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ABSTRACT

Transformers and LLMs have seen rapid adoption in all domains.
Their sizes have exploded to hundreds of billions of parameters and
keep increasing. Under these circumstances, the training of trans-
formers is slow and often takes in the order of weeks or months.
Thanks to 3D model parallelism (data, pipeline, and tensor-level par-
allelism), the training can scale to a large number of GPUs, which
reduces the duration of the training but dramatically increases the
cost. Even when a large number of GPUs are available, the aggre-
gated GPU memory is often not enough to hold the full training
state (optimizer state, model parameters, and gradients). To com-
pensate, state-of-the-art approaches offload the optimizer state at
least partially to the host memory and perform hybrid CPU-GPU
computations. Such flexible solutions dramatically reduce the GPU
memory utilization, which makes it feasible to run the training on a
smaller number of GPUs at the cost of performance penalty. Unfor-
tunately, the challenges and bottlenecks of adopting this strategy
are not sufficiently studied by state-of-the-art, which results in poor
management of the combined host-GPU memory and poor over-
lapping between data movements and computations. In this paper,
we aim to fill this gap by characterizing the behavior of offloaded
training using the DeepSpeed runtime. Specifically, we study the
GPU memory utilization over time during each iteration, the activ-
ity on the PCle related to transfers between the host memory and
the GPU memory, and the relationship between resource utilization
and the steps involved in each iteration. Thanks to this study, we re-
veal opportunities for future improvements of offloading solutions,
which enable greater flexibility to optimize the cost-performance
trade-off in the context of transformer and LLM training.
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1 INTRODUCTION

Transformers and Large-Language Models (LLMs) have seen in-
creasing adoption in various domains ranging from scientific re-
search to industrial applications [1]. While traditionally used for cre-
ative text generation, prompt completion, comprehension, and sum-
marization, these learning models are successfully tackling multi-
modal data sources, thanks to cross-attention [2]. Additionally, re-
cent initiatives, such as LLMs for science (e.g., DeepSpeed4Science[3])
are beginning to explore use cases that involve specialized domain-
specific languages for tasks such as genome sequencing, protein
structure prediction, equilibrium distribution prediction, etc. The
versatility and democratization of LLMs have led to unprecedented
scale of development and discovery across multiple fields.

In a quest to improve the quality, LLMs are routinely made of
billions of parameters with models such as GPT-3, Llama-2-70b,
and BLOOM requiring hundreds of gigabytes of GPU memory just
to store the model parameters [4, 5]. Several predictions anticipate
LLMs will reach trillion-scale parameters in the near future, e.g.,
Google Switch-C (1.6T) [6], WuDao 2.0 (1.75T) [7], and M6-10T [8].
Despite advances in technologies that enable LLM training to scale
(hybdrid data-, pipeline- and tensor parallelism, sharding of model
parameters and optimizer state, layout and communication opti-
mizations, etc.), the rapid growth in the number of parameters has
outpaced the available GPU memory, creating a significant ‘mem-
ory wall’ that makes it challenging to train and run these massive
models efficiently [9, 10].

Specifically, users face an important trade-off: either they pay a
high cost, by sharding the models at fine granularity on a large num-
ber of GPUs, such that the aggregated GPU memory is sufficient
to hold all necessary data structures (model parameters, gradients,
optimizer state, activations), or they run on a smaller number of
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Figure 1: Data, pipeline, and tensor parallel runtime training. Compute node configuration consisting of 4 A100-40GB GPUs.

GPUs and accept a performance penalty, by using offloading so-
lutions, such as DeepSpeed Zerolnfinity [11], which move a part
of the data structures and computations to the host memory and
the CPU respectively (notably the optimizer state and the updates
of the model parameters based on it). While the flexibility to ex-
ploit offloading at least partially is well acknowledged [12, 13],
the emergent challenges and opportunities in this space are not
well understood. With increasing focus on energy efficiency and
cost-effectiveness, there is an acute need for more insight in this
direction.

In this paper, we aim to fill the aforementioned gap. We pro-
pose to characterize the behavior of offloading solutions at fine
granularity, in order to derive patterns and opportunities that can
be exploited to design better offloading strategies. We specifically
consider the case of DeepSpeed Zerolnfinity [11], but our method-
ology can be easily adapted to other LLM and transformer training
runtimes. We summarize our contributions below:

(1) We discuss how state-of-the-art LLM training runtimes break
down each training iteration into intermediate steps, and
explain how these steps interleave to enable efficient overlap
between the computations and communications (§ 2).

(2) We run extensive experiments that measure the utilization
of GPU memory and PCle links (used for data transfers be-
tween the host memory and the memories of the GPUs)
over time during each training iteration and correlate the
utilization with the steps of the training iteration. We ob-
serve significant fluctuations in utilization that lead to poor
combined host-GPU memory management and suboptimal
overlapping between data movements and computations
(§3)

(3) We reveal an opportunity to recycle large amounts of GPU
memory during the backward pass (corresponding to activa-
tions that are not needed after the gradient computations)
in order to buffer and asynchronously flush a part of the
gradients to the host memory. Furthermore, we reveal an
opportunity to accelerate the update of the model parame-
ters after the backward pass, by temporarily offloading the
optimizer state partially back to the GPUs (§ 4).
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2 BACKGROUND AND RELATED WORK

Data parallelism: Data parallelism is the most widely used tech-
nique to accelerate the training of deep learning models [14]. It
creates replicas of the learning model on multiple workers, each
of which is placed on a different device and/or compute node, as
illustrated in Figure 1(a). The input data is randomly shuffled and
partitioned among the workers at each epoch. During the forward
pass, the workers simply process their mini-batches from the par-
tition of their dataset in an embarrassingly parallel fashion. Then,
during the backward pass, the model parameters are updated based
on the average gradients of all replicas (instead of the local gradi-
ents), which effectively synchronizes all replicas to learn the same
patterns from all partitions. Data parallelism leads to accelerated
training because the partitioning of the input data results in fewer
iterations per epoch. Furthermore, the redundancy of replication
and the pressure it creates on memory utilization can be eliminated
by partitioning the data structures across the GPUs at the expense
of higher communication overheads to access remote partitions
during computations (all-gather). A prominent example is ZeRO-
1/2/3 [15], which partitions the optimizer states, gradients, and
model parameters respectively on the GPUs.

Pipeline and tensor parallelism: Pipeline and tensor paral-
lelism are two complementary techniques that enable the training
of large learning models that do not fit in the memory of a single
GPU. Pipeline parallelism leverages the idea that learning models
can be split into stages, each of which can placed on a separate GPU.
Then, the forward and backward pass corresponding to different
mini-batches can be overlapped by activating all stages in paral-
lel, at the cost of caching more activations [16] for the backward
pass and the extra communication overheads needed to transfer
the outputs between the stages on different GPUs. Tensor paral-
lelism leverages the idea that even individual layers and tensors
can be sharded and distributed horizontally across multiple GPUs,
at the expense of incurring extra communication to synchronize
the computations over the same tensor. A prominent example is
DeepSpeed Megatron [17, 18]. The combination of pipeline and
tensor parallelism and how it maps to a typical HPC compute node
is illustrated in Figures 1(b) and 1(c), respectively.

Decoupled update phase to enable gradient accumulation:
The model parameters are updated based on the optimizer state
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Table 1: Model and optimizer state sizes for different models.

| Model size (Billions) || 7B | 13B [ 30B [ 70B [ 130B | 175B |

Model states (GB) 24 | 46 | 120 | 240 | 473 640
Optimizer states (GB) || 96 | 187 | 475 | 960 | 1890 | 2572

and the gradients at the end of each forward and backward pass in
traditional deep learning model training. However, the adoption of
data, tensor, and pipeline parallelism introduces expensive synchro-
nization points necessary for the updates, e.g., gradient all-reduce
in the case of data parallelism. As a consequence, a frequent opti-
mization is gradient accumulation, where the gradients are summed
up over multiple forward and backward passes, then they are av-
eraged, and the average gradients are used in a separate update
step. In our study, when gradient accumulation is used, we refer to
the last forward and backward pass before the update of the model
parameters as the gradient boundary pass. By contrast, any forward
or backward pass that is not followed by a model parameter update
is referred to as non-gradient boundary.

Host-offloaded update phase using mixed precision: With
the model and optimizer state sizes exploding (Table 1) [4, 5, 7],
approaches such as DeepSpeed Zerolnfinity [11], CoTrain [19], etc.
have explored the idea of moving large data structures required
during training to the host memory, notably the optimizer state.
This makes it feasible to train LLMs on much smaller aggregated
GPU memory footprint, albeit at the cost of performance penalty.
Specifically, by keeping a master copy of the optimizer state and
model parameters on the host memory in high 32-bit floating point
(FP32) precision, the forward pass and backward pass can operate
with model parameters in lower 16-bit floating point (FP16) pre-
cision to calculate FP16 gradients, which are then flushed to the
host memory and upscaled to FP32 precision. Then, the update of
the parameters can proceed directly on the CPU and a downscaled
FP16 copy can be transferred to the GPUs for the next iteration. In
this case, an important bottleneck is the I/O bandwidth between
the host memory and the memory of the GPUs, which is limited
by PCle links. This bottleneck is further exacerbated by competi-
tion for the PCle links due to inter-node communication needed to
implement tensor, pipeline, and data parallelism, which results in
additional overheads during the forward pass (waiting for the copy
of model parameters from the host to the GPU) and the backward
pass (waiting to flush the gradients from the GPU to the host). An-
other important bottleneck is the low computational capability of
the CPUs, which are orders of magnitude slower than the GPUs.
Under such circumstances, despite being simple and embarrassingly
parallel, the operations involved in updating the model parame-
ters and the optimizer state lead to a significant runtime overhead,
which otherwise is negligible when running them on the GPUs.

Sharding of partitions into subgroups: When the partitions
corresponding to the model parameters, gradients, and activations
are so large that they do not fit on the GPU memory even at low FP16
precision, a common mitigation strategy is sharding the partition
into subgroups. Specifically, the forward pass can serially process
each subgroup one after another, while accumulating (and/or check-
pointing) the activations. Then, during the backward pass, the same
process can be repeated to compute the gradients. If the subgroup is
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Figure 2: Subgroup sharding of model parameters, gradients,
and activations on GPUs.

large enough to saturate the GPU compute capability, the serial pro-
cessing of multiple subgroups incurs minimal overhead compared
with processing the whole partition at once, but with the added
benefit of reduced memory utilization. This strategy is illustrated
in Figure 2.

Hybrid GPU-CPU partitioning and update phase process-
ing: Once the gradients have been computed by the backward pass,
model parameters are updated that involve embarrassingly parallel
computations since each model parameter only depends on its own
corresponding gradient and optimizer state, e.g., momentum and
variance in the case of Adam [11]. This property is exploited by
techniques such as ZeRO-Offload++ [13] in order to partition the
optimizer state between the CPU and GPU, instead of completely
offloading the optimizer state to the CPU, which enables the update
step to proceed in parallel. However, such techniques require that
the model parameters and optimizer state are pre-partitioned on
the CPU and GPU using a fixed ratio that is determined at the start
of the training process. The problem of how to choose the fixed
ratio is difficult, because there is a fine balance between avoiding
out-of-memory (OOM) errors on the GPUs, while at the same time
maximizing the GPU memory utilization to improve performance
and scalability. With increasing mini-batch size and therefore ac-
tivation sizes, a fixed ratio results in a majority of the optimizer
state ending up on the CPU, thereby negating the benefits of hybrid
computations.

Motivation of the study: The sheer complexity of modern
training runtimes for LLMs and transformers, as summarized above,
makes it unfeasible to study all combinations of optimizations.
However, some observations can be made to narrow down the
scope of the study. First, the training process is iterative in nature,
which means the behavior is repetitive and therefore it is sufficient
to study a single iteration in detail. Second, each iteration consists
of one or more forward and backward passes, followed by an update
step. Thus it is important to study the differences in the behavior as
the iterations transition between the steps. Intuitively, we expect
fluctuations in resource utilization that prompt the need for flexible
solutions to adapt the offloading to the training behavior. Third, to
enable efficient hybrid CPU-GPU partitioning and processing of the
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Figure 3: Breakdown of different training stages for 13B model running on 1 GPU with TP=1, DP=1, micro-batch=1, gradient
accumulation=2, ZeRO stage=3. The optimizer is completely offloaded to the CPU.

update phase, it is important to focus on several important aspects:
(1) the memory utilization of the GPUs as the iteration progresses
in time, which determines not only how much of the optimizer state
and model parameters need to be offloaded to the host memory,
but also when; (2) the utilization of the PCle links that are stressed
by the constant data movement between the host memory and the
GPU memory; and (3) the sizes of the tensors involved in the data
movements, which enables us to reason about how to overlap data
movements with computations and how to mitigate competition
for host memory and PCle links, e.g., by initiating the transfer
of large tensors restricts the granularity of the future scheduling
decisions due to keeping resources busy for longer than the transfer
of smaller tensors. Based on these observations, we narrowed the
scope of our study accordingly.

3 STUDY OF I/0 PATTERNS AND GPU
MEMORY USAGE

3.1 Experimental Setup

To facilitate the study, we conduct our experiments on a single
node of ALCF’s JLSE testbed ! consisting of 4xH100 GPUs with
80 GB HBM3 each (aggregated GPU memory of 320 GB), 2x In-
tel Xeon Platinum 8468 processors comprised of 48 CPUs each
(total 96 cores, 192 threads), and 2xX Gen4 NVMe of 1.5 TB each.
The 512 GB DDR5 RAM is split across 2 NUMA domains. The
peak unidirectional device-to-host (D2H) and host-to-device (H2D)
throughput for pagable host memory are 16 GB/s and 9 GB/s re-
spectively, whereas when the host memory is pinned, the D2H and
H2D throughputs are both 55 GB/s. Our testbed runs PyTorch 2.2
with CUDA 11.8 and DeepSpeed 0.13.3 on top of the OpenSUSE
Leap 15.4 operating system.

3.2 Methodology

Throughout our evaluations, we use the LLaMA2 13B model [5].
From the Bloom-175B [4] repository, we use the parameters of the
Adam optimizer [11], the OSCAR-1GB [4] dataset with a sequence
length of 2048 tokens per microbatch, and a microbatch size of
1. DeepSpeed’s ZeRO-3 engine [11] is used for training (which
partitions the parameters, gradients, and optimizers across all data-
parallel ranks to achieve the highest redundancy elimination). The

https://www.jlse.anl.gov/
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optimizer state is completely offloaded to the CPU memory and
uses the optimized Adam implementation from DeepSpeed- Deep-
SpeedCPUAdam [11]. The memory for storing the FP32 gradients is
pinned on the host memory. To accelerate the computations during
the backward pass, activation checkpointing is disabled, due to
which activation recomputations are not needed. We evaluate all
scenarios with gradient accumulation enabled, which is a widely
adopted practice in the literature to minimize ‘frequent optimizer
update’ overheads. Therefore, we set the gradient accumulation
degree to 2 (i.e., 2 microbatches will undergo their corresponding
forward and backward passes before running a single update step)
in order to understand the training behavior at the non-gradient
boundary vs. the gradient boundary.

3.3 Compute and Memory Breakdown Per Stage

In our first set of experiments, we break down a single training
iteration and systematically investigate the GPU compute, CPU
compute, and memory utilization patterns for stages that contribute
most significantly towards the overall iteration time.

3.3.1 Forward Pass: As observed in Figure 3, the forward passes
corresponding to the first and second mircobatches (labeled F1
and F2) constitute less than 4% of the overall training time. This is
unsurprising because the model is entirely stored on the GPU and
no collective communication, e.g., parameter all-gather, is required
because a single data-parallel rank is used, so all parameters are
local GPU HBM residents. For DP=2 and DP=4, however, we ob-
serve a 23% and 48% higher forward pass times per microbatch due
to parameter all-gather operations, even on high-speed NVLinks
(140 GBY/s) (see Table 2). Therefore, larger models that are trained
with higher degrees of data parallelism with ZeRO-3 incur per-
formance penalties in forward pass due to parameter all-gather
operations. Albeit, given the fact that backward passes are typi-
cally at least 2X computationally more intensive than the forward
passes when all activations are stored, and incur the same parame-
ter all-gather penalties, the fraction of forward pass would never
constitute the major proportion of the training phase irrespective
of the tensor and/or data-parallelism degrees.

3.3.2  Backward Pass: When training with gradient accumulation
enabled, multiple forward and backward pass pairs are executed
before running a single update step, which enables larger “effective"
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Figure 4: Memory and PCle utilization statistics of single iteration when training 13B model.

microbatch training. In this context, the forward-backward pair
that are not immediately followed by an update step are termed
as non-gradient accumulation boundaries (B in Table 2) ; while
the backward passes immediately preceding an update step are
termed as gradient boundary (Bp in Table 2). The backward pass
behaves differently for non-gradient accumulation boundaries as
compared to the gradient accumulation boundary. In particular,
this distinction comes from the blocking D2H copy of accumulated
gradients which happens at the last backward pass. These accumu-
lated gradients are flushed to the CPU and are used by the offloaded
CPU optimizer to run the update step.

The backward phase and the all-reduce computations are per-
formed in multiple buckets/chunks, which is determined by the
reduce_bucket_size parameter of the DeepSpeed configuration
(we used the default value of 0.5B). The overlap_comm further al-
lows overlapping gradient reduction of the previous bucket with
the backward pass of the next bucket. For each all-reduce bucket,
the following I/O and memory operations take place:

B!: Gradient accumulation buffer initialization: During the
backward pass of the first microbatch, the host-resident gradi-
ent accumulation buffer is initialized with the GPU-resident gra-
dient values of the first microbatch (D2H copy). To accelerate
the accumulation operations (tensor.add_), the gradient accu-
mulation buffer corresponding to a single bucket is copied to the
GPU (H2D). Then for each parameter that needs to be reduced,
if its corresponding accumulation buffer exists on the GPU, the
grad_acc_buffer.add_(grad_val) operation is invoked. Although
these D2H and H2D transfers for creating the initial gradient accu-
mulation buffer for a given bucket are non-blocking and overlap
with the reduction process, the device to host data movements can
be reduced by half by simply doing a D2D copy of all-reduced gra-
dients to initialize the GPU-resident accumulation gradient buffer
and asynchronously copying the initial gradient values to the host-
resident gradient accumulation buffer.

Observation 1: During the backward pass of the first
microbatch in an iteration, the redundant D2H and H2D
copies can be eliminated when the initial GPU-resident gra-
dient values are D2H copied to the host-resident gradient
accumulation buffer.

13

Table 2: Hybrid strong and weak scalability tests — micro-
batch size remains the same per GPU, but model parameters
get partitioned across DP ranks.

l DP degree H 1 [ 2 [ 4 [
[F] Forward (s) 0.31 | 0.37 | 0.39
[BN] Backward non grad-boundary (s) || 1.03 | 0.82 | 0.7
[BB] Backward grad-boundary (s) 11.2 | 6.13 | 3.8
[U] Update (s) 46 | 24 | 24
(T] TFLOPS 18.9 | 32.6 | 23.4

BN: Non-gradient accumulation boundary: Starting from
second microbatch onwards, for each bucket, if a gradient accumu-
lation buffer corresponding to a parameter is not found on the GPU
memory, the following operations are executed asynchronously on
the default CUDA stream: (1) copy the gradient accumulation buffer
from the host-resident gradient accumulation buffer to the GPU
(H2D); (2) accumulate using grad_acc_buffer.add_(grad_val);
and (3) flush back the accumulated gradients to the host-resident
gradient buffer (D2H).

BB: Gradient accumulation boundary: During the last back-
ward pass of the iteration, i.e., gradient accumulation boundary,
in addition to running BN, the gradients accumulated for all sub-
groups on the GPU buffer are D2H flushed to the host-resident
gradient buffer, to be used by the CPU-resident optimizer during
the update step, in blocking form. Therefore, the gradient reduction
of the next bucket cannot overlap with the D2H transfer of accu-
mulated gradients of the previous bucket. As observed in Figure 3,
the time required for the last backward pass constitutes a major
fraction of the overall iteration time.

Observation 2: The backward pass can be accelerated by
introducing asynchronous gradient flushes, at the expense
of increasing the competition for PCle links with other
communications that are not using a different channel,
e.g., when no NVLink is available.
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Figure 5: Breakdown of tensor sizes transferred between device and host (Figure 5a and Figure 5b). PCIe transfer throughput

during various subfunctions of the update phase (Figure 5c).

3.3.3 Update Step: Given that the optimizer state is offloaded to
the CPU, the update step runs completely on the CPU in a subgroup-
by-subgroup fashion. The optimized DeepSpeedCPUAdam imple-
mentation of the Adam optimizer computes the update on the
96-core CPU at 4.5 billion parameters per second, whereas if the
optimizer was completely executed on the GPU, it could run up-
dates at 1 trillion parameters per second due to the embarrassingly
parallel nature of the optimizer. However, as observed in the zoom
of the update phase in Figure 3, the update computation of ev-
ery subgroup is followed by H2D transfer of the updated FP32
parameters to the GPU-resident FP16 parameters (FP32 to FP16
conversion is done on the fly during transfer due to which only
sizeof (FP16)*num_params are transferred). As a consequence
of such blocking the transfer of parameters, the effective update
throughput drops from 4.5 billion parameters per second to 2.8
billion parameters per second. When scaling the data-parallel de-
gree, as shown in Table 2, the update time [U] reduces to half for
DP=2 due to parallel PCle lanes available for transferring updated
parameters concurrently to two different GPUs. However, for DP=4,
the update time remains the same as for DP=2, demonstrating that
the update computations on the oversubscribed 96-core CPU are a
bottleneck rather than the PCle transfer lanes.

Observation 3: The effective throughput of the CPU-
based optimizer updates drops by 60% because of slow,
blocking host-to-device transfer of updated parameters.

3.4 GPU Memory and PClIe Link Utilization

We also characterize the GPU memory utilization during various
stages of training. Figure 4a shows the trend of GPU memory uti-
lization reported by Nvidia Management Library (NVML) 2 at 20 ms
granularity throughout the training phases. However, we note that
the PyTorch allocator caches the freed-up GPU memory for future
reuse, and therefore the memory utilization shown in Figure 4a may
not represent the exact quantum of utilized memory. Although the
memory cached by the PyTorch allocator could be forcefully relin-
quished back to the GPU driver using torch. cuda.empty_cache(),

Zhttps://developer.nvidia.com/nvidia-management-library-nvml
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it is impractical to do so at fine-grained microsecond intervals be-
cause it leads to frequent memory allocation overheads. Further-
more, the major fraction of the GPU memory is allocated/deallocated
at the forward, backward, and update stages because they work
with tensors, which cannot be partially allocated or deallocated.
Therefore, we only relinquish memory back to the system at the
beginning of each forward, backward, and update stage, such that
the impact due to relinquishing the cache is negligible on the itera-
tion time. This approach allows us to broadly observe the growth
of memory utilization at every stage.

3.4.1 Forward Pass: As observed from Table 1, the size for the
13B model consisting of FP16 params + FP16 gradients sums up to
46 GB. Because the gradients are not required during the forward
pass, the memory utilization at the beginning of the forward pass
for both microbatch-1 and microbatch-2 (represented as F1 and
F2) in Figure 4a, sums up to ~25 GB (some memory is utilized for
storing CUDA and PyTorch contexts and GPU-based libraries). As
the forward pass progresses, we observe ~27 GB additional memory
utilization to store the activations for a single microbatch, thereby
showing high-memory pressure due to activations.

We also observe, as shown in Figure 5a and Figure 5b, that no
D2H or H2D transfers are made during the forward pass because all
the activations are stored on the GPU memory itself for accelerating
the backward pass. To alleviate the high-memory pressure of acti-
vations that are produced during the forward pass and consumed
in the backward pass, we can enable activation checkpointing. This
method can significantly reduce memory usage but will incur 33%
computation overhead due to the recomputation during the back-
ward pass phase.

3.4.2 Backward Pass: During the backward pass, the memory con-
sumption stays nearly similar to that of the forward pass, as shown
in Figure 4a (the broken x-axis between 2.5 and 11 has consistent
memory utilization). This is because the gradients are accumulated
bucket-by-bucket (defined by reduce_bucket_size) on the GPU
and flushed back to the host memory. The sizes of tensors swapped
in and out of the GPU memory during the backward pass are shown
in Figure 5a and Figure 5b, respectively, which show high PCle uti-
lization at non-gradient accumulation boundaries, highlighted as
region B1 in Figure 4b and Figure 4c. At the gradient accumulation
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boundary (highlighted as region B2), we observe nearly similar sizes
of tensors transferred from Figure 5a and Figure 5b (the broken
x-axis has a similar trend as the latter part of B2). However, as ob-
served in the region B2 of Figure 4b and Figure 4c, the D2H and H2D
transfer throughput during the backward pass of the gradient accu-
mulation phase is significantly lower than that observed during the
non-gradient accumulation boundary (B1). The time used in region
B2 accounts for 60.92% of the overall time (i.e., F1+B1+F2+B2+U).
The transfers are slow (D2H throughput of 8 GB/s) because the
Nvidia Nsight logs show that gradients are flushed to non-pinned
memory on the host (even when the gradient buffers are pinned).
This is because of mixed-precision training — the gradients are
copied in FP16 precision (in which the training is done) from GPU
to the host memory in FP16 form (to unpinned buffer), and then
converted from FP16 to FP32 (in the pinned buffer). While similar
standalone tests for D2H tensor transfers showed near the peak
PCle utilization, the reason for slow D2H transfers during the last
backpass is not completely understood. We suspect this may be be-
cause of synchronization issues between the asynchronous kernel
executions on the GPU and the D2H transfers.

3.4.3 Update Step: Figure 4a shows that the GPU memory utiliza-
tion during the update phase (labeled as region U), lowers down to
just the FP16 model parameters, as is observed at the beginning of
the iteration. This is obvious because the update process is done
on the CPU, and no GPU memory is needed. Similarly, we do not
observe traffic between the D2H during the update phase, as ob-
served in Figure 5a and Figure 4b, because the gradients required
for the update process have already been flushed during the last
backward pass of the iteration. However, we observe significant
H2D traffic in Figure 4c due to flushes of large tensors (Figure 5b),
which correspond to the updated parameter values being copied
from optimizer’s master parameter copy (FP32) to the model’s pa-
rameter copy. As shown in Figure 3, the zoom on the update phase
shows that the computations on the CPU (denoted by the first row)
do not overlap with the H2D transfers (second row) of the updated
parameters. This highlights the opportunity to accelerate the up-
date phase by concurrently running the H2D transfers of previous
subgroups with the CPU-based updates of the next subgroups. How-
ever, in order to characterize this overlap opportunity, we need to
analyze how memory-intensive the update phase is, and how the
PCle-based H2D transfers and CPU updates might compete for the
limited bandwidth of the host memory.

Observation 4: There are significant fluctuations of GPU
memory utilization, i.e., high during the forward and back-
ward passes (due to accumulation of activations), and low
during the update phase. Similarly, PCle links are highly
utilized during the backward passes but relatively less uti-
lized during the update phase. There is a mix of small and
large tensors being transferred. This provides an opportu-
nity for better host-device memory management.

\.

3.5 Host Memory Contention During Updates

In our last set of experiments, we study how the subfunctions of
the CPU offloaded optimizer update step impact the host-memory
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throughput. Specifically, we analyze if the update operation is only
CPU intensive (as can be seen in the zoom of the update step in
Figure 3) or if it is memory intensive as well. We identify three
subfunctions that constitute the major fraction of the update step,
namely unscale_grads, optimizer_step, and swap_params. To evalu-
ate the host-memory contention, we first run each of these functions
independently to obtain the time they take for execution. Then,
we obtain the size of the tensor to be asynchronously transferred
(over a dedicated CUDA stream) during each of these subfunc-
tions by multiplying the peak PCle throughput (55 GB/s) with the
time required for each subfunction, such that the transfers can
be perfectly overlapped with the subfunction execution on the
CPU. The tensors used for testing the PCle throughput are inde-
pendently allocated on the host (pinned) and GPU memory such
that it does not interfere with any of the existing buffers of the
DeepSpeed engine. We repeat this experiment 5 times for each
direction of transfer (H2D and D2H), and measure the transfer time
using Nvidia CUDA profiler (NVTX) events, and the slowdown
incurred on the subfunction due to bandwidth contention on the
host memory (represented by the blue solid line on the minor y-
axis of Figure 5c). We observe from Figure 5c that the PCle transfer
throughput is drastically reduced (~55%) when the gradients are
being unscaled and clipped, which essentially performs a scalar
multiplication operation with all elements of the subgroup gradi-
ents. Assuming fast scalar multiplication to the gradient tensor, the
unscale_grads subfunction exhibits intensive read/write operations
(of FP32 gradients) on the CPU memory, which results in slower
PCle transfers. Next, the CPUAdam optimizer step runs in an em-
barrassingly parallel fashion for all parameters of the subgroup,
which involves read operation (for FP32 parameters, FP32 gradi-
ents, FP32 momentum, and FP32 variance), and write operation (for
FP32 parameters, FP32 momentum, and FP32 variance). However,
since optimizer_step is more CPU intensive, even with 7x FP32
read/write operations per parameter, we observe higher D2H and
H2D throughput as compared to the unscale_grads subfunction.
Lastly, the swap_params subfunction corresponds to copying the
updated subgroup parameters from host to device (H2D). Here, al-
though we observe significantly higher D2H and H2D throughputs
for our test tensors (which are pinned on the host memory), the
penalty for these faster transfers is paid by the slowdown of the
subfunction itself (denoted by the blue solid line associated with
the minor y-axis). Therefore, all subfunctions demonstrate some
degree of host memory intensiveness due to which asynchronous
D2H and/or H2D transfers cannot be run at peak PCle throughput.

Observation 5: The CPU offloaded optimizer consists
of memory-intensive operations, resulting in lower host
memory bandwidth utilization for device-host transfers
across the PCle link due to contention for the host memory

bandwidth.

4 CONCLUSIONS

In this work, we analyze how forward passes, backward passes
and update steps interleave to exhibit different behaviors during a
training iteration of LLMs and transformers using a state-of-the-art
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runtime such as DeepSpeed. Given the explosion of model sizes
and optimizer states, we have focused specifically on ZeroInfinity,
an offloading solution that reduces the GPU memory utilization by
placing partitions of the optimizer state and model parameters on
the host memory, where the update step is computed directly on the
CPU. Our study has revealed several important bottlenecks of ex-
isting implementations: redundant and/or blocking device-to-host
and host-to-device data transfers that slow down the last backward
pass and the update step, slow upload of updated model parameters
back to the GPUs in half precision, fluctuations of GPU memory
utilization and PCle links that lead to underutilization of GPUs
especially during the update step, contention for PCle links due to
3D parallelism, and contention for the I/O bandwidth of the host
memory due to concurrent data transfers and CPU computations.
Encouraged by these observations, in future work we envision
designing and developing flexible hybrid GPU-CPU offloading so-
lutions that adapt to the fluctuations of GPU memory and PCle
link utilization to reduce the aggregated GPU memory footprint as
much as possible, while minimizing the scalability and performance
penalty of doing so. Specifically, we predict two opportunities. First,
during the last backward pass preceding the update step, as the
activations are gradually deallocated after computing the corre-
sponding gradients, the spare GPU memory can be used to buffer
the gradients and asynchronously flush them to the host memory,
thereby significantly accelerating the backward pass. These asyn-
chronous flushes can take advantage of different tensor sizes to
coalesce and prioritize data transfer operations to optimize the PCle
link utilization without slowing down other communications dur-
ing the backward pass that also share the same PCle link. Second,
during the update step the GPUs are underutilized, both in terms of
memory and compute capability. However, unlike state-of-the-art
approaches that use a fixed ratio to partition the optimizer state
and model parameters among the GPUs and the host memory, we
envision a flexible solution that adapts to the fluctuations of GPU
memory utilization to temporarily offload during the update step
as many computations as possible on the GPUs, and then move the
updated parameters back to the host memory to make room for the
activations of the next forward pass.
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