3562

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 4, APRIL 2024

CLIPPER+: A Fast Maximal Clique Algorithm for
Robust Global Registration

Kaveh Fathian

Abstract—We present CLIPPER+, an algorithm for finding
maximal cliques in unweighted graphs for outlier-robust global
registration. The registration problem can be formulated as a graph
and solved by finding its maximum clique. This formulation leads
to extreme robustness to outliers; however, finding the maximum
clique is an NP-hard problem, and therefore approximation is
required in practice for large-size problems. The performance of
an approximation algorithm is evaluated by its computational com-
plexity (the lower the runtime, the better) and solution accuracy
(how close the solution is to the maximum clique). Accordingly,
the main contribution of CLIPPER+ is outperforming the state-
of-the-art in accuracy while maintaining a relatively low runtime.
CLIPPER+ builds on prior work (CLIPPER Lusk et al. (2021)
and PMC Rossi et al. (2015)) and prunes the graph by removing
vertices that have a small core number and cannot be a part of the
maximum clique. This will result in a smaller graph, on which the
maximum clique can be estimated considerably faster. We evaluate
the performance of CLIPPER+ on standard graph benchmarks, as
well as synthetic and real-world point cloud registration problems.
These evaluations demonstrate that CLIPPER+ has the highest
accuracy and can register point clouds in scenarios where over 99 %
of associations are outliers. Our code and evaluation benchmarks
will be released at https://github.com/ariarobotics/clipperp.

Index Terms—ILocalization, SLAM, RGB-D perception.

I. INTRODUCTION

ATA association is broadly defined as the correspondence
D of identical/similar elements across sets of data, and is a
key component of many robotics and computer vision applica-
tions, such as localization and mapping [3], [4], [5], point cloud
registration [6], [7], shape alignment [8], object detection [9],
data fusion [10], [11], and multi-object tracking [12]. In these
applications, it is crucial that data association is solved correctly
and fast.
In point cloud registration, for example, we seek to find the
rigid transformation (rotation/translation) that aligns two sets of
3D points. This requires associating points in one set with their
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corresponding points in the other set. Local registration tech-
niques such as the Iterative Closest Point (ICP) algorithm [13]
associate points based on their nearest neighbor. These associa-
tions are generally wrong if the point clouds are not aligned well
initially, leading to wrong registration. Better associations can be
established by matching descriptors that are computed around
each point in the point cloud and describe the local geometry
and appearance of a point (e.g., classical FPFH [14] or modern
learning-based 3DMatch [15]). However, due to noise, repetitive
patterns, small overlap between the point clouds, etc., these
putative associations can have extreme outlier ratios (e.g., FPFH
associations in Section V-C are 99% outliers/wrong). In these
high-outlier regimes, existing outlier rejection techniques (such
as the general RANSAC framework [16] or specific frameworks
for point cloud registration [17]) either return wrong results
or have impractical runtime (e.g., RANSAC’s runtime grows
exponentially in outlier ratio [6]).

To address these issues, we present the CLIPPER+ algorithm.
CLIPPER+ formulates the data association problem as a graph,
in which the inlier/correct associations are the maximum clique.
This formulation is robust to high outlier ratios and applicable
to any problem that admits invariants (see Section III) such
as point, line, and plane could registration [1], [18], [19]. To
address the high computational complexity of finding the max-
imum clique (NP-hardness), CLIPPER+ finds an approximate
solution instead, which is obtained from combining an improved
version of our prior work, CLIPPER [1], and the greedy maximal
clique algorithm in [2]. CLIPPER+ runs in polynomial time and
outperforms state-of-the-art algorithms in maximum clique es-
timation accuracy (Section V-A). Further, CLIPPER+ solutions
are shown to be exact (i.e., the maximum clique) in over 99%
of the point cloud registration trials (Section V-C).

Contributions: In summary, this work’s contributions are:

® Animproved solver (Algorithm 2) leading to higher accu-
racy over our prior work CLIPPER [1].

® The new CLIPPER+ algorithm as the combination of the
greedy algorithm in [2] and CLIPPER [1], further improv-
ing both runtime and accuracy.

e Evaluations demonstrating superior accuracy of CLIP-
PER+ over state-of-the-art on maximum clique problems,
and correct registration of real-world point clouds in
regimes with over 99% outliers.

e Efficient C++ implementation of all algorithms (open-
source code will be released).

II. RELATED WORK

Robust registration: In robotic applications of data associa-
tion, such as registration, formulations that are robust to uncer-
tainties (such as extreme noise and outliers) are based on globally
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optimal solvers, such as Branch and Bound [6], [20], [21], and
combinatorial approaches for maximum consensus [22]. These
methods can tolerate extreme outlier ratios, but have worst-case
exponential complexity and are slow in practice. To address
this issue, fast heuristics such as RANSAC [16] and its vari-
ants [23], graduated non-convexity [17], [24], [25], or iterative
local solvers for M-estimation [26], [27] are used, however, they
are prone to failures in high-outlier regimes [6], [7], [28].

Graph-theoretic formulation: The dichotomy between ro-
bustness and runtime can be resolved in some data association
settings that admit “invariants” (see Section III, and [1], [18],
[19]) by formulation in a graph-theoretic framework. Recent
algorithms that leverage this framework are CLIPPER [1],
TEASER [7], and ROBIN [19] for global point cloud registra-
tion, robust to more than 99% outliers and suitable for real-time
applications, and PCM [4] for pairwise-consistent loop closures
in SLAM. This graph-theoretic formulation can be traced back to
Bailey et al. [29] for 2D LiDAR registration as a maximum com-
mon subgraph problem, for which the maximum clique indicated
the correct data association. Leordeanu and Hebert [30] extended
this graph-theoretic framework to weighted consistency graphs.
Engqvist et al. [31] noted the suboptimality of [30] and proposed
a vertex covering formulation, essentially an alternative to the
maximum clique formulation of [29]. Parra et al. [32] proposed a
practical maximum clique algorithm for geometric consistency
based on branch and bound and graph coloring. Recently, Zhang
et al. [33] have shown that the registration problem can be
solved by relaxing the maximum clique constraint and using
the maximal cliques instead.

Maximum clique estimation: Finding the maximum clique
is a well-known NP-hard problem in its full generality [34],
meaning that the complexity of finding the solution using ex-
act algorithms (e.g., [2]) grows exponentially in graph size,
which is impractical for data association applications. An ap-
proximate (maximal clique) solution can however be found by
polynomial-time algorithms. Notable algorithms in this setting
are Pelillo [35] and Ding et al. [36], based on the Motzkin-Straus
formulation [37], Belachew and Gillis [38] based on symmet-
ric rank-one nonnegative Matrix approximation, and our prior
CLIPPER algorithm [1] based on a continuous relaxation.

III. GRAPH-THEORETIC ROBUST REGISTRATION

The key idea for creating robustness to extreme outlier ratios
is to find the largest set of jointly consistent data and/or asso-
ciations. This problem can be formulated as a graph, in which
this set is represented by the maximum clique. In what follows,
we introduce this graph-theoretic framework and its use case for
point cloud registration.

Point cloud registration: The objective of point cloud registra-
tion is to find the rigid transformation that aligns a set of points
to their corresponding points in another set. The main challenge
is finding the correct correspondences as usually only a subset
of the points match, and, the points do not align perfectly due
to noise. An outlier can be a point in one set that does not have
a counterpart in the other set, or an association that matches
wrong points across the sets. Our focus here is associations, and
henceforth outliers imply outlier associations. Fig. 1 illustrates
a point cloud registration example where we seek to find the blue
bunny in the cluttered point cloud.

Maximum likelihood solution: In the absence of prior knowl-
edge and when outliers are random, unbiased, and unstructured,
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Fig. 1. Example of maximum clique formulation for robust global registra-
tion. (Left) Putative associations (red: outliers, green: inliers). (Right) Graph
formulation with maximum clique indicating inlier associations.

the largest set of jointly consistent associations are inliers for
the maximum likelihood solution. For point cloud registration,
two associations are consistent if their endpoints are equidistant,
and therefore can be aligned by a rigid transformation. In Fig 1,
the green associations align 3 points while the red associations
align 2 points. Thus, the green associations are the inliers and can
be used to compute the correct maximum likelihood solution.

Graph formulation: Finding the largest set of jointly con-
sistent associations can be formulated as a maximum clique
problem. Given n associations, the consistency graph is a graph
of n vertices where each vertex represents an association. An
edge between two vertices indicates that the associations are
consistent. In Fig. 1, an edge between two vertices of the consis-
tency graph (shown on the right) indicates consistency of cor-
responding associations. For example, there is an edge between
vertices/associations 2 and 3 as their endpoints are equidistant
(d = d’), while there is no edge between vertices/associations 1
and 3. Given two associations with endpoint distances d and d’,
due to noise, often a consistency threshold ¢ is used where if
|d — d'| < e, the associations are deemed consistent.

A clique is a subset of vertices where every pair of vertices
within that subset is connected by an edge. The maximum
clique is the clique with the largest number of vertices. A
maximal clique is a clique that is not contained in a larger
clique. The maximum clique in Fig. 1 consists of vertices 2, 3,
and 5. Vertices 1 and 4 form a maximal clique.

Invariants: The graph-theoretic framework can be applied
to a broad array of data association problems in robotics. An
invariant is a quantity that remains unchanged across the sets.
The invariant used for the point cloud registration example above
was the Euclidean distance between the endpoints. Invariants
can be defined to register lines [1], planes [18], 2D-3D visual
features [19], etc. Examples in this work, however, focus on
point cloud registration.

IV. MAXIMAL CLIQUE ALGORITHMS

We present the main algorithmic contributions of this work in
Sections I'V-B and IV-C, where we discuss the maximal clique
algorithms based on a continuous relaxation and CLIPPER+.
Section I'V-A is a review of the approach in [2], and is not an
algorithmic contribution. However, our C++ implementation of
this algorithm improved the performance and accuracy com-
pared to its original implementation.

A. Degeneracy-Ordered Greedy Maximal Clique Algorithm

Algorithm 1 presents a greedy approach for finding a maximal
clique. Starting from an empty clique (line 3), we grow the clique
one vertex at a time by looping through the vertices (line 6).
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Algorithm 1: Degeneracy-Ordered Greedy Maximal Clig-
ue.

1: Input A: adjacency matrix; K: core numbers

2: Output C: vertices that form maximal clique

3:C 4+ {}; max < O

4: % Sort vertices by core number in descending order:

5: (v1,...,v5) ¢ sort vertices v; s.t. K (v;) > K (v;) if i < j

6:fori=1:ndo

7: if K(v;) > cmax then

8: % Neighbors of v; with core numbers > ¢y ax:

9: S {v;: A(vi,v;) =1, K(vj) > Cmax}

10:  (s1,...,Sk) < sort s; € S descending by core number
11: '« {}

12: for j = 1: k do % For each vertex in sorted .S

13: if A(c;,55) =1V, ecr then % C'U {s;} is clique
14: C' + {C',s;} % Add s; to C"'

15: if || > cmax then % Found a larger clique

16: C + C'; cmax + |C'| % Update the output

For each vertex v that this loop examines, the algorithm adds
v to the current clique if it is connected to every vertex that is
already in the clique, and discards v otherwise (lines 13-16).
This algorithm has the overall runtime of O(J|E|), where § is
the maximum vertex degree and | F| is the number of edges [2].

The maximal clique returned by the greedy approach depends
on the initial vertex chosen to grow the clique, and the ordering
of vertices (as they are sequentially examined to be added to the
current clique or discarded). A descending ordering of vertices
by their core number greatly improves the odds of finding a
large maximal clique (and possibly the maximum clique), as
leveraged in Algorithm 1 (lines 5 and 10). Mathematically, the
core number or degeneracy of a vertex v is the largest integer &k
such that the degree of v remains non-zero when all vertices of
degree less than k are recursively removed from the graph. The
core number of vertices can be computed efficiently in O(| E|)
by Batagelj and Zaversnik’s algorithm [39].

B. Continuous-Relaxation Maximal Clique Algorithm

Optimization formulation: The maximum clique problem in
an undirected and unweighted graph of n vertices can be formu-
lated as

. . n
e Lt (1)
subjectto w;u; =0 ifA(i,j) =0, Y, ,

where A € {0,1}"*" is the adjacency matrix with A(i, j) = 1
if and only if vertices u; and u; are connected. The optimization
variable u is a binary vector of n elements, where 1 entries
indicate vertices that form a clique. As w is binary, the constraint
u;u; = 0 if A(4,j) = 0 implies that if vertices w; or u; are
disconnected, then at most one of them can be selected. For
example, consider the graph in Fig. 1 with the adjacency matrix
A and solution candidates u, u as

00010 0 1
0010 1 1 0
A=10 1 0 0 1|, u=|1], a=|0 2)
10000 0 1
01100 1 0

Algorithm 2: Continuous-Relaxation Maximal Clique.

1: Input A: adjacency matrix; @: initial guess
2: Output C: vertices that form maximal clique
3: Parameters o < 0.01; 8 < 0.5; tol + 1078
4: M + A+ I % Add identity matrix [
5: M < 1 — M % Binary complement of M
6: u < max(a/||a|],0); d+ do; a1
7: while v not in binary state do
8 My M—dM
9: F«u' Myu
10: % Gradient projected on S™ tangent bundle:
11: VF (u) =2 —uu")Msu
12: Au + tol; AF < tol
13:  while Au £ tol or AF £ tol do
14: Armijo + False

15: while Armijo = False do % Backtracking line search
16: uy < u+ aVF| (u) % Solution update

17: wy < max(uy /[|uy||,0) % Retract to R, N S™
18: F o~ ulMdu+

19: VF (uy) =2(I —upul )Mauy

20: AF «— F, —F; Au+u; —u

21: Armijo «+ (AF > oVF, (u)T Au)

22: if Armijo = False then

23: « + a3 % Reduce o

24: else o <+ a/\/B % Increase «

25:  w<uy; VF (u) < VF(uy); F+ Fy
26: d < d+ Ad % Increase d
27: C « {i : u; > 0} % Vertices that form maximal clique

Both u and u satisfy the constraints in (1). Solution u is the
global optimum with the objective value of 3 (the size of the
maximum clique, and the number of 1 entries in u), while «
gives the objective value of 2.

By defining M LA+T , where [ is the identity matrix of
appropriate size, it is straightforward to show that problem (1)
is equivalent to

maximize u Mu
uel0,1}m u'u 3)
subjectto  w;u; =0 ifM(i,5) =0, Y, ;.

This follows by observing that in (1) and (3) the constraints
are identical in the sense that disconnected vertices cannot be
selected jointly in the solution. Further, if v* is an optimal
solution of (3) and it has m one entries, then the objective values
of (3) and (1) will both be identical and equal to m (e.g., u and
u in (2) give objective values of 3 and 2 in (3)).

Continuous relaxation: To overcome the NP-hardness of
problem (3), an approximate solution can be obtained by a con-
tinuous relaxation, where the binary domain u € {0, 1}" is re-
laxed to the set of non-negative real numbers u € R’} . Gradient-
based optimization routines with polynomial time complexity
can solve the relaxed problem, and the relaxed solution can
be projected/rounded to the nearest binary. The issue of this
approach is that there is no guarantee that the binarized solution
is a feasible solution that satisfies the constraints of the original

problem (3).
Our proposed relaxation of (3) that addresses this issue is
L u' Mgu
maximize ——— “
ueR™ u'u
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if M(i, ) #0

if M(i,7) =0 )

Mali, j) déf{%(i’j)

where d > 0 is a positive scalar. Problem (4) can be written
equivalently as

.. def
maximize F(u) = u' Mgu

ueRy (6)
subjectto |lul| =1
where || - || is the ¢5 vector norm.!

Our relaxation (6) is inspired by Belachew and Gillis [38],
which integrates the constraints in (3) into (6) using the ma-
trix My. The difference of this work with [38] is that in [38]
the relaxation min, gy [|Mg — uu'||% is used. Intuitively, any

entry M,(i,j) = —d penalizes joint selection of disconnected
vertices u; and u; by the amount —2 d in the objective. Hence,
as d increases, the entries of u that violate clique constraints
converge to zero.

Optimality guarantees: When d > n (see (5)), the optima
of the proposed relaxation (6) are theoretically guaranteed to
correspond to the optima of the original maximum clique prob-
lem (3). Thatis, a local optimum of (6) corresponds to a maximal
clique, and a global optimum of (6) corresponds to a maximum
clique. It is by no means trivial to prove this statement, and the
interested reader should refer to Theorems 35 in [38] that prove
this statement for the relaxation minyegy ||Ma — uu'||%, and
Theorem 2 in [38] that establishes connections to our proposed
relaxation (6).

Itis interesting to point out that any solution of (6) has a binary
state (this follows from the analysis in [38]). That is, the entries
of a solution vector u* € R} are either 0 or equal to a positive
scalar ¢ > 0. These positive entries are indicators of vertices that
form a maximal clique. Noting that (6) can be (locally) solved
in polynomial time by using a gradient-based solver, and the
one-to-one correspondence between the optima of (6) and the
(NP-hard) maximum clique problem (3), one may think that the
maximum clique problem can be solved in polynomial time.
Note, however, that (6) is a nonlinear optimization problem,
potentially with many local optima, and depending on the initial
guess the solver can converge to a local optimum instead of
the global optimum. Finding the global optimum of (6), hence,
remains an NP-hard problem.

Optimization algorithm: We present a custom solver for (6)
based on a projected gradient ascent approach, as described
in Algorithm 2. Our approach is similar to the algorithm in
our previous work CLIPPER [1]; however, compared to [1],
Algorithm 2 is significantly improved and uses the Armijo
procedure for selecting the appropriate step size, which leads
to more accurate results (as we will show in the comparisons).

Problem (6) is nonlinear with many local optima in general
(corresponding to maximal cliques). To improve the odds of
finding the global optimum (maximum clique) and escape local
optima, in Algorithm 2 we use a homotopy approach where
we increase d incrementally in an outerloop (lines 7-26). As
the penalty parameter d increases incrementally by Ad in each
iteration of the outerloop (line 26), the elements of w that violate
the clique constraints are penalized further and u converges to a

"Vector u can be written as u = cu’, where ¢ = ||u||, and v’ = u/c is a
uTI\/Idu _ CQu’TIMdu/ _
ulu 2T

unit-norm vector. Replacing u = cu’ in (4) gives

u' " My v/, demonstrating the equivalency to (6).
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Algorithm 3: CLIPPER+

1: Input A: adjacency matrix
Output C: vertices that form maximal clique

K < compute core number of vertices % From [39]

C' <+ Algorithm1(A, K) % Degeneracy-ordered greedy clique
T + {i: K(v;) > |C|} % Vertices with core number > greedy
clique size

A’ + A(Z,T) % Prune graph (only keep vertices in Z)

6
7: if A’ = () Terminate then % Maximum clique found
8: % Binary complement of greedy clique in pruned graph:
9: u <+ (’lfti cu; = 0ifi € C else, u; =1, Vv’,el)
10: C' + Algorithm2(A’, @) % Continuous-relaxation clique

11: if|C’| >|C| then C <« C’ % Return larger clique

feasible solution. This process continues until d is large enough
(d > n) and u converges to a binary state, corresponding to a
maximal clique. The Ad increments can be chosen as a small
constant (as done in [38]), however, in our implementation, we
use a greedy scheme where we increase d until the smallest
element of « that violates the clique constraint goes to zero in
the next iteration. In the final step (line 27), the vertices of the
maximal clique are identified as the non-zero elements of u.
The innerloop (lines 13-25) ensures that for each d increment
enough iterations of the gradient ascent are performed for the
solution u to reach a steady state. Noting that the constraint
manifold of the optimization problem (6) is R’ N .S™, where
S™ is the unit sphere, to speed up the convergence, we project

the gradient VF'(u) &9 M, u onto the tangent bundle of S™ at
u and move along the orthogonal projection VF'| (u) = 2(I —
uu") Mgu (line 11).

To find an appropriate step size « along the projected gradient,
we use backtracking line search (lines 15-24) with the Armijo
procedure (lines 21-24), which guarantees a sufficient increase
in the objective at each innerloop iteration. The convergence
of the algorithm to a first-order optimal point is guaranteed by
the convergence property of the projected gradient with Armijo
steps [41]. The solution update is computed in line 16, retracted
back onto the constraint manifold (line 17), and the gradient
ascent continues until convergence.

Computational Complexity: The worst-case complexity of
Algorithm 2 is O(n*). This is because the gradient computation
(line 19) involves matrix-vector multiplications, which have
O(n?) complexity, and profiling shows this is where most of
the time is spent. The number of backtracking iterations (line
15) and gradient ascent iterations (line 13) can vary depending
on the parameters and the data matrix, but it is linear in problem
size (O(n)) for quadratic objective F'(u) = u' Mgu. Lastly,
the number of outerloop iterations (line 7) depends on Ad
increments (line 26) required to reach d > n (at which point
the solution is guaranteed to converge to the binary state). This
is also linear in problem size.

C. CLIPPER+ Maximal Clique Algorithm

Both Algorithms 1 and 2 are algorithms for finding maximal
cliques. The greedy approach of Algorithm 1 runs fast but
gives relatively less accurate estimates of the maximum clique
size when the graph is not sparse. In contrast, the optimization
approach of Algorithm 2 is relatively slower but more accurate.
The main motivation of the proposed CLIPPER+ algorithm is to
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combine these two algorithms and thereby combine their relative
benefits.

The enable this combination, recall that the core number
of a vertex is the largest integer k such that the degree of the
vertex remains non-zero when all vertices of degree less than k
are removed. If a graph contains a clique of size k, then each
vertex in the clique must have a degree of k£ — 1 or larger, and
therefore a core number of k£ — 1 or larger. For this reason, if
we hope to find a larger clique, say of size k + 1, then only
vertices that have a core number £ or higher can be candidates.
Using this observation, CLIPPER+, detailed in Algorithm 3,
first runs the greedy algorithm and obtains a maximal clique
(line 4). Assuming this clique has size k, if the graph contains
a larger clique, then vertices must have core numbers of &k or
larger. Therefore, the algorithm prunes the graph by removing
vertices with core numbers strictly less than %k (line 6). The
pruning effectively limits the search space for the optimization
(line 10) by reducing the number of vertices, which improves
the runtime.

If the clique recovered by the greedy algorithm is the max-
imum clique, then pruning the graph removes all the vertices
and therefore we can terminate early (line 7). This early termi-
nation particularly occurs when the graph is sparse, which leads
to a significant speed-up over running the optimization-based
algorithm on the original graph.

When the optimization-based algorithm is required, the initial
guess used for the optimization can be chosen strategically to
improve the chance of finding the maximum clique. This can
be done by choosing an initial guess vector that is a binary
complement of the clique found from the greedy approach (line
9), and thus help the algorithm to converge to a different clique
solution. Lastly, the best solution is selected as the largest clique
(line 11).

Computational Complexity: The worst-cast complexity of
Algorithm 3 is O(n*). This is because it sequentially combines
Algorithms 1 and 2, and thus inherits the highest worst-case
complexity of its components (all other steps in Algorithm 3 have
lower complexity). This basic worst-case complexity analysis is
independent of any input graph structure. The numerical results
in the experimental section provide a good indication of how the
complexity translates to runtimes for various graph sizes in the
practical applications.

V. EXPERIMENTAL EVALUATIONS

We evaluate the performance of CLIPPER+ (Algorithm 3)
in terms of the maximum clique estimation accuracy and run-
time. In addition, we provide ablation studies of CLIPPER+
by reporting the results of its standalone greedy (Algorithm 1)
and optimization (Algorithm 2) components. We show that
CLIPPER+ achieves a performance superior to these standalone
components through combining them.

Algorithms: We test both classical and state-of-the-art max-
imum clique estimation algorithms. Classical works include
Pelillo [35] and Ding et al. [36] based on relaxations of the
Motzkin-Straus formulation [37]. State-of-the-art include our
implementation of the greedy parallel maximum clique (PMC)
algorithm [2] in Algorithm 1 (which is theoretically equivalent
to ROBIN [19]), the algorithm by Belachew and Gillis [38], and
our prior CLIPPER algorithm [1].

Benchmarks: Our evaluations examine finding the maximum
clique on general graphs, as well as graphs that result from the
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graph formulation of synthetic/real-world point cloud registra-
tion problems. While general graphs can have any structure, the
registration graphs have certain patterns (e.g., sparsity) that sig-
nificantly affect the results. Fortunately, as we will see, finding
the maximum clique is empirically easier on graphs that result
from registration.

Platform and implementations: All benchmarks are run on a
machine with an Intel Core 19 Processor and 32 GB RAM. The
algorithms by Pelillo, Ding, and Belachew are implemented in
Matlab by their original authors. Our prior work CLIPPER is also
implemented in Matlab. The “Greedy” (Algorithm 1), “Optim”
(Algorithm 2), and CLIPPER+ algorithms are implemented in
C++, which interface to Matlab via binary MEX binders for
benchmarking.

A. Maximum Clique Benchmark—DIMACS

Dataset: To evaluate the algorithms on general graphs, we
use the DIMACS benchmark [40], which was introduced in
1996 and has been used widely since then to benchmark the
maximum clique algorithms. The DIMACS dataset consists of
graphs for which finding the maximum clique is challenging.
In the interest of space, we present the result on a subset of
smaller graphs in this dataset, shown in Table I. While DIMACS
graphs are relatively small (1004000 vertices), they are dense
and contain more edges compared to graphs resulting from
registration. Despite the dataset being around for more than
25 years, the maximum clique of some graphs is still unknown,
demonstrating the difficulty of the problem. For instance, on the
C250. 9 graph, the (multi-threaded) PMC exact algorithm [2],
used in this work for ground truth generation and in TEASER [7]
for certifiable registration, took 28 minutes on our machine to
find the maximum clique.

Evaluation: Table I compares the accuracy and runtime of

algorithms. The graph sparsity is defined as s efy Fon] €

[0, 1], where | E| is the number of graph edges, and | Ep,.x] is the
maximum possible number of edges. The small values of s show
that DIMACS graphs are generally dense. The accuracy ratio

is measured by r Lo /wei, Where & is the clique size found
by the algorithm, and wg is the ground truth maximum clique
size. The ratio of 1 indicates that the maximum clique is found,
hence, the closer r is to 1, the more accurate an algorithm is.
CLIPPER+ outperforms all algorithms in the overall accuracy.
Unsurprisingly, the greedy algorithm has the best overall run-
time due to its low computational complexity; however, it has
a lower accuracy. By combining the greedy and optimization
algorithms, CLIPPER+ obtains high accuracy and better overall
runtime compared to the optimization-only approach (e.g., a
~10x reduction of runtime from 29.4 to 3.6 milliseconds on
brock200_2).

B. Registration Benchmark—Stanford Bunny

Using the Stanford Bunny point cloud [44], shown in Fig. 2,
we evaluate CLIPPER+ as an algorithm for global point cloud
registration in various outlier regimes.

Dataset: The (downsampled) Bunny point cloud consists of
1000 points that fit in a cube of size 0.2 m. To generate a second
point cloud, we add uniform noise in the range [—€/2,€/2] to
all points, where € is set as the mean distance of all points to
their nearest neighbors in the Bunny point cloud. Additionally,
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TABLE I
COMPARISONS OF THE MAXIMUM CLIQUE ESTIMATION ACCURACY AND RUNTIME FOR CLIPPER+ ON DIMACS BENCHMARK [40] (BOLD 1S BEST)

Benchmark Pelillo Ding Belachew CLIPPER Greedy Optim CLIPPER+
Graph n s Wgt td r1 td r ty r7T td r T ty rt ty r7T td r
C125.9 125 0.1 34 4.1 097 45 056 10.9 1 9.1 1 0.7 085 0.8 1 1.6 1
€250.9 250 0.1 44 47 0.89 3.6 034 78 095 6.8 095 27 08 6.4 095 8.7 095
brock200_2 200 05 12 22 0.67 51.8  0.75 43 083 4 0.83 14  0.83 26 083 3.8 083
brock200_4 200 034 17 1.7 076 9.4 088 42 088 89 0.65 1.7 0.82 294 0.82 3.6 094
gen200_p0.9_44 200 0.1 44 6.1 075 3.9 0.2 104 0.84 109 0.89 22 073 47 089 64  0.89
gen200_p0.9.55 200 0.1 55 46 0.69 27 038 49  0.69 6.8 1 2.0 0.64 1.6 1 3.7 1
keller4 171 035 11 23 0.64 40 0.64 28 073 28  0.64 1.0 0.82 354 0.64 58 0.82
p_hat300-1 300 0.76 8 1.3 075 339 088 6.5 1 43 1 2.1 0.88 49 1 10.7 1
p_hat300-2 300 051 25 2.8 096 1.3 0.92 10.9 1 159 0.96 37 084 6.5 1 10.1 1

n: Number of graph vertices. s: Graph sparsity. wg¢: Ground truth maximum clique size. t: Runtime (milliseconds); the lower, the better. 7: Maximum clique accuracy ratio

(@ /wgt); the closer to 1, the better.

Graph sparsity: 0.1

Outlier percentage: 5%

St
T

e
e =

Graph sparsity: 0.9

Fig. 2. Effect of outliers on the consistency graph. (Left) Putative associations
(red: outliers; green: inliers). (Right) Resulting consistency graph. The higher
the outlier percentage, the sparser the graph.

1000 outlier points randomly drawn from a sphere of radius 1 m,
centered at the bunny point cloud, are added to simulate clutter.
From the set of all possible associations between the points in the
two point clouds, 200 associations are randomly selected from
the set of inlier and outlier associations (we keep this number
small to be able to find the ground truth maximum clique). We
consider different outlier ratios (ranging from 0% to 98% in
2% increments), to test scenarios with various data association
accuracy, as shown in Fig. 2. We use the noise ¢ as the threshold
to generate the consistency graph (according to Section III). The
ground truth maximum clique is found by running the exact PMC
algorithm in [2]. Evaluations of maximum clique estimation
accuracy and runtime are performed across 50 Monte Carlo
runs/graphs for each increment of the outlier percentage.

Evaluation: Fig. 3 compares the accuracy ratio r of algo-
rithms across all runs and all outlier ratios. CLIPPER+ clearly
demonstrates the highest accuracy because the distribution of r
is closest to 1. Interestingly, while the greedy and optimization
algorithms returned low-accuracy solutions in some instances,
by combining these algorithms CLIPPER+ obtains an accuracy
beyond these standalone components.

Fig. 4 shows the mean of the accuracy ratio r (averaged across
50 Monte Carlo runs at each outlier percentage increment) versus
the outlier percentage. The accuracy of the greedy approach
is low in low-outlier regimes (which have dense consistency

2~ 1
o mT
2 30.95 A b
PRES Wy
< 0.9 T T T T T T
\O . o~ J o
Qe\\\\ 9\\\% \gﬁﬂ\e’ XQ?@QV G@e’& Q\“‘\\\ Q@Q‘X
™ C\)\Q

Fig. 3.  Maximum clique estimation accuracy ratio on the Stanford Bunny
benchmark (the closer to 1, the better). Each point corresponds to the accuracy
ratio from a single trial. CLIPPER+ outperforms all algorithms.
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Fig. 4. Mean maximum clique estimation accuracy across different outlier
percentages on the Stanford Bunny benchmark (the closer to 1, the better).
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Fig. 5. Mean runtime across different outlier percentages on the Stanford

Bunny benchmark (the lower, the better).

graphs, see Fig. 2). As the outlier percentage increases and
the graph becomes sparser, the accuracy of the greedy method
improves. Both CLIPPER+ and optimization algorithms retain
a high accuracy ratio across all outlier percentages.

The mean runtime of the algorithms is shown in Fig. 5. The
runtime of the optimization method remains roughly the same,
while the runtime of the greedy method improves as the outlier
ratio grows and the graph becomes sparser. The runtime of CLIP-
PER+ in low outlier regimes is roughly equal to the compound
runtimes of its greedy and optimization components because in
such regimes pruning the graph based on core numbers does not
remove a significant number of vertices (if any). However, as the
outlier ratio increases and the graph becomes sparser, pruning
removes more vertices and its speed-up effect becomes more
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Fig. 6.

Registration instance between two scans of the 7-Scenes dataset [42]. From left to right: 688 putative FPFH associations having 93.6% outliers (red

lines); corresponding consistency graph used as input to CLIPPER+ (the maximum clique is highlighted); inlier associations corresponding to the maximum clique
solution found by CLIPPER+; aligned point clouds using the rotation/translation computed from the Arun’s method [43] using inliers.

TABLE I
COMPARISONS OF MAXIMUM CLIQUE ESTIMATION ACCURACY AND RUNTIME OF CLIPPER+ ON REAL-WORLD POINT CLOUD REGISTRATION DATASETS (BOLD IS
BEST)
Benchmark Pelillo Ding Belachew CLIPPER Greedy Optim CLIPPER+
Name Sequence N op n 5 tl 771 tl 71 tl 71 ty 1 tl 71 tl 771 tl 71
7-Scenes redkitchen 244 92.8% 680 0.88 118.5 0.96 283 09 73.7 099 62.7 097 101 0.89 1199 0.99 53.1 0.99
home_at_scanl 81 88% 670 0.83 133.1 0.97 17.5 0.87 64.0 0.98 582 098 103 0.89 76.0 099 464 0.99
Sun3D hotel_uc_scan3 117 93.5% 843 0.89 2153 0.96 289 0.89 1165 0.99 1093 098 123 0.89 1594 0.99 56.1 0.99
mit_76_lstudyroom2 96 942% 936 09 192.9 0.97 322 087 1206 0.99 102.8 0.97 14 088 180.8 0.99 839 0.99
ETH gazebo_summer 116 98.3% 4320 0.97 42552 095 12756 0.8 8467.8 0.98 7978.5 097 351.5 0.81 7595.7 0.99 3769 0.99
wood_autumn 87 99.4% 5703 0.98 4866.2 0.94 29909 0.89 14464 098 12774 097 564.5 0.75 14758 0.99 14594 0.99

N': Total number of overlapping point cloud scans on which registration is performed.

op: Mean of outlier percentages in putative associations. 7: Mean graph size. §: Mean

graph sparsity. ¢: Mean runtime (milliseconds); the lower, the better. 7: Mean maximum-clique accuracy ratio (& /wgy); the closer to 1, the better.

apparent. This can be seen around the 20% outlier ratio, where
CLIPPER+ becomes faster than the optimization method, and
its speed improves further as the outlier percentage increases.

C. Registration Benchmark—Real-World Point Clouds

Datasets: We use sequences in the real-world 7-Scenes [42],
Sun3D [45], and ETH [46] datasets (similar to 3DMatch [15] and
3DSmoothNet [47] evaluations). Sun3D and 7-Scenes are dense
indoor RGB-D point clouds, while ETH is an outdoor LiDAR
point cloud. In each sequence, we consider pairs of point clouds
(or scans) that have an overlap. To increase registration speed,
we downsample the point clouds by discretizing the 3D space
into cubes of size ¢ = 0.05 m for 7-Scenes and Sun3D datasets,
and € = 0.1 m for the ETH dataset, and using the mean of the
point coordinates in each cube as a single-point representative.
For each downsampled point, FPFH descriptor vectors [14] are
computed and associated bilaterally based on their /o norm
distance using the k-nearest neighbors algorithm. To generate
the ground truth for our evaluations, we use the exact maximum
clique algorithm of [2] to find the largest set of geometrically
consistent associations in these putative FPFH associations. We
store results if this maximum clique solution correctly registers
the point clouds according to the ground truth provided by the
datasets—the maximum clique/likelihood solution may register
points wrongly due to practical limitations such as repetitive
patterns (perceptual aliasing), insignificant overlap between the
point clouds, and lack of any inlier associations caused by
downsampling and FPFH inaccuracies. For evaluations, the
consistency graph is generated according to Section III from
putative FPFH associations, using the downsampling € as the
consistency threshold. An evaluation instance is shown in Fig. 6.

Evaluation: Table II presents the evaluation results for all
datasets and algorithms. CLIPPER+ outperforms all algorithms
in accuracy on all datasets/sequences. The greedy algorithm
has the smallest runtime at the expense of the lowest overall

accuracy. The standalone optimization algorithm has similar
accuracy to CLIPPER+. However, except on the last sequence, it
is around 2x slower. This demonstrates the advantage of CLIP-
PER+ over its standalone greedy and optimization components.

Lastly, we point out the high outlier ratios of FPFH as-
sociations (e.g., on average, 99.4% of associations in the
wood_autumn sequence are outliers). Due to the maximum
clique solution correctly registering the point clouds in our
benchmark, the accuracy ratio r shows the point cloud registra-
tion success rate. Thus, CLIPPER+ correctly registers the point
clouds in 99% of the trials despite extreme outlier percentages.
This is what distinguishes CLIPPER+ from existing robust
registration frameworks (such as RANSAC [16]), that can fail
in these high-outlier regimes.

VI. CONCLUSION AND FUTURE DIRECTIONS

We presented CLIPPER+, a maximal-clique-finding algo-
rithm for unweighted graphs that enables robust global registra-
tion in robotics and computer vision applications. Future work
includes investigating alternative optimization methods such as
second-order or quasi-Newton methods, and an extension to
the weighted graphs based on our previous work [1] (designed
for weighted graphs) and an extension of core numbers to
weighted settings (studied in [48]). We also plan to integrate the
algorithm in point cloud registration pipelines [7] as the outlier
rejection module to improve the runtime and outlier rejection
capacity.
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