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Abstract

Mobile wireless networks present several challenges for any learning system, due to uncer-
tain and variable device movement, a decentralized network architecture, and constraints
on network resources. In this work, we use deep reinforcement learning (DRL) to learn a
scalable and generalizable forwarding strategy for such networks. We make the following
contributions: (i) we use hierarchical RL to design DRL packet agents rather than device
agents to capture the packet forwarding decisions that are made over time and improve
training efficiency; (ii) we use relational features to ensure generalizability of the learned
forwarding strategy to a wide range of network dynamics and enable offline training; and
(iii) we incorporate both forwarding goals and network resource considerations into packet
decision-making by designing a weighted reward function. Our results show that the for-
warding strategy used by our DRL packet agent often achieves a similar delay per packet
delivered as the oracle forwarding strategy and almost always outperforms all other strate-
gies (including state-of-the-art strategies) in terms of delay, even on scenarios on which the
DRL agent was not trained.

Keywords Packet forwarding - Routing - Mobile wireless networks - Reinforcement
learning - Neural networks

1 Introduction

Mobile wireless networks have been used for a wide range of real-world applications, from
vehicular safety (Toh, 2001; Sommer and Dressler, 2014; Gerla et al., 2014) to animal
tracking (Juang et al., 2002; Zhang et al., 2004) to environment monitoring (Oliveira et al.,
2021; Albaladejo et al., 2010) to search-and-rescue (Huang et al., 2005; Jiang et al., 2009;
Robinson and Lauf, 2013) to military deployments (Ramanathan et al., 2010; Poularakis
et al., 2019) to the mobile Internet of Things (Bello and Zeadally, 2014). These networks,
however, present several challenges for learning systems. Devices are moving due to their
association with, for instance, vehicles, robots, animals, or people, which causes changes
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Nbr(v) = {u,,u,}  Packet movesto U, Nbr(u,) = {v.w,.d} Packetmovesto d  Packet has arrived at its destination

(a) Routing when devices are stationary. Because devices are stationary, once end-end paths are
established they rarely need to be updated due to changes in network connectivity. Here, v has a
contemporaneous end-end path to d, and so packet p is forwarded along the path.
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(b) Routing when devices are mobile and the network is well-connected. Despite mobility, the
network connectivity is sufficiently stable that end-end paths can still be established and used
for forwarding traffic, though may need to be periodically re-established. Here again, v has a
contemporaneous end-end path to d, and so packet p is forwarded along the path, though v’s path
to d may be different in the future.
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(¢) DTN forwarding when devices are mobile and the network is poorly connected. Now con-
temporaneous end-end paths rarely exist. Only temporal paths exist from v to d, so devices
independently choose packet p’s next hop and p is forwarded hop-by-hop to d.

Fig.1 Comparing packet forwarding in stationary vs. mobile wireless networks (see a vs. b vs. ¢). In all
scenarios, packet p travels from device v to device u, to finally arrive at its destination device d, but whether
routing or DTN forwarding is used depends on whether a contemporaneous path is present

in the network connectivity. As a consequence, devices are often only able to communi-
cate with each other during limited windows of time when devices are within transmission
range of each other. Furthermore, it may be difficult to predict when opportunities for com-
munication may occur as these depend on the dynamics of device movement. Depending
on the specific network problem to address, there may also be competing goals to trade-off,
such as minimizing packet delivery delay vs. device resource usage. Finally, the network
architecture is decentralized, complicating sharing of network state (and thus training of
learning systems) as exchange of information is limited by the communication opportuni-
ties available in the mobile wireless network.

In this work, we focus on the problem of packet forwarding in a mobile wireless
network. Traditionally, forwarding strategies are hand-crafted to target specific kinds
of network connectivity. In static networks, see Fig. 1a, once end-to-end paths are dis-
covered, these paths are generally stable as the network connectivity does not change.
In comparison, while end-to-end paths may occasionally exist in some mobile networks
due to dense connectivity or slow device movement, see Fig. 1b, these paths typically
only exist for short periods of time and are periodically re-established using ad hoc
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routing algorithms (Johnson and Maltz, 1996; Perkins et al., 2003; Clausen et al., 2003;
Perkins and Bhagwat, 1994). In other mobile networks, devices meet only occasionally
due to sparse connectivity or fast device movement, see Fig. 1c, and so contemporane-
ous end-to-end paths rarely exist. Consequently, delay tolerant network (DTN) forward-
ing algorithms (Spyropoulos et al., 2004, 2008; Vahdat and Becker, 2000) are used to
select the best next hop for a packet using criteria such as expected delay to meet the
packet’s destination.

In many real mobile wireless networks, however, a mix of connectivity is often
found, see Manfredi et al. (2011), motivating the need for an adaptive forwarding strat-
egy. Forwarding strategies that do explicitly adapt to disparate network conditions often
focus on switching between two different strategies, such as between ad hoc routing
and flooding (Danilov et al., 2012; Seetharam et al., 2015), or between ad hoc routing
and delay tolerant forwarding (Lakkakorpi et al., 2010; Delosieres and Nadjm-Tehrani,
2012; Raffelsberger and Hellwagner, 2014; Asadpour et al., 2016). Strategy switching,
however, risks instability and poor convergence if conditions change quickly or network
state is only partially observable.

To address the above challenges, we use deep reinforcement learning (DRL) (Sut-
ton and Barto, 2018) to design an adaptive packet forwarding strategy, using deep neural
networks (DNNs) (Bengio, 2009) to approximate the RL policy. By choosing next hops
locally at devices, both contemporaneous and temporal paths can be implicitly constructed
by the DRL agent. Importantly, devices located in different parts of a mobile network can
each independently run the same DRL agent as the agent will react appropriately to the
local state at each device by using the parts of its forwarding policy relevant for that state.
Consequently, a single forwarding policy can be applied to a state space that includes both
well-connected and poorly connected parts of a mobile network.

Most works on DRL-based forwarding in wireless networks focus on stationary
devices; those that do consider device mobility either target specific kinds of network
connectivity or have other limitations (see Sect. 2). In this work, we specifically focus
on designing a forwarding strategy for mobile wireless networks able to adapt to very
different kinds of network connectivity. We make the following contributions.

1)  Packet-centric decision-making to simplify learning (Sect. 3.2). We use packet agents,
making packets, rather than devices, the decision-making agent, to accurately assign
credit to those actions that affect packet delivery. Because packets can wait for several
time steps before making a decision, we use hierarchical RL (Dietterich, 1998; Sutton
et al., 1999; Barto and Mahadevan, 2003) with fixed policy options (Sutton et al., 1999)
to more efficiently back up from one decision point to another.

ii) Relational features to ensure generalizability despite device mobility (Sect. 3.3). We use
relational features to represent the states and actions used by the DRL agent. Relational
features model the relationship between network devices instead of describing a specific
device, and so support generalizability to scenarios on which the DRL agent was not
trained. This ability to generalize allows us to train offfine thereby avoiding the need for
decentralized communication. Relational features also allow us to structure the DNN
representing the DRL forwarding policy to consider one action at a time, producing a
single Q-value per state and action pair. The number of times the DNN is used to predict
Q-values then corresponds to the number of actions available, allowing the trained DRL
agent to handle varying numbers of neighbors (see Fig. 1) and so be network independ-
ent.
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iii) A weighted reward function to trade-off competing goals (Sect. 3.4). To incorporate
packet forwarding goals and network resource considerations into packet decision-mak-
ing, we design a weighted reward function for the DRL agent. Using our reward function,
more weight can be placed on higher priority forwarding considerations. For instance,
in a resource-constrained network setting, minimizing the number of forwards may be
of a higher priority than minimizing packet delivery delay, and so should be weighted
more by the reward function.

iv) Extensive evaluation (Sect. 4). We evaluate our approach, which combines the above
key design decisions, on two widely-used mobility models with varying numbers of
devices, transmission ranges, and parameter settings, spanning the continuum from
disconnected to well-connected networks. Our results show that our DRL agent trained
on only one of these scenarios generalizes well to the other scenarios including those for
a different mobility model. Specifically, our DRL agent often achieves delay similar to
an oracle strategy and almost always outperforms all other strategies in terms of delay,
including the state-of-the-art seek-and-focus strategy (Spyropoulos et al., 2004), even
on scenarios on which the DRL agent was not trained. While the oracle strategy requires
global knowledge of future device movement, our DRL agent uses only locally obtained
feature information.

The rest of this paper is organized as follows. In Sect. 2, we overview related work on
DRL-based forwarding. In Sect. 3, we describe how we formulate a DRL model that is able
to learn an adaptive forwarding strategy. In Sect. 4, we present simulation results using our
DRL model. Finally, in Sect. 5, we summarize our main results and provide directions for
future research.

2 Related work

In this section, we overview related work on routing and forwarding strategies for mobile
wireless networks. We divide these strategies into two classes: traditional approaches not
based on learning, and RL-based approaches which use RL to make decisions. We are
primarily interested in single-copy forwarding strategies, as our focus is on strategies that
are able to operate in both sparsely and densely connected networks. In contrast, multi-
copy strategies, in which multiple copies of the same packet may be made to reduce packet
delivery delay, typically consider only sparse network scenarios as the risk of introducing
congestion from making packet copies is lower than in dense networks.

2.1 Traditional approaches

Traditional approaches to routing and forwarding are generally designed for specific kinds
of network connectivity. For instance, ad hoc routing strategies like DSR (Johnson and
Maltz, 1996), AODV (Perkins et al., 2003), OLSR (Clausen et al., 2003) and DSDV (Per-
kins and Bhagwat, 1994) target relatively well-connected mobile networks (see Fig. 1b).
In comparison, for delay tolerant networks (Jain et al., 2004), aka opportunistic networks,
the network topology is typically so sparse that no contemporaneous path exists between a
given source-destination pair (see Fig. 1c), and so epidemic flooding (Vahdat and Becker,
2000) as well as more resource-efficient strategies like seek-and-focus and utility-based
forwarding (Spyropoulos et al., 2004) have been developed. In our simulation results in
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Sect. 4, we compare our approach with seek-and-focus and utility-based forwarding as
these are state-of-the-art single-copy forwarding strategies for delay tolerant networks. We
also compare with an oracle strategy based on epidemic flooding that performs optimally
regardless of network connectivity but is not practicably implemented.

In many real mobile wireless networks, however, a mix of connectivity is often found,
see Manfredi et al. (2011), motivating the need for an adaptive forwarding strategy. For-
warding strategies that do explicitly adapt to disparate network conditions have been less
explored and often focus on switching between two different strategies, such as between ad
hoc routing and flooding (Danilov et al., 2012; Seetharam et al., 2015), or between ad hoc
routing and delay tolerant forwarding (Lakkakorpi et al., 2010; Delosieres and Nadjm-Teh-
rani, 2012; Raffelsberger and Hellwagner, 2014; Asadpour et al., 2016). Strategy switch-
ing, however, can lead to instability and poor convergence if network conditions change
quickly or network state is only partially observable.

A number of works additionally focus on designing multi-copy forwarding strategies
(for instance, Spyropoulos et al., 2008; Tie et al., 2011; Yang and Stoleru, 2016) to improve
forwarding when the network topology is sparse. Multi-copy strategies generate multiple
copies of the same packet to increase the probability that at least one copy of the packet
is delivered within a certain amount of time. While creating packet copies can reduce the
delivery delay for a given packet, doing so also increases the traffic load on the network
and hence congestion. Consequently, multi-copy strategies typically focus on sparse net-
work scenarios in which devices only occasionally have neighbors and there is little traf-
fic, reducing the risk of congestion from packet copies. Because our focus is on designing
forwarding strategies that seamlessly adapt between sparse and dense network connectivity
with possibly significant amounts of traffic, we focus in this work on designing a single-
copy forwarding strategy (i.e., one that does not make packet copies).

2.2 DRL-based approaches

DRL-based approaches to routing and forwarding in mobile and wireless networks have
the advantage of making it easy to take into consideration different network features and
optimization goals that may be difficult for humans to reason about. DNNSs specifically pro-
vide a natural way to unify different approaches to modeling mobility for forwarding deci-
sions: features that work well for one kind of mobility can easily be included along with
features that work well for other kinds of mobility. The DNN representation itself supports
generalization to unseen types of device mobility and network scenarios. Through training,
a DRL agent learns the relationship between mobile network features and how best to for-
ward traffic, with the learned policy represented using a DNN.

Early works (Boyan and Littman, 1994; Choi and Yeung, 1996; Kumar and Miikku-
lainen, 1998; Hu and Fei, 2010; Elwhishi et al., 2010; Rolla and Curado, 2013) focus
on distributed routing but use less scalable and less generalizable table look-up based
approaches and typically learn online. When the network topology is changing, online
learning can be problematic as devices may have few or no neighbors and there may be
limited bandwidth to exchange any information necessary for training. Consequently, many
of the recent works on DRL-based forwarding strategies focus on stationary networks
where devices do not move, see Ye et al. (2015), Valadarsky et al. (2017), Xu et al. (2018),
Di Valerio et al. (2019), Mukhutdinov et al. (2019), Suarez-Varela et al. (2019), You et al.
(2019), You et al. (2020), Chen et al. (2021), Manfredi et al. (2021), Almasan et al. (2022).
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Fewer works consider forwarding in mobile wireless networks, and those that do often
optimize for specific kinds of network connectivity, such as focusing primarily on vehicular
networks (Li et al., 2018; Schiiler et al., 2021; Lolai et al., 2022; Luo et al., 2021) or UAV net-
works (Feng et al., 2018; Sliwa et al., 2021; Rovira-Sugranes et al., 2021; Schiiler et al., 2021;
Qiu et al., 2022). Works that consider mobile networks more broadly have limitations: (John-
ston et al., 2018) extends early work on strategies that learn online (Boyan and Littman, 1994,
Kumar and Miikkulainen, 1998) to tactical network environments but uses RL to estimate the
shortest path to the destination and focuses on multi-copy forwarding, i.e., making additional
copies of packets to reduce delay, unlike the single-copy forwarding strategy we design in this
work; Sharma et al. (2020) focuses on sparse network scenarios, specifically delay tolerant
networks; Han et al. (2021) focuses on forwarding messages to network communities rather
than individual devices in delay tolerant networks; Jianmin et al. (2020), Kaviani et al. (2021)
focus on relatively limited network scenarios with a few fixed flows and up to 50 devices.

Differences from prior work. The goal of our work is to design an adaptive DRL-based
forwarding strategy that can span the continuum from sparsely connected to well-connected
mobile networks. In Sect. 4, we show that our learned forwarding strategy trained on a mobile
wireless network with 25 devices can generalize during testing to mobile networks with 100
devices and varying transmission ranges. While our work builds off of ideas in Manfredi et al.
(2021), we consider the much harder network setting of mobile devices rather than the sta-
tionary devices considered in Manfredi et al. (2021), and we design novel features to capture
temporal and spatial network connectivity as well as propose a reward function to reflect com-
peting network goals.

Our use of offline centralized training of the DRL agent (but online distributed opera-
tion) avoids online training’s need for significant information exchange between devices that
may be separated by many hops (e.g., information such as whether a packet was delivered or
dropped). When deployed in a network, each device independently uses its own copy of the
trained DRL agent to make distributed routing decisions.

An important takeaway of our work is the need to tailor existing machine learning tech-
niques to handle the decentralized communication and resource constraints of mobile wire-
less networks. For instance, while we have some features that represent actual relationships
between devices as in relational learning (Getoor and Taskar, 2007; Koller et al., 2007; Struyf
and Blockeel, 2010), we primarily use relational techniques to treat devices as interchangeable
objects described by their attributes rather than their identities, to build a single model that
works across all devices. While our aggregated neighborhood features are similar in spirit to
graph neural networks (Scarselli et al., 2008; Kipf and Welling, 2017; Battaglia et al., 2018),
our features are simpler to compute and can more easily handle changing neighbors. While
we use DRL to learn a policy, we handle actions differently than in a DQN (Mnih et al., 2015)
since the number of actions available at a device changes over time and varies across devices.
Finally, while our weighted reward function could also be converted to use multi-objective
reward techniques (Van Moffaert and Nowé, 2014; Hayes et al., 2022), which find policies for
a range of reward factor weightings, doing so would make training the DRL agent more com-
putationally expensive.
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3 Learning an adaptive forwarding strategy

In this section, we overview our approach to using DRL to learn an adaptive forwarding
strategy. We first give a brief overview of RL and DRL background material (Sect. 3.1). We
then describe how we formulate the problem of forwarding packets as a learning problem
(Sect. 3.2), the relational features we use to model a mobile wireless network (Sect. 3.3),
and how we construct the DRL agent’s states and actions from the relational features and
derive a reward function for packet forwarding (Sect. 3.4). We finish by describing how our
DRL agent makes forwarding decisions (Sect. 3.5), and how offline training of the DRL
agent is performed (Sect. 3.6).

3.1 Background

RL focuses on the design of intelligent agents: an RL agent interacts with its environment
to learn a policy, i.e., which actions to take in different environmental states. The environ-
ment is modeled using a Markov decision process (MDP). An MDP comprises a set of
states (S), a per state set of actions (A(s)), a reward function, and a Markovian state transi-
tion function in which the probability of the next state s’ € S depends only on the current
state s € S and action a € A(s). RL assumes that these state transition probabilities are not
known, but that samples of transitions of the form (s, a, r, ') can be generated. From these
samples, the RL algorithm learns a Q-value for each (s, a) pair. A Q-value estimates the
expected future reward for an RL agent, when starting in state s and taking action a. Once
learned, the optimal action in state s is the one with the highest QO-value.

When the MDP has a small number of states and actions, an RL agent can learn a
Q-value function using Q-learning (see Watkins and Dayan, 1992). When the state space
is too large for exact computation of the Q-values, function approximation can be used to
find approximate Q-values. Here, we use DNNs for function approximation, see Fig. 2, as
in Deep RL (DRL). Each state s and action a are translated into a set of features via the
functions f,(-) and f,(-), respectively. These features are then used as input to the DNN, to
produce as output an approximate Q-function Q(fs(-), 1.().

3.2 Problem formulation

In a mobile wireless network (and in networks generally), it is natural to think of devices as
the DRL agents choosing next hops for packets, but doing so confuses the decision-making

How good is it for packet p with destination d and located
at device v to move to neighbor u?

Mobile network

fracker(P)
Lievice Vs d)

//u::ix( v d)

f (u,d)

O f-)
Jutput
i fam(u, d)—" Input ' ‘ e

layer xpansion

layer

Fig.2 Overview of how our DRL packet agent makes decisions. Packet p at device v makes a forwarding
decision by activating the DNN at v once for each action a available in p’s current state s. The DNN inputs
are the features f(-) and f,(-), which describe the state from p’s point of view and the action under consid-
eration. Packet p chooses the action with the best estimated Q-value
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dependencies that are involved in forwarding a packet. That is, the steps from a packet’s
source device to its destination device (or drop) are constructed by the behavior of all
devices through which the packet passes, rather than only by the device at which the packet
is currently located. Thus, we use packet agents, making packets, rather than devices, the
decision-making agent. Doing so allows us to more accurately assign credit to the actions
that affect whether a packet is successfully delivered. With packet agents, the agent state
can track what happens to the packet over time, as it moves from one device to the next.
Thus, the sequence of states that led to the packet being delivered or dropped is known
directly. Devices now only choose which packets should have the opportunity to make a
decision, but do not choose the next hop for a packet. If we were to instead use device
agents, the agent state would be a function of the packets seen at each device over time,
making knowledge of what happens to packets after they leave the device not readily
available.

Our use of packet agents does, however, give rise to a kind of multi-agent problem.
Even though each packet agent greedily optimizes its own travel time, packets still indi-
rectly interact with each other via device queues. However, we do not use a global coop-
erative reward function to coordinate packet agents. Instead, we have each device enforce
fairness among the packets in its own queue, choosing which packet gets to choose a next
hop. In this work, devices allow the first k packets to make a decision, where k is generally
sufficiently large that all packets are forwarded. Alternative queuing disciplines include
allowing only the packet at the front of the queue to make a decision or selecting a subset
of packets based on the Q-value for each packet’s best action combined with a fairness met-
ric quantifying the number of decisions made by packets in the same flow (i.e., going from
the same source to the same destination).

Importantly, much of a packet’s life is spent waiting in a queue. In most networks, queu-
ing delay is the largest contributor to total packet delivery delay. A packet must wait in a
queue for its turn to make a forwarding decision at a device. Once a packet chooses a next
hop, the packet is transmitted, but then goes back to waiting in the queue at that next hop.
A packet has no actions it can take while it waits: there are no decisions for the packet to
make but time still passes. This scenario is a natural case for hierarchical RL (Dietterich,
1998; Sutton et al., 1999; Barto and Mahadevan, 2003), in which an RL agent organizes
its extended-time actions, or options (Sutton et al., 1999) in a hierarchical time structure,
using a semi-MDP rather than an MDP to model the environment.

We specifically use fixed policy options (Sutton et al., 1999), where for the duration of
an option, there is only a single action available to be selected on each time step, and it
is always the same action. We make a slight modification (see Sect. 3.4), so that the first
action of the option can vary (corresponding to the packet’s next hop action selection),
and the remaining actions are fixed with no decisions to be made (corresponding to the
packet waiting in the next hop’s queue). The initial next hop action plus the subsequent
time interval that the packet may need to wait is then treated as a single option. How long
(and whether) a packet must wait dictates how long it takes for the associated option to
complete. If the next hop is the destination, for instance, the packet will be immediately
delivered, with no waiting. Figure 3 illustrates how such options operate over time. Packet
P, triggers an option by choosing to move from device D, to device D,. The option contin-
ues as P, waits at D, for two time steps, with no action selection possible. Once P, gets an
opportunity to choose a next hop at D,, the previous option terminates and a new option is
triggered.

Compared to primitive actions, options generally require less data to be collected and
allow smaller state spaces. Consequently, Q-learning proceeds more quickly. In our setting,
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Device D,’s packet

P, triggers option P, triggers option P, triggers option
I TPacket option exacution ~ o T

P, goesto D, | P, waitsat D, | P, waits at D, | P, goesto Dy | P, waits at D, | P, waits at D, | P, goesto D

P, triggers option
I TPacket opt

>
P, goesto D, | P, waits at D, | P, waits at D, | P> g to D,

P, triggers option

1 [ t t t I t

Fig.3 Example of how our fixed policy options operate over time. Here, we show options operating con-
currently for packets P, and P,

if a packet spends 7z time steps on average waiting at a device between decision points,
doing backups at one time step intervals during that waiting period would increase the size
of our training data by a factor of 7, but without adding any useful information to the train-
ing data (as a packet has no decisions to make when waiting) and so would make learning
slower. With options, reward signals are backed up over multiple time steps in a single
update, which speeds up learning.

3.3 Mobile network features

Our goal is to be able to use the same learned forwarding strategy at different devices and
in different mobile networks (e.g., dense or sparse networks with or without contempora-
neous end-to-end paths) with unknown or unseen device mobility. To achieve this, we use
relational features to represent the states and actions used by the DRL agent. Relational
features, such as delay to destination, model the relationship between network devices
instead of describing a specific device and so are not tied to a specific network topology.

We propose five classes of relational features specifically tailored to model mobile wire-
less networks. These classes give a general framework for organizing the features needed
for forwarding packets in a mobile network. The features we propose for each class, how-
ever, are not exhaustive but rather only the specific features used by the DRL agents whose
performance we evaluate in Sect. 4; we expect many other features could be proposed for
each class. We next describe the features we use, from the point of view of a packet p when
choosing its next hop. We assume that p’s destination is device d and that p is currently
located at device v which has neighbors u € Nbr(v).

1. Packet features, f,,.,(p), are a function of information about packet p. We propose the
following packet features.

(i) Packet p’s time-to-live (TTL). TTL is a packet header field used in real networks
to prevent the possibility of packets looping forever in the network. When a
packet is generated at its source device, the packet’s TTL field is set to some
initial value. Then, the TTL field is decremented by one whenever a packet is
forwarded to another device. A packet is dropped when its TTL reaches 0.

(i) Packet p’s time-at-device. That is, how long p has been at its current device, v.

2. Device features, fy,,..(v,d), are a function of device v’s information and destination

device d’s ID. We propose the following device features computed at the current time
step 1.
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(ii)

(iii)
(iv)

Device v’s queue length. Even when a network has little congestion, queue
length information can still be useful when choosing next hops. For instance,
next hop devices that do not have any packets (or any packets in the same traf-
fic flow as p) may be preferred to better distribute traffic and decrease delivery
delay.

Device v’s per-destination queue length considering only packets for destina-
tion d. This captures the possibly differing amounts of congestion along paths
to different destinations.

Device v’s node degree. This corresponds to the number of neighbors of device
v, that is, the number of devices within wireless transmission range of v.
Device v’s node density. This is computed as the fraction of neighbors that v
has out of the N devices in the network.

Our DRL agent additionally keeps track of two device features, the x and y location
coordinates of device v, which are not input into the DNN but are only used to compute
the Euclidean distance, a path feature described later in this section. Even when a device
knows its own location, locations for other devices can only be obtained when two
devices meet and exchange features. Consequently, location (and thus distance) features
may be out-of-date.

3. Path features, f,,;,(v,d), describe the time-varying path from a device v to a destination
device d. Unlike the other features discussed so far, path features can use not just current
device information but also historical information. Consequently, these features may
have some associated uncertainty. We propose the following path features.

@)
(ii)
(iii)

@iv)

@ Springer

Last inter-meeting time. This measures the amount of time that has elapsed
since device v last met destination d.

Last meeting duration. This measures the duration of the last meeting between
device v and destination d.

Euclidean distance. This measures the distance from device v to destination d.
Euclidean distance is calculated using v’s current x and y location coordinates,
and device v’s recorded (and possibly out-of-date) location coordinates of des-
tination d (see description of device features).

Timer transitivity. This is computed between device v and destination d, using
the calculation proposed in Spyropoulos et al. (2004) for utility-based and seek-
and-focus forwarding and described next. Each device v maintains a timer for
each other device d in the network, denoted as 7,(d), which is the time elapsed
since device v last met device d. We implemented the timer transitivity as
defined in Spyropoulos et al. (2004): when two devices, u and v encounter
each other, if 7,(d) < 7,(d) — «(d,,), where 1(d,,) is the expected time for a
device to move a distance of d,, (the distance between devices u and v), then
7,(d)is set to 7,(d) = 7,(d) + t(d,,). When device locations are not known, the
distance d,, ,, can be approximated using the transmission range: device v can
only be so far away from device u for v to be within the transmission range of u.
Timer transitivity captures the insight that, for many mobility models, a smaller
timer value on average implies a smaller distance to a device, where the timer
evaluates the “utility” of the device in delivering a packet to another device.
In experiments we have done, we have observed correlation between timer
values and distance. Consequently, timer transitivity can be used as a feature
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to approximate distance when location coordinates, and correspondingly the
Euclidean distance feature, are not available.

Neighborhood features, f,n004(Vs @), are computed over the current neighbors Nbr(v) of
a device v. We propose the following neighborhood features: for each device and path
feature, f; € fyevice(Vs d) U fu(v, d), we compute the minimum, maximum, and average
over device v’s current neighborhood, Nbr(v). This is similar in spirit to the aggrega-
tion function in a graph neural network (Scarselli et al., 2008; Kipf and Welling, 2017;
Battaglia et al., 2018). These features compress the information obtained from a variable
number of neighbors into a fixed size vector to input to the DNN in Fig. 2.

Context features, f,,..(D> 1), provide context for other features. For a packet p at a
device v considering a next hop u € Nbr(v) U v, we propose context features that indicate
whether p has recently visited u or not. Each packet p stores in its packet header the last
Nyistory device IDs that it visited, where N, is a predetermined constant. Let H(p, i)
be the ID of the device that packet p visited i hops ago, for 0 < i < Ny, Wheni =0,
then H(p, 0) is the device at which p is currently located. To make the context features
relational, rather than use device IDs, we use a sequence of Boolean features, b;, defined
as:

b = { 1, ifu="Hp,i,

0, otherwise. Q)

The use of packet history reduces unnecessary packet transmissions. For instance,
even if a possible next hop device u has promising features for reaching the destina-
tion, if packet p recently visited u, then u may be a less good next hop than it seems
based solely on u’s other feature values.

Basic features. We designate a subset of the above features as basic features (marked in
Table 1), which we use in all but one of the trained DRL agents that we evaluate (see

Table 1 For each feature f;,

Lo . Class Feature D Type
normalization is done using
i+ D7 (‘Z Fhwhere I packet  Packet TTL 300 Basic
for features and the value D is Packet Packet time-at-device 200 Additional
given in the table Device Queue length 20 Basic
Device Per-destination queue length 20 Basic
Device Node degree 10 Basic
Device Node density N Basic
Device x-coordinate location 500 m Additional
Device y-coordinate location 500 m Additional
Path Euclidean distance 2 Additional
Path Timer transitivity 800 Additional
Path Last inter-meeting time 800 Additional
Path Last meeting duration 100 Additional

Neighborhood features are not normalized as they are a function of
other normalized features; context features also are not normalized as
they are Boolean valued. We also distinguish the basic features used
by all but one of the DRL agents whose performance we evaluate in

our simulations from the additional features, see Table 5
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Table 5). Specifically, we designate packet TTL, queue length, per-destination queue
length, node degree, and node density as basic features. We derive our basic features from
information used by traditional routing and forwarding algorithms. The queue length fea-
ture measures the amount of congestion in the network. The per-destination queue length
feature measures the amount of congestion on the path to a particular destination and
comes from the backpressure forwarding algorithm (see Tassiulas and Ephremides, 1990),
which forwards a packet p to the next hop that has the largest difference in queue length
relative to p’s current device when considering only packets with the same destination as
p. Backpressure is throughput optimal (i.e., maximizes the number of packets able to be
delivered) when the network topology is relatively fixed and there is sufficient traffic such
that queues have a chance to build up. The packet TTL feature is used in traditional rout-
ing and forwarding algorithms to avoid routing loops: if a packet has been forwarded more
than a set number of times (typically related to the diameter of the network), it is assumed
that the packet is undeliverable and the packet is dropped. The node degree and node den-
sity features help with generalizing the learned forwarding strategy to networks with differ-
ent numbers of devices, varying transmission ranges, and heterogeneous mobility.

Additional features. We designate the remaining features of time-at-device, Euclidean
distance, timer transitivity, last inter-meeting time, and last meeting duration as additional
features, whose utility we evaluate through an ablation study in Sect. 4.4.1. We label
Euclidean distance as an additional feature since the x and y location coordinates may not
always be available. In such situations, the timer transitivity and other timing related fea-
tures (i.e., packet time-at-device, last inter-meeting time, and last meeting duration) could
be used instead.

Feature estimation. All features are estimated using local exchange of information
between neighboring devices. A device discovers its neighbors when another device
enters or leaves its transmission range through the use of “heartbeat" control messages.
Suppose there is a packet p with destination d at device v, and suppose v has neighbors
u € Nbr(v). Device v obtains the following information from each neighbor u: i) the fea-
tures fypyice(Us @) U fr(u, d), ii) w’s current x and y location coordinates, timestamped with
u’s current clock, and iii) the x and y location coordinates for every other device w, which
u has either recorded directly from w or received indirectly from another device, along
with the recording’s timestamp, i.e., the time on w’s clock of when the coordinates were
recorded. Device v then uses ii) and iii) to update its recording of the x and y location coor-
dinates for every other device, overwriting older recordings with more recent recordings
for a device w, comparing the timestamps associated with the recordings. Because these
timestamp comparisons always compare timestamps received from the same device w, no
clock synchronization is needed.

Feature normalization. Our goal when normalizing features is to re-scale them into the
range of approximately O to 1. Mobility makes normalization challenging as the ranges of
the raw feature values, such as for node degree, may be very different in different mobile
networks. To address this, we make the normalization a function of network properties
when possible, such as the (approximate) number of devices in the network or the (approxi-
mate) size of the area in which devices are moving or the maximum expected inter-meeting
time between pairs of devices. In this way, the normalization can better adapt to new net-
work environments. Table 1 summarizes how we normalize features in our simulations.

During training vs. testing vs. real network deployment it can be useful to scale some
features slightly differently. For instance, during training, a packet’s time-to-live (TTL)
should be sufficiently long to still allow packets to be delivered to the destination despite
some random exploration, but also be short enough to allow packet drops due to expired
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TTLs. However, during testing, a large TTL should be used to eliminate packets drops due
to expired TTLs, so as to prevent skewing of the results as the delays incurred by dropped
packets cannot be usefully counted. Consequently, to obtain our testing results, we use a
larger initial TTL than during training (see Table 3), but we re-scale a packet’s raw TTL
before normalizing to ensure that as long as the raw TTL is within the TTL range used
in training then the TTL feature will have the same value as during training, and one oth-
erwise. Conversely, in a real network deployment, a small TTL would be used to prevent
undeliverable packets from looping too long in the network.

3.4 MDP formulation

Let Nbr(v) be the current neighbors of device v. Each individual packet agent p currently
located at device v can choose between moving to one of v’s neighbors or staying at device
v. Packet p’s actions therefore correspond to the set Nbr(v) U {v}. We next define the states,
actions, and reward function for our packet-centric DRL agent from p’s point of view.

e States. The state features that packet p uses to make a decision are a function
of features derived from packet p, p’s destination d, and p’s current device v:
fv(v’ P> d) = fpacket(p) deevice(v’ d) Ufpath(v’ d) Ufnhrh()ad(v’ d)

e Actions. The action features for each action u in packet p’s action set Nbr(v) U {v} are
defined by f,(u,p,d) = fyevice(Us d) U fun (s d) U foppers(P> w). This action description
reuses many of the same features as in the state description, but is defined in terms of
a device u € Nbr(v) U {v} rather than just packet p’s current location at device v, and
additionally includes the context features.

Reward function. Forwarding strategies for mobile wireless networks must trade-off com-
peting goals for packet delivery, such as minimizing delivery delay while also minimizing
resource usage like energy and link bandwidth. As a packet travels to its destination, it
must also assign credit or blame to the devices it passes through, depending on the suc-
cess or failure of the packet to reach its destination. To incorporate these forwarding goals
and network resource considerations into packet decision-making, we design a weighted
reward function. Using our reward function, more weight can be placed on higher priority
forwarding considerations, such as to not waste resources by making unnecessary packet
transmissions.

We define separate rewards for the action of a packet choosing to stay at its current
device, ry,,, vs. moving to a neighboring device that is not the destination, 7,,,,.,;;» as

stay?
packet transmission requires expending energy. The ratio of r,, tO 7,,,,.mi; determines the

stay
trade-off that the forwarding strategy learns between minimizinf}g packet delivery delay vs.
number of transmissions. For instance, by setting 7, = Fygnmi» the DRL agent would
minimize delay, but ignore the number of transmissions made. For mobile networks, where
forwarding loops and unnecessarily long paths can easily arise, explicitly penalizing trans-
missions is important for learning a more efficient forwarding strategy. We define two
other rewards, for actions that lead to a packet being delivered to its destination, 7,0
or dropped, 74,y = Tyansmir/ (1 = v), where y € [0, 1] is the RL discount factor. The drop
reward is equivalent to receiving a reward of r, for infinite time steps. Our reward set-
tings are given in Table 3.

Actions vs. options. The sample estimate of expected return for an option that starts at

time step #; and ends at time step 7; is (see 1999):

ransmit
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-1

_ k—t; (t,—t;) /
= ieret+ ;Y- max S ,a
y k; Y Il V4 23 (s, a')

where r;, is the reward at time step k as defined above, and Sy is the state encountered at
time #;, with .A(s,j ) its actions. We use this y as the output target for the neural network.

We consider three types of options, corresponding to a packet being i) transmitted and
delivered at the next hop, ii) transmitted and dropped at the next hop, or iii) transmitted
and queued at the next hop for some number of time steps. The first two types of options are
terminal (packet delivery or drop) and the third type of option is non-terminal (transitions
from one device to another and then staying at the new device). On packet delivery or drop,
the option takes only a single time step and the next state 5, is the terminal state. The sam-
ple of return for delivery is y = 1.,y and similarly for the drop option, y = ry,,.

Because transmit and then stay options have rewards that are constant for every time
step over the life of the option after the first time step, all r;, = r,,,, in the option except at
the first time step ;, where r; = r,., ... Therefore, on transitions where the packet does a
transmission action and then stays for several time steps, the sample of return is:

_ ti—1; ’
Y = Tyansmir Rstay(tj - (ti + 1)+ 7(-’ & a’ren/-zli(?:,/) Q(Stj’ a).

where R, (; — (#; + 1)) is the return from the stay actions taken over the course of the
option, from time #; 4+ 1 to time L, and is defined by

1— y(t,—(t,»-f-l))

Rstay(tj - (ti +1) = Fstay * 1— v

Because reward is constant for all but the first time step, only the beginning and end of an
option need be stored during training. Every packet that remains in a device queue at the
end of a training round has an unfinished option. We remove such options from the training
data. As more data accumulates, including the end of the option, the newly finished options
are used. From this point on, to be consistent with Sects. 3.3 and 3.4, we use “actions”
rather than “options” to refer to extended-time actions.

3.5 Decision-making

The DNN architecture we use to approximate the Q-value function for the DRL agent is
shown in Fig. 2. Our DNN has four layers: input, expansion, compression, and output. Let
F = |f,(-)| + |f,(-)| be the number of input features and thus the size of the input layer. The
expansion layer has 10F neurons and the compression layer has F/2 neurons. Our DNN
settings are summarized in Table 2. Note that we are not currently using regularization or
dropout during training, but plan to explore their use in future work. The DNN outputs a
Q-value for each state, action pair, represented by the feature vectors f,(-) and f,(-). Each
device has a copy of the same trained DNN that encodes the forwarding strategy, which
allows decision-making to be done independently at each device.

Figure 2 also overviews how our DRL packet agent uses the trained DNN to make
a forwarding decision. To obtain the features f,(-) and f,(-) to input into the DNN in
Fig. 2, the DRL agent computes the following features for packet p with destination
d currently at device V: foue(P)s Saeviee(Vs @), and f,,,(v,d) using local information
at device Vi fupmood(Vs D) fevice(s d), and f,,,,(u, d) using the features received by v

@ Springer



Machine Learning (2024) 113:7157-7193

717

Table2 DNN settings used in
our simulations

Table 3 Simulation parameters

Setting

Value

# of Input features

Size of expansion layer
Size of compression layer
Size of output layer
Learning rate

Activation function (all layers)
Optimizer (all layers)
Loss

Batch size

# of Epochs

Training validation split

F= £+ L0
10F

FI2

1

0.0001

ReLU

Adam

Mean squared error
32

10

0.2

Symbol Meaning Value

N,yain # of devices during training 25

N,y # of devices during testing 25, 64, 100
X vain Transmission range for training 50 m

Xies: Transmission range for testing 20 m to 80 m
- RL max iterations 100

€4rain RL exploration rate for training 0.1

€pot RL exploration rate for testing 0

y RL discount factor 0.99

TTL, . TTL field initialization during training 300

TTL,,, TTL field initialization during testing 3000

B Maximum queue size 200

T delivery RL delivery reward 0

Tstay RL stay reward -1

T ransmit RL transmit reward -1,-2,-10
T drop RL drop reward Firansmie/ (L = 7)
Niistory Length of device visit history 0,5

T, rain # of time steps for training 90,000

T ot # of time steps for testing 100,000

T odel # of training time steps used by testing model 60,000

T oidown # of time steps at simulation end with no traffic 10,000

T,ouna # of time steps per round 1000

from u € Nbr(v); and finally, f,

ontext

(p,u) using only u’s ID in addition to the informa-

tion carried in packet p’s header fields. The number of times the DNN is used to pre-
dict Q-values corresponds to the number of actions available to the packet. Using the
DNN to separately make predictions for each action, rather than making predictions for
all actions at once, allows the DRL agent to handle varying numbers of actions, and,
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correspondingly, varying numbers of neighbors (and therefore varying topologies). Dur-
ing training, e-greedy action selection is used, with e set as in Table 3.

3.6 Offline training

In a mobile wireless networks, devices can only exchange information (such as whether
a particular packet reached its destination or was dropped) using distributed communica-
tion. Consequently, it is typically not feasible to gather the information needed for training
online due to limited network bandwidth. Instead, we use offline training, leveraging a net-
work simulator to both generate the training data and train the DNN model.

During the training phase, we alternate between periods of collecting data, using the
current DNN model to make routing decisions, with periods of training a new DNN model,
using all of the data collected so far. This alternation allows the trained DNN to improve
over time. Initially, the DNN parameters are random, and so the routing data collected
from our network simulator is generated by a random forwarding strategy. But as the DNN
parameters improve from training, so too does the forwarding strategy, and correspond-
ingly, so does the training data. The periods of data collection are termed rounds and we
set each round to be 7T,,,,,;, = 1000 time steps long, see Table 3. In our training simulations
in Sect. 4 we collect T,,,,;, = 90,000 time steps of data, i.e., 90 rounds of training data.

The training data collected using our network simulator includes the following informa-
tion, recorded for every packet decision made: i) the state features, ii) the action features
for each action considered for the state, iii) the action that was selected, and iv) the reward
that was received. We append this information to the end of a single data file shared by
all devices during training. From this data file, we construct the state, action, reward, next
state tuples, (s, a, r,s"), that are needed for training the DNN approximating the DRL for-
warding strategy. Specifically, we use the currently trained DNN and the (s, a, r, s") tuples
to obtain the target Q-values associated with the tuples. Then a new DNN is trained with
this data.

Because our relational features are device and network independent, we are able to train
a single DRL agent via experience replay, taking trajectory samples from the data file.
Samples are only taken for packets that have been dropped or delivered (and hence the
full trajectory is contained in the data file) to allow the computation of each option return
which is a function of the time it takes for a packet to reach a terminal state.

Once training has been completed, no more updating of the DNN model occurs. Conse-
quently, the forwarding strategy that is used during testing does not change. In Sect. 4, for
testing, we use the trained model produced after 7,,,,,, = 60, 000 time steps, see Table 3, as
this has converged for both delivery delay and number of forwards. The trained model that
has been chosen is then copied to each device and used independently at each device by
packets to choose next hops.

4 Simulation results

In this section, we overview our simulation setup and describe our simulation results. Our
goal is to evaluate the performance and generalization capabilities of our formulation of
DRL-based forwarding in mobile wireless networks. We first describe how we simulate
a mobile wireless network (Sect. 4.1). Then, we describe the different forwarding strate-
gies against whose performance we compare (Sect. 4.2). Next, we overview DRL training
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performance (Sect. 4.3). Finally, we overview DRL testing performance as well as the per-
formance of the other forwarding strategies (Sect. 4.4).

4.1 Methodology

Our simulations are done using a custom built discrete-time packet-level network simula-
tor that we have implemented in Python3. The DRL agents are trained and all strategies
are tested using this simulator. We use Keras v.2.5.0 (Chollet et al., 2018) and Tensorflow
v.2.11 (Abadi et al., 2015) to implement the DNN. Table 3 gives our simulation parameters.

4.1.1 Device mobility

We use two widely-used mobility models in our simulations: the steady-state random
waypoint (RWP) mobility model (Navidi and Camp, 2004; Navidi et al., 2004; Le Boudec
et al., 2005) and the original Gauss-Markov (GM) mobility model (Liang and Haas, 2003;
Bai and Helmy, 2006).

RWP mobility. In the RWP mobility model, a device picks a random location and speed,
and travels to the chosen location at the chosen speed. Subsequently, the device pauses for
a random duration, and repeats the above process until the end of the simulation. In our
simulations, our RWP scenario uses the following parameter settings. We set the average
speed at which devices move to be 3 m/s with a speed delta of 2 m/s with no pause time.
This means that each device moves to the chosen location at a speed chosen uniformly at
random from the range [3 — 2,3 + 2], i.e., [1, 5]. Figure 4a gives example device movement
for this RWP scenario.

GM mobility. In the GM mobility model, a device is assigned an initial veloc-
ity with which to move, which is then updated at fixed intervals, i.e., at time
t=10,20,...,(n—1)6,no, ..., where 6 is the update interval, indicating how long a device
moves at a given velocity before updating. In the implementation of the GM mobility
model that we use, the velocity of a device during the n-th interval [(n — 1)8, né], denoted
as (v5, v),), is calculated as follows (Aschenbruck et al., 2010; Liang and Haas, 2003):

500 500 500

400 400 400
E E E
< 300 c 300 c 300
=l =l =l
= = =
] ] 3
8 200 8 200 8 200
> > >

100 100 100

0 0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
X-location (m) X-location (m) X-location (m)
(a) RWP mobility (b) GM mobility (c¢) GM-curly mobility

Fig.4 Example device movements over time for the RWP, GM, and GM-curly mobility scenarios. For clar-
ity, only the movements for two devices (device 2 in blue with dashed lines and device 18 in red with solid
lines) are shown. We show the first 100 BonnMotion waypoints for these two devices, where dots represent
the waypoints, the triangle symbol indicates the starting waypoint of a device, and the star symbol indicates
the ending waypoint of a device
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vi=av: |+ (1 —a)ucos@, ) +oVl—aw

VW=av |+ (1 —apusin@, ) +oV1-aw |
where 0 < a < 1is a memory level parameter that controls how much a device’s velocity
in the n-th interval (v, v)) depends on its velocity in the previous interval v \f; _)uis
the asymptotic mean of the speed, o is the asymptotic standard deviation of the velocity
(where the asymptotic standard deviations of the x and y components of the velocity are
set to be the same value, ), 0,_, is uniformly randomly distributed in [0, 2x), and WZ_] and
w”;_l are uncorrelated random variables from a Gaussian distribution with zero mean and
unit standard deviation. Smaller values of @ result in more randomness of device movement
over time, with @ = 0 giving rise to the memory-less Random Walk model. Larger values
of a result in stronger memory, with & = 1 giving rise to mobility with a constant velocity.
The GM mobility model gives rise to a slightly different spatial distribution of devices in
the network, compared with the RWP mobility model. Specifically, in the RWP mobility
model, devices are more concentrated near the center of the simulation region (Navidi and
Camp, 2004); whereas in the GM mobility model, devices are evenly distributed in the
simulation region.

In our simulations, we consider two scenarios for the GM mobility model, termed GM
and GM-curly respectively. For the GM scenario, we set 6 = 30s, u = 3.0 m/s, 0 = 0.1 m/s,
and @ = 0.6, which gives the relatively straight-lined movement shown in Fig. 4b. For GM-
curly scenario, we set 6 = 2s, 4 = 1.0 m/s, 0 = 10 m/s, and a@ = 0.3, which gives the “curl-
ier" movement shown in Fig. 4c. Note that the GM-curly model is only used for testing: no
DRL agents are trained on this model.

Mobility trace generation. In our simulations, we use BonnMotion (Aschenbruck
et al., 2010) to generate mobility traces for devices moving under the above models. Spe-
cifically, for all models, BonnMotion generates a mobility trace as a sequence of way-
points for each device. For example, suppose that device v’s mobility trace is (7, X3, ¥,
', x‘]’, y?), s (07 y;), where t(‘;, t;’, e, b are the points in time when device v changes its
velocity, and (le, y}') are device v’s locations at time tiV. During the interval [t;’, tlY+ 1], device
v moves from location (x7,y]) to location (x] ,,y?,,) at a constant speed. Since the time
points at which the waypoint changes are decided by the mobility model, they do not nec-
essarily coincide with the per-second time steps in our simulation. We therefore calculate
the locations of each device v at each time step 7 by first finding the time interval [z, 7] ]
in which ¢ lies in, and then calculating the location at time 7 via a linear interpolation of v’s
locations at 7 and 7] .

In our simulations, as listed in Table 3, all training scenarios use N,,,;, = 25 devices
moving in a 500 m X 500 m area and a transmission range of X, = 50m. For testing,
we consider N = 25,64, and 100 devices moving in a 500 m X 500 m area and vary the
transmission range X, from 20 m to 80 m to obtain both poorly connected and well con-
nected mobile scenarios. We generate separate mobility traces for the training and testing
scenarios.

Connectivity of mobile scenarios. For the RWP scenario, Fig. 5a plots the average node
degree, the probability that a path exists, the average inter-meeting time, and the average
meeting duration for various numbers of devices N and transmission ranges. The last two
metrics are computed online between each possible pair of devices, and so are independent
of the number of devices. As expected, the network connectivity increases as the num-
ber of devices, N, and transmission range increase, leading to higher average node degree,
higher probability of having a path between a pair of devices, shorter inter-meeting time,
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Fig.5 The connectivity properties of the various network scenarios considered in our simulations

and longer meeting duration. The corresponding quantities for the GM and GM-curly sce-
narios are shown in Fig. 5b and c. We observe lower average node degree and lower prob-
ability of a path in the GM and GM-curly scenarios compared to the RWP scenario. This
is consistent with the observation that for the same number of devices and transmission
range, devices are more concentrated near the center of the simulation region under the
RWP model than under the GM model (Navidi and Camp, 2004). We also observe that
the GM-curly scenario has more frequent meetings between devices (shorter inter-meeting

times) but also shorter meeting durations than does the GM scenario.

4.1.2 Network traffic

We vary the amount of traffic over time by modeling flow arrivals, packet arrivals, and
flow durations. To generate traffic, we model flow arrivals using a Poisson distribution
with parameter A, = .001N/25, scaling the number of flows (and thus the amount of
congestion) as a function of the number of devices N in the network. We model flow
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durations using an exponential distribution with parameter A, = 5000 and packet arriv-
als on flows using a Poisson distribution with parameter A, = 0.01. A simulation run
starts with A4, initial flows. Each device has a queue with a maximum size of B = 200
packets, beyond which additional packets are dropped.

Because flow arrivals are a function of the number of devices in the network, not just
network connectivity but also traffic congestion are varied in the different network sce-
narios used for testing. Thus, when evaluating generalization of a DRL agent trained on
one scenario to other scenarios, we are evaluating not just generalization due to different
connectivity and numbers of devices but also due to different amounts of traffic.

For the packet TTL field, we use different initialization values in training vs. testing.
During training, a packet’s TTL field is initialized to TTL,,,;, = 300. We use this value
since if TTL,,;, is too small, the DRL agent may not be able to deliver any packets due
to the initial random forwarding, while if it is too large, the DRL agent may not be able
to experience dropped packets caused by expired TTLs. During testing, a packet’s TTL
field is initialized to a much larger value, TTL,,, = 3000. This is because the statistics
we compute about delay and number of forwards are only for delivered packets: any
dropped packets due to expired TTLs would skew these statistics. The different T7TL,,;,
and TTL,,,, values, however, do necessitate the re-scaling described in the last paragraph
of Sect. 3.3. When deploying in a real network, however, it is likely desirable to use
smaller TTL values than what we use, to ensure that undeliverable packets are dropped
in a timely manner.

At each time step, every device in the network is given an opportunity to transmit up to
k = 200 packets in its queue. Given our network settings, this k is sufficient for a device to
transmit all of its packets, avoiding the need for device decision-making. But if the number
of packets in a device’s queue were larger than k, the best k packets could be forwarded
where best is a function of the Q-value for each packet’s best action combined with a fair-
ness measure to ensure each packet regularly gets a transmission opportunity.

4.2 Forwarding strategies

In our simulations, we compare the performance of five forwarding strategies, including a
delay minimizing strategy (oracle) and a transmission minimizing strategy (direct trans-
mission) to give bounds on the performance of the DRL agent. We also compare with the
utility and seek-and-focus strategies from Spyropoulos et al. (2004) as state-of-the-art strat-
egies that trade-off delay with number of transmissions. Our goal is to understand which
forwarding strategies have low packet delivery delay while also making a good trade-off in
terms of resources used due to packet transmissions.

1. Oracle forwarding uses complete information about current and future network connec-
tivity to calculate the minimal hop path that achieves the minimal delivery delay for each
packet. To find these forwarding paths, we make use of epidemic routing (Vahdat and
Becker, 2000). Epidemic routing creates many copies for a packet and distributes them
to the network. For those packet copies that reach the destination with the minimum
latency, we further find the packet copy that reached the destination with the minimum
number of hops. Although the oracle forwarding strategy minimizes delay while main-
taining a good trade-off in terms of network resources, it is not practical to implement
in real networks since it requires knowing the current and future network topology.
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2. Direct transmission forwarding only forwards a packet one hop, directly from the source
to the destination. This is optimal when the goal is to minimize the number of transmis-
sions per packet.

3. Utility-based forwarding (Spyropoulos et al., 2004) maintains a timer at each device v
for each device d in the network, denoted as 7,(d), which is the time elapsed since device
v last met device d. We implemented the timer transitivity as defined in Spyropoulos
etal. (2004): when two devices, u and v encounter each other, if 7,(d) < 7,(d) — t(d,, ),
where #(d,, ) is the expected time for a device to move a distance of d,, (the distance

between devices u and v), then 7,(d) is set to 7,(d) = 7,(d) + 1(d,,). A device v chooses

the next hop for a packet as follows: v first determines which neighboring device, u, has
the smallest timer to the packet’s destination, d. If 7,(d) > 7,,(d) + Uy, i.e., the timer of

v to destination d is larger than the timer of u to d by more than the utility threshold, U,

the packet is forwarded to device u; otherwise, the packet is not forwarded. We optimize

U, forN,,;, =25and X, ,;, = 50m, which are the same settings on which the DRL agent
used in testing was trained; the value of U, that we use is shown in Table 4.

4. Seek-and-focus forwarding (Spyropoulos et al., 2004) combines the utility-based strat-
egy (focus phase) with random forwarding (seek phase). If the smallest timer (among
all neighboring devices) to the destination is larger than the focus threshold Uy, the
packet is in seek phase, forwarded to random neighbor with probability prob. Otherwise,
the packet is in the focus phase, and the carrier of the packet performs utility-based
forwarding with utility threshold U,,. In addition to Uy, prob, and U,,,, seek-and-focus
has three more parameters: the time_until_decoupling which controls the amount of
time a device is not allowed to forward a packet back to a device it received the packet
from, T%,.,; which controls the maximum duration to stay in focus phase before going
to re-seek phase (random forwarding of the packet to get out of a local minimum), and

T,,.; which controls the maximum duration to stay in re-seek phase until going to seek
phase (random forwarding of the packet until reaching a device with timer smaller than
Uy). We optimize these parameters for N,,,,;, = 25 and X,,,,;, = 50m, which are the same
settings on which the DRL agent used in testing was trained; the parameter values we
use are shown in Table 4.

5. DRL forwarding uses a DRL agent to make forwarding decisions. We consider a number
of different DRL agents trained on different scenarios, shown in Table 5. Specifically,
we prefix these agents by the mobility scenario used in training, i.e., “RWP” or “GM”,
followed by the features used: e.g., basic features only (marked as “basic”), or basic
and additional features (marked as “dist” for those that use Euclidean distance as an
additional feature, or marked as “timer” for those that use the timer transitivity feature
as an additional feature, or “timer*” for those that use the timer transitivity feature and

Table 4 Parameter settings for utility-based and seek-and-focus forwarding strategies

Symbol Meaning Utility Seek &Focus
U, Utility threshold 10 100

o Focus threshold - 20

prob Random forwarding probability - 0.5
time_until_decoupling Time before sending packet back to device - 10

Tipcus Max duration to stay in focus phase - 10

Typer Max duration to stay in re-seek phase - 50
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Table 5 DRL training scenarios.

All training scenarios use Scenario Nhistory — Tiransmir__ Features
Niain = 25 devices and a RWP-basic 5 -2 Basic
transmission range of X,,;, = 50 )
m RWP-timer 5 -2 Timer, Queue Length,
Per-Destination Queue
Length, TTL
RWP-timer 5 -2 Basic, Timer
RWP-timer* 5 -2 Basic, Timer, Intermeet-
ing Time, Meeting
Duration, Time-at-
device
RWP-dist 5 -2 Basic, Euclidean distance
RWP-dist-1 5 -1 Basic, Euclidean distance
RWP-dist-10 5 =10 Basic, Euclidean distance
RWP-dist-nohist 0 -2 Basic, Euclidean distance
RWP-dist-1-nohist 0 -1 Basic, Euclidean distance
RWP-dist-10-nohist 0 -10 Basic, Euclidean distance
GM-dist 5 -2 Basic, Euclidean distance
GM-dist-1 5 -1 Basic, Euclidean distance
GM-dist-10 5 -10 Basic, Euclidean distance

Scenarios are prefixed by the type of the mobility scenario used in
training, either RWP or GM. All but the RWP-timer strategy use all
of the basic features specified in Table 1. The additional features used
beyond the basic features are also listed for each scenario. We use
T,vain = 60,000 training time steps for the trained DRL model based on

train

looking at the training plots in Fig. 6

other timing features, or “timer ” for those that use the timer transitivity feature but not
all of the basic features). By default, we use Ny, = 5 for context history; a scenario
that does not use the context history feature is marked as “nohist”. Finally, a scenario
that does not use the default value of 7,,,,.,.;; = —2 appends a “—1” or “—10 to “dist",
representing the other two r,,,,,,.,..., values of —1 and —10 that we explore. During training,
the DRL agent is essentially learning about different kinds of network connectivity over
time, as well as different amounts of congestion over time (and the resulting variability
in queue length). In Fig. 6, we show DRL training performance, discussed further in
the next section.

In our current implementation of the timer transitivity calculation, which is used by the
utility-based and seek-and-focus forwarding strategies as well as by the DRL agent when
using the timer feature, we assume the distance d,, between two neighboring devices u
and v is known. In practice, we can use the transmission range as an over-estimate of d,, ..
This is because timer transitivity is calculated only when the two devices are within trans-
mission range of each other, i.e., their distance from each other is no more than the trans-
mission range. We expect that using the transmission range as an approximation of the
distance, d, ,, will have only a negligible impact on the timer value. The timer transitivity

calculation itself is only a rough estimate since the true relationship between delay and dis-
tance in a given network depends on the actual movement of devices.
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Fig.6 DRL agent training performance. All training runs are done with N, = 50m

4.3 Training performance

Figure 6 overviews DRL training performance. Each training simulation is run for 7}, ;,
time steps, where each time step corresponds to one second. At each time step, the
cumulative performance over all packets delivered up to that time step is shown. The
performance metrics we use are the packet delivery rate, delay per packet delivered, and
number of forwards per packet delivered.

The top row of Fig. 6 shows DRL training performance on the RWP scenario, for
three DRL agents, using the default amount of history (i.e., Ny, = 5). In addition, one
of the DRL agents uses the default transmission reward of r, ... = —2, while the other
two DRL agents use 7,,,,,mi; = —1 and —10, as marked in the legend. The bottom row of
Fig. 6 shows shows DRL training performance on the GM scenario for the same feature
and reward settings. Figure 6 shows convergence of the learned DRL strategies, with
oansmic controlling the learned trade-offs between delay and number of forwards. For a
given reward setting, the DRL agents trained on the GM scenario have a higher delay
per packet delivered and a higher number of forwards per packet delivered than do the
DRL agents trained on the RWP scenario, which is consistent with the observation that
GM mobility leads to lower connectivity than does RWP mobility for the same setting
(see Fig. 5). We explore this resource-delay trade-off in our testing results in the next
section.

For clarity, Fig. 6 only presents the training performance for a subset of the DRL
agents shown in Table 5. The training performance for the DRL agents not shown is
similar to those in Fig. 6 and we observed convergence for all of the DRL agents that we
use.
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4.4 Testing performance

The focus of our testing simulations is to evaluate the performance and generalization
capabilities of our proposed DRL approach. All performance measures are computed over
the delivered packets, such as the delay or number of forwards per packet delivered. All
performance metrics are averaged across all simulation runs for a given set of parameters,
except for the maximum queue length which is the average of the maximums seen in each
simulation run for a given set of parameters.

4.4.1 Impact of parameter and feature choice

In this section, we investigate how the choice of training transmission reward, .., ;i
affects testing performance. We also perform feature ablation to understand how different
features impact performance.

Impact of transmission reward. Fig. 7 plots the trade-off between the delay (i.e., latency)
and the number of packet transmissions (i.e., resource usage) for various forwarding strate-
gies. For the DRL strategies, we consider multiple strategies that differ in their choice of
Toansmic @0 Whether the context history feature is being used. For comparison, we also show
the trade-offs made by the transmission minimizing direct transmission strategy (“Direct
Tx"), the delay minimizing oracle strategy, and the state-of-the-art utility-based and seek-
and-focus strategies. In the following, we consider the impact of the choice of 7,4, On
the delay vs. resource usage trade-off; the impact of the history feature is deferred to later.
The performance comparison of the DRL strategies with the other strategies is discussed in
detail in Sect. 4.4.2.

Recall that the reward for staying at a device, r,,,, is fixed to —1. When 7, = —1,
there is no penalty for transmission as a packet receives the same reward for transmitting
as for staying at a node (i.e., 7 mir = Tsay)- Correspondingly, we see that for the DRL
strategies using this reward setting, RWP-dist-1 and RWP-dist-1-nohist, delay per packet
delivered is the lowest among the various DRL strategies, but the number of forwards
per packet is the highest. Conversely, for r,,,,..; = —10, corresponding to RWP-dist-10
and RWP-dist-10-nohist, there is a significant penalty for making a transmission, and so,
while the delay per packet delivered is the highest for these DRL agents, the number of
forwards per packet is now the lowest. Henceforth, the DRL agents used are trained with

500 feDirect Tx 500 KPDirect Tx 500 eDirect Tx
m yUtility-Based m i
S 400 S 400 < 400
- RWP-dist-10 - -
8 . RWP-dist-10-nohist SQEK&FO&JS 8 a
£ 300 [ ) £ 300 y Utility-Based £ 300
F 1= F y Utility-Based
= b RWP-dist-10 e
o RWP-dist-nohist  RWP-dist-1-nohist ° [RVP-dist-10-nohist Seek&Fogus °
L] RWP-dist-10-nohist

#2001 qpd Frry ey * 200 *200{@ Seek&Focus
= oracle 4 > J RWP-dist-10 >
& 100 & 100 {orace & 100

T iy A — Oracle
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Fig.7 Resource usage vs. latency on the RWP scenario. Each point is the average of 50 simulation runs. All
DRL agents were trained with N,,,;, = 25 devices and X,,;, = 50 m and all packets were delivered and no

rain train

packets were dropped. Labels indicate the forwarding strategy
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Toansmic = —2 as this setting provides a good trade-off between delay and number of trans-
missions. In future work, it would be interesting to evaluate how varying the other rewards,
Tstays Tarops @04 T gqiiery» impacts forwarding performance.

Impact of context history features. As shown in Fig. 7a, context history can also serve
as a deterrent to unnecessary packet transmissions: the DRL agents that do not use con-
text history (i.e., RWP-dist-nohist, RWP-dist-1-nohist, and RWP-dist-10-nohist) have a
higher number of forwards, compared to the the DRL agents with N, =5 (i.e., RWP-
dist, RWP-dist-1, and RWP-dist-10), for the same setting of r,,,,,,mi;- This gap is most pro-
nounced when there is no transmission reward penalty (i.e., when 7., = —1) and the
network is sparse (i.e., for N, = 25). While r,,,.... penalizes packet transmissions, the
context history features themselves do not directly penalize transmissions. Instead, the con-
text history features augment the state space to add context when actions are taken and
ensure that actions that lead to unnecessary looping can be more easily identified.

Impact of distance and timer features. Fig. 8 looks at the impact of different features on
performance. The RWP-basic strategy uses the fewest features, i.e., only the basic features
listed in Table 5. Figure 8b shows that the RWP-basic strategy has larger average delay per
packet delivered than any of the other strategies. The RWP-timer strategy uses the timer
transitivity feature in addition to the features used by the RWP-basic strategy. Figure 8
shows that adding the timer transitivity feature significantly reduces the delay compared to
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Fig.8 Testing performance for the RWP scenario, varying the features used by the DRL agents and the
transmission range X,,,, from 30 m to 80 m. Each point is the average of 50 simulation runs; 95% confi-
dence intervals are shown. All DRL agents were trained with N,,,;, = 25 devices and X,,,;, = 50 m but with
varying features, see Table 5. For the RWP-basic, RWP-timer , RWP-timer, and RWP-timer™ strategies, not

all packets were able to be delivered by the end of each simulation
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the RWP-basic strategy, but with increased forwards per packet delivered, and, more prob-
lematically, with significant numbers of packets dropped due to queues being full when the
network topology is sparse (i.e., when X,,, < 60m in Fig. 8f).

The RWP-timer® strategy uses the time-at-device, last inter-meeting time, and last meet-
ing duration features in addition to the timer transitivity and other features used by the
RWP-timer strategy. Figure 8 shows that these additional features give the RWP-timer*
strategy a delay similar to that of the RWP-timer strategy but with fewer forwards per
packet and fewer packet drops. In results not shown, we observe that for the RWP-timer*
strategy, using the learned DRL model after 46,000 training time steps rather than 60,000
training results in no packet drops and stable queue lengths, though slightly larger delay but
also significantly fewer forwards per packet delivered. Consequently, there may be some
overfitting with the RWP-timer* strategy due to the 60,000 time steps of training.

We also observe in Fig. 8 that the RWP-timer  strategy, which only includes a subset
of the basic features, and in particular excludes the node degree and node density features,
performs significantly worse than the other strategies including the RWP-basic strategy in
terms of packet drops and maximum queue length, indicating the utility of the node degree
and node density features for generalization.

Figure 8 shows that the RWP-dist strategy achieves the best performance for all of the
performance metrics among all of the DRL strategies. Comparing the performance of the
RWP-timer™* strategy with that of the RWP-dist strategy indicates that the timer transitivity
feature can potentially be used as an approximation to the Euclidean distance feature. In
the rest of our testing results in the next sections, we focus on the DRL agents that use the
Euclidean distance feature in addition to the basic features.

4.4.2 Results for the RWP scenario

In this section, we investigate how well the learned DRL forwarding strategies generalize
during testing for the RWP scenario.

Overall results. In Fig. 9, we plot the the testing performance of two DRL agents, RWP-
dist and RWP-dist-nohist, on the RWP scenario. The DRL agents were trained on the cor-
responding RWP scenarios described in Table 5, which use N,,,;, = 25 devices and a trans-
mission range of X,,... = 50m. The testing scenarios shown in Fig. 9 include 25, 64 or 100
devices (the largest network size we investigated) with transmission ranges varying from
20 m to 80 m, leading to various connectivity levels (see Fig. 5). Most of the testing sce-
narios differ from the training scenario in terms of the number of devices and/or the trans-
mission range, as well as the number of traffic flows. We see in Fig. 9 that our DRL agents
are able to generalize well from their training scenarios to the various testing scenarios,
including those on which they were not trained. We also observe that our DRL agents often
achieve packet delivery delays similar to the oracle strategy, and outperform all other strat-
egies in terms of delay.

All forwarding strategies must make some kind of trade-off between packet delivery
delay and number of packet transmissions. While the DRL agents use a reward function to
navigate this trade-off, seek-and-focus uses a less straightforward approach. Among the six
parameters of seek-and-focus, we observed that varying the forwarding probability prob
while fixing the other five parameters, see Table 4, provides one way to manage this trade-
off. But there is no clear way to set these parameters in coordination with prob to achieve a
specific trade-off for a given network scenario. One solution would be to instead learn the
optimal settings for the seek-and-focus parameters.
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Fig.9 Testing performance on the RWP scenario, varying the number of devices N,,,, from 25 to 100 and

test
the transmission range X,,,, from 20 m to 80 m. Each point is the average of 50 simulation runs; 95% confi-
dence intervals are shown. The legend shows DRL training conditions: both DRL agents were trained with
N,in = 25 devices and X,,,,;,, = 50m. All packets were delivered in these simulations and no packets were
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Impact of network connectivity. Fig. 9 shows that as the network topology becomes
more well connected (i.e., due to an increasing number of devices N, or increasing
transmission range X,,,), the DRL agents start to have delay per packet delivered similar
to that of the oracle strategy, with not too many more forwards per packet delivered. As
the network topology becomes more sparse (i.e., due to decreasing N,,,, or decreasing
transmission range X,,,), Fig. 9 shows that the DRL agents start to have delay that is
approaching the delay of the non-oracle strategies. The DRL agents have their high-
est delay per packet delivered for the N =25 and X,,,, = 20 m scenario which is the
most disconnected testing scenario we consider (see Fig. 5). Due to the relatively few
neighbors and long inter-meeting times between pairs of devices for this scenario, we
hypothesize that using additional features, such as temporal neighborhood features,
would improve DRL agent performance, as would considering predicted future neigh-
bors when choosing next hop actions. We revisit these ideas again when we discuss the
impact of network sparsity on forwarding performance more generally later in this sec-
tion. Importantly, the DRL agents, trained on networks with N,,,;,, = 25 devices, are able
to generalize their learned forwarding strategies to networks with different numbers of
devices (N, = 64 and N,,,, = 100), as well as to the varying numbers of actions avail-
able to packets in these networks.

Impact of network traffic. The number of flows (and therefore amount of traffic)
increases as a function of the number of devices N,,, in the network (see Sect. 4.1.2). Net-
work congestion, however, increases as the transmission range X, , decreases (due to cor-
respondingly decreased network connectivity). Figure 9 shows that the DRL strategies are
able to generalize to network congestion levels different from those on which they were
trained.

Impact of context history features. As we discussed earlier in Fig. 7, we found that the
use of context history decreases the number of forwards per packet delivered. While the
results we showed in Fig. 7 are for a fixed transmission range of X,,, = 50m and varying
numbers of devices N,,,, Fig. 9 validates this for other transmission ranges (for X,,,, from
20 m to 80 m) as well as varying numbers of devices. Specifically, Fig. 9 shows that the
DRL agent with no context history (i.e., RWP-dist-nohist) has a consistently higher number
of forwards per packet delivered than the DRL agent with context history (i.e., RWP-dist)
regardless of transmission range and despite having a similar delay per packet. This is an
indication that the use of context history improves generalization of the learned forwarding
strategy.

Handling network sparsity. As shown in Fig. 9, as the network becomes sparser (i.e.,
X, decreases), the length of the oracle (i.e., optimal) path decreases. This is because in
such scenarios, forwarding a packet to a neighbor is less likely to reduce packet delivery
delay as that neighbor is unlikely to meet other devices, including the destination. In con-
trast, for the DRL strategy, as the network becomes sparser, path lengths increase, and
delays deteriorate to be close to those of the non-oracle strategies. Compared to the DRL
strategy, the more desirable behavior of the oracle strategy is a consequence of its ability
to sample all possible paths to a destination in parallel via packet copies, enabling it to dif-
ferentiate between dense and sparse networks and thereby make appropriate forwarding
decisions. We hypothesize that adding additional features to the DRL agent that are able
to detect sparsity more globally in the network would improve DRL forwarding behavior.
Additionally, if the amount of network traffic is fixed, then as the network becomes sparser,
traffic congestion and hence queue lengths increase. Therefore, training on network sce-
narios with more variable traffic to induce more queue length variation may also improve
DRL forwarding behavior.
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Queue stability. The stability of device queue lengths can be used to determine whether
a network’s capacity can support a given traffic load and whether the forwarding strategy
is appropriately managing this traffic. Figures 9 (j) to (1) show the maximum queue length
seen in any of the simulation runs for a given setting. Though queue lengths increase as
network connectivity decreases, we see that queue lengths are stable for all strategies,
meaning that the forwarding strategy and network are able to support the traffic load. The
direct transmission and utility-based strategies have noticeably larger queue lengths com-
pared to the other strategies, with this gap increasing as the number of devices in the net-
work increases.

While not shown, average queue lengths are small for all strategies, generally smaller
than five packets. Note that the oracle strategy is implemented as a multi-copy scheme with
a recovery latency of zero, i.e., when the first packet copy is delivered to the destination
with minimum number of hops, all other copies are removed from the network. Conse-
quently, the queue lengths for the oracle strategy include all packet copies present but only
until the first copy is delivered. Consequently, oracle queue lengths are not directly compa-
rable to the queue lengths of other strategies.

4.4.3 Results for GM mobility

In this section, we investigate how well the learned DRL forwarding strategies generalizes
during testing for the GM scenario. As shown in Fig. 5, GM mobility gives rise to a signifi-
cantly sparser network topology than does RWP mobility.

Overall results. In Fig. 10, we plot the the testing performance of one DRL agent, GM-
dist, trained on the GM scenario. Like with our RWP results, most of the testing scenarios
differ from the training scenario in terms of the number of devices and/or the transmission
range, as well as the number of traffic flows. Figure 10 shows that our DRL agent is able to
generalize well from the training scenario to the various testing scenarios. The DRL agent
often achieves packet delivery delays similar to the oracle strategy, and outperforms all
other strategies in terms of delay except for the very sparsest network scenarios.

Impact of network connectivity. Like the RWP results in Fig. 9, the GM results in
Fig. 10 show that as the network topology becomes more well connected, the DRL agent
starts to have delay per packet delivered similar to that of the oracle strategy, with not too
many more forwards per packet delivered. GM delay per packet delivered, however, is sig-
nificantly higher than what is seen for the RWP results, due to the decreased connectivity
of the GM mobility model.

Impact of network traffic. Again, like the RWP results in Fig. 9, the GM results in
Fig. 10 show that the DRL strategies are able to generalize to different traffic and conges-
tion levels, despite the sparser connectivity of GM mobility.

Queue stability. While the queue lengths for the RWP results shown in Fig. 9 are rela-
tively stable, the GM results in Figs. 10 (j) to (1) show higher queue lengths and, in particu-
lar, noisier queue lengths for the direct transmission strategy. Average queue lengths, again
not shown, are still generally less than 5 packets.

4.4.4 Cross-mobility model generalization

In this section, we investigate how well the learned DRL forwarding strategies trained on
one mobility scenario generalize to other mobility scenarios.
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Fig. 10 Testing performance using GM mobility, varying the number of devices N, from 25 to 100 and
the transmission range X,,,, from 20 m to 80 m. Each point is the average of 50 simulation runs; 95% con-
fidence intervals are shown. The legend shows DRL training conditions: the DRL agent was trained with
N,in = 25 devices and X, .., = 50 m. All packets were delivered in these simulations and no packets were

dropped
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Training on GM and testing on RWP. In Fig. 11, we compare the testing performance
of two DRL agents, GM-dist and RWP-dist, on the RWP scenario. While the RWP-dist
strategy was trained on the RWP scenario, the GM-dist strategy was trained on the GM
scenario. Our goal here is to confirm that our DRL-based approach to forwarding is
able to generalize not just to different levels of connectivity and congestion for a given
mobility model but also to different mobility models. Indeed, we observe in Fig. 11 that
the GM-dist strategy performs quite similarly to the RWP-dist strategy in terms of delay
per packet delivered, with only slightly higher numbers of forwards. Interestingly, we
also observe that the GM-dist strategy leads to slightly smaller maximum queue lengths
compared to that of the RWP-dist strategy, potentially due to the GM-dist strategy train-
ing on the slightly sparser (and therefore more congested) GM mobility scenario.

Training on GM or RWP and testing on GM-curly. In Fig. 12, we compare the test-
ing performance of two DRL agents, GM-dist and RWP-dist, on the GM-curly sce-
nario. Figure 12 shows that both DRL agents are able to generalize to this new scenario,
despite not having been trained on it. Interestingly, the RWP-dist strategy performs bet-
ter than the GM-dist strategy does on the GM-curly scenario: i.e., RWP-dist has lower
delay and fewer forwards than does GM-dist. This may be a consequence of the higher
randomness of movement found in the RWP training scenario compared to the GM
training scenario (see Fig. 1), making it more similar to the GM-curly scenario despite
being a different mobility model.
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Fig. 11 Cross-mobility testing performance: we evaluate GM-dist performance, a DRL strategy trained on
the GM scenario, on the RWP scenario. For comparison, the results when using the RWP-dist strategy, i.e.,
a DRL strategy trained on the RWP scenario (which matches the scenario that is used in testing) are also
shown. Each point is the average of 50 simulation runs; 95% confidence intervals are shown. All packets
were delivered in these simulations and no packets were dropped
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Fig. 12 Cross-mobility testing performance: we apply GM-dist, a DRL strategy trained on the GM scenario
to testing on the GM-curly scenario Each point is the average of 50 simulation runs; 95% confidence inter-
vals are shown. All packets were delivered in these simulations and no packets were dropped

5 Conclusions and future work

In this work, we have shown that it is possible to use DRL to learn a scalable and gener-
alizable forwarding strategy for mobile wireless networks. We leverage three key ideas:
i) packet agents, ii) relational features, and iii) a weighted reward function. Our results
show that our DRL agent generalizes well to scenarios on which it was not trained,
often achieving delay similar to the oracle strategy and almost always outperforming all
other strategies in terms of delay including the state-of-the-art seek-and-focus strategy
(Spyropoulos et al., 2004). The key ideas of our approach are generally applicable to
other decision-making tasks in mobile wireless networks.

There are a number of research directions we would like to explore in future work.
We expect that as the kinds of mobility that the DRL agent sees become more diverse,
more features will also be needed to characterize the key differences in mobility and
enable the DRL agent to generalize to a wide variety of mobile networks. Ultimately,
we would like to evaluate how well our approach performs in real test-bed scenarios.
Additionally, targeted sampling of the feature space during training would be helpful to
ensure that a diversity of network connectivity and congestion is seen. In this work, we
trade-off two conflicting goals by using different weights for the transmission and stay
rewards. As future work, we will explore another approach to handle competing goals
based on constrained RL (e.g., as in Liu et al. 2021; Xu et al. 2021), where one goal is
set as the objective function, and the other goal is set as a constraint. We would also like
to refine our reward function to incorporate additional network considerations such as
fairness. Finally, we would like to explore device decision-making to complement our
packet agents. For instances, devices could learn which subsets of packets should get to
make a forwarding decision when a transmission opportunity arises.
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