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Abstract— We present a policy iteration algorithm for
the infinite-horizon N-player general-sum deterministic linear
quadratic dynamic games and compare it to policy gradient
methods. We demonstrate that the proposed policy iteration
algorithm is distinct from the Gauss-Newton policy gradient
method in the N-player game setting, in contrast to the single-
player setting where under suitable choice of step size they
are equivalent. We illustrate in numerical experiments that the
convergence rate of the proposed policy iteration algorithm
significantly surpasses that of the Gauss-Newton policy gradient
method and other policy gradient variations. Furthermore, our
numerical results indicate that, compared to policy gradient
methods, the convergence performance of the proposed policy
iteration algorithm is less sensitive to the initial policy and
changes in the number of players.

I. INTRODUCTION

In recent years, the field of multi-agent reinforcement
learning (MARL) has attracted significant interest within the
reinforcement learning (RL) community. This interest has
led to a series of successful developments in approximately
solving sequential multi-agent decision-making problems,
such as multi-robot control [1], autonomous driving [2], and
the networking of communication packages [3]. Despite these
successes, a comprehensive theoretical understanding of how
MARL algorithms perform in environments where coopera-
tion and/or competition among agents exists remains elusive.
Recently, there has been a surge of interest in analyzing the
performance of policy gradient algorithms within the context
of linear quadratic dynamic games (LQDGs). LQDGs present
a compelling framework for evaluating the efficacy of MARL
algorithms in continuous state and action spaces due to their
ability to admit a Nash equilibrium in linear feedback policies.
Moreover, this equilibrium can be determined by solving a set
of coupled Riccati equations. Properties of this equilibrium
have been thoroughly analyzed in [4], [5], [6], [7], [8].

A majority of existing literature [9], [10], [11] has em-
phasized zero-sum LQDGs with two players, where it has
been shown that certain policy gradient methods have global
convergence guarantees in such settings. However, some
negative results in [12] suggested that the vanilla/standard
policy gradient method has no guarantees of even local
convergence in infinite-horizon general-sum deterministic
LQDGs. This result indicates potential limitations for gradient-
type methods in such games. The natural policy gradient and
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vanilla/standard policy gradient methods demonstrated global
convergence in a finite-horizon stochastic LQDG [13], given
appropriate step size and the introduction of specific noise
levels into the dynamic system. However, the natural policy
gradient method may fail to converge to the Nash equilibrium
of a deterministic LQDG without careful selection of initial
policies and step sizes.

The policy iteration algorithm is well-known in single-
player settings for computing optimal policies. It comprises
two components: policy evaluation and policy improvement.
This algorithm has been extensively studied in dynamic
programming and RL and bears a close relationship to
the Newton method [14], [15]. In the context of single-
player LQDGs, the standard policy iteration algorithm [16]
is equivalent to an instance of the Gauss-Newton policy
gradient method with a specific step size. Several policy
iteration-based RL algorithms have been studied for solving
multi-player nonzero-sum differential games [17]. Recently,
policy iteration algorithms have been developed for solving N-
player nonzero-sum LQDGs [18] which explicitly formulate
the policy evaluation and policy update steps. An off-line
policy iteration-based RL algorithm was introduced for a
two-player nonzero-sum LQDG in [19]. This algorithm is a
special two-player case of the one we are presenting here.
However, a more general policy iteration algorithm for N-
player general-sum LQDGs, along with a comparison of its
convergence performance against policy gradient methods,
has not yet been undertaken.

In this paper, our main contribution is to present a policy
iteration algorithm for the infinite-horizon N-player general-
sum deterministic LQDGs and compare it to policy gradient
methods. In contrast to the single-player setting, where the
proposed policy iteration algorithm and the Gauss-Newton
policy gradient method are equivalent under suitable choice
of step size, we show that they are not equivalent in the
N-player setting. We illustrate in numerical experiments
that the convergence rate of the proposed policy iteration
algorithm significantly surpasses that of the Gauss-Newton
policy gradient method and other policy gradient variations.
Furthermore, our numerical results indicate that, compared
to policy gradient methods, the convergence performance of
the proposed policy iteration algorithm is less sensitive to the
initial policy and changes in the number of players.

The rest of the paper is organized as follows. In Section II,
we present the formulation of the infinite-horizon N-player
general-sum deterministic LQDGs. Section III provides a
detailed description of the proposed policy iteration algorithm,
which is designed to solve these games. The distinction
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between the proposed policy iteration algorithm and the
Gauss-Newton policy gradient method within the N-player
game setting is elucidated in Section IV. Section V showcases
the results of our numerical experiments. Finally, we conclude
our findings and discussions in Section VI.

II. PROBLEM FORMULATION: N-PLAYER GENERAL-SUM
DETERMINISTIC LQDGS WITH INFINITE-HORIZON

We consider a discrete-time N-player general-sum deter-
ministic LQDG over an infinite-horizon with dynamics

N
Tep1 = Axy + Z Bu, (1)
where z; € R™ is the system state with the initial value
zo drawn from a Gaussian distribution with E[zo] = 0 and
E[zor]] = Xo, u! € R™: is the control input of player
i=1,...,N,and A € R"*™ and B* € R"*™ are referred
to as system matrices. Each player’s objective is to minimize
their infinite-horizon cost function

min E,,

Do Qi+ (u) "Ruf|, @
{ui}e2, =0
where Q% € R"*™ and R’ € R™:*™: are symmetric matrices
that parameterize the quadratic stage costs.

We consider a memoryless perfect state information struc-
ture for all the players. That is, each player ¢ seeks a stationary
linear feedback policy of the form u} = K’z that minimizes
their cost. The policies of all players can be specified by
a set of gain matrices K = (K!,..., KV). Player i’s cost
induced by the joint policy K is given by

J(K Z z] Qlay + ( z:vt)—l—RZ(let)) . (3
t=0
A standard solution concept for general-sum games is a Nash
equilibrium. At a Nash equilibrium, no player can unilaterally
improve their cost by deviating from their equilibrium policy,
defined as follows:

Definition 1. A stationary linear feedback Nash equilibrium
for an infinite-horizon general-sum deterministic LODG is a
collection of policies K* = (K'*, ..., KN*) such that:

JUKY™, K™ KN < JYKY™, L KL KN,

for each player i =1,...,N.

Our goal is to study and compare various algorithms for
computing Nash equilibria for general-sum LQDGs.

IITI. PoLICY ITERATION FOR N-PLAYER GENERAL-SUM
DETERMINISTIC LQDGS WITH INFINITE-HORIZON

In this section, we first present the well known value
iteration algorithm for computing a Nash equilibrium of the
infinite-horizon general-sum LQDGs in Section III-A. Then
we propose a policy iteration algorithm as an alternative to the
value iteration algorithm for solving the general-sum LQDGs
in Section III-B.

A. Value Iteration to Compute Nash Equilibrium Policies

Value iteration is a standard algorithm for computing feed-
back Nash equilibrium policies and cost functions in dynamic
games. It utilizes principles from dynamic programming for
optimal control and is discussed extensively in [5]. Initializing
the cost function parameters for each player with P} = Q°,
the value iteration algorithm updates the cost parameters
and corresponding policies for each player ¢ = 1,..., N at
iteration k = 0,1, ... via

. _ T a1
Ki=-(R'+(B) B

(B P4, 4

P, =Q'+ ({(,i)f RZ’K; + (Zﬁc + BiK,i)T o
Pi (A; + BZK,Q) :

where Ak = A+Z =1, B Kj If these iterations converge,
then the limiting policies Kl* = limg_,o Kk and cost
parameters P™ = limy_ oo P satlsfy

(BY PFA", (©)

K™ =— (R + (Bi)TPi*Bi>_1

; j i i % i pein
— Q'+ (K )fRK-Jf<A + B'K ) o
*(AZ*+B’LKZ*>,

a set of coupled algebraic Riccati equations for each player
i = 1,..,N. Then K" and P are Nash equilibrium
policies and cost function parameters for the infinite-horizon
general-sum LQDG. The following result provides a sufficient
condition for convergence to such a Nash equilibrium.

Proposition 1 (Proposition 6.3 from [5]). Suppose the above
value iteration (4) and (5) converges to { K™, P* i€ N}
which satisfy (6) and (7) and further suppose that for each
i € N the pair (A + Zj 1 BIiK*, Bi) is stabilizable
and the pair (A + Z] 1 BTET*, Q'+ (K™)TRIK™)
is detectable. Then stationary feedback policies uy* = K** x4
provide a Nash equilibrium solution for the infinite-horizon
general-sum LODGs, leading to the finite infinite-horizon
Nash equilibrium cost ] P*xq for player i.

Under an additional assumption that stage cost parameters
satisfy Q% = 0 and R* - 0 for each player, the value iteration
expressions on the right side of (4) and (5) are unique (and
correspond to linear feedback Nash equilibrium policies for
finite-horizon LQDGs for fixed values of the value iteration
index k). If the value iteration algorithm converges, the
corresponding unique limiting policies K™ = limy_, o K}
and cost parameters P = limy_, o Pk provide a Nash
equilibrium solution for the infinite-horizon general-sum
LQDGs. However, the coupled algebraic Riccati equations (7)
may admit other solutions that are not related to solutions of
corresponding finite-horizon dynamic games from the value
iteration algorithm [5], [20].

Policy iteration is another dynamic programming-based
algorithm that can be utilized to solve general-sum games
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R'+ (BY)" P'B! (BY) " PlB? (BY)' PB?
2

(B PEB' R+ (B®)' PPB®  (B?)' PEB?
(B*)" P2B! (B®)" P2B? R+ (B®) " PiB®
(BN)T.P,?’Bl (BN)T. PN B2 (BN).% .P,?’B3

by iteratively computing a solution to the coupled algebraic
Riccati equations (7). We are interested in comparing the
convergence properties of policy iteration with variations of
policy gradient algorithms for solving general-sum LQDGs. In
particular, we aim to study whether policy iteration and policy
gradient algorithms converge to the same Nash equilibrium
as value iteration or perhaps other Nash equilibria (if they
exist), and their respective convergence rates.

B. Proposed Policy Iteration Algorithm

Algorithm 1 presents the proposed policy iteration algo-
rithm for the infinite-horizon general-sum LQDGs. Policy
iteration has been extensively studied for computing optimal
policies for (single-player) optimal control problems, includ-
ing linear quadratic problems [21], [22]. Policy iteration
begins with an initial stabilizing policy and iterates on two
main steps, which are analogous to single-player setting: (1)
policy evaluation, which computes the expected costs under
the current policy; and (2) policy update, which updates policy
under the current cost functions. The policy evaluation step
corresponds to solving a set of coupled Lyapunov equations
(8), which relates to the Riccati equation in (7) but using
a fixed policy. The policy update step corresponds to (9)
computing a greedy one-step Nash equilibrium policy with
respect to fixed value functions, which relates to the gain
expression (6) but using fixed cost matrices.

To the best of our knowledge, the proposed policy iteration
algorithm has not been studied and extensively compared
with policy gradient methods for general-sum LQDGs. In
the single-player case, the standard policy iteration algorithm
coincides with the Gauss-Newton policy gradient method
under suitable choice of step size [23], [24]. However, there
is a key difference in how the policies are updated in the
N-player game setting, which we will explain in detail in the
next section.

IV. A COMPARISON OF THE POLICY ITERATION AND
GAUSS-NEWTON POLICY GRADIENT ALGORITHMS

In this section, we first introduce the N-player
vanilla/standard policy gradient and natural policy gradient
methods, with a brief analysis of the results from [12] and
[13] in Section IV-A. Then we extend the Gauss-Newton
policy gradient method from the single-player case to the
N-player game setting. We show that, unlike the single-player
case, the proposed policy iteration algorithm is distinct from
the Gauss-Newton policy gradient method in the N-player
game setting in Section IV-B.

(B PBY 7L, [(BYDRE

(B*) P:BY Kiys (B*) P}

(B%)" pBY Kin| = | (B%) P} | A,
RY + (BY)T YY) K] [(BY)T Y

(10)

Algorithm 1 Policy iteration for N-player general-sum
LQDGs with infinite-horizon

Input: Stabilizing policies K¢, system matrices A and B?,
cost parameters Q° and R, and convergence threshold
e > 0.
1: Initialize: K} = (0,...
1,...,N, k=0.
2: while | | K, — K} > € do
3:  Policy Evaluation: Compute the value functions of

the current policy set for ¢ = 1,..., N by solving the
Lyapunov equations

N T
Pi=Q'+ (K1) RK+ (A + ZB]‘K,{,)
j=1

N
Pi <A + ZB]’K,{> :

Jj=1

®)

4:  Policy Update: Update the policy set fori =1,..., N
by solving the coupled equations
- AN T
()

Pl A+ Y BEl, |,

J=1,j#1

Kij=— (Ri + (Bi)T P,jBi>

which can be jointly computed by solving (10).
50 k< k+1
Output: Nash Equilibria K (i =1,...,N)

A. The Vanilla/Standard Policy Gradient and Natural Policy
Gradient Methods

An extension of the vanilla/standard policy gradient method
in the single-player case [25] for the N-player game setting
has the following form

K,iH:K,Q—n’VKiJl (Kg), (11)
where Ky, = (K},...,K}) is a collection of gain matrices
of all players with initial gains Ky and 7’ is the step size.
The work in [12] suggests that the vanilla/standard policy
gradient method has no guarantees of even local convergence
in general-sum infinite-horizon deterministic LQDGs. In
contrast, [13] proved the global convergence of the natural
policy gradient method to the Nash equilibrium with finite-
horizon and stochastic dynamics. The natural policy gradient
method presented in [13] is

Kipo =Ky =V (Kp) (Sek,) ', (12)
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which is an N-player extension of the natural policy gradient
method introduced in [25] and ¥, x = E[thxtT K| is the
state covariance matrix. However, the natural policy gradient
method may fail to converge to a Nash equilibrium for
deterministic LQDGs without careful selection of the initial
policies and step sizes. To our best knowledge, the general
convergence properties of policy gradient algorithms for
general-sum LQDGs are not fully understood.

B. The Gauss-Newton Policy Gradient Method

Our goal in this section is to compare the Gauss-Newton
policy gradient method and our algorithm, to highlight and
explain the main difference between the two. For the single-
player with stationary feedback policy case, the Gauss-Newton
policy gradient method is

Ky = Kp —n(R+ BTPB) " VJ(Ko)S:!,  (13)

where the gradient V.J(K},) is equal to
VJ(Ky) =2 ((R+ B"P.B) Ki + B' P,A) 5.
By substituting this in (13) we obtain

K1 = (1 - 29Ky, — 27 (R+ BTP.B) " BT P A.
(14)

The natural extension of the Gauss-Newton policy gradient
method to the N-player game setting would be as

i i i (i i i iy L i —
Kip1 = Ki —n' (R'+ (B") ' P[B") Vi J'(Kp) S

Following the same steps, we obtain
. o . . NT o N\t
Kiy =(1— 25K} — 27 <RZ n (Bl> P,QBZ>
NT O N o
(BZ) Pila+ Y BK]|. (15)

J=1,5#i

In the single-player case, by setting n = % in (14), one can
easily verify that the Gauss-Newton policy gradient method
is equivalent to the standard policy iteration algorithm [16]:

Kpp1 = — (R+BTP.B)” BT PA. (16)

For the N-player case, however, this is no longer true. By
setting 7° = 1 in (15) we have

) ) . AN . .
Kio= - (R+(8B) PB)  (B) A

N , a7
A+ Y BK]|,
j=1,j#i

which is different from the policy update (9) of the proposed
policy iteration algorithm. In particular, in the Gauss-Newton
method, player ¢’s policy update at iteration k + 1 is defined
on the premise that all other players’ policy gains K7, j =
1,...,N,j # i remain fixed at the previous iteration step k.
In the proposed policy iteration algorithm, however, all players
update their policy gains K ,,i=1,..., N simultaneously
at iteration k + 1. As a result, the proposed policy iteration
algorithm needs to solve a linear system with Zf\il nm;

equations and Zfil nm; unknowns as shown in (10) and
there has to be a central solver (alternatively, each player can
compute their own update independently when the model is
assumed to be common knowledge). In the Gauss-Newton
policy gradient method, however, each player can compute
its own policy gain update.

V. NUMERICAL EXPERIMENTS

In this section, we first compare the convergence perfor-
mance of the proposed policy iteration algorithm, natural
policy gradient (Algorithm 1 in [13] extended to the infinite-
horizon deterministic case), and Gauss-Newton policy gradi-
ent methods under the same experimental setup as in [12],
[13] in V-A and V-B. Then we compare these algorithms
with an additional 1000 random open-loop stable systems
with initial policy gain K = (0,...,0) that satisfies the
conditions in Proposition 1 in V-C.

The model parameters for the numerical results in V-A
and V-B are

o588 0.028] i [1] L. [0
A= [0.570 0.056]’ B = H 5= H

ool o] o, 10 e
Q‘[o 1}’62_[0 0.147}’R_R = 0.0L

We initialize both players’ policy K¢ such that (A +
ZZN:1 B'K}) is stable. To analyze the convergence perfor-
mance of all three algorithms under different initial policies,
the initial policy gain K} also satisfies || K — K™ < r,
where K* denotes a Nash equilibrium of the system, and r is
the radius of the ball centered at K ** in which we initialize the
policies. A Nash equilibrium of the above system is K* =
(—0.5134, —0.0439) and K** = (—0.0525, —0.0114). This
Nash equilibrium is computed through value iteration in-
troduced in III-A. Differently from the normalized error
definition in [13], we define the normalized error of a given
pair of policies (K1, K?): for i = 1,2 as

G — K la | IR — K2l
[P 2|2

where k is the number of iterations.

€norm,k =

A. Faster Convergence Rate of Policy Iteration

Figure 1 reveals that all three methods—the proposed
policy iteration algorithm, natural policy gradient (n* = 0.1),
and Gauss-Newton policy gradient (n’ = 0.5)—successfully
converge to K'* and K2* with the same initial policy gains
K} = (-0.4266,-0.0938) and KZ = (0.0342,—0.0612)
(r = 0.1). It is evident that the proposed policy iteration
algorithm converges to the Nash equilibrium with much
fewer iterations and shorter computational time compared
with the other two policy gradient methods in this specific
example. The natural policy gradient method fails to converge
to the Nash equilibrium if the step size is not carefully
selected. Although the Gauss-Newton policy gradient method
converges to the Nash equilibrium, it requires significantly
more iterations and computational time than the proposed
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Fig. 1: Convergence speed of the proposed policy iteration
algorithm (green), Gauss-Newton policy gradient (purple,
n* = 0.5), and natural policy gradient (blue, n° = 1073; red,
n' = 1072; yellow, n° = 10~1) (r = 0.1).

policy iteration algorithm. However, comparing the general
theoretical convergence rates of the proposed policy iteration
algorithm and policy gradient methods remains open.

B. Convergence Performance of Policy Iteration from a
Distant Initial Policy

Figure 2 illustrates the convergence performance of the
proposed policy iteration algorithm, natural policy gradient,
and Gauss-Newton policy gradient methods as the initial
policy gains transition from a smaller to a larger neighborhood
around K'* and K?*. Figure 2a presents an instance where
all three methods with the same initial policy gains K}
and K? as in V-A converge to K'* and K?*. Conversely,
Figure 2b shows a different scenario where, under a pair of
more distant initial policy gains K} = (—0.0543,0.1541)
and K3 = (0.4066,0.1867) (r = 0.5) from K'* and
K?*, the natural policy gradient method does not converge
to K** and K?* as the other two methods. It is evident
that the convergence performance of the proposed policy
iteration algorithm is less sensitive to changes in initial policy
compared to policy gradient methods. It is possible that the
convergence performance of the policy gradient methods can
be improved by tuning the step size. However, this process
for each case can be laborious and time-consuming.

- 05
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06 : : : :
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= 0 ‘ ‘ ‘ ‘
005
-0.1 ‘ ‘ ‘ ‘ ]
0 200 400 600 800 1000
O T T T T =1
= -0.05}
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(a) An instance (r = 0.1) that all three algorithms converge to K L
and K%

0 200 400 600 800 1000

200 400 600 800 1000

0 200 400 600 800 1000
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1000

(b) An instance (r = 0.5) that the natural policy gradient algorithm
fails to converge to K'* and K?2*.

Fig. 2: Convergence performance of the proposed policy
iteration algorithm (green), Gauss-Newton policy gradient
(purple, n° = 0.5), and natural policy gradient (yellow, n’ =
10~') methods under different initial policy gains.

C. Convergence Performance of Policy Iteration for Addi-
tional Problem Instances

We now present results for additional problem instances by
randomly generating system parameters (A, B*, Q%,and R').
The entries of these parameters were independently drawn
from a standard normal distribution. The dynamics matrix
is scaled to be open-loop stable, and all cost parameters
are made positive definite. In each instance, value iteration
was used to compute a Nash equilibrium (if it converges)
for that game setting. Then the policy iteration and policy
gradient methods with the same (stabilizing) initial policy
gain K} = (0,...,0) were used to compute a solution for
the same game setting. We examine whether and how fast the
methods converge to the Nash equilibrium computed using
value iteration.

Table I shows the convergence performance of the proposed
policy iteration algorithm, natural policy gradient, and Gauss-
Newton policy gradient methods for 1000 randomly-generated
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problem instances for both two and four players. In all
experiments, the convergence of the proposed policy iteration
algorithm is significantly faster and more reliable than
the policy gradient methods. Moreover, the convergence
performance of the proposed policy iteration algorithm is
less sensitive to a change in the number of players from
two to four. These results provide additional evidence that
the proposed policy iteration algorithm outperforms policy
gradient methods, especially since there is no need to tune
the step size for each instance.

TABLE I: Convergence performance of the policy iteration
(PI) algorithm, natural policy gradient (NPG, ' = 0.1), and
gauss-Newton policy gradient (GNPG, 1’ = 0.5) methods for
1000 random systems.

n=4m*'=2 N =2 n=4m'=2, N =4

convergent | average number | convergent | average number
cases of iterations cases of iterations
NPG 5 139 0 N/A
GNPG 880 161 8 1259
PI 960 7 945 7

In all our empirical studies, the proposed policy iteration
algorithm converges at a much higher speed than the policy
gradient methods. Similar numerical results have also been
shown in [18]. This may be due to the fact that the proposed
policy iteration algorithm takes into account the policies
of the other players at iteration k£ + 1. The update in the
policy gradient methods considers only the policy of the other
players at iteration k. Thanks to this additional information,
the policy iteration algorithm adjusts the update of the policy
and therefore, we believe, avoids possible overshooting.

VI. CONCLUSIONS

We proposed a policy iteration algorithm for the infinite-
horizon N-player general-sum deterministic LQDGs and
compare it to policy gradient methods. We demonstrated
that the proposed policy iteration algorithm is distinct from
the Gauss-Newton policy gradient method in the N-player
game setting, in contrast to the single-player case where
they are equivalent under suitable choice of step size. In
all our numerical experiments, the proposed policy iteration
algorithm converges to the same Nash equilibrium as value
iteration with fewer iterations and less computational time
compared to policy gradient methods. Furthermore, the
convergence performance of the proposed policy iteration
algorithm is less sensitive to the initial policy and changes
in the number of players.
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