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Abstract: Face recognition is integral to identity management and access control systems, but the
rise of biometric face recognition has raised concerns about the vulnerability of Presentation Attack
Detection (PAD) to various attacks. This paper focuses on developing and evaluating novel, low-cost
3D presentation attack instruments (PAls) to test the performance of advanced biometric systems.
Our PAIs include specialized bobbleheads, white resin 3D-printed masks, white filament 3D masks,
masks with image projections, and projections on generic mannequin heads. This project aims to
create a diverse, cost-effective PAI dataset to enhance PAD training. We evaluated the effectiveness
of these 3D PAIs using three algorithms (Fraunhofer IGD, CLFM, and FaceMe) from the Liveness
Detection Face Competition 2021 (LivDet Face, 2021). Additionally, we conducted a comparison
between PAIs and bona fide samples using the ArcFace face comparator, achieving an Imposter
Attack Presentation Match Rate (IAPAR) of 70% for bobbleheads and 43% for white resin with
projection. Our preliminary assessment indicates an Average Classification Error Rate (ACER) of
10.6%, demonstrating the potential of these new PAIs to improve PAD training.

Keywords: Face recognition, Biometric systems, Presentation Attack Detection (PAD), 3D presen-
tation attack instruments (PAIs), Low-cost PAIs, Bobbleheads, 3D-printed masks, Image projection,
Diverse dataset, PAD training, LivDet Face 2021, ArcFace comparator, Imposter Attack Presentation
Match Rate (IAPAR), Average Classification Error Rate (ACER).

1 Introduction

Biometric recognition, the process of identifying individuals based on unique biological
or behavioral traits, has gained extensive use across various sectors and government or-
ganizations. Among these biometric traits, facial recognition stands out due to its ease of
data acquisition and high accuracy. However, this also makes it susceptible to presentation
attacks using Presentation Attack Instruments (PAIs), such as face masks developed from a
single target image to deceive Presentation Attack Detection (PAD) systems. Presentation
attacks pose a significant threat to the integrity of face recognition systems, as they can
effectively mimic real users and bypass security measures.

The primary defense against these attacks is PAD systems, which aim to detect all forms of
PAIs. The success of PAD systems heavily relies on the diversity of their training datasets.
Exposure to various types of PAIs enhances the algorithm’s ability to respond effectively.
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PAIs can be categorized into three levels: Level A includes paper displays; Level B en-
compasses display attacks and 2D masks; and Level C involves 3D face masks, which
are the most sophisticated and expensive attacks. The high cost of producing 3D masks
limits the number available for creating a comprehensive training dataset, making it im-
perative to develop cheaper alternatives for 3D face PAIs to ensure robust protection of
face recognition systems.

This project focuses on producing cost-effective 3D face masks that still contain detailed
3D structural information of the target subject, captured under various lighting conditions.
By developing and evaluating novel, low-cost 3D PAIs, we aim to enhance the training
and effectiveness of PAD systems, thereby improving the overall security of biometric
face recognition technologies.

Prior research has focused on high-quality PAIs with little data variability as some datasets
are not made publicly available. Table 1 shows a comparison of datasets used in previous
work.

Tab. 1: A comparison of datasets used in previous work

Previous work

Details

Description

Neslihan et al [

Dataset: Morpho

Mask type: 2D, Display
Sensor: VIS, NIR

PAD analysis: Commercial

Availability: Non-public
Material: A4 printed, video replay
Comparison: No

Feature: Texture and motion
discriminant only

Nesli et al [ 1

Dataset: Morpho, 3DMAD
Mask type: 2D, 3D

Sensor: 3D Scanner, Microsoft Kinect Sensor
PAD analysis: Internal (ML)

Availability: Public
Material: 3D Paper mask,
3D resin mask
Comparison: Yes

Feature: Motion and planar
of object discriminant

Ketan et al [

]

Dataset: XCSMAD

Mask type: 3D-photo, display

Sensor: VIS, NIR, Thermal-LQ, Thermal-HQ
PAD analysis: Internal (CNN)

Availability: Non-public
Material: Silicon mask
Comparison: Yes
Feature: CNN to extract
a feature-vector (FV)
Note: Silicon masks

are quite expensive

LivDet2021 face [

1

Dataset: Clarkson University (CU) and Idiap Research Institute
Mask type: 2D, 3D and Display

Sensor: Mobile camera sensors, Basler camera
PAD analysis: Academic

Availability: Non-public

Material: Paper-displays, laptop-display,
2D photo masks, 3D-masks,
silicon-masks, video display
Comparison: No

Feature: Analysis of submitted

PAD systems using a robust dataset

Our work

Dataset: Novel 3D mask
Mask type: 2D, 3D, and Display

Sensor: Mobile Camera Sensors
PAD analysis: Academic

Availability: Public

Material: Bobblehead, HQ 3D-mask,
White 3D-mask (Resin/Filament)

w/ and w/o projection, Mannequin Head
Comparison: Yes

Feature: Analysis of 3D mask
performance on PAD systems,

using newly developed cost-effective PAIs
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1.1 Literature review

Datasets are crucial for training and testing Presentation Attack Detection (PAD) systems.
The Morpho dataset, which has yielded good results, is a level B, 2D set, thus limiting its
predictive power for 3D mask testing [ , , ].

The Silicon 3D Mask Dataset (XCSMAD) was used to train a Convolutional Neural Net-
work + Logistic Regression (CNN+LR) PAD system [ ]. This algorithm performed
exceptionally well, achieving an average Equal Error Rate (EER) of 0.6% on 3D data
captured with a high-quality thermal (THE-HQ) sensor, and 0.8% on data captured with
visible light (VIS). However, creating silicon 3D masks is costly and requires substan-
tial investment. This has led to the exploration of less expensive approaches for 3D mask
creation.

Recent studies have further evaluated the performance of PAD algorithms in 2D and 3D
spoof detection [ , ]. The Center for Identification Technology Research con-
ducted the LivDet 2021 Face evaluation| ], assessing academic algorithms on a diverse
dataset comprising photo paper, laptop displays, 3D masks, and silicon masks of varying
quality levels. This dataset, collected using multiple image-capturing sensors, showed a
winning Average Classification Error Rate (ACER) of 16.5% and a Bonafide Presenta-
tion Classification Error Rate (BPCER) of 15.3% for the image category. For the video
category, the winning ACER was 13.81% and the BPCER was 14.3%. These results high-
lighted the need for continued research and improvement of PAI datasets.

Our primary objective is to curate a diverse dataset featuring innovative and cost-effective
3D face masks of various qualities. This initiative aims to enrich the array of Presentation
Attack Instrumentation (PAI) types available for comprehensive training and testing of
PAD systems, thereby minimizing susceptibility to presentation attacks.

Addressing the economic challenges associated with developing and printing 3D colored
masks, our study introduces cost-effective bobbleheads, white 3D resin masks, and white
3D filament masks. Each mask is crafted to emulate the bona fide subject’s facial appear-
ance structurally. Contrary to the common perception of bobblehead models as animated
representations, our research reveals that well-designed bobbleheads successfully capture
facial features that mirror reality or closely resemble the targeted subjects, potentially de-
ceiving face recognition systems. The face projection technique provides color and texture
to the white filament and resin-printed 3D masks, offering a realistic human appearance
during data collection. Additionally, we introduce a non-structural resemblance model by
projecting facial images of target subjects onto 3D mannequin heads. These 3D PAIs are
designed to augment PAD system evaluation while maintaining economic feasibility.

Given that our dataset has not been previously used, we conducted a comparison between
bona fide subject images and the newly created PAI samples using the ArcFace face com-
parator to gain insights into their similarity.
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Our contributions also include an evaluation of the impact of our newly developed PAIs
on PAD algorithms. The outlined objectives and distinctive contributions of this study are
as follows:

. Construction of 3D facial models from sets of 2D images, translated into 3D masks
using graphic design tools such as AutoCAD Recap, Meshmixer, and Blender for
creating high-quality, multi-image masks. This process applies to white 3D masks
and more expensive color 3D masks.

. Creation of cost-effective bobbleheads representing 3D models of faces, providing
an economical alternative to traditional 3D color-printed masks.

. Implementation of subject face projections onto white 3D-printed masks and man-
nequin heads.

. Data collection using DSLR cameras, iPhones, and Samsung S9 camera sensors to
ensure maximum diversity within the dataset.

. Assessment of the effectiveness of generated PAIs by evaluating the comparison of
target bona fide subjects and PAD performance on PAIs.

These contributions advance the field by providing additional diversity and cost-effectiveness
for 3D PAI species compared to prior work.

2 PAI Development and Testing Methodology

The testing dataset was collected using three camera sensors, with data partitioned into
live and Presentation Attack Instrument (PAI) samples of level C. The distribution of the
data is outlined in Table 2.

Following the guidelines of ISO/IEC 30107-3 [ ], we assessed the performance of our
PAIs using two primary metrics: Attack Presentation Classification Error Rate (APCER)
and Bonafide Presentation Classification Error Rate (BPCER) on PAD algorithms. APCER
signifies the proportion of attack presentations incorrectly classified as bonafide, while
BPCER represents the proportion of bona fide presentations misclassified as attacks. We
also computed the Average Classification Error Rate (ACER), the mean of APCER and
BPCER. Both APCER and BPCER were assessed at a threshold of 50, as utilized in the
LivDet Face 2021 competition [ ].

2.1 Bobblehead

For this PAI species, a single image of the target subject was used to develop a bobblehead
3D model. Data was collected from five unique subjects and sent to the manufacturer,



Novel 3D Face Masks for Face Recognition Assessment

bobblehead.com. The manufacturer first hand-sculpted the head of the target subject, then
created a mold and cast of the face from the 3D-built sculpture. The final stage involved
painting the finished bobblehead. An example of this process can be found in Figure 1.

2.2 White Resin (WR) and Filament 3D Masks (WF)

Using an AutoCAD 3D reconstruction model, at least 40 images from various angles of a
live subject’s face were collected and uploaded into the model. Reconstruction time varied
between 30 minutes to 1 hour. After generating the 3D model, editing, and cropping were
performed using Blender or Meshmixer. The skin tone rendering was removed, and the
finished model was exported to a USB drive. Two distinct masks were printed, one with
resin and the other with filament materials. These materials were chosen for their different
reflectance properties: resin has low reflectance power, and filament has high reflectance
power. The masks were produced at the Clarkson University Makerspace workshop using
a Prusa MK3 3D printer for filament and FormLabs for resin printing.

2.3 Projection of Face Image on White Resin (WRP) and Filament Mask (WFP)

For this PAI species, a single-face image of the target subject was projected onto the white
resin and filament 3D-printed masks using a Miroir M600 projector with a resolution of
1920 x 1080 pixels. Images were then captured under different lighting conditions: lights
off, lights on with low intensity, and lights on with high intensity.

2.4 Projection of Face onto a 3D Object (MHP)

For this PAI species, a face image was projected using a Miroir M600 projector onto a
white mannequin head. This method does not retain the 3D structure of the target face but
uses a generic face model with typical human features such as eyes, ears, mouth, and nose.
Images were captured under the same lighting conditions as the white resin and filament
masks with projection.

2.5 High-Quality (HQ) 3D Mask

The same 3D face reconstruction process used for the white resin and filament 3D masks
was employed here, with one difference: after cropping and editing, the facial rendering
of the subject was not removed, and thickness was added using the Blender graphic tool.
The finished 3D mask model was then sent to i.materialise[i.24], a 3D printing company in
Belgium, for 3D color printing. Data was captured from the 3D HQ multiple-image mask
using a camera sensor under full and low-light conditions.
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Fig. 1: Bobblehead development process from left to right: Bona fide subject, side view of the
sculpted model, front view of the sculpted model, finished bobblehead.

Fig. 2: Example images of PAI types developed. From Top left to right: Bobblehead, white Resin
3D mask, white resin with projection, high-quality 3D mask, a white filament with projection, hair
feature on white filament with projection, white filament 3D mask, projection of face onto a 3D
mannequin head.

2.6 Data collection description:

To set up and capture our data using the newly developed PAls, standard conditions and
equipment including a camera sensor, projector, 3D mask, and mannequin were used, and
captured data at a straight-on angle. These did not change over the course of data collec-
tion. We varied the lighting conditions, the distance between the model and the projector,
and the distance between the model and the camera sensor. Table 2 shows the distribution
of the images from the data collection and Figure 3 shows the setup for data collection.

. Distance between the model and the projector: The images were projected using a
Miroir projector with a display resolution of 1920 x 1080 pixels, and distance varied
between 60cm to 80cm depending on the point at which the projection aligned with
the 3D mask model.

. Lighting Conditions: The data collection encompassed various lighting scenarios,
including both lights-off and lights-on conditions during projection and lights-on in
full intensity and lights-on in low intensity for colored 3D mask data collection to
ensure robustness under diverse environmental settings.

. Distance between model and camera sensor: The distance between the model and
the camera varied between 60cm to 80cm but the angle remained straight-on for all
data collection, ensuring consistency in angle across all experiments.
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. Camera Sensors: A comprehensive approach was adopted for image acquisition,
utilizing three different camera sensors for versatility and thoroughness. The Canon
EOS 70D DSLR, iPhone 14, and Samsung S9 cameras were employed to capture
images, allowing for a multi-faceted dataset.

Fig. 3: Setup for projection data collection using a Miroir M600 projector, a mannequin head, and a
white 3D-printed mask.

Tab. 2: Test Dataset Summary

Class Type of PAI Total ~ Sensor

Bona fide - 135 DSLR, iPhone X, Samsung S9
PA Bobblehead 90 DSLR, iPhone 14, Samsung S9
PA White filament mask 150 DSLR, iPhone 14, Samsung S9
PA White resin mask 90 DSLR, iPhone 14, Samsung S9
PA Resin mask with projection 90 DSLR, iPhone 14, Samsung S9
PA Filament mask with projection 150 DSLR, iPhone 14, Samsung S9
PA Mannequin head with projection 150 DSLR, iPhone 14, Samsung S9
PA HQ 3D Mask 90 DSLR, iPhone 14, Samsung S9

3 Results and Discussion For Comparison

The developed PAIs were tested using an Arcface comparator to determine if the 3D mask
matched the target’s live face [Mol7, Sel6]. This step aimed to determine the effective-
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Tab. 3: Imposter Attack Presentation Match Rate (IAPAR) 3D PAI species compared to target bona
fide image using ArcFace comparator with cosine similarity at a 0.55 threshold

PAIs IAPAR (%)
Bobblehead 70.0
White Filament 34.0
White Resin 19.5
White Filament with Projection 38.0
White Resin with Projection 43.0
Mannequin with Projection 31.2
HQ 3D Mask 76.5
Bobblehead (0.45 MR) t—{ 4}—4
White Filament (0.24 MR) , Jl 1
White Resin (0.2 MR) }—lﬁ—}—4|
White Filament with Projection (0.32 MR) t : {
White Resin with Projection (0.36 MR) I j—i
Mannequin with Projection (0.32 MR) ! :—4
HQ 3D Mask (0.66 MR) F—Ej:}—’

0.0 0.2 0.4 0.6 0.8
Recognition (ArcFace Cosine Similarity)

Fig. 4: Boxplot of cosine similarity scores for each PAI species (The higher the cosine distance, the
better the match)

ness of the PAI species in a face recognition system. Figure 4 displays the cosine similarity
score distribution for each PAI species, based on a baseline threshold set at 0.55, as estab-
lished in previous analyses [ ]. Several experiments were conducted using Arcface
[ ], each yielding comparison results detailed in Table 3, showing the Imposter Attack
Presentation Match Rate (IAPAR) at a specified threshold value of 0.55. We performed
comparisons between mated live and spoof subjects. The new species matched the target
individual showing an IAPAR of 70% in bobblehead and 42.89% and 37.94% in white
resin with projection and white filament with projection, respectively. Even the white fila-
ment, and resin mask without projection achieved an IAPAR of 34.0% and 19.5%, respec-
tively. With the high TAPAR achieved we believe these additional PAI species will add
value in the training and testing of PAD algorithms to improve the performance of face
recognition systems.

4 Results and Discussion For PAD Testing

In the second phase, we conducted testing for PAD using the PAD algorithms submitted
in Livdet Face 2021. The assessment involved three algorithms (Fraunhofer IGD, CLFM,
and FaceMe). This data was not provided to the competitors and it is unlikely that the PAD
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Tab. 4: APCER and BPCER for each PAI Species

PAD Algorithm Name  Presentation Attack Instruments Level Types (APCER %) Overall Performance (%)
Bobblehead WF WR MHP WRP WFP HQ 3D Masks APCER,,; BPCER ACER

Fraunhofer IGD 322 0 0 0 0 2.0 6.7 5.8 15.3 10.6
CLFM 433 0 0 4.0 0 0 27.8 10.7 24.1 17.4
FaceMe 28.9 11.3 10.0 0.7 0 0 16.7 9.7 16.1 12.9

algorithms were trained on data similar to ours. The detailed functionality of these models
is extensively discussed in [ ].

Table 4 illustrates the performance comparison of the algorithms submitted on unseen
PAIs in this new dataset. The test results indicate that Fraunhofer IGD has the lowest
average ACER at 10.6%, closely followed by FaceMe at 12.9%, with CLFM, achieving
the highest at 17.4% and the highest BPCER at 24.1%. Fraunhofer IGD at 15.3% had
the best BPCER for live sample testing and FaceMe at 16.1% closely followed. All three
algorithms effectively detected white resin with projection with a 0% APCER. However,
we see varying APCER results on various white filament and white resin testing samples.
The performance breakdown for other PAIs is detailed in Table 4. For bobblehead PAI,
FaceMe achieved the best APCER at 28.9%, followed by Fraunhofer IGD at 32.2%, and
CLFM at 43.3%. As a benchmark, for High-Quality 3D Masks, the Fraunhofer IGD Pad
algorithm outperformed others with an APCER of 6.7%, followed by FaceMe at 16.7%,
and CLFM at 27.8%.

4.1 Challenges with PAD Algorithms in Detecting High-Quality 3D Masks and Bob-
bleheads

Further analysis from Table 4 indicates that PAD algorithms were not effective in de-
tecting high-quality 3D masks and bobblehead samples. The algorithms exhibited poor
performance during testing. This outcome may be attributed to the bobblehead models car-
rying live features such as hair and skin tone, making it challenging for PAD algorithms
to discern. In contrast, PAD algorithms were able to detect face projections on mannequin
heads, white filaments, and white resin 3D masks. This may be due to the light intensity of
the projector used for projection; brighter illumination may enhance the effect these PAIs
have during testing. The success of PAD algorithms in face projection experiments may
also be attributed to digital artifacts left in the captured image by the projection process
and the absence of human features like hair, which may signal to the PAD algorithms that
the sample is a mask, thereby simplifying detection.

Comparing PAD analysis in Table 4 to comparison performance in Table 3, the results
indicate that 3D high-quality masks achieved a true accept rate of 76.5%, confirming that
PAD algorithms found them difficult to detect. Despite the low comparison rates observed
in Table 3 for white resin and white filament 3D models, the FaceMe PAD algorithm
was not able to detect all PAI samples, achieving only an APCER of 11.3% and 10%,
respectively. This phenomenon is likely due to the ability of these 3D masks to carry live
features like hair, eyes, and proper skin tone during projections.
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The addition of live features like hair on white resin and filament 3D masks, as shown
in Figure 2, makes these presentation attack instruments more challenging for PAD algo-
rithms to detect. Despite these challenges, the fairly accurate detection of white resin and
filament masks indicates that not all PAD algorithms may be robust against these attacks.

It is noteworthy that the introduced PAIs were not part of the algorithms’ training dataset.
This deliberate exclusion aimed to assess how the models would perform on entirely new
or unfamiliar PAIs, simulating the challenges faced in a continually evolving environment.

While our experimental results suggest that the face PAD algorithms in this study perform
well with PAIs featuring minimal or no texture rendering, other PAD systems may still
benefit from this enhanced dataset for the training of biometric PAD systems. Providing
more exposure of PAD systems to a diverse PAI dataset is crucial to address the escalat-
ing threat of presentation attacks on biometric face recognition systems. This can now be
achieved at a reduced cost with the 3D PAIs introduced in this study.

5 Conclusion

The primary objective of this project is to introduce novel Presentation Attack Instrument
(PAI) species and develop a cost-effective PAI dataset, facilitating the testing of presenta-
tion attack detection algorithms on face biometric systems. The following are the outcomes
of this study:

(a) Seven low-cost innovative PAls, including bobbleheads, white filament 3D masks,
white resin 3D masks, white filament 3D masks with image projection, white resin 3D
masks with image projection, mannequin heads with image projection, and high-quality
3D masks were developed. Data made available on request at [ 1.

(b) A comparison analysis of all developed PAIs to bona fide subject data was carried out
with IAPAR as high as 43%, 70%, and 76.5% for white resin 3D masks with projection,
bobblehead, and high-quality 3D masks, respectively.

(c) A comparative analysis of all developed PAIs using three face biometric PAD algo-
rithms (Fraunhofer IGD, CLFM, and FaceMe) was conducted. The best-performing algo-
rithm achieved an Average Classification Error Rate (ACER) of 10.6%, APCER of 5.8 %
and a BPCER of 15.3%.

The inclusion of our developed PAIs, which will be made available to researchers, can
bridge the performance and production cost gap observed in the PAD algorithm evalua-
tion and PAI development in face recognition research. This, in turn, has the potential to
enhance public confidence and bolster the security of biometric systems.
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