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cvxRiskOpt: A Risk-Based Optimization
Tool Based on CVXPY

Sleiman Safaoui , Member, IEEE, and Tyler H. Summers , Member, IEEE

Abstract—We introduce cvxRiskOpt (convex Risk-based
Optimization): a Python package built on top of CVXPY
for the rapid prototyping of convex risk-based optimization
problems and generating embeddable C code using
CVXPYgen. Our package provides high-level functions
to handle several risk-based optimization problems and
constraints. These functions reformulate problems and
constraints involving random variables and uncertainty
into deterministic convex counterparts. The output is
either a CVXPY Problem instance or CVXPY constraints
that users can directly add to their CVXPY Problem
instance. Accordingly, our package can use CVXPYgen
to generate C code resulting in custom embeddable risk-
based optimization problems. cvxRiskOpt is available at
https://tsummerslab.github.io/cvxRiskOpt/.

Index Terms—Computational methods, uncertain
systems, optimization.

I. INTRODUCTION

MODELING languages and parser solvers have become
standard tools for the rapid prototyping of optimization

problems. These tools, such as CVXPY [1], Yalmip [2],
CasADi [3], and many others, allow users to express
optimization problems in a natural math-like syntax instead
of restrictive standard forms that are usually required
by optimization problem solvers such as ECOS [4],
CLARABEL [5], SCS [6], or others. This makes coding and
solving prototype optimization models significantly faster. In
this letter, we focus on tools using the Python programming
language such as CVXPY.

Rapid prototyping tools are somewhat less well-developed
for stochastic, robust, and distributionally robust optimization
problems (SO, RO, and DRO respectively), which explicitly
incorporate uncertainties in the problem data. We refer to
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these problems collectively as risk-based optimization (RBO).
Generally, a (parametrized) RBO problem can be written as:

min
x

sup
P∈P

R0(f0(x, θ, ξ)) (1)

s.t. sup
P∈P

Ri(fi(x, θ, ξ)) ≤ bi, i = 1, . . . , p

where x is a vector of optimization variables, θ is a vector of
parameters whose values can change but are constant when
solving the problem, and ξ is a random vector. The b∗ terms
are constants and R∗ represent risk metrics [7], [8], [9] that
measure the risk associated with the nominal objective and
constraint functions f∗ that are random variables themselves
since they depend on ξ . To evaluate the risk associated
with f∗, their distributions must be known. However, the
underlying uncertainty distributions are never known. As such,
an ambiguity set P is used to represent and reason about all
distributions that have certain characteristics. This definition
for (1) based on DRO includes SO and RO as special cases.
For example, if P = {P}, i.e., the distribution is known to be
P, then a risk metric R is evaluated with respect to P.

RBO problems are generally challenging to solve and may
not be tractable. However, for some choices of ambiguity
sets, risk metrics, and functions f∗, (1) can be transformed
into an equivalent deterministic optimization problem [9],
[10], [11], [12]. In many cases, the transformations can
be tedious, analogous to when transforming deterministic
optimization problems into standard solver forms. Some
modeling and parsing tools which have addressed cer-
tain classes of RBO problems include cvxstoc [13] and
MSPPy [14] for SO, PYomo [15] with its extensions PySP
for SO and ROmodel [16] and PyROS [17] for RO, and
PICOS [18] and RSOME [19] for RO and DRO problems.
Table I summarizes the types of problems considered by these
tools.

A useful extension to these tools is the automatic gener-
ation of custom C code for embedded system applications
and enhanced solve times [20]. This allows users to write
optimization problems in mathematical terms and automati-
cally generate optimized C code. Unlike the general-purpose
optimization problem modeling tools mentioned earlier, there
are much fewer tools that support code generation. Examples
include TinyMPC [21], CVXGEN [20], and CVXPYgen [22].
TinyMPC is a recent package for generating embeddable code
specifically for deterministic MPC problems. CVXGEN is
an older tool for generating C code for linear and quadratic
programs that is being superseded by CVXPYgen which
supports a wide range of CVXPY Problem instances including
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TABLE I
PYTHON OPTIMIZATION PACKAGES COMPARISON

parameterized second-order cone programs. However, these
tools do not have native support for RBO problems.

To streamline prototyping RBO problems, it is desirable
to have a single tool that allows users to encode them using
high-level functions and easily generate C code.

Contributions: We present cvxRiskOpt, a Python package
for CVXPY to address this gap. Our package returns CVXPY
Problem instances and CVXPY constraints for some RBO
problems and risk constraints, making it easier to formu-
late RBO problems. Since cvxRiskOpt extends the CVXPY
ecosystem, we can utilize CVXPYgen to generate C code as
well. The main contributions of cvxRiskOpt are:

• supporting rapid prototyping with certain SO and DRO
problems, including

– variations of chance-constrained linear programs
with moment-based ambiguity sets

– variations of worst-case expectation problem with
Wasserstein-based ambiguity sets

• integrating the deterministic reformulations of the above
problems into CVXPY Problem instances

• utilizing CVXPYgen to generate C code.
To the best of our knowledge, none of the tools that
overlap with cvxRiskOpt‘s utility enable easily encoding
RBO problems and automatic code generation, simultane-
ously. RSOME supports many RO and DRO problems;
however, it has a few disadvantages and limitations. The
modeling of ambiguity sets is based on Event-wise Ambiguity
Sets [23]. While [23] provides examples of formulating several
ambiguity sets as event-wise ambiguity sets (e.g., Generalized-
Moment Ambiguity Sets and Wasserstein Ambiguity Sets),
the formulation is complicated, which poses an additional
challenge for non-experts who may simply want to experiment
with some standard formulations. Compared to RSOME,
PICOS provides a more user-friendly interface to a few types
of RO and DRO problems that it supports. However, neither
RSOME nor PICOS supports automatic code generation.
While cvxRiskOpt is currently more limited in its support
for RBO problems, it provides a user-friendly and beginner-
friendly interface for rapid prototyping with some widely-used
risk-based problems and constraints, it extends the features
of CVXPY, and it benefits from CVXPYgen for C code
generation which can be used for embedded applications or
faster solve times [22].

Notation: Let ⟨x, y⟩ = xTy denote the inner product, [a : b]
denote set of natural numbers from a to b (inclusive), and ∥·∥⋆
denote the dual norm.

II. MODELING RBO PROBLEMS

Our package, cvxRiskOpt, builds on top of CVXPY and
provides tools to convert some convex RBO problems and
constraints into CVXPY Problem classes and constraints.
Upon obtaining a CVXPY Problem, its parameters can be set
and the class’s methods can be used to solve the problem and
get an optimal solution using the CVXPY API [24]. For linear,
quadratic, and second order cone Problem instances, C code
can be generated using CVXPYgen.

We consider some prototypical convex RBO problems.
Currently, cvxRiskOpt supports reformulating the worst-case
expectation with a Wasserstein-based ambiguity set [25],
into a CVXPY Problem instance (Section III) and refor-
mulating some chance constraint linear programs (CCLPs),
including the distributionally robust value-at-risk (DR-VaR)
with a moment-based ambiguity set, into CVXPY constraints
(Section IV).

III. WASSERSTEIN WORST-CASE EXPECTATION
PROBLEMS

Our proposed package, cvxRiskOpt, currently supports two
special classes of the general RBO problem (1). We begin with
Wasserstein worst-case expectation (WCE) problems.

Consider a random variable ξ for which we have N samples
ξ̂i, i ∈ [1 : N]. Let the empirical distribution formed by these
samples be P̂N . As the true distribution of ξ is unknown,
consider a Wasserstein-based ambiguity set to be robust
against, i.e., the set of all distributions in the Wasserstein ball
around the empirical distribution Bϵ(P̂N) per [25, (6)]. This
worst case expectation (WCE) problem [25, (10)] with respect
to the Wasserstein-based ambiguity set is given by:

WCE sup
P∈Bϵ

(
P̂N

) EP[ℓ(ξ)] (2)

where ℓ(ξ) is a decision-independent loss function. Note
that (2) may appear in (1) in the objective function (e.g.,
Section V-A) or as the left-hand-side of the inequality con-
straints (e.g., [26, Def. 3]). For a piecewise affine loss function
ℓ(ξ), (2) can be reformulated into a computationally tractable
convex optimization problem [25]. In particular, here we focus
on the case where ℓ(ξ) is a piecewise affine loss function
consisting of a max of affine terms.

Suppose that the uncertainty set is a polytope characterized
by Cξ ≤ d where C, d are a matrix and vector of appropriate
dimensions. Let ℓ(ξ, x, y) = maxk≤K ℓk(ξ, x, y) with

ℓk(ξ, x, y) := ⟨ak(x), ξ ⟩ + bk(y)

where ak(x) is a vector that may depend linearly on x,
and bk(y) = ⟨bk, y⟩ + ck is a scalar and may be linear in
some decision variable y. Note that (2) is not evaluated with
respect to x, y. Instead, x, y can be optimized for by another
optimization problem (e.g., minx,y WCE).

From [25, (15a)], the WCE problem (2) where ℓ is a max
of affine terms is equivalent to:

inf
λ,si,γi,k

λϵ + 1
N

N∑

i=1

si (3)

s.t. ⟨ak(x), ξ̂i⟩ + ⟨bk, y⟩ + ck + ⟨γi,k, d − Cξ̂i⟩ ≤ si∥∥∥C⊤γi,k − ak(x)
∥∥∥

⋆
≤ λ, γi,k ≥ 0
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where the constraints are ∀i ∈ [1 : N], ∀k ∈ [1 : K].
To encode the reformulation (3), cvxRiskOpt defines a

WassWCEMaxAffine class, which inherits from CVXPY
Problem. Then, the WCE term (2) can be encoded as:

prob = WassWCEMaxAffine(N,a_k,b_k,C,d,used_norm).

Users only need to specify the number of samples
N = N and lists containing ak(x), bk(y) terms (a_k, b_k).
The support set parameters C =C, d =d and the norm
(used_norm ∈ {1, 2,∞}) are optional parameters. The
WassWCEMaxAffine class automatically creates CVXPY
parameters eps, samp for the Wasserstein ball radius ϵ and
the data samples ξ , respectively. The parameter values can be
set by the user with the desired radius and the data either using
the CVXPY syntax (i.e., param.value = val) or through the
cvxRiskOpt function:

update_wass_wce_params(prob,eps,samp).

We also implement some special cases of (3) that we also
provide cvxRiskOpt classes for.

A. Wasserstein Distributionally Robust Expectation
The Distributionally Robust Expectation (DR-E) is imple-

mented as a special case of (3) where the loss function
only has a single term: ℓ(ξ, x, y) = ℓ1(ξ, x, y). In
cvxRiskOpt, we provide the following class that inherits from
WassWCEMaxAffine:

WassDRExpectation(N, a, b, C, d, used_norm)

which implements supP∈Bϵ(P̂N )
EP[⟨a(x), ξ ⟩ + b(y)].

The class also supports some problem arithmetic between
problems that use the same Wasserstein ball radius ϵ and same
samples ξ .

Adding a WassDRExpectation and a WassWCEMax
Affine problem returns an instance of WassWCEMaxAffine.

Subtraction. Subtracting WassDRExpectation prob-
lems is similar to their addition by the linearity of expectation.

Multiplication. Scalar multiplication is allowed with a
WassDRExpectation problem.

Division. Scalar division of WassDRExpectation by a
non-negative scalar ρ is defined as a multiplication with 1/ρ.

B. WassersteinDistributionally Robust Conditional Value
at Risk

The Distributionally Robust Conditional Value at Risk
(DR-CVaR) of a scalar random variable ξ is a special
case of (3) as seen when using the formal defi-
nition of CVaR [27]: CVaRP

α(ξ) := infτ∈R EP[ξ +
1
α max{ξ − τ, 0}]. In cvxRiskOpt, we provide the class
WassDRCVaR which implements DR-CVaRϵ

α [⟨a(x), ξ ⟩ +
b(y)] = supP∈Bϵ(P̂N )

CVaRP
α [⟨a(x), ξ ⟩ + b(y)] where α repre-

sents the α × 100% worst cases:

WassDRCVaR(N, m, a, b, a_k, b_k,alpha, C, d, used_norm)

which can be used in two ways. The first way is:

WassDRCVaR(N, m, a, b)

where users provide the number of samples N, sample
dimension m, a(x), b(y) terms, and optionally the support,

norm used, and CVaR level (C, d, used_norm,α) to set up an
instance of this DR-CVaR problem. The second way is:

WassDRCVaR(N, m, a_k=a_k, b_k=b_k) (4)

where users provide the lists a_k= ak(x),b_k= bk(y) (here
k = 2) analogously to the WassDRExpectation function.

The class also supports some problem arithmetic, particu-
larly multiplication and division with a positive scalar.

IV. CHANCE CONSTRAINED LINEAR PROGRAMS

In this section we consider two forms of the generalized
linear chance constraint, using a value-at-risk (VaR) risk
metric, based on [28, (6)]:

P
(
a(x)Tξ1 + b(y) + ξ2 ≤ 0

)
≥ 1 − ϵ (5a)

P
(
aTξ1(z) + b(y) + ξ2 ≤ 0

)
≥ 1 − ϵ (5b)

where vector a(x) is linear in a decision variable x, scalar
b(y) is affine in the decision variable y and ξ1(z), ξ2 are a
random vector and random variable respectively and z is a
decision variable. Note that the two forms are similar with
the distinction being that only a or ξ1 may depend on a
decision variable, but not both since otherwise the problem
would be bilinear in x, z and would no longer be convex. For
ease of exposition, below we will use the common formulation
P(a(x)Tξ1(z) + b(y) + ξ2 ≤ 0) ≥ 1 − ϵ while assuming that
ϕ(x, y, z) := a(x)Tξ1(z)+b(y)+ξ2 is linear. Here, ϵ ∈ (0, 0.5].
Problems of the form (5) and

inf
[ξT

1 ,ξ2]∼P∈P
P(ϕ(x, y, z) ≤ 0) ≥ 1 − ϵ

can appear as inequality constraints in (1). To aid with
incorporating them, cvxRiskOpt provides functions that return
deterministic linear constraints based on the reformulations
in [28]. The resulting constraints can be used as constraints in
a CVXPY problem. The CVXPY expression can be extracted
from the CVXPY Inequality constraint (cstr.expr) to use in the
objective function.

Let ξ(z) =
[
ξ1(z)T ξ2

]T and ã(x) =
[
a(x)T 1

]T so that
ϕ(x, y, z) = ã(x)Tξ(z) + b(y). Let

ξ̂(z) := E[ξ(z)] :=
[
ξ̂1(z)
ξ̂2

]

, := Cov(ξ) :=
[
,11 γ12
γ T

12 γ22

]
! 0

where , is independent of z. We have:

ϕ̂(x, y, z) := E
[
ϕ(x, y, z)

]
= ã(x)T ξ̂(z) + b(y)

σ 2(x) := Cov(ϕ(x, y, z)) = ã(x)T,ã(x).

A. CCLP Under Gaussian Distribution
We implement the reformulation from [28, Sec. 2] where it

is shown that

CCLP (5) ⇐⇒ κσ (x) + ϕ̂(x, y, z) ≤ 0 (6)

where κ is a variable that depends on the distribution.
Particularly, for Gaussian distributions, κ = /−1

N (1−ϵ) where
/−1
N is the inverse cumulative distribution function of the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on March 17,2025 at 15:43:52 UTC from IEEE Xplore.  Restrictions apply. 



2166 IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

standard Gaussian random variable [28, Sec. 2.1]. To generate
the equivalent deterministic constraint, we define the function:

cclp_gauss(eps, a, b, xi1_hat, xi2_hat, gam11, gam12, gam22)

where xi1_hat = ξ̂1, xi2_hat = ξ̂2, gam11 = ,11,
gam12 = γ12, gam22 = γ22.

B. Distributionally Robust (DR) CCLP
We implement the DR-CCLP reformulation from

[28, Sec. 3] where it is shown that:

inf[
ξT

1 ,ξ2
]
∼P∈P

P(ϕ(x, y, z) ≤ 0) ≥ 1 − ϵ

⇐⇒ κσ (x) + ϕ̂(x, y, z) ≤ 0

for some choices of P , the ambiguity set, and κ is a variable
that depends on the characteristics of P .

In particular, consider a moment-based ambiguity set with
known mean and covariance P := (ξ̂ ,,); i.e., the set of all
distributions with a given mean and covariance. In this case,

κ =
√

1−ϵ
ϵ [28, Sec. 3.1]. If P only includes distributions that

are centrally symmetric [28, Definition 3.1], then κ =
√

1
2ϵ .

Both of these reformulations are implemented through:

cclp_dro_mean_cov(eps, a, b, xi1_hat, xi2_hat,

gam11, gam12, gam22, cent_symm)

where cent_symm = 1 indicates that P only includes
centrally symmetric distributions.

V. EXAMPLES

Here, we provide some examples of using cvxRiskOpt
with application to portfolio optimization, model
predictive control (MPC), and moving horizon esti-
mation (MHE). Additional examples, can be found
under the “Examples” section in the package doc-
umentation: https://tsummerslab.github.io/cvxRiskOpt/.
The package source code can be found at:
https://github.com/TSummersLab/cvxRiskOpt. Numerical
results were obtained using a MacBook Pro with an M3 Pro
12-core CPU and 18GB of RAM.

A. Distributionally Robust Portfolio Optimization
Consider the distributionally robust portfolio optimization

problem from [25, Section 7.1] with yearly returns ξ of m
assets and portfolio percentage weights vector x with xi ≥
0,

∑
i xi = 1:

sup
P∈Bϵ

(
P̂N

) inf
x∈X

{
EP[−⟨x, ξ ⟩] + ρ CVaRP

α(−⟨x, ξ ⟩)
}
. (7)

This problem can be encoded as a worst-case expectation
optimization problem where the objective is a max of affine
terms as shown in [25, (27)] where i ∈ [1 : N] and k ∈ {1, 2}:

inf
x,τ,λ,
si,γi,k

λϵ + 1
N

N∑

i=1

si (8)

s.t. ak⟨x, ξ̂i⟩ + bkτ + ⟨γi,k, d − Cξ̂i⟩ ≤ si, xi ≥ 0∥∥∥C⊤γi,k − akx
∥∥∥

⋆
≤ λ, γi,k ≥ 0,

∑

i

xi = 1

Listing 1. Way 1 - cvxRiskOpt implementation of (8).

Listing 2. Way 2 - cvxRiskOpt implementation of (8).

Listing 3. Solving the problem.

with a1 = −1, a2 = −1 − ρ/α, b1 = ρ, b2 = ρ(1 − 1/α),
C = 0, d = 0 (of appropriate dimensions), and the 1-norm so
that ∥·∥∗ is the ∞-norm.

The portfolio optimization problem (8) is convex and can be
encoded using CVXPY. With cvxRiskOpt, (7) can be encoded
in one of two ways.

The first uses WassDRExpectation and WassDRCVaR
and the cvxRiskOpt problem arithmetic allowing users to
encode the problem as shown in Listing 1 (notice how line 8
is similar to (7)). The second uses WassWCEMaxAffine to
encode the reformulation (8) as in Listing 2. In both cases,∑

i xi = 1 and xi ≥ 0 need to be added to the problem. This
can be done by creating a CVXPY Problem with no objective
and the two constraints, as in Listing 1 line 7, then adding
that to the cvxRiskOpt problem (line 8). After setting up the
problem, the parameters can be updated and the problem is
solved using the chosen solver (e.g., CLARABEL) as shown
in Listing 3.

Furthermore, the resulting Problem can easily be compiled
into C code using CVXPYgen. Fig. 1 compares the com-
pute times for solving (7) 1) using CVXPY only, 2) using
the cvxRiskOpt functions through Listing 1, and 3) using
CVXPYgen on the CVXPY Problem in Listing 1 line 8 then
calling the generated C code using the Python wrapper. We
refer the readers to the “Distributionally Robust Mean-CVaR
Portfolio Optimization” example of the package documenta-
tion for implementation details of solving the problem with
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Fig. 1. Compute time (ms) vs number of samples. Solvers: CB:
Clarabel, EC: ECOS.

CVXPY only and compling C code. The reported time are
found by aggregating the results over 100 solves. Using
cvxRiskOpt adds minimal overhead and the solve times are
very similar to the using CVXPY only. Compiling the code
and running it using the python wrapper provides a modest
speed-up of around 10%.

B. Temperature Regulator MPC With Time Varying
Constraints

Consider a simple MPC-based regulator for a 1D system
under process noise. The dynamics are given by:

xt+1 = Axt + But + Fwt

with A = 0.9, B = 0.1, F = 0.1 where wt is a Gaussian
random variable wt ∼ N (wt, σ

2
w) where wt is a time-varying

mean value and σ 2
w is the variance.

The stochastic MPC regulation problem starting at time t
with a horizon H is given by:

min
u,x

E
[

H∑

τ=1

(
xT

t+τ Qxt+τ

)
]

+
H∑

τ=1

uT
t+τ−1Rut+τ−1

s.t. xt+τ = Axt+τ−1 + But+τ−1 + Fwt+τ−1

xt = xt, wt+τ−1 ∼ N
(

wt+τ−1, σ
2
w

)
(9)

P
(
xt+τ ≥ xmin

t+τ

)
≥ 1 − ϵ

P
(
xt+τ ≤ xmax

t+τ

)
≥ 1 − ϵ.

Here, τ ∈ [1 : H], xt+τ , ut+τ are the state and control decision
variables, xt is the current known state, and xmin

t+τ , xmax
t+τ are time

varying bounds on the state xt+τ . Notice that the state is a
random variable due to the noise. The last two constraints are
chance constraints that require the state to remain within the
chosen bounds with probability 1 − ϵ for some small ϵ value.
The problem (9) can be reformulated into a deterministic risk-
tightened problem as follows:

min
u,x

H∑

τ=1

E
[
xT

t+τ Qxt+τ

]
+

H∑

τ=1

uT
t+τ−1Rut+τ−1

s.t. E
[
xt+τ

]
= AE

[
xt+τ−1

]
+ But+τ−1 + FE

[
wt+τ−1

]

E[xt] = xt

Fig. 2. Compute time (ms) vs horizon length. Solvers: CB: Clarabel.
OS: OSQP. SC: SCS.

E
[
xt+τ

]
≥ xmin

t+τ + /−1
N (1 − ϵ)∥Cov(xt+τ )∥2

E
[
xt+τ

]
≤ xmax

t+τ − /−1
N (1 − ϵ)∥Cov(xt+τ )∥2

where

E
[
xt+τ

]
= Aτ xt +

τ∑

i=1

Aτ−iBut+i−1 + Aτ−iFwt+i−1,

Cov(xt+τ ) =
τ∑

i=1

(
Aτ−iF

)
σ 2

w
(
Aτ−iF

)T
,

E
[
xT

t+τ Qxt+τ

]
= Tr(QCov(xt+τ )) + E

[
xt+τ

]TQE
[
xt+τ

]
.

Finding the expected value and covariance expres-
sions (E[xt+τ ], Cov(xt+τ ), E[xT

t+τ Qxt+τ ]) is done using
cvxRiskOpt helper functions, and the cclp_gauss function
is used to encode the chance constraints. This simplifies
the process of encoding the optimization problem while still
obtaining a CVXPY Problem.

The solve times for the problem using the cvxRiskOpt
functions and using the Python wrapper that calls the C code
generated by CVXPYgen are reported in Fig. 2 aggregated
over more than 850 solves. The compiled code results in
significant speed-up by over an order of magnitude. Using
cvxRiskOpt makes encoding the problem easier and enables
changing the assumption about the noise, e.g., to a moment-
based ambiguity set, as simple as changing the function call,
while still utilizing the advantages of CVXPYgen.

C. State Estimator
Consider a moving horizon estimator (MHE) applied to:

xt+1 = Axt + But + wt =: f (xt, ut, wt), wt ∼ (0,0w)

yt = Cxt + vt := h(xt, vt), vt ∼ (0,0v)

where wt, vt are white noises with known covariances whose
distribution is unknown. Denote by x̂t the state estimate.

MHE considers the measures yt over a previous time
horizon N and the current time. Let the MHE objec-
tive at time t be: J := ∑t

t′=t−N

∥∥yt′ − h(xt′ , 0)
∥∥2

R−1 +
∑t−1

t′=t−N

∥∥xt′+1 − f (xt′ , ut′ , 0)
∥∥2

Q−1 where x is the optimization
variable representing the estimated state. The constraints
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Fig. 3. Compute time (ms) vs horizon length. Solvers: CB: Clarabel.
OS: OSQP. EC: ECOS.

include xt−N = x̂t−N , i.e., starting from the previous state esti-
mate x̂t−N , and any additional constraints based on knowledge
of the problem data. Here, we consider two distributionally
robust chance constraints on the state:

inf
P∈Pxt′

P
(
xt′ ≤ xmax

)
≥ 1 − ϵ, inf

P∈Pxt′
P
(
xt′ ≥ xmin

)
≥ 1 − ϵ

where xmax, xmin are known state limits. The chance constraints
can easily be formulated using cvxRiskOpt functions similarly
to the MPC example.

For the double integrator with A =
[

1 dt
0 1

]
, B =

[
0.5dt2

dt

]
,

C =
[
1 0

]
, and discrete time-step dt, the MHE problem

solve times using the cvxRiskOpt functions and using the
Python wrapper that calls the C code generated by CVXPYgen
are reported in Fig. 3 aggregated over 200 solves for various
N values. Similarly to the MPC example, cvxRiskOpt simply
makes encoding the problem easier while integrating directly
into CVXPY. While OSQP performs the worst, the OSQP
compiled code performs the best with over a 10x speed-up for
N = 90. Clarabel and ECOS compiled code provide around
3.8x and 2.2x speed-ups for N = 90, respectively.

VI. CONCLUSION

We introduced cvxRiskOpt, a package built on top of
CVXPY that provides a high-level interface for encoding
some DRO problems and stochastic and distributionally robust
chance constraints. Our solution is easy to use and reduces
the tedious manual reformulations required with some of these
problems. Since cvxRiskOpt results in and integrates with
CVXPY Problem‘s, we can also utilize CVXPYgen to produce
C code for embedded system applications. Future directions
include supporting a larger range of RBO problems.
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