, the

grad_acc_buffer.add_(grad_val) operation is invoked. Although

these D2H and H2D transfers for creating the initial gradient accu-

mulation bu�er for a given bucket are non-blocking and overlap

with the reduction process, the device to host data movements can

be reduced by half by simply doing a D2D copy of all-reduced gra-

dients to initialize the GPU-resident accumulation gradient bu�er

and asynchronously copying the initial gradient values to the host-

resident gradient accumulation bu�er.

Observation 1: During the backward pass of the �rst

microbatch in an iteration, the redundant D2H and H2D

copies can be eliminated when the initial GPU-resident gra-

dient values are D2H copied to the host-resident gradient

accumulation bu�er.

Table 2: Hybrid strong and weak scalability tests — micro-

batch size remains the same per GPU, but model parameters

get partitioned across DP ranks.

DP degree 1 2 4

[� ] Forward (s) 0.31 0.37 0.39

[�# ] Backward non grad-boundary (s) 1.03 0.82 0.7

[��] Backward grad-boundary (s) 11.2 6.13 3.8

[* ] Update (s) 4.6 2.4 2.4

[) ] TFLOPS 18.9 32.6 23.4

�
# : Non-gradient accumulation boundary: Starting from

second microbatch onwards, for each bucket, if a gradient accumu-

lation bu�er corresponding to a parameter is not found on the GPU

memory, the following operations are executed asynchronously on

the default CUDA stream: (1) copy the gradient accumulation bu�er

from the host-resident gradient accumulation bu�er to the GPU

(H2D); (2) accumulate using grad_acc_buffer.add_(grad_val);

and (3) �ush back the accumulated gradients to the host-resident

gradient bu�er (D2H).

�
� : Gradient accumulation boundary: During the last back-

ward pass of the iteration, i.e., gradient accumulation boundary,

in addition to running �# , the gradients accumulated for all sub-

groups on the GPU bu�er are D2H �ushed to the host-resident

gradient bu�er, to be used by the CPU-resident optimizer during

the update step, in blocking form. Therefore, the gradient reduction

of the next bucket cannot overlap with the D2H transfer of accu-

mulated gradients of the previous bucket. As observed in Figure 3,

the time required for the last backward pass constitutes a major

fraction of the overall iteration time.

Observation 2: The backward pass can be accelerated by

introducing asynchronous gradient �ushes, at the expense

of increasing the competition for PCIe links with other

communications that are not using a di�erent channel,

e.g., when no NVLink is available.
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(a) Tensor sizes during D2H transfers.
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(b) Tensors sizes during H2D transfers.
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(c) PCIe transfer throughput during di�erent

update subfunctions showing contention on

host-memory.

Figure 5: Breakdown of tensor sizes transferred between device and host (Figure 5a and Figure 5b). PCIe transfer throughput

during various subfunctions of the update phase (Figure 5c).

3.3.3 Update Step: Given that the optimizer state is o�oaded to

the CPU, the update step runs completely on the CPU in a subgroup-

by-subgroup fashion. The optimized DeepSpeedCPUAdam imple-

mentation of the Adam optimizer computes the update on the

96-core CPU at 4.5 billion parameters per second, whereas if the

optimizer was completely executed on the GPU, it could run up-

dates at 1 trillion parameters per second due to the embarrassingly

parallel nature of the optimizer. However, as observed in the zoom

of the update phase in Figure 3, the update computation of ev-

ery subgroup is followed by H2D transfer of the updated FP32

parameters to the GPU-resident FP16 parameters (FP32 to FP16

conversion is done on the �y during transfer due to which only

sizeof(FP16)*num_params are transferred). As a consequence

of such blocking the transfer of parameters, the e�ective update

throughput drops from 4.5 billion parameters per second to 2.8

billion parameters per second. When scaling the data-parallel de-

gree, as shown in Table 2, the update time [* ] reduces to half for

DP=2 due to parallel PCIe lanes available for transferring updated

parameters concurrently to two di�erent GPUs. However, for DP=4,

the update time remains the same as for DP=2, demonstrating that

the update computations on the oversubscribed 96-core CPU are a

bottleneck rather than the PCIe transfer lanes.

Observation 3: The e�ective throughput of the CPU-

based optimizer updates drops by 60% because of slow,

blocking host-to-device transfer of updated parameters.

3.4 GPU Memory and PCIe Link Utilization

We also characterize the GPU memory utilization during various

stages of training. Figure 4a shows the trend of GPU memory uti-

lization reported by Nvidia Management Library (NVML) 2 at 20 ms

granularity throughout the training phases. However, we note that

the PyTorch allocator caches the freed-up GPU memory for future

reuse, and therefore the memory utilization shown in Figure 4a may

not represent the exact quantum of utilized memory. Although the

memory cached by the PyTorch allocator could be forcefully relin-

quished back to the GPU driver using torch.cuda.empty_cache(),

2https://developer.nvidia.com/nvidia-management-library-nvml

it is impractical to do so at �ne-grained microsecond intervals be-

cause it leads to frequent memory allocation overheads. Further-

more, themajor fraction of the GPUmemory is allocated/deallocated

at the forward, backward, and update stages because they work

with tensors, which cannot be partially allocated or deallocated.

Therefore, we only relinquish memory back to the system at the

beginning of each forward, backward, and update stage, such that

the impact due to relinquishing the cache is negligible on the itera-

tion time. This approach allows us to broadly observe the growth

of memory utilization at every stage.

3.4.1 Forward Pass: As observed from Table 1, the size for the

13B model consisting of FP16 params + FP16 gradients sums up to

46 GB. Because the gradients are not required during the forward

pass, the memory utilization at the beginning of the forward pass

for both microbatch-1 and microbatch-2 (represented as �1 and

�2) in Figure 4a, sums up to ∼25 GB (some memory is utilized for

storing CUDA and PyTorch contexts and GPU-based libraries). As

the forward pass progresses, we observe ∼27 GB additional memory

utilization to store the activations for a single microbatch, thereby

showing high-memory pressure due to activations.

We also observe, as shown in Figure 5a and Figure 5b, that no

D2H or H2D transfers are made during the forward pass because all

the activations are stored on the GPUmemory itself for accelerating

the backward pass. To alleviate the high-memory pressure of acti-

vations that are produced during the forward pass and consumed

in the backward pass, we can enable activation checkpointing. This

method can signi�cantly reduce memory usage but will incur 33%

computation overhead due to the recomputation during the back-

ward pass phase.

3.4.2 Backward Pass: During the backward pass, the memory con-

sumption stays nearly similar to that of the forward pass, as shown

in Figure 4a (the broken x-axis between 2.5 and 11 has consistent

memory utilization). This is because the gradients are accumulated

bucket-by-bucket (de�ned by reduce_bucket_size) on the GPU

and �ushed back to the host memory. The sizes of tensors swapped

in and out of the GPUmemory during the backward pass are shown

in Figure 5a and Figure 5b, respectively, which show high PCIe uti-

lization at non-gradient accumulation boundaries, highlighted as

region �1 in Figure 4b and Figure 4c. At the gradient accumulation

14



Breaking the Memory Wall: A Study of I/O Pa�erns and GPU Memory Utilization for Hybrid CPU-GPU O�loaded Optimizers FlexScience ’24, June 3–4, 2024, Pisa, Italy

boundary (highlighted as region �2), we observe nearly similar sizes

of tensors transferred from Figure 5a and Figure 5b (the broken

x-axis has a similar trend as the latter part of �2). However, as ob-

served in the region �2 of Figure 4b and Figure 4c, the D2H and H2D

transfer throughput during the backward pass of the gradient accu-

mulation phase is signi�cantly lower than that observed during the

non-gradient accumulation boundary (�1). The time used in region

�2 accounts for 60.92% of the overall time (i.e., �1+�1+�2+�2+* ).

The transfers are slow (D2H throughput of 8 GB/s) because the

Nvidia Nsight logs show that gradients are �ushed to non-pinned

memory on the host (even when the gradient bu�ers are pinned).

This is because of mixed-precision training — the gradients are

copied in FP16 precision (in which the training is done) from GPU

to the host memory in FP16 form (to unpinned bu�er), and then

converted from FP16 to FP32 (in the pinned bu�er). While similar

standalone tests for D2H tensor transfers showed near the peak

PCIe utilization, the reason for slow D2H transfers during the last

backpass is not completely understood. We suspect this may be be-

cause of synchronization issues between the asynchronous kernel

executions on the GPU and the D2H transfers.

3.4.3 Update Step: Figure 4a shows that the GPU memory utiliza-

tion during the update phase (labeled as region* ), lowers down to

just the FP16 model parameters, as is observed at the beginning of

the iteration. This is obvious because the update process is done

on the CPU, and no GPU memory is needed. Similarly, we do not

observe tra�c between the D2H during the update phase, as ob-

served in Figure 5a and Figure 4b, because the gradients required

for the update process have already been �ushed during the last

backward pass of the iteration. However, we observe signi�cant

H2D tra�c in Figure 4c due to �ushes of large tensors (Figure 5b),

which correspond to the updated parameter values being copied

from optimizer’s master parameter copy (FP32) to the model’s pa-

rameter copy. As shown in Figure 3, the zoom on the update phase

shows that the computations on the CPU (denoted by the �rst row)

do not overlap with the H2D transfers (second row) of the updated

parameters. This highlights the opportunity to accelerate the up-

date phase by concurrently running the H2D transfers of previous

subgroups with the CPU-based updates of the next subgroups. How-

ever, in order to characterize this overlap opportunity, we need to

analyze how memory-intensive the update phase is, and how the

PCIe-based H2D transfers and CPU updates might compete for the

limited bandwidth of the host memory.

Observation 4: There are signi�cant �uctuations of GPU

memory utilization, i.e., high during the forward and back-

ward passes (due to accumulation of activations), and low

during the update phase. Similarly, PCIe links are highly

utilized during the backward passes but relatively less uti-

lized during the update phase. There is a mix of small and

large tensors being transferred. This provides an opportu-

nity for better host-device memory management.

3.5 Host Memory Contention During Updates

In our last set of experiments, we study how the subfunctions of

the CPU o�oaded optimizer update step impact the host-memory

throughput. Speci�cally, we analyze if the update operation is only

CPU intensive (as can be seen in the zoom of the update step in

Figure 3) or if it is memory intensive as well. We identify three

subfunctions that constitute the major fraction of the update step,

namely unscale_grads, optimizer_step, and swap_params. To evalu-

ate the host-memory contention, we �rst run each of these functions

independently to obtain the time they take for execution. Then,

we obtain the size of the tensor to be asynchronously transferred

(over a dedicated CUDA stream) during each of these subfunc-

tions by multiplying the peak PCIe throughput (55 GB/s) with the

time required for each subfunction, such that the transfers can

be perfectly overlapped with the subfunction execution on the

CPU. The tensors used for testing the PCIe throughput are inde-

pendently allocated on the host (pinned) and GPU memory such

that it does not interfere with any of the existing bu�ers of the

DeepSpeed engine. We repeat this experiment 5 times for each

direction of transfer (H2D and D2H), and measure the transfer time

using Nvidia CUDA pro�ler (NVTX) events, and the slowdown

incurred on the subfunction due to bandwidth contention on the

host memory (represented by the blue solid line on the minor y-

axis of Figure 5c). We observe from Figure 5c that the PCIe transfer

throughput is drastically reduced (∼55%) when the gradients are

being unscaled and clipped, which essentially performs a scalar

multiplication operation with all elements of the subgroup gradi-

ents. Assuming fast scalar multiplication to the gradient tensor, the

unscale_grads subfunction exhibits intensive read/write operations

(of FP32 gradients) on the CPU memory, which results in slower

PCIe transfers. Next, the CPUAdam optimizer step runs in an em-

barrassingly parallel fashion for all parameters of the subgroup,

which involves read operation (for FP32 parameters, FP32 gradi-

ents, FP32 momentum, and FP32 variance), and write operation (for

FP32 parameters, FP32 momentum, and FP32 variance). However,

since optimizer_step is more CPU intensive, even with 7× FP32

read/write operations per parameter, we observe higher D2H and

H2D throughput as compared to the unscale_grads subfunction.

Lastly, the swap_params subfunction corresponds to copying the

updated subgroup parameters from host to device (H2D). Here, al-

though we observe signi�cantly higher D2H and H2D throughputs

for our test tensors (which are pinned on the host memory), the

penalty for these faster transfers is paid by the slowdown of the

subfunction itself (denoted by the blue solid line associated with

the minor y-axis). Therefore, all subfunctions demonstrate some

degree of host memory intensiveness due to which asynchronous

D2H and/or H2D transfers cannot be run at peak PCIe throughput.

Observation 5: The CPU o�oaded optimizer consists

of memory-intensive operations, resulting in lower host

memory bandwidth utilization for device-host transfers

across the PCIe link due to contention for the host memory

bandwidth.

4 CONCLUSIONS

In this work, we analyze how forward passes, backward passes

and update steps interleave to exhibit di�erent behaviors during a

training iteration of LLMs and transformers using a state-of-the-art
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runtime such as DeepSpeed. Given the explosion of model sizes

and optimizer states, we have focused speci�cally on ZeroIn�nity,

an o�oading solution that reduces the GPU memory utilization by

placing partitions of the optimizer state and model parameters on

the host memory, where the update step is computed directly on the

CPU. Our study has revealed several important bottlenecks of ex-

isting implementations: redundant and/or blocking device-to-host

and host-to-device data transfers that slow down the last backward

pass and the update step, slow upload of updated model parameters

back to the GPUs in half precision, �uctuations of GPU memory

utilization and PCIe links that lead to underutilization of GPUs

especially during the update step, contention for PCIe links due to

3D parallelism, and contention for the I/O bandwidth of the host

memory due to concurrent data transfers and CPU computations.

Encouraged by these observations, in future work we envision

designing and developing �exible hybrid GPU-CPU o�oading so-

lutions that adapt to the �uctuations of GPU memory and PCIe

link utilization to reduce the aggregated GPU memory footprint as

much as possible, while minimizing the scalability and performance

penalty of doing so. Speci�cally, we predict two opportunities. First,

during the last backward pass preceding the update step, as the

activations are gradually deallocated after computing the corre-

sponding gradients, the spare GPU memory can be used to bu�er

the gradients and asynchronously �ush them to the host memory,

thereby signi�cantly accelerating the backward pass. These asyn-

chronous �ushes can take advantage of di�erent tensor sizes to

coalesce and prioritize data transfer operations to optimize the PCIe

link utilization without slowing down other communications dur-

ing the backward pass that also share the same PCIe link. Second,

during the update step the GPUs are underutilized, both in terms of

memory and compute capability. However, unlike state-of-the-art

approaches that use a �xed ratio to partition the optimizer state

and model parameters among the GPUs and the host memory, we

envision a �exible solution that adapts to the �uctuations of GPU

memory utilization to temporarily o�oad during the update step

as many computations as possible on the GPUs, and then move the

updated parameters back to the host memory to make room for the

activations of the next forward pass.
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