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Abstract— We propose a sparsity-promoting feedback control

design for stochastic linear systems with multiplicative noise. The

objective is to identify an optimal sparse control architecture

and optimize the closed-loop performance while stabilizing the

system in the mean-square sense. Our approach approximates the

nonconvex combinatorial optimization problem by minimizing

various matrix norms subject to the linear matrix inequality

(LMI) stability condition. We present two design problems to

reduce the number of actuators and the number of sensors

via a low-dimensional output. A regularized linear quadratic

regulator with multiplicative (LQRm) noise optimal control

problem and its convex relaxation are presented to demonstrate

the tradeoff between the suboptimal closed-loop performance

and the sparsity degree of control structure. Case studies on

power grids for wide-area frequency control show that the

proposed sparsity-promoting control can considerably reduce

the number of sensors and actuators without significant loss in

system performance. The sparse control architecture is robust

to substantial system-level disturbances while achieving mean-

square stability.

Index Terms— Multiplicative noise, sparsity-promoting optimal

structure design, stochastic linear systems, stochastic optimal

control.

I. INTRODUCTION

D
YNAMICAL systems with multiplicative noise provide
rich models for many practical applications, including

optimal frequency control of power grids, deployment of
robot agent teams, optimal control of segmented mirrors in
extremely large telescopes, and other applications in biological
movement systems and aerospace engineering systems [1],
[2], [3], [4]. Especially in large-scale systems, substantial
system-level disturbances and uncertainties may lead to oscil-
lation and possibly instability. One of the major challenges
is to design efficient, high-performance, and robust control
architectures that limit the number of actuators, sensors, and
actuator-sensor communication links to reduce the complexity
and cost.

Sparse control architectures are crucial to manage com-
plexity in emerging complex systems but require a solution
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to complicated mixed combinatorial optimization problems.
Several recent efforts have demonstrated that sparse controller
architectures can successfully balance closed-loop perfor-
mance and controller complexity [5], [6], [7], [8], [9], [10],
[11], [12], [13]. One line of research formulated convex struc-
tured optimal control problems for controller design, such as
symmetric modifications [5], [14], [15], diagonal modifications
for optimal sensor and actuator selection [16], and a linear
matrix inequality (LMI) approach with `1-optimization [17].
Another line of research employed an algorithmic approach to
solve the convex problems, such as the alternating direction
method of multipliers [6], [16], the proximal gradient, and
Newton methods [18], and also the second-order method of
multipliers for efficiently identifying the controller structure
and its structured feedback synthesis [19]. However, none
of these works consider the multiplicative noise, which are
normally caused by model-based time-varying stochasticity or
the inherent uncertainties within input–output communication
channels. The system-level disturbances inherently appear on
the system parameters themselves and have fundamentally
different effects on the state evolution than additive noise.
Particularly, a noise-ignorant classical optimal linear-quadratic
controller may destabilize a stochastic system with multiplica-
tive noise in the mean-square sense [20], [21].

The stochastic linear system model with multiplicative noise
has shown its advantages in the controller design with robust-
ness to the inherent state model-based disturbances, and input
channel-based uncertainties [22], [23]. Many recent works pro-
posed various analyses on controlling and filtering the systems
with multiplicative noise, including LMI approach [24], the
Riccati difference equation method [25], and the game theory
approach [26]. However, all of this work uses fully centralized
control architectures, which become impractical and expensive
as scale and complexity increase. These limitations of fully
centralized architectures motivate optimal control architecture
design in stochastic linear systems with multiplicative noise.

In this brief, we propose a sparsity-promoting optimal con-
troller design for stochastic linear systems with multiplicative
noise. Instead of performing a computationally expensive
combinatorial search, our approach leverages the convexity
of various sparsity-promoting matrix norms to encourage the
feedback control matrix, while stabilizing the systems via LMI
constraints. We first present two sparsity exploration problems
to reduce the number of actuators and the number of sensors
via a low-dimensional output. The solutions of these two prob-
lems identify a small number of sensors and actuators required
to stabilize the stochastic system with multiplicative noise.
We then formulate a regularized linear quadratic regulator
with multiplicative (LQRm) noise optimal control problem and
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write it as a semidefinite programming (SDP) problem. This
formulation aims to yield the tradeoffs between the system
performance and sparsity degree of the control architecture by
different sparsity measures. Finally, we apply our approach to
design a sparse wide-area frequency control structure in power
grids. The numerical results on a four-bus system show that
the control structure can be quite sparse at the expense of
a slight loss in performance. We also test the computational
affordability of our approach on an IEEE 39-bus network to
visualize the tradeoffs under various strengths of multiplicative
noise. The noise-aware sparse structure requires more actu-
ators to stabilize the system in the mean-square sense than
the noise-ignorant design, which emphasizes the necessity of
having this optimal structure approach for dynamical systems
with significant system-level disturbances.

II. PROBLEM FORMULATION

A. Stochastic Linear Systems With Multiplicative Noise
Consider stochastic linear systems with state- and input-

dependent multiplicative noises1

dxt =(A0xt +B0ut )dt+
kX

i=1

�i Ai xt d�i t +
X̀

j=1

⇢ j B j ut d� j t (1)

where xt 2 Rn denotes the state vector, ut 2 Rm denotes the
control input vector, �i t (i = 1, . . . , k), and � j t ( j = 1, . . . , `)
denote the disturbances. We assume these disturbances to be
zero mean uncorrelated stationary normalized Wiener pro-
cesses. The following properties hold:

E[d�i t ] = 0, E[d�i t ] = 0, E[d�2
i t ] = dt, E[d�2

i t ]=dt
E[d�i1t d�i2t ] = 0(i1 6= i2), E[d� j1t d� j2t ] = 0( j1 6= j2)

and

E[d�i t d� j t ] = 0
8i, i1, i2 = 1, . . . , k, and 8 j, j1, j2 = 1, . . . , `.

The scale factors �i and ⇢ j indicate the intensities of the
disturbances, which scale the unit variance of d�i t and d� j t .
The constant system matrices are A0 2 Rn⇥n and B0 2 Rn⇥m .
The state diffusion term projects state-dependent noise d�i t
by matrix Ai 2 Rn⇥n , and the input diffusion term projects
input-dependent noise d� j t by matrix B j 2 Rn⇥m . Assuming
the dynamic system (1) is open-loop mean-square unstable,
we apply the sparse methodology in the design of optimal
linear feedback control while stabilizing the system in the
mean-square sense. We first present a LMI condition for the
mean-square stability of (1) and then discuss how to explore
a subset of actuators or sensors by trading off the system
performance under various degrees of sparsity.

1Notation, we use R, R+ and R++ denote the sets of real numbers,
nonnegative real numbers, and positive real numbers, respectively. Sets Sn ,
Sn

+ and Sn
++ collect all n-dimension symmetric matrices, semidefinite positive

matrices and positive definite matrices, respectively. Given a matrix M , M>
denotes its transpose and Tr(M) denotes its trace. We write M ⌫ 0 (M � 0)
to denote that M is semipositive definite (positive definite). For a given
column vector x 2 Rn , we definite kxk1 := P

i |xi |, kxk2 :=
p

x>x and
kxk1 := maxi xi . Further, |·| denotes the absolute value of a number, diag(·)
constructs a diagonal matrix from a vector, and blkdiag(·) returns a block
diagonal matrix. At last, I denotes the identity matrix of the appropriate
dimension. We use the cardinality function card(·) to quantify the number of
nonzero elements of a matrix.

Definition 1: The system (1) is mean-square stable if for
every initial condition E[x0x>

0 ] = 60 the solution of (1)
satisfies

lim
t!+1

E[x>
t xt ] = 0.

Note that the above mean-square stability condition will
converge to a constant if the system (1) also has nonzero mean
additive noise. We give the definition of mean-square stability
for two feedback control schemes and row/column sparsity as
follows.

Definition 2 (State-Feedback Mean-Square Stability): The
system (1) with an initial condition E[x0x>

0 ] = 60 is called
(mean-square) stabilizable if there exists a mean-square stabi-
lizing state-feedback control of the form ut = K xt , where K
is a constant matrix.

Definition 3 (Output-Feedback Mean-Square Stability):
Given the output of the system (1), such that yt = Cxt ,
the system (1) with an initial condition E[x0x>

0 ] = 60 is
called (mean-square) stabilizable if there exists a mean-square
stabilizing output-feedback control of the form ut = K yt ,
where K is a constant matrix.

Definition 4 (Row/Column Sparsity): A matrix K 2 Rn⇥m

is called row-sparse (column-sparse) if there are rows
(columns) where all elements are zero.

B. Stabilization With a Reduced Number of State-Feedback
Controllers

Assume the system (1) is open-loop mean-square unstable
and stabilizable via the state-feedback control, the goal of this
section is to identify potential row-sparsity patterns of the
closed-loop state-feedback control law in the form ut = K xt ,
such that the closed-loop system described by

dxt = (A0 + B0 K )xt dt +
kX

i=1

�i Ai xt d�i t

+
X̀

j=1

⇢i B j K xt d� j t (2)

is mean-square stable. To guarantee the mean-square stability
of the closed-loop system (2), the static state-feedback control
gain matrix K exists if and only if there exists a matrix
X 2 Sn

++ such that the following condition holds [22]:

(A0 + B0 K )> X + X (A0 + B0 K ) +
kX

i=1

� 2
i A>

i X Ai

+
X̀

j=1

⇢2
j K > B>

j X B j K � 0.

Pre- and postmultiplying the above inequality by P = X�1

and introducing a new variable Y = K P , we arrive at the
following condition:

A0 P + P A>
0 + B0Y + Y > B>

0 +
kX

i=1

� 2
i (Ai P)> P�1 Ai P

+
X̀

j=1

⇢2
j (B j Y )> P�1 B j Y � 0 (3)
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where P = P> 2 Sn
++ and Y 2 Rm⇥n are the matrix variables.

A stabilizing state-feedback controller can be reconstructed by
K = Y P�1. Leveraging the Schur’s Lemma, we transform the
condition (3) together with P � 0 into a LMI


A0 P + P A>

0 + B0Y + Y > B>
0 Z

Z> Z P

�
� 0 (4)

where Z =
⇥
�1 P A>

1 , . . . , �k P A>
k , ⇢1Y > B>

1 , . . . , ⇢`Y > B>
`

⇤

and

Z P = blkdiag (�P, . . . ,�P)| {z }
k+`

.

If Y is row sparse, then the state-feedback law K is row
sparse as well since postmultiplication preserves the zero-row
structure. Hence, we promote row sparsity of Y through the
following SDP:

min
Y,P

kYkr , s.t. (4) and P � 0 (5)

where kYkr represents a generic row-sparsity induced function
that can be chosen from row-norm [17], group LASSO [27]
and sparse Group LASSO [27]. Note that the stabilizing
state-feedback control matrix Krsp with an identified row
sparse pattern can be obtained from the solution P⇤

rsp, Y ⇤
rsp

of the above SDP problem, with the linear feedback control
matrix calculated as Krsp = Y ⇤

rsp P⇤
rsp

�1. Note that having
additional additive noise in the system dynamic does not
change the overall sparse control design process as long as the
additive noise has zero mean and finite covariance. Under these
assumptions, an additional term will appear in (3) as a function
of the covariance of the additive noise. The modified LMI will
be included in the proposed sparsity-promoting problems in
the rest of the brief. We refer interested readers to [28] for
more detailed information.

C. Stabilization With a Reduced Number of Output-Feedback
Controllers via a Low-Dimensional Output

In this section, we present a stabilization solution to reduce
the number of output-feedback controllers ut = K yt via a
low-dimensional output yt = Cxt , where yt 2 Rny is the
output vector and C 2 Rny⇥n is the output matrix. Assume
the system (1) has the exact measurements of the full states
and is stabilizable via an output-feedback control law K . Note
that the potential stabilization solutions via output-feedback
controllers highly depend on the C matrix. Here, we assume
that there is at least one low-dimensional output that can
enable the sparse control structure. The goal of this section
is to obtain a low-dimensional system output matrix C and a
column-row sparse output-feedback matrix K to stabilize (1).
To have a low-dimensional output matrix C and a column
sparse matrix K , we first change the row sparsity promoting
function kYkr in (5) to a generic column sparsity induced
norm kYkc and come to

min
Y,P

kYkc, s.t. (4) and P � 0. (6)

Similar to the row sparse state-feedback law from (5), the
solution of (6) promotes the column sparsity on Y ⇤

c . Note that
the feedback law is in the form

ut = Y ⇤
csp P⇤

csp
�1xt (7)

where Y ⇤
csp and P⇤

csp are the solution of (6). Interestingly, the
sparsity pattern of the output-feedback ut = Kcsp yt can be
attained by mapping the matrix multiplication of the term
Y ⇤

csp P⇤
csp

�1 in (7) and the term KcspCrsp in

ut = Kcsp yt = KcspCcspxt .

The output-feedback law Kcsp consists of nonzero-columns of
Y ⇤

csp and the output matrix Crsp takes the rows of P⇤
csp

�1 with
same indices. In this way, we reduce the number of outputs in
yt = Ccspxt while stabilizing the system by a column sparse
output-feedback ut = Kcsp yt .

After we identify the column sparsity pattern of the
output-feedback law Kcsp, we continue to explore the potential
row sparsity to reduce the number of the output-feedback
controllers. Having the knowledge of potential column sparsity
of variable Y by solving (6), we integrate the identified
zero-column pattern of the solution Y ⇤

csp as additional con-
straints into (5) and come to

min
Y,P

kYkr (8a)

s.t. Yc,i = 0 8i 2 C (8b)
P � 0 and (4) (8c)

where Yc,i indicates the i th column of the variable Y
and the set C collects the indices of all zero columns
of Y ⇤

csp. The solution of (8) are Y ⇤
sp and P⇤

sp. We adopt the
output-feedback law Ksp as the same row-column sparsity
of Y ⇤

sp and the output matrix Csp consists of the zero rows
of P⇤

sp
�1. The feedback control structure ut = Ksp yt has

the row-sparsity such that the corresponding controllers can
be removed with a low-dimensional output yt = Cspxt .
By solving these two sparsity-promoting problems (6) and (8)
in sequence, we can identify the potential sparsity structure
to design low-dimensional outputs and remove unnecessary
output-feedback controllers for stabilizing. Clearly, the sparse
control structure with a subset of outputs and controllers will
reduce system performance. We will discuss the performance
degradation and sparsity tradeoffs in the rest of this brief.

Remark 1 (Sparsity-Promoting Norms): Given a matrix
Y 2 Rm⇥n , the row and column sparsity can be induced
by various sparsity-promoting matrix norms, respectively,
defined as [17]

kYkrow =
mX

i=1

kYr,ik1, kYkcol =
nX

j=1

kYc, jk1

where kYr,ik1 and kYc, jk1 are the maximum absolute values
of the i th row and j th column of matrix Y , respectively.
Row and column sparsity can also be induced by the row
and column group LASSO [27]

kYkrGL =
mX

i=1

kYr,ik2, kYkcGL =
nX

j=1

kYc, jk2

where kYr,ik2 and kYc, jk2 are the vector `2-norms of the
i th row and j th column of matrix Y , respectively. The row
and column sparse group LASSO [27] can also promote the
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sparsity pattern

kYkrSGL,µ =
mX

i=1

(1 � µ)kYr,ik1 + µkYr,ik2

kYckcSGL,µ =
nX

j=1

(1 � µ)kYc, jk1 + µkYc, jk2

where kYr,ik1 and kYc, jk1 are the vector `1-norms of the i th
row and j th column of matrix Y , respectively. The prescribed
constant µ 2 [0, 1] quantifies the weight on two combined
norms. In the rest of this brief, we refer to kYkreg as a generic
sparsity-promoting regularizer in the following optimal design
formulation.

It is worth emphasizing that the above sparse structure
design problems are also applicable to the systems with open-
loop mean-square stability for allowing performance tradeoffs,
which will be discussed in the rest of this brief. Note that the
proposed sparsity-promoting problems (6) and (8) are SDP
problems, which can be solved by many off-the-shelf solvers,
e.g., MOSEK.

D. Tradeoff Between Performance and Degree of Sparsity
We now consider an application of our approach to the

LQRm noise for the system (1) given an initial condition
E[x0x>

0 ] = 60

min
ut (·)

J (60, u(·)) = E

Z 1

0

�
x>

t Qxt + u>
t Rut

�
dt (9a)

s.t. dxt = (A0xt + B0ut )dt +
kX

i=1

�i Ai xt d�i t

+
X̀

j

⇢ j B j ut d� j t (9b)

where Q and R are given positive definite. The objective is to
determine an optimal linear state-feedback (output-feedback)
control law to tradeoff the LQRm closed-loop performance
and the sparsity of the linear feedback control gain K .2 For
state-feedback control ut = K xt , we are ultimately interested
in a regularized LQRm problem with an alternative objective

min
K

J (60, ut (K )) + � Jreg(K )

where Jreg(K ) is a sparsity-promoting function of K and �
specifies the importance of its sparsity. Together with
the stability constraint (4), the optimal control problem
of determining stabilizing closed-loop state-feedback K
that minimizes the LQRm cost and detecting the potential
sparsity structure of K can be reformulated as the following
optimization problem [28]:

min
Y,P

Tr(60 P�1) + � kYkreg (10a)

s.t. P � 0 (10b)

A0 P + P A>
0 + B0Y + Y B>

0 +
kX

i=1

�i P A>
i P�1 Ai P

+
lX

j=1

� j Y > B>
j P�1 B j Y + Y > RY + P Q P � 0. (10c)

2We here omit the regularized LQRm problem with static output-feedback
control. The corresponding reformulation closely follows the line of the steps
as state-feedback control but has the output-feedback control law ut = K yt =
K Cxt instead.

Note that (10) is intractable due to the matrix inverse of
variable P�1 in the objective and the nonlinear multiplication
in (10c). We then introduce new (slack) variables 5 2 Rn⇥n

and  2 R, while minimizing the upper bound of the LQRm
cost, i.e., J = Tr(60 P�1)   . By leveraging the Schur’s
Lemma [28], [29], we come to the following SDP problem:

min
Y,P,5,

 + � kYkreg (11a)

s.t. Tr(5)  ,

"
5 6

1
2
0

6
1
2
0 P

#

⌫ 0, P � 0 (11b)

2

664

A0 P + P A>
0 + B0Y + Y > B>

0 Z Y > P
Z> Z P 0 0
Y 0 �R�1 0
P 0 0 �Q�1

3

775 � 0.

(11c)

The solution Y ⇤, P⇤, 5⇤ and ⇤ defines an sparse stabilizing
law Ksp = Y ⇤ P⇤�1 and the upper bound of the LQRm cost
J ⇤(K ) = Tr(60 P⇤�1)  ⇤. Note that (11) is convex and
can be solved by several academic and commercial SDP
solvers. Our proposed method may identify a quite sparse
control structure with only a small loss in performance,
as demonstrated by the numerical studies in Section III.

III. APPLICATION TO POWER GRIDS

We apply our proposed methodology to devise an optimal
wide-area frequency control scheme for a power transmission
system. The objective is to design a sparse linear feedback
frequency control architecture, which stabilizes the frequency
dynamics with modeling errors as multiplicative noise. Con-
sider a lossless transmission system [30] modeled as a graph
G = (N , E) with nodes (or buses) N = {1, . . . , N } and
edges (or lines) E ✓ N ⇥ N . The topology of grid is
represented by the Laplacian matrix L 2 RN⇥N induced
by the line susceptances bi j for all (i, j) 2 E (see [31]).
We partition all buses into the buses with generators G (i.e.,
synchronous machines and inverter-based generators) and the
buses with frequency-sensitive loads L, where N = G [ L.
The states of the network for all i 2 N are the angle ✓i and
frequency !i of the sinusoidal voltage signals. The associated
system dynamics [32], [33] derived from linearized swing
equations are given by

✓̇ i = !i 8i 2 N (12a)

Mi ✓̈ i + Dg,i ✓̇ i = �
X

(i, j)2E
bi j (✓i � ✓ j ) + ui 8i 2 G (12b)

Dl,i ✓̇ i = �
X

(i, j)2E
bi j (✓i � ✓ j ) + ui 8i 2 L (12c)

where ui 2 R is a controllable generation or load for all i 2 N .
A generator bus i 2 G is characterized by its inertia Mi 2 R++
(rotational or virtual inertia) and its droop coefficient Dg,i 2
R++. A frequency-sensitive load bus i 2 L is characterized
by its sensitivity coefficient Dl,i 2 R++.

Here, we consider inertia variations caused by inverter-based
generation or modeling errors, which are modeled by treating
the inertia parameters Mi as multiplicative noise rather than
simply a constant [31]. The inertia parameters for all i 2 G,
Mi can be modeled as random parameters with the mean
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value Mi and the variance � 2
i [31]. In general, the modeling

errors of the network topology L and frequency-sensitive coef-
ficients D`,i/Dg,i can also be treated as multiplicative noises
in (12). For simplicity, only the inertia parameter randomness
is considered. The above dynamics can be formulated in a
generalized form with outputs as a multiinput multioutput
stochastic linear system with multiplicative noise

dxt = A0xt dt +
|G|X

i=1

�i (Ai xt + Bi ut )d�i t

yt = Cxt , xt =
⇥
✓>

g,t , !
>
g,t , ✓

>
l,t

⇤> (13)

where

A0 =

2

4
0 I 0

�M�1Lgg �M�1 Dg �M�1Lgl

�D�1
l Llg 0 �D�1

l Lll

3

5

B0 =

2

4
0

M�1

0

3

5, Ai =

2

4
0 0 0

Ri Lgg Ri Dg Ri Lg`

0 0 0

3

5, Bi =

2

4
0
Ri
0

3

5

and the vectors ✓g,t 2 R|G|/✓l,t 2 R|L| and !g,t 2 R|G| collect
the angle states of generation/load buses and the frequency
states of generation buses, respectively. Note that the inertia
parameter for every generator Mi , i 2 G appears in the
state compact form (13) as the inverse distribution of Mi

with the mean value M
�1
i and the variance � 2

i . The matrix
M�1 := diag(M

�1
i ) 2 R|G|⇥|G| collects the mean values of the

inverse distribution of Mi . The modeling error of the inverse
of inertia parameter d�t for all i 2 G is considered as an
independent Wiener process normalized by �i . The diagonal
matrix Dg 2 R|G|⇥|G| collects the droop coefficients Dg,i
at all buses i 2 G and the diagonal matrix Dl 2 R|L|⇥|L|

collects the sensitivity coefficients Dl,i at all buses i 2 L.
The matrices Lgg 2 R|G|⇥|G|, Llg 2 R|L|⇥|G| and Lgl 2
R|G|⇥|L|, Lll 2 R|L|⇥|L| are derived from the original Laplacian
matrix L , which represent the weighted connections between
different types of buses (i.e., load and generation). We define
an inertia disturbance allocation matrix Ri 2 RN⇥N in Ai
and Bi associated with each bus i 2 G. The elements in
Ri are all zeros except for one diagonal element rii = 1,
which maps the corresponding inertia disturbance d�i onto
bus i . If the inertia variation at bus i is insignificant, we set
Ri = 0 to remove the inertia disturbance on i th bus. In the rest
of this brief, we conduct numerical experiments on two power
networks. A small power system is used to numerically show
the design results and a large-scale power system is utilized
to demonstrate the computational-affordability of the proposed
LMI approach.

We first test our approach on a toy example, i.e., a four-
area interconnected power system. The grid topology and
line parameters can be found in [31]. The damping/frequency
sensitivity coefficients are set to Di = 10 for all buses i 2 N .
The mean value of inertia is Mi = 10 for all i 2 G and
the standard deviation of the inverses distribution of M�1

i

is 10% of the inverse mean value, i.e., �i = 10%M
�1
i for

all i 2 G. Note that the open-loop dynamics (12) is not
mean-square stable if the multiplicative noise variance is
significant. More details of modeling and stability analysis

related to this example can be found in our previous work [31].
In this brief, we mainly focus on finding the sparse structure of
the closed-loop feedback control for generators that stabilize
the frequency dynamics with inertia disturbances. The initial
condition of states is 60 = 0.1I and the coefficients of the
LQRm cost are Q = I and R = I .

A. Reducing the Number of State-Feedback Controllers
We first check if the stochastic linear system (13) is

mean-square stabilizable (no sparsity induced) via a closed-
loop state-feedback controller ut = K xt by solving (11) with
� = 0. The obtained solution is

K0

=
"�0.2329 �0.0939 �0.0236 �0.2740 �0.0879 �0.0216
�0.0941 �0.3008 �0.0823 �0.0878 �0.3358 �0.0770
�0.0236 �0.0822 �0.2075 �0.0216 �0.0771 �0.2503

#

.

Having bus 4 grounded (as an infinite bus) for model reduc-
tion [31], the system has six states, three inputs and three
independent multiplicative noises, and all three generators
participate in stabilizing the grid. The state-feedback law K
is fully populated and the LQRm cost is ⇤

0 = 1.7915.
To obtain a row sparse solution K for the reduced number
of state-feedback controllers, we again solve the regularized
LQRm (11) using the row-norm kYkrow with � = 4, which
results at a sparse structure

Krsp,4

=
"�0.0114 �0.0153 �0.0103 �0.0110 �0.0147 �0.0099
�0.0718 �0.0960 �0.0645 �0.0692 �0.0925 �0.0622

0 0 0 0 0 0

#

.

This leads to a slight increase of LQRm cost ⇤
4 = 1.8757.

The row sparse state-feedback control law Krsp,4 indicates that
the generator 3 is not necessarily required to stabilize the
system but at the expense of 4.67% decrease of the closed-loop
performance.

B. Reducing the Number of Output-Feedback Controllers via
a Low-Dimensional Output

To obtain a sparse structure of the output-feedback control
ut = K yt = K Cxt , we first solve (11) by using the column-
norm kYkcol as the sparsity regularizer with � = 0.5. We attain
the solution Y ⇤

csp,0.5 and P⇤
csp,0.5, specifically

Y ⇤
csp,0.5 =

2

4
�0.0177 �0.0400 0.0078 0 0 0
�0.0177 �0.0439 �0.0080 0 0 0

0.0074 �0.0387 �0.0080 0 0 0

3

5.

Now, we can start to shape two matrices Kcsp and Crsp. Since
we have K = Y P�1, the sparse output-feedback controller
Kcsp includes the nonzero columns of Y ⇤

csp,0.5, resulting in
toY ⇤

csp,0.5

Kcsp,0.5 =

2

4
�0.0177 �0.0400 0.0078
�0.0177 �0.0439 �0.0080

0.0074 �0.0387 �0.0080

3

5.

The associated 3-D output matrix consists of the first three
rows of the solution P⇤

csp,0.5
�1, i.e.,

Crsp,0.5 =

2

4
2.9985 0.9354 0.2549 2.3444 0.9222 0.2352
0.9354 3.6956 0.8172 0.9155 3.0168 0.8046
0.2549 0.8172 2.7508 0.2349 0.8127 2.0984

3

5.
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We now move further to reduce the number of output-
feedback controllers by exploring the row sparsity of Kcsp.
Forcing the last three columns of Y to equal zero as addi-
tional constraints, we then solve (11) again use the row-norm
regularizer and � = 2.6. The solution Y ⇤

sp,2.6 has a row-column
sparse pattern

Y ⇤
sp,2.6 =

2

4
0 0 0 0 0 0

�0.0130 �0.0130 �0.0130 0 0 0
0 0 0 0 0 0

3

5.

Then we adopt

Ksp,2.6 =

2

4
0 0 0

�0.0130 �0.0130 �0.0130
0 0 0

3

5

as a row-column sparse output-feedback law. The output
matrix Csp,2.6 is composed of the first three rows of P⇤

sp,2.6
�1

Csp,2.6 =

2

4
3.0963 1.0656 0.3010 2.4546 1.0592 0.2839
1.0656 3.8739 0.9181 1.0653 3.2085 0.9221
0.3010 0.9181 2.8063 0.2843 0.9176 2.1612

3

5.

At the end, the designed output-feedback controller uses one
generator with a 3-D output feedback to stabilize the system
at the expense of 5.5% LQRm cost increase compared to
⇤

0 = 1.7915. Overall, the design procedure of a sparse
output feedback controller via a low-dimensional output can
be summarized as follows.

1) solve the relaxed LQR problem (11) to detect a
column-sparse pattern of matrix Y ⇤

csp,� and the associated
solution P⇤

csp,� ;
2) build the column sparse control law matrix Kcsp,� from

Y ⇤
csp,� and the associated low-dimensional output matric

Crsp,� from P⇤
csp,� ;

3) resolve the relaxed LQR problem (11) again by forcing
the zero columns of Y as additional constraints;

4) build the row-column sparse feedback control law Ksp,�

from the solution Ysp,� and update the associated output
matrix Csp,� .

C. Tradeoff the System Performance and the Degree of
Sparsity

To discuss the computational cost of our approach on a
large-scale system, we use the IEEE 39-bus New England
transmission system to visualize the tradeoffs between the
sparsity degree of the structure and the LQRm cost under
various multiplicative noise settings. This model consists of
39 buses and ten generators, where the generator 10 is an
equivalent aggregated model [34]. We use the MOSEK SDP
solver [35] via the MATLAB interface CVX [36] on a laptop
with 16 GB memory and 2.3 GHz Intel Core i7-10510U CPU.
It took 121.7 s to solve (11) with ten inputs, 47 states, and ten
independent multiplicative noises. The inertia mean value is
Mi = 10 for all generators i 2 G and the damping/frequency
sensitivity coefficient is set to Di = 10 for all buses i 2 N .
We vary the sparsity importance � to tradeoff the sparsity
degree of the state-feedback control law K and the LQRm
performance. The LQRm cost coefficients are Q = I and
R = I . The initial state condition is 60 = 0.1I .

Fig. 1. Sparsity patterns of the closed-loop state-feedback K resulting
from the row-norm regularizer under various � . The white elements represent
(nearly) zero entries.

Fig. 2. Sparsity comparison under different row-sparsity regularizers.

A few of sparsity patterns under different sparsity impor-
tance scenarios (i.e., � = 0, 5, and 7) are presented in
Fig. 1. For � = 0, the optimal feedback gain K0 is fully
populated, thereby requiring all ten generators contributing
to a mean-square stabilizing solution. As � increases, the
rows of the state-feedback matrix K� become significantly
sparse whereas the relative cost objective (⇤

� �⇤
0 )/⇤

0 increase
only slightly, see Fig. 2. In particular, for � = 5, the
identified control architecture indicates that the controllers of
generators 2, 9, and 10 are not necessarily required to stabilize
the system. As � increases to seven, most of the stabilization
burden is on generator 8 but only with 1.4% LQRm cost
increase.

We next compare the LQRm cost with various levels of mul-
tiplicative noise shown in Fig. 2. As the standard deviation �
of the multiplicative noise increases, the LQRm cost becomes
larger since more control effort is required for stabilizing the
system-level disturbances. In addition, two sparsity-promoting
structures of the noise-aware (�i/M

�1
i = 50%) and noise-

unaware (� = 0) state-feedback controllers Krsp,� are given
in Fig. 3. We observe that more generators need to be
included for stabilizing due to the significant system-level
disturbance. This also implies that a noise-unaware state-
feedback controller may fail to stabilize a stochastic linear
system with substantial multiplicative noise in a mean-square
sense. In practice, the multiplicative noise inherently comes
with the linearized system models and noisy control channels.
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Fig. 3. Sparsity patterns of the noise-unaware and noise-aware state-feedback
control law Krsp,� .

Fig. 4. Sparsity comparison under different row-sparsity regularizers with
�i /M�1

i = 10%.

This emphasizes the importance and necessity of having a
noise-aware sparse architecture design to improve robustness
to system-level disturbances for a mean-square stabilizing
solution. In the end, we validate our approaches with various
row sparsity-induced norms, such as the row-norm, the group
LASSO, and the sparse group LASSO, see Fig. 4. All of three
sparsity-promoting norms successfully induce various sparsity
patterns under different � . The sparse group LASSO (with
µ = 0.5) and the group LASSO lead to more aggressive
sparsity patterns than the row-norm regularize.

Overall, we conclude that our approach successfully pro-
vides a sparse control solution, which reduces the number of
controllers (with low-dimensional outputs) only at the expense
of a small decrease of system performance. This proposed
LMI approach is convex and computationally affordable for a
large-scale dynamic system.

IV. CONCLUSION

This brief proposed a sparse feedback control architecture
design for stochastic linear systems with multiplicative noise.
We minimize the sparsity-promoting matrix norms subject to
a mean-square stability LMI condition as an SDP problem
to approximate the complicated and nonconvex combinatorial
problem. For a large-scale dynamic system with network-
wide disturbances, the designed sparse stabilizing solution
successfully reduces the number of controllers, limits the
unnecessary output information exchanges, and slightly trade-
offs the LQRm cost. However, there remain several lines of
future work that can extend the present design to various
applications and understand the benefits and limitations to
trade off system performance and sparsity of the control
schemes. Future work could involve.

1) Applying the proposed approach to devise the sparse
control architecture for different applications, such as
water networks, traffic control, and others.

2) Conducting sensitivity analysis to reveal insights into the
relative importance of actuators and sensors.

APPENDIX
RESULTS FOR DISCRETE-TIME STOCHASTIC

LINEAR SYSTEMS

In this appendix, we present the mean-square stability
condition and the reformulation of the regularized LQRm
problem for a discrete-time linear system with state- and
input-dependent multiplicative noises. Consider a discrete-time
stochastic linear system

xt+1 = A0xt + B0ut +
kX

i=1

� i Ai xtwi t +
X̀

j=1

⇢ j B j ut p jt (14)

where xt 2 Rn denotes the state vector, ut 2 Rm denotes
the control input vector, and wi t (i = 1, . . . , k) and p jt ( j =
1, . . . , `) denote the independent, identically random variables
with

E[wi t ] = 0, E[p jt ] = 0, E[w2
i t ] = � 2

i , E[p2
j t ] = ⇢2

j

E[wi1,twi2,t ] = 0 (i1 6= i2), E[p j1 p j2 ] = 0 ( j1 6= j2)

and

E[wi t p jt ] = 0
8i, i1, i2 = 1, . . . , k, and 8 j, j1, j2 = 1, . . . , `.

The scale factors � i and ⇢ j indicate the standard deviation
which normalize wi t and p jt with the unit variance. The
constant system matrices are A0 2 Rn⇥n and B0 2 Rn⇥m . The
state-dependent noise is allocated by matrix Ai 2 Rn⇥n , and
the input-dependent noise is allocated by matrix Bi 2 Rn⇥m .
The system (14) is stabilizable via the state-feedback control
ut = K xt if and only if there exists a matrix X 2 Sn

++ such
that the following condition holds:

(A0 + B0 K )> X (A0 + B0 K )�X +
kX

i=1

� 2
i A

>
i X Ai

+
X̀

j=1

⇢2
j K > B

>
j X B j K � 0.

We pre- and postmultiply the above inequality by P = X�1

and introduce a new variable Y = K P , which leads to

(A0 P + B0Y )> P�1(A0 P + B0Y ) � P

+
kX

i=1

� 2
i P> A

>
i P�1 Ai P +

X̀

j=1

⇢2
j Y

> B
>
j P�1 B j Y � 0. (15)

We then apply the Schur’s Lemma on (15) and come to a LMI
2

4
P (A0 P + B0Y ) Z

(A0 P + B0Y )> P 0
Z

> 0 Z P

3

5 � 0 (16)

where Z =
⇥
� 1 A1 P, . . . , � k Ak P, ⇢1 B1Y, . . . , ⇢` B`Y

⇤
and

Z P = blkdiag (X, . . . , X)| {z }
k+`

.
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Equation (16) can replace the stability condition (4) in the
row sparsity-promoting problem (5) and the column sparsity-
promoting problem (6) when the system dynamic is given
in the discrete-time domain. Similar to (11), we present
a relaxation of the regularized LQRm formulation for the
stochastic discrete linear system (14) to minimize the upper
bound of LQRm cost

min
Y,P,,5

 + � kYkreg (17a)

s.t. Tr(5)  ,

"
5 6

1
2
0

6
1
2
0 P

#

⌫ 0, P � 0 (17b)

2

66664

P (A0 P + B0Y ) Z Y P
(A0 P + B0Y )> P 0 0 0

Z
> 0 Z P 0 0

Y > 0 0 R�1 0
P 0 0 0 Q�1

3

77775
� 0

(17c)

where  2 R and 5 2 Rn⇥n are the slack variables. The
importance of sparsity is defined by � . The initial state
condition is E[x0x>

0 ] = 60 and the cost matrices Q and R
are positive definite. The solution Y ⇤, P⇤, 5⇤, and ⇤ defines
an sparse stabilizing law Ksp = Y ⇤ P⇤�1 and the upper bound
of the LQRm cost J ⇤(K ) = Tr(60 P⇤�1)  ⇤.
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