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Abstract— Safety is a core challenge of autonomous
robot motion planning, especially in the presence of dy-
namic and uncertain obstacles. Many recent results use
learning and deep learning-based motion planners and
prediction modules to predict multiple possible obstacle
trajectories and generate obstacle-aware ego robot plans.
However, planners that ignore the inherent uncertainties in
such predictions incur collision risks and lack formal safety
guarantees. In this paper, we present a computationally
efficient safety filtering solution to reduce the collision
risk of ego robot motion plans using multiple samples
of obstacle trajectory predictions. The proposed approach
reformulates the collision avoidance problem by computing
safe halfspaces based on obstacle sample trajectories using
distributionally robust optimization (DRO) techniques. The
safe halfspaces are used in a model predictive control
(MPC)-like safety filter to apply corrections to the ref-
erence ego trajectory thereby promoting safer planning.
The efficacy and computational efficiency of our approach
are demonstrated through numerical simulations.

I. INTRODUCTION

Autonomous robots have many application areas in-
cluding autonomous driving [1], warehouse management
and logistics [2] drone delivery [3], and agriculture [4].
A core challenge facing autonomous robots is navigation
in dynamic and uncertain environments, i.e. in the pres-
ence of moving obstacles whose future motion cannot
be predicted exactly. This complicates the robot safety
requirements: the ego robot must presume the obstacles’
intentions and predict their future trajectories for use in
computing its own motion plan. Thus, safety hinges on
how accurately the dynamic obstacles’ behavior can be
predicted [5], [6]. Failing to account for prediction un-
certainties may incur undue risk of severe collisions [7].

Various methods have been studied for predicting how
obstacles will behave, but it is still an active area of
research. In [8], a hidden Markov model is used for
better understanding urban scenarios for autonomous
vehicles (AVs). In another work, [9] uses a support
vector machine and Bayesian filtering to predict lane
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Fig. 1: An autonomy stack with the proposed Safety
Filter module. The module intercepts the reference tra-
jectory and corrects it to enforce the safety requirement.

change intentions for AVs. Furthermore, deep learning
approaches have also been used. End-to-end motion
planners, such as [10], implicitly account for future
predictions, but they fail to explicitly capture the en-
vironment uncertainties which may lead to collisions.
FIERY [11] generates a birds-eye-view probabilistic
future predictions map which estimates environmental
uncertainties, but it still requires a formal approach
to use this data to enforce safety. In [12], a neural
network ensemble is employed to estimate prediction
uncertainty and identify rare cases. However, ensembles
are resource-intensive to train and deploy.

Optimization-based methods are commonly used to
formally guarantee safety requirements. Using samples
of obstacle motion, [13] creates an empirical distribution
then formulates a distributionally robust optimization
(DRO) problem to ensure safety and avoid collisions
under any distribution that is “close” to the empirical
one. However, the solution solves a non-convex problem
which is computationally demanding and not suitable for
real-time operation. In [14], a similar DRO problem is
formulated with application to multi-robot systems. The
collision avoidance constraints are reformulated using a
result from [15] to produce a convex nonlinear MPC
problem with DRO constraints. Another recent solution
uses conformal prediction to guarantee safety when
using learning-based planners [16]. Here, prediction
regions that satisfy a given probability bound are found
and used in an MPC optimization problem.

A related approach to enforcing safety uses a safety
filter. Instead of adding constraints to one of the modules
of the autonomy stack, a standalone module takes the
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reference trajectory from the motion planner and outputs
a corrected filtered trajectory, as illustrated in Fig. 1.
The filtered motion plan is guaranteed to satisfy certain
safety requirements. Safety filters have been used in
deterministic settings for autonomous racing [17], multi-
agent motion planning [18], and autonomous driving
[19] to filter unsafe learning-based motion plans.

Motion planners with prediction uncertainty often suf-
fer from two issues. 1) They consider average behavior
or limit the chance of unsafe events. These are suitable
for real-time deployment but fail under edge cases (in
the prediction distribution tail). 2) They rigorously tackle
uncertainties and edge cases, but they are computation-
ally intensive. In this work, we address this gap by
proposing a computationally efficient solution using ax-
iomatic risk theory to handle uncertainties and deal with
edge cases. We assume that the ego robot has a planned
reference trajectory and samples of the obstacles’ future
trajectories (e.g. through [20]). Our solution starts by
finding safe halfspaces based on a distributionally robust
conditional value-at-risk (DR-CVaR) risk metric for
each obstacle. Then, the DR-CVaR safe halfspaces are
used in an MPC-based safety filter to enforce safety.
Compared to [14], our method is for safety filtering ex-
isting motion plans. It can solve all DR-CVaR problems
in parallel before solving the MPC problem, simplifying
the latter. The main contributions of this work are:

• We extend the notion of a safe halfspace and define
data-driven DR-CVaR safe halfspaces that bound
the risk of violating a safety specification.

• We verify the efficiency of the DR-CVaR halfs-
paces through a numerical analysis and show that
they can be computed in a few milliseconds with
up to a few hundred samples.

• We formulate an MPC-based safety filter that uses
the DR-CVaR safe halfspaces to constrain the
motion planning problem and bound collision risks.

• We demonstrate the efficacy of our solution and its
ability to handle edge-cases through numerical sim-
ulations in a variety of motion planning scenarios.

NOTATION

The d-dimensional zero vector (matrix) and identity
matrix are denoted by 0d (0d,d) and Id, respectively.
We use a : b to denote all integers between a 2 Z
and b 2 Z (inclusive). The Minkowski sum is denoted
by �. The transpose of a vector or matrix is denoted
by (·)>. The inner product of vectors z1 and z2 is
denoted by z1 · z2 = z>1 z2. The support function of
a compact set C is given by SC(z) := supx2C z · x.
Random variables/vectors are denoted in bold and E[·]
is the expected value operator. Given a loss l, the CVaR
metric is CVaRP

↵(l) := inf⌧2R EP[⌧ + 1
↵ max{l� ⌧, 0}]

which is evaluated with respect to the ↵ worst-cases

of the distribution P (the 1 � ↵ quantile in the upper
tail). For Ns samples of the loss {l1, . . . , lNs}, we use
a sample average approximation to evaluate the expected
value in the CVaR metric:
CVaRP

↵(l) ⇡ inf⌧2R
1
Ns

PNs

i=1(⌧ + 1
↵ max{li � ⌧, 0}).

II. DR-CVAR SAFE MOTION PLANNING WITH
UNCERTAIN DYNAMIC OBSTACLES

A. Motion Planning Safety Filtering Problem
We consider the problem of motion planning for an

ego robot in the presence of Nob dynamic obstacles
whose future behavior is uncertain. The ego robot dy-
namics are assumed linear and described by:

x(t+ 1) = Ax(t) +Bu(t) (1a)
y(t) = Cx(t) (1b)

where x(t) 2 Rn is the robot state at time t, u(t) 2 Rm

is the control, A 2 Rn⇥n, B 2 Rn⇥m are the state and
input matrices, y(t) 2 Rd is the position, and C 2 Rd⇥n

is the matrix that extracts the position from the state. The
ego robot is modeled by a convex and compact set A. We
also assume that the ego robot has a desired reference
trajectory over a horizon of length T given by T r(t) :=
{xr(t), . . . , xr(t+T )}. This reference trajectory may be
obtained from any planning module (e.g. neural network,
sampling-based or optimization-based methods, etc.).

Each obstacle is modeled as a convex and compact
set Oi 8i 2 [1 : Nob]. Their dynamics are unknown
and the motion is uncertain. Furthermore, the prediction
distribution is inherently unknown. Instead, we assume
access to a module that can generate sample predictions
of the obstacles’ trajectories. The s-th sample trajectory
of the i-th obstacle for a horizon of T time steps is given
by T s

i (t) := {psi (t), . . . , psi (t + T )} and includes only
position information (psi 2 Rd).

An autonomy stack may pass the reference trajectory
directly to a tracking controller (Fig. 1 faded red arrow)
while assuming that it accounts for the obstacles’ future
trajectories. However, safety requirements desired in a
reference trajectory may not be guaranteed, especially
if the planner is based on a neural network. A formal
safety guarantee is defined as follows.

Definition 1 (Safety Guarantee). Given a reference
trajectory T r, a chosen risk metric R, and a risk bound
�, safety is guaranteed iff R(T r)  �.

To enforce this notion of safety, we advocate for the
usage of a safety filter that takes a reference trajectory
and outputs a filtered trajectory as depicted in Fig. 1.
This safety filtering problem is formalized below.

Problem 1 (Motion Planning Safety Filtering). Given an
ego reference trajectory T r(t) and obstacle trajectory
samples T s

i (t), s 2 [1 : Ns] for every obstacle
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i 2 [1 : Nob], find a filtered ego trajectory that
ensures the safety of the ego robot per Definition 1.

We now proceed with specifying the adopted risk
metric R for the motion planning problem.

B. Signed Collision Loss Function
Consider an ego robot and a single dynamic obstacle.

Denote by y the ego robot position, by yr the ego robot
reference position, and by p the obstacle position.

The deterministic collision avoidance condition is
given by (y �A) \ (p �O) = ;. Using computational
geometry arguments and convexifying the constraint via
separating halfspaces, similar to [18, III-A.2], we have:

(y �A) \ (p�O) = ; () (y � p) 62 O � (�A)

(= z · (y � p) � SO(z) + S�A(z) (2)

where z is any chosen unit vector per [21].
The constraint (2) is sufficient for ensuring collision

avoidance for a deterministic system. Additionally, we
can define a deterministic safe halfspace

H(h, g) := {y | h · y + g � (SO(h) + S�A(h))  0}

such that if y 2 H, then y is collision free and satis-
fies (2). For the deterministic case, the parameters h, g
of H can be directly mapped to the values in (2). Further-
more, using H we can define a signed distance function
that quantifies the violation or satisfaction amount of a
point relative to the collision avoidance constraint. In
particular, consider the following loss function:

`(p, h, g) = �(h · p+ g � (SO(h) + S�A(h))| {z }
g̃:=

). (3)

Given h, g, p, if `(p, h, g) � 0 then the obstacle p
intrudes into the safe halfspace H and `(p, h, g) is the
intrusion amount. Otherwise, the obstacle is |`(p, h, g)|
units away from the boundary of the safe halfspace.

C. Collision Avoidance using DR-CVaR Safe Halfspaces
When the obstacle position is a random variable p, (2)

is ill-posed and the loss (3) becomes a random variable
`(p, h, g). We now define a risk-based safe halfspace
with respect to a risk metric R applied to `(p, h, g).

Definition 2 (Risk-Based Safe Halfspace). Given a
halfspace normal h and a risk metric R, a risk-based
halfspace is given by HR(g̃) := {p | h · p + g̃  0},
where g̃ = g⇤�(SO(h)+S�A(h)), and g⇤ is the optimal
value of the following optimization problem:

min
g

g (4a)

subject to R(`(p, g))  �. (4b)

It is common to approximate the distribution of p
then pose (4b) as a chance constraint on the probability

of collision hence bounding the value-at-risk (VaR)
(e.g. [16]). However, VaR is not a coherent risk metric
in the sense of Artzner et al. [22, Def 2.4], while CVaR
is and it has been advocated for in robotics [23], [24].
Intuitively, CVaR measures the expected cost in the tail
of the distribution. Thus, it not only accounts for the
frequency of undesirable events, but also their severity.

Since we only have samples of p generated by the
prediction module, and its underlying distribution is
unknown, we use a data-driven distributionally robust
CVaR risk metric, i.e. DR-CVaR, in (4b). In particular,
the samples of p define an empirical distribution P̂. But,
instead of treating P̂ as the true distribution, which can
give large sampling errors for small Ns, we consider a
Wasserstein distance-based ambiguity set P around P̂.
Formally, P = B✏(P̂) := {Q 2 M(⌅) | dw(P̂,Q)  ✏}
is the Wasserstein ball containing all distributions with a
Wasserstein distance of at most ✏ from P̂. Here, M(⌅)
is the set of all finite mean distributions supported on
⌅ and dw(·, ·) is the Wasserstein distance. Consider
Q1,Q2 2 M(⌅) and a norm k·k (we use the 2-norm),
the Wassertein distance is defined by dw(Q1,Q2) :=R
⌅2 k⇠1 � ⇠2k⇧(d⇠1, d⇠2) where ⇧ is a joint distribution

of ⇠1 and ⇠ with marginals Q1 and Q2 respectively [25,
Definition 3.1]. Intuitively, the Wasserstein distance rep-
resents the minimum transportation cost of transporting
mass from one distribution into another. Accordingly, a
DR-CVaR safe halfspace is defined as follows.

Definition 3 (DR-CVaR Safe Halfspace). Consider an
empirical distribution P̂ supported on samples of a
predicted obstacle position, a Wasserstein-based ambi-
guity set P = B✏(P̂) and a halfspace normal h. The
DR-CVaR safe halfspace is defined as Hdr(g̃) := {p |
h · p+ g̃  0} where g̃ = g⇤ � (SO(h) + S�A(h)), and
g⇤ is the optimal value of the following problem:

min
g

g (5a)

subject to DR-CVaR✏
↵(`(p, g))  � (5b)

with DR-CVaR✏
↵(`(p, g)) := supP2P CVaRP

↵(`(p, g)).

Here, (5b) is an infinite dimensional constraint. How-
ever, since ` is affine, we can utilize tools from [25] to
obtain a finite-dimensional convex reformulation.

Proposition 1. The problem in (5) with support ⌅ :=
{p | V p  v} for the random variable p and dual norm
k·k

⇤
admits the finite-dimensional reformulation:

inf
g,⌧,�,⌘i,�ik

g (6)

subject to �✏+
1
Ns

NsX

i=1

⌘i  �,

ak · pi + bkg̃ + ck⌧ + �ik · (v � V >pi)  ⌘i���V >�ik � ak

���
⇤
 �, �ik � 0.
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Proof. Using the CVaR definition with (3) we have:

CVaRP
↵(`(p, g)) (7a)

= inf
⌧
EP


max

✓
�h · p+ g̃

↵
+ (1� 1

↵
)⌧, ⌧

◆�
(7b)

= inf
⌧
EP

2

664max
k

(akp+ bkg̃ + ck⌧)
| {z }

M:=

3

775 (7c)

where k 2 {1, 2} and a1 = �h
↵ , b1 = �1

↵ , c1 = 1 �
1
↵ , a2 = 0d, b2 = 0, c2 = 1. Then, the DR-CVaR
constraint (5b) becomes

DR-CVaR✏
↵(`(p, g))  � () sup

P2P
CVaRP

↵(`(p, g))  �

() sup
P2P

inf
⌧

EP[M]  � ( inf
⌧

sup
P2P

EP[M]

| {z }
WCE:=

 � (8)

where the last line follows by the minimax inequality
sup inf(·)  inf sup(·). The worst-case expectation
(WCE) term matches that from [25, (10)] with piecewise
affine loss functions in the random variable p and hence
applying [25, Corollary 5.1-(i)] results in (6).

Example 1. Consider an ego reference position yr =
[�0.9,�0.8]> and a nominal obstacle at p = [0.5, 0]>,
in 2D space, both of radius r = 0.3. Fig. 2 illustrates
safe halfspaces using the expected value (mean), CVaR
and DR-CVaR risk metrics with h = (p�yr)/ kp� yrk
as depicted by the arrow. The halfspaces use 100 sam-
ples of the obstacle position sampled from the Gaussian
random vector N (p, diag(0.01, 0.01)) where diag(·) is
the diagonal matrix. We use ↵ = 0.2, � = 0.1, and ✏ 2
{0.05, 0.1, 0.2}. As ✏ increases, the Wasserstein ball
becomes larger, including more distributions, and hence
the DR-CVaR halfspaces become more conservative.
When ✏ ! 0, the DR-CVaR safe halfspace converges
to the CVaR case. Here, yr is safe with respect to all
halfspaces except the DR-CVaR with ✏ = 0.2. Note
that increasing � relaxes the safety constraint and would
make the halfspaces less conservative.

D. DR-CVaR Safe Halfspace Guarantees
If the position of the ego robot is constrained to the

DR-CVaR safe halfspaces, we obtain a safety guarantee
that bounds collision risk, however, we require a techni-
cal assumption on the lightness of the tails1 for the un-
derlying true probability distribution Ptrue of predicted
obstacle positions. Thus, we have the following lemma.

Lemma 1 (Concentration Inequality [26, Theo-
rem 2]). For a light-tailed distribution Ptrue with

1This assumption hold trivially if ⌅ is compact. Since the distri-
bution in our case represents the position of the obstacle, then ⌅ is
compact as obstacles can always be limited to a finite detection range.

Fig. 2: Comparison between safe halfspaces based on the
mean, CVaR, and DR-CVaR with different ✏ values.

� := EPtrue [exp(kpk⇢)] < 1 for ⇢ > 1 [25,
Assumption 3.3] or ⇢ > 0 per [26], we have

P(dw(Ptrue, P̂) � ✏)  � (9)

where � is a constant term that depends on �, ⇢, Ns,
and ✏. Alternatively, P(Ptrue 2 B✏(P̂)) � 1 � � for a
carefully chosen value of Ns.

Therefore, for a desired concentration bound, a min-
imum Ns can be computed to guarantee that satisfying
the DR-CVaR constraint (5b) ensures the satisfaction
of the CVaR variant of it for the true distribution with
probability 1� �. However, this is usually conservative
and generally requires Ns to be large making (6) com-
putationally expensive. Instead, we advocate for treating
✏, Ns, and � as tuneable parameters to achieve a desired
safety level that can be validated experimentally.

III. MPC-BASED SAFETY FILTER WITH DR-CVAR
SAFE HALFSPACES

We now return to the safe motion planning problem
described in Problem 1. Our solution has two steps:

1) Computing the safe halfspaces: We interpret the
safety constraint R(T r)  � from Definition 1
point-wise in time and per obstacle. Thus, the
obstacle trajectory samples are used to solve (5)
per obstacle per time step over the horizon T
resulting in Hdr

i (t+t0) 8i 2 [1 : Nob], t0 2 [1 : T ]
(we drop the dependence of H on g for simplicity).

2) MPC Filter: The computed halfspaces are used as
constraints in an MPC optimization problem that
computes a minimally deviating trajectory from
the reference trajectory. The MPC optimization
problem is formalized below.

Problem 2 (MPC-Based Safety Filter). Given an ego
reference trajectory T r(t0) at time t0 and linear ego
vehicle dynamics (1), find the filtered trajectory T (t0) =
{x(t0), . . . , x(t0 + T )} for the ego vehicle that satisfies
the DR-CVaR safe halfspaces Hdr

i (t), t 2 [t0+1 : t0+
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TABLE I: CVaR and DR-CVaR safe halfspace average
Solve and Call times (ms).

Risk Metric Ns = 50 Ns = 500 Ns = 1500
Solve Call Solve Call Solve Call

CVaR 0.144 2.23 1.91 4.32 5.98 8.95
DR-CVaR 0.236 9.10 2.58 73.4 8.53 216

T ], by solving the finite-horizon optimization problem
(11) with the objective function (10).

J(x(t0 : t0 + T ), u(t0 : t0 + T � 1)) = (10)
T+t0�1X

t=t0

u(t)>R(t)u(t)

+
T+t0X

t=t0+1

(x(t)� xr(t))>Q(t)((x(t)� xr(t))

min
x,u

J(x(t0 : t0 + T ), u(t0 : t0 + T � 1)) (11a)

subject to x(t+ 1) = Ax(t) +Bu(t), u(t) 2 U(t)

8t 2 [t0 : t0 + T � 1] (11b)
y(t) = Cx(t), x(t0) = xr(t0) (11c)

y(t) 2 Y(t) \

 
Nob\

i=1

H
dr
i (t)

!
(11d)

with 8t 2 [t0+1 : t0+T ] when not stated. Here, Y(t) ✓
Rd is a convex position constraint for the ego robot (e.g.
environment bounds), U(t) ✓ Rm is the convex control
input constraint set, and R 2 Rn⇥n, Q 2 Rm⇥m are
symmetric, positive semidefinite cost matrices.

The MPC safety filter 11 is a quadratic program (QP)
and can be modeled with tools such as CVXPY [27] and
solved with many solvers, such as ECOS [28].

Remark 1. We assume that (11) is always feasible at
t = 0. The conjunction in (11d) may become empty
or unreachable due to U(t) rendering the problem
infeasible. In this work, we use the most recent optimal
control u⇤(t) from solving (11) and proceed with the next
available control, u⇤(t+1), until the problem is solved
again or we run out (u⇤(t+ T � 1)). Future works will
address alternative infeasibility handling approaches.

IV. NUMERICAL VALIDATION

For simplicity and clarity, we analyze the proposed
approach in 2D space (d = 2). All experiments use
CVXPY with ECOS and were executed on a Dell
Precision 7520 computer with an Intel Xeon E3-1535M
v6 CPU and 32GB RAM. Experiment code can be
found at: https://github.com/TSummersLab/
dr-cvar-safety_filtering.

A. Computation Cost Analysis
We perform a numerical analysis for the DR-CVaR

safe halfspace computation time. We find the safe half-
spaces as done in Example 1 for various number of

Fig. 3: DR-CVaR safe halfspace computation time

samples Ns. For each Ns, (5) is solved 500 times with
different random samples. We report three times: 1)
the CVXPY reported setup time (Setup Time), 2) the
CVXPY reported solver solve time (Solve Time), and
3) the time for executing the CVXPY solve method
(Call Time). The results, in milliseconds, are reported
in Fig. 3. Since (5) is a linear program (LP), it can be
solved efficiently within a few milliseconds even for a
few hundred samples. The Call Time includes a large
overhead not captured by the Setup Time. Additionally,
we compare the mean times for finding the DR-CVaR
and CVaR safe halfspaces in Table I. This reveals that
while the Solve Time is only about 50% higher for the
DR-CVaR safe halfsapces, the Call Time grows quickly
compared to CVaR counterpart. We conclude that the
DR-CVaR safe halfspace formulation is suitable for
real-time operation especially if a solver is used directly.

B. Motion Planning Safety Filtering Simulations
1) Simulation Setup: We model the ego and obstacle

geometries as circles of radii rA = rO = 0.3.
The ego robot uses double integrator dynamics
with A =


I2 I2Ts

02,2 I2

�
, B =


1
2I2T

2
s

I2Ts

�
, and

C =
⇥
I2 02,2

⇤
where Ts = 0.2sec is the discrete

time step. The reference trajectory is generated using
an obstacle-agnostic MPC-based motion planner with a
target goal state. Its details are not discussed since our
safety filter is agnostic to the chosen motion planning
algorithm. Unbeknown to the ego robot, the obstacles
are single integrators with A = I2, B = I2Ts, C = I2.
Sample trajectories are generated by adding a Gaussian
random noise N (02, diag(0.01, 0.01)) to a nominal tra-
jectory that keeps the vehicle aligned with the x-axis
at a desired speed. However, when realizing the true
position of the obstacle, a Laplace distribution with the
same mean and covariance as the Gaussian is sampled.
We use T = 10, ↵ = 0.2, � = 0.1, and ✏ = 0.05.
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(a) Head-on Collision

(b) Overtaking

(c) Intersection

Fig. 4: Motion Planning Scenarios and their distance
to collision statistics across 300 Monte Carlo simula-
tion. Red: Mean safe halfspace HE. Blue: CVaR safe
halfspace Hcvar. Green: DR-CVaR safe halfspace Hdr

Black: Obstacle.

2) Filtering in Different Scenarios: We use three
types of reach-avoid motion planning scenarios: 1)
Head-on collision, 2) Overtaking, and 3) Intersection.
The left column of Fig. 4 overlays the trajectories
of one experiment using safe halfspaces based on the
mean value, CVaR, and DR-CVaR risk metrics. In all
three cases, trajectories using DR-CVaR safe halfspaces
achieve the lowest risk, while those using the expected
value-based safe halfspace have the highest risk.

To demonstrate the advantage of using DR-CVaR
halfspaces, we perform a Monte Carlo simulation repeat-
ing each experiment 300 times. The distance to collision
ky � pk�rA�rO is plotted in the right column of Fig. 4
with the last row showing a box plot zoomed-in view.
Clearly, the performance using safe halfspaces based on
the mean value result in more frequent collisions in all
three cases. In the box plot, the worst-case scenario
using the mean value safe halfspace is around �0.45.
With this collision amount, both the ego robot and
obstacle would be significantly damaged. The worst-
case collision using CVaR results in a �0.22 distance
to collision. Here, it may lead to a less severe collision.

Fig. 5: Collision Avoidance with Multiple Obstacles.
Green polytopes: DR-CVaR safe halfspaces. Blue: ego.
All other colors: obstacles

On the other had, in all three cases, the DR-CVaR safe
halfspace-based formulations avoid collisions with the
ego vehicle, avoiding the obstacle even in the worst case
scenario. Thus, our proposed solution can secure the
robot’s safety and systematically reduce collision risks,
even with edge cases in the prediction distribution tail.

3) Safety Filtering With Multiple Obstacles: Consider
the motion planning problem in Fig. 5, where the ego
robot must avoid 3 obstacles. Fig. 5 plots the overall
trajectories as well as the DR-CVaR safe halfspaces
(green polytopes). Since the MPC safety filter is a QP,
it can be solved efficiently in a few milliseconds. Here,
the filter call time takes 7ms on average. The safety
filter becomes infeasible only once, so we fall back to
the previously computed set of optimal controls. This
is illustrated at time step 5 when the ego robot is not
inside a safe polytope. Throughout the experiment, the
robot remains sufficiently far away from the obstacles
and successfully reaches its goal.

V. CONCLUSION

We presented a safety filtering solution that improves
a robot’s safety when operating in a dynamic environ-
ment with prediction uncertainties. We posed a DRO
problem that computes DR-CVaR safe halfspaces which
are subsequently used as linear constraints in an MPC
safety filter that corrects an ego reference trajectory.
We performed numerical analyses demonstrating that
DR-CVaR safe halfspaces are efficient to compute and
can improve safety particularly in edge cases. The pre-
sented solution depends on a reference trajectory whose
quality may influence the performance of the safety
filter, and is limited to linear dynamics. Future direc-
tions will address these limitations and include a better
approach to handling MPC infeasibilities, relaxation of
the halfspaces to trade-off safety for performance, and
implementation of the method on hardware.
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