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Abstract— We introduce a new trajectory optimization

method for robotic grasping based on a point-cloud represen-

tation of robots and task spaces. In our method, robots are

represented by 3D points on their link surfaces. The task space

of a robot is represented by a point cloud that can be obtained

from depth sensors. Using the point-cloud representation, goal

reaching in grasping can be formulated as point matching, while

collision avoidance can be efficiently achieved by querying the

signed distance values of the robot points in the signed distance

field of the scene points. Consequently, a constrained nonlinear

optimization problem is formulated to solve the joint motion

and grasp planning problem. The advantage of our method is

that the point-cloud representation is general to be used with

any robot in any environment. We demonstrate the effectiveness

of our method by performing experiments on a tabletop scene

and a shelf scene for grasping with a Fetch mobile manipulator

and a Franka Panda arm.
1

I. INTRODUCTION

In robot manipulation, planning a robot trajectory to
grasp an object is a fundamental research problem. The
problem is challenging since it requires motion planning
to avoid obstacles in the task space and grasp planning
to decide how to grasp a target object. Traditionally, the
motion planning problem and the grasp planning problem
are tackled separately. Motion planning approaches focus on
finding a collision-free path to reach a given end-effector
goal. For example, sampling-based motion planning methods
such as Rapidly exploring Random Trees (RRTs) [1], [2],
[3] and Fast Marching Tree (FMT) [4] find robot trajectories
by incrementally building configuration space filling trees
through directed sampling. Optimization-based motion plan-
ning methods [5], [6], [7], [8] solve optimization problems
to find robot trajectories that minimize some loss functions
and obey certain constraints, such as joint limits.

Since these motion planning algorithms need to have a
given goal, they cannot be applied directly to robot grasping
unless a grasping goal is given. On the other hand, grasp
planning methods such as GraspIt! [9], 6D GraspNet [10] and
SE(3)-DiffusionFields [11] aim to synthesize grasps of robot
grippers given 3D models or 3D point clouds of objects.
These methods focus on planning the poses of robot grippers
to grasp various objects. However, they do not consider the
motion of the robotic arm to reach the planned grasps.
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Fig. 1. We represent robots and the task space with point clouds, and solve
a trajectory optimization problem for joint motion and grasp planning.

Combining grasp planning and motion planning can ad-
dress the robot grasping problem. A straightforward approach
is first to utilize a grasp planning method to generate grasps
of a target object and then employ a motion planning method
to plan a robot trajectory to reach one of the grasps. A naive
way is to loop over all the planned grasps until the motion
planner finds a collision-free path to reach one of the grasps.
This naive approach is complete, that is, as long as there is
one plausible grasp from the grasp planner, the method can
find a path to reach it. However, it is very slow, especially
when the number of planned grasps is large. Therefore, a
number of approaches are proposed to address the problem
of joint motion and grasp planning.

Similarly to motion planning methods, these joint mo-
tion and grasp planning methods can be categorized into
sampling-based and optimization-based ones. Sampling-
based methods [12], [13], [14] bias a motion planner to sam-
ple nodes that are closer to better grasps, and the grasps are
synthesized online. The main limitation of these approaches
is that the online synthesized grasps may not be accurate
enough for precise grasping, especially for objects with com-
plicated shapes. To overcome this limitation, several goal-
set-based trajectory optimization methods are proposed [15],
[16]. These methods first utilize an offline grasp planner
to generate grasps of objects, where well-designed grasp
planners can be used, such as grasps synthesized from
physics simulation [9], [17]. These generated grasps are
treated as goals in a goal set. The joint motion and grasp
planner optimizes a collision-free trajectory that can reach
one of the goals in the goal set. The goal set introduces a
constraint on the last configuration of the robot trajectory.
Using high-quality grasps as goals, these approaches can
handle various objects in grasping.

In this work, motivated by the goal-set-based trajectory
optimization framework for joint motion and grasp plan-
ning, we introduce a new trajectory optimization method
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for robotic grasping. Compared to previous methods [15],
[16], our method has the following advantages. First, we
introduce a point-cloud representation of robots and task
spaces for goal reaching and obstacle avoidance. Point clouds
of robots are generated using the 3D meshes of the robot
links, whereas point clouds of the task space can be obtained
from depth sensors such as RGB-D cameras. Figure 1 shows
the point cloud representation with the planned trajectories
of a Fetch robot and a Franka Panda arm. This representation
is general and can be used with any robot and any task
space. Second, we formulate a constrained trajectory opti-
mization problem using point-cloud representation for joint
motion and grasp planning. Given a set of grasping goals,
solving the optimization problem generates a trajectory to
reach one of the goals that minimizes the objective function
subject to certain constraints, such as joint limits. Instead of
converting the constrained optimization problem into an un-
constrained one and solving with first-order gradient descent-
based techniques as in [15], [16], we utilize the Interior Point
OPTimizer (Ipopt) [18] to solve the large-scale nonlinear
optimization problem for trajectory planning, which can
find better solutions compared to first-order solvers. Finally,
we empirically verify our method on two robot grasping
environments in the PyBullet simulator [19], i.e., a tabletop
scene and a shelf scene, and demonstrate a significant
improvement over the OMG-Planner [16] in terms of metrics
on grasping success and collision avoidance. In addition, we
conducted real-world grasping experiments according to the
SceneReplica benchmark [20]. Our method improves over a
sampling-based baseline in real-world experiments.

II. RELATED WORK

A. Manipulation Trajectory Optimization

Trajectory optimization techniques have been successfully
applied to robot manipulation. Early work such as CHOMP
[5] and related methods [15], [21] optimize a cost func-
tional using covariant gradient descent. STOMP [22] uses
stochastic sampling of noisy trajectories to optimize nondif-
ferentiable costs. TrajOpt [6] solves a sequential quadratic
program, while GPMP2 [7] formulates the problem as infer-
ence on a factor graph and finds the maximum a posteriori
trajectory by solving a nonlinear least-squares problem.
More recently, various trajectory optimization methods have
been proposed to solve specific manipulation problems. For
example, TORM [23] is introduced to follow given end-
effector paths. [24] solves a trajectory optimization problem
for the manipulation of deformable objects. [25] solves a
whole-body trajectory optimization for mobile manipulation.
The advantage of trajectory optimization lies in its flexibility
in introducing different cost functions and constraints for
various problems. In this work, we solve a trajectory op-
timization problem for joint motion and grasp planning in
robotic grasping.

B. Joint Motion and Grasp Planning

Traditionally, arm motion planning and grasp planning are
tackled separately, which can result in suboptimal grasping

(a) A Fetch Mobile Manipulator (b) A Franka Panda Arm

Fig. 2. Surface points (red points in the figure) are sampled as a
representation for robots.

trajectories. Since jointly optimizing trajectories and grasps
is challenging, several approaches are proposed to solve a
goal-constrained trajectory optimization problem for joint
motion and grasp planning [15], [16], [26], where grasps
from a grasp planner such as GraspIt! [9] are used as
goals. For example, [15] projects the robot configuration
of the last time step in the goal set during trajectory opti-
mization. OMG-Planner [16] iterates between goal selection
and trajectory optimization based on CHOMP. Recently,
SE(3)-DiffusionFields [11] learns a cost function for grasp
planning based on a diffusion model and then solved a joint
optimization problem for grasp and motion planning. Unlike
these methods, we introduce a cost function for goal reaching
using our point-cloud representation and solve a constrained
optimization problem for joint motion and grasp planning.

III. METHOD

A. A Point-Cloud Representation for Robots and Task Spaces
In robot motion planning, the goal is to generate a robot

trajectory to reach a goal location while avoiding obstacles
in the task space. The geometric representation of robots
and the task space is a critical component of robot motion
generation. A natural choice is to use 3D meshes of robots
and objects in the task space. However, the limitation of
using 3D meshes is that we cannot always obtain 3D
meshes of objects, and collision checking between meshes
is expensive. Another choice is to approximate robot links
and obstacles in the task space with 3D shape primitives
such as spheres, boxes, or cylinders [5], [27]. Using 3D
shape primitives simplifies collision checking, but results in
inaccurate collision checking, where motion plans can be
conservative. In this work, we utilize a simple geometric
representation of objects and the task space, i.e., point clouds,
for robot motion planning based on trajectory optimization.

Given a robot description using the Unified Robotics De-
scription Format (URDF), each robot link has an associated
3D mesh model. To obtain a point-cloud representation of
the robot, we simply sample 3D points from the vertices of
the 3D meshes of the links. Figure 2 shows two examples
of a Fetch mobile manipulator and a Franka Panda arm with
their 3D points sampled, respectively. The number of points
for each link is a parameter to set. Using more points requires
more computation in goal reaching and obstacle avoidance,
but it can achieve more accurate collision checking. We
simply sample 100 points for each link in our experiments.

9886
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(a) Task Space (b) 3D Scene Points from a Depth Image (d) Signed Distance Field of the Task Space(c) A Grasping Goal to Reach

Fig. 3. (a) A tabletop scene for grasping with a Fetch robot. (b) A 3D point cloud of the scene computed using a depth image from the camera on the
robot. (c) Reaching a grasping goal can be formulated as matching 3D points on the robot gripper. (d) Visualization of the signed distance field of the task
space. Cyan points are with negative distances, and yellow points are with positive distances.

For objects in the robot task space, we cannot obtain 3D
models of them if we want the robot to work in arbitrary
environments. Therefore, we rely on depth sensing to obtain
a point-cloud representation of the task space. By equipping
a RGB-D camera with a robot, the robot can capture a
depth image of the scene. Depth pixels can be back-projected
to the camera frame using the intrinsic parameters of the
camera. Then we can obtain a point cloud of the scene.
Given the camera extrinsic parameters, i.e., 3D rotation and
3D translation of the camera in the robot base frame, the
point cloud can be transformed into the robot base frame.
Figure 3(a) shows a tabletop scene and a Fetch robot in the
PyBullet simulator, and Figure 3(b) illustrates the computed
point cloud using a depth image captured by the robot
camera. Since RGB-D cameras are commonly used in robotic
applications, using 3D scene points makes our approach
generalizable to various scenarios. Next, we describe how to
use the point-cloud representation in our grasping trajectory
optimization method.

B. Point Cloud-based Cost Function for Goal Reaching

In grasping trajectory optimization, we need to generate
a trajectory for a robot from its current joint configuration
to a goal configuration for grasping a target object. The
task-space goal is defined as an end-effector configuration
to grasp the target object. For two-finger grippers, a goal
can be simplified to be a homogeneous transformation Tg =
(Rg, tg) 2 SE(3), where Rg and tg are the 3D rotation and
the 3D translation of the gripper link with respect to the
robot base frame, respectively.

In our method, we optimize for a trajectory that is dis-
cretized into T time steps. The trajectory is parameterized
by T joint positions Q = (q1, . . . ,qT ), where qi,2 Rn for
i = 1, . . . , T , and n is the degree of freedom of the robot.
The last configuration of the trajectory qT must reach the
goal Tg in the task space. We can use forward kinematics
to compute the end-effector pose of the robot at time step
T : T(qT ) = (RT , tT ) 2 SE(3). We wish to define a cost
function cgoal(T(qT ),Tg) to measure the distance between
the gripper pose of the robot at the time step T and the
grasping goal. Consequently, minimizing this cost function
can find a robot configuration to reach the goal.

Usually, the cost function is defined based on the distance
between the two 3D rotations (RT ,Rg) and the distance
between the two 3D translations (tT , tg). However, a weight
must be adjusted to balance the two distances. Motivated
by work on 6D object pose estimation [28], we utilize the
point matching loss function as our cost function for goal
reaching. Let E = {xi}mi=1 be a set of m 3D points on the
end-effector of the robot (see Figure 3(c)). Our cost function
for goal reaching is defined as

cgoal(T(qT ),Tg) =
mX

i=1

k(RTxi+tT )�(Rgxi+tg)k2, (1)

which minimizes the distance between two sets of point
clouds undergone two homogeneous transformations. The
advantage of using this cost function is that it eliminates
the need to use a hyperparameter to balance rotation and
translation. This cost function can also be generalized to
grippers with high degrees of freedom, such as multi-finger
grippers. Note that T(qT ) is a function of qT in the loss
function according to forward kinematics.

C. Point Cloud-based Cost Function for Collision Avoidance
In addition to reaching the grasping goal, another require-

ment in robotic grasping is to avoid obstacles in the task
space. We hope that the robot will not hit any object before
grasping the target. For the example in Figure 3, the robot
should avoid hitting the table and objects on the table during
grasping. Instead of using 3D meshes or 3D shape primitives
to represent obstacles, our method only has access to a point
cloud of the scene. Therefore, we propose to compute a
Signed Distance Field (SDF) of the robot task space using
the point cloud for collision avoidance.

First, the extent of the task space is determined by the
extent of the point cloud in the task space, where we add
some margin to the point cloud space. Second, the SDF is
constructed by densely sampling a 3D grid within the extent
of the task space. The resolution of the grid is a parameter
that can be tuned as a trade-off between computational
efficiency and accuracy of collision checking. Third, we
compute the signed distance value for each vertex of the
3D grid, which is approximated by the distance between
the vertex and the closest point in the point cloud of the
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scene. The sign of the distance is determined by checking
if the vertex is behind the point cloud or not. Specifically,
we project the vertex to the depth image using the camera
parameters and compare the depth values of the vertex and
the projected pixel to obtain the distance sign. Figure 3(d)
illustrates the SDF of the task space, where the cyan vertices
have negative distances. Finally, using the computed SDF, we
can check the collision between the robot and the scene by
checking the signed distance values of the 3D points on the
surface of the robot (Figure 2) in the task space.

In addition, we can define a cost function for collision
avoidance using the SDF. For each joint configuration in the
robot trajectory qt 2 Rn, t = 1, . . . , T , let x(qt) 2 R3

be a surface point on the robot transformed into the task
space according to the joint configuration qt using forward
kinematics. Then we can define a cost function for the 3D
point x(qt) as in CHOMP [5]:

ccollision(x) =

8
><

>:

�d(x) + 1
2" if d(x) < 0

1
2" (d(x)� ")2 if 0  d(x)  "

0 otherwise
, (2)

where " is a margin parameter and d(x) is the signed
distance of the 3D point. When the signed distance d(x) is
greater than ", there is no cost in collision. Note that in our
implementation, the SDF is precomputed using a 3D grid to
speed up computation. Therefore, we simply find the voxel
in which the 3D point x falls and use the signed distance
value of the voxel as d(x).

D. Constrained Trajectory Optimization for Joint Motion
and Grasp Planning

With the designed cost functions for goal reaching and
collision avoidance, we describe our trajectory optimization
framework for joint motion and grasp planning. The task of
a robot is to grasp a target object in a cluttered scene. We
assume that there exists a grasp planner that can be used
to synthesize grasps of the target. For example, in model-
based grasping, GraspIt! [9] can be used to synthesize grasps
given the 3D model of the target object. In model-free grasp-
ing, learning-based approaches such as 6DGraspNet [10] or
Contact-GraspNet [29] can be used to synthesize grasps of
the target object given the segmented point cloud of the
target. We denote the set of synthesized grasps as a goal
set G = {Ti}Ki=1, where Ti 2 SE(3) is a homogeneous
transformation of the robot gripper and K is the number of
planned grasps. Our goal is to find a collision-free trajectory
for the robot to reach one of the grasps.

We optimize for a trajectory that is discretized into T time
steps. The trajectory is parameterized by T joint positions
Q = (q1, . . . ,qT ) and T joint velocities Q̇ = (q̇1, . . . , q̇T ),
where qi, q̇i 2 Rn for i = 1, . . . , T . Therefore, we optimize
both the joint positions and the joint velocities in our method.
Intuitively, we want to have the last joint position qT reach
one of the grasps in the goal set G. Meanwhile, the trajectory
should be collision-free and subject to constraints of the robot
dynamics and joint limits. Formally, we solve the following

Grasping Pose

Standoff Pose

Fig. 4. Illustration of the grasping pose and the standoff pose for grasping.

constrained optimization problem to find the trajectory:

argmin
Q,Q̇

⇣ K
min
i=1

�
cgoal(T(qT ),Ti) + cstandoff(T(qT��),TiT�)

�

+ �1

TX

t=1

ccollision(qt) + �2

TX

t=1

kq̇tk2
⌘

(3)

s.t.,q1 = q0 (4)
q̇1 = 0, q̇T = 0 (5)
qt+1 = qt + q̇tdt, t = 1, . . . , T � 1 (6)
ql  qt  qu, t = 1, . . . , T (7)
q̇l  q̇t  q̇u, t = 1, . . . , T, (8)

where we minimize an objective function of Q and Q̇ subject
to a set of constraints. Note that the objective function
computes the minimum cost among all the grasping goals
in the goal set G. Consequently, solving the optimization
problem will select the best goal from the goal set.

First, the term cgoal(T(qT ),Ti) is the goal reaching cost
described in Eq. (1) for the ith goal Ti in the goal set,
where forward kinematics is used to compute the gripper
pose given the robot configuration at the last time step
qT . Second, in addition to reaching the goal in the last
step, we introduce a cost term cstandoff(T(qT��),TiT�) to
ensure that the robot reaches a standoff pose for grasping
before the goal. The standoff pose TiT� is computed by
a displacement T� 2 SE(3) of the grasping pose Ti along
the forward axis of the gripper as illustrated in Figure 4.
The main reason of introducing the standoff pose is because
optimizing the trajectory directly to reach the grasping pose
may result in a collision between the robot and the target
object. In these cases, the robot will knock down the target
object and cannot grasp it. Adding the standoff pose in the
trajectory optimization makes the problem simpler. In our
objective function, we require that the robot gripper pose
T(qT��) at time step T � � to reach the standoff pose,
where � is a parameter to set. Finally, the objective function
contains a cost term for collision avoidance and a cost term
to penalize large velocities, where �1 and �2 are two weights
to balance the costs. The collision cost for the time step t is
defined as

ccollision(qt) =
MX

i=1

ccollision(xi(qt)), (9)

where xi(qt) 2 R3 is a 3D point on the robot at the robot
configuration qt and M is the total number of points on the
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(a) Tabletop Scenes (b) Shelf Scenes

Fig. 5. Examples of (a) tabletop scenes and (b) shelf scenes for grasping in PyBullet.

robot. The collision cost is computed according to Eq. (2)
using our SDF representation.

Next, we describe the constraints in the optimization prob-
lem. 1) q1 = q0, where q0 denotes the current configuration
of the robot. This constraint ensures that the trajectory starts
from the current configuration of the robot. 2) q̇1 = 0, q̇T =
0 ensure that the starting velocity and the ending velocity of
the robot are zero. 3) qt+1 = qt + q̇tdt ensures that the
robot state follows the kinematics of the robot, where dt is
the time interval between two time steps. 4) The last two
constraints in Eqs. (7) and (8) ensure that the joint positions
and the joint velocities are within the lower bounds (ql, q̇l)
and upper bounds (qu, q̇u).

E. Initialization for Grasping Trajectory Optimization

The optimization problem in Eq. (3) is a large-scale
constrained nonlinear programming problem. For example,
a Franka panda arm has n = 7 DOFs. If we set the number
of time steps of the trajectory T = 50, the optimization
problem has 7 ⇥ 2 ⇥ 50 = 700 variables. We utilize the
Interior Point OPTimizer (Ipopt) [18] interfaced with the
CasADi framework [30] to solve it. Ipopt can only find
local solutions that are sensitive to the initialization of the
variables. To obtain a good local solution and speed up the
optimization, we use the following strategy to initiate the
optimization. 1) Given a set of grasping poses G = {Ti}Ki=1

of a target, we first filter out grasps that are in-collision with
other objects in the scene. This collision checking can be
achieved by checking the signed distance values of the 3D
points on the robot gripper of a given pose as described in
Section III-C. 2) For the remaining grasps, we check if an
inverse kinematics (IK) solution exists. We solve a simplified
optimization problem to find an IK solution of a grasping
goal Tg:

argmin
qT

cgoal(T(qT ),Tg) (10)

s.t.,ql  qT  qu, (11)

where we use qT to denote the variable in IK, and the
objective function is the point matching cost function defined
in Eq. (1). After finding a local solution q⇤

T , we compute the
pose error between T(q⇤

T ) and the goal Tg using a rotation
error and a translation error. If both errors are smaller than
some pre-defined thresholds, we claim that an IK solution
is found. Otherwise, there is no IK solution for Tg . In this
way, we can filter out grasps without IK solutions. 3) For

each remaining grasp with an IK solution, we interpolate
a trajectory of the robot from the current configuration of
the robot to the IK configuration. We then compute the
collision cost of the trajectory

PT
t=1 ccollision(qt) to rank

these trajectories. 4) Finally, we initialize the optimization
with the trajectory that has the minimum collision cost. In the
case of tie-breaking, e.g., multiple non-collision trajectories,
we use the trajectory whose last configuration is closer to the
current configuration of the robot. We empirically found that
the above initialization process can speed up the convergence
of the optimization to find a good local solution.

IV. EXPERIMENTS

We conducted experiments on 6DoF robotic grasping to
evaluate our method in both simulation and in the real world.
Two types of scenes are used for evaluation: a tabletop scene
and a shelf scene as illustrated in Figure 5 in the Pybullet
simulator [19]. In these scenes, 16 YCB objects [31] are
used for grasping. The objects in the tabletop scenes are
arranged according to the SceneReplica benchmark [20], and
we sample object locations for the shelf scenes with 6 objects
in each scene. Two robots, i.e., a Fetch mobile manipulator
and a Franka Panda arm, are used for evaluation. The main
evaluation metric is the success rate of grasping. If an object
is successfully lifted by the robot, we count it as a success.
In addition, we evaluate collisions during grasping.

A. Implementation Details
First, grasps of the 16 YCB objects are generated using

GraspIt! [9], with 100 grasps for each object. Therefore, the
size of the goal set is 100. Second, the trajectory optimization
is implemented based on the OpTaS library [32], which
provides an interface to Ipopt solver using the CasADi
framework [30]. Third, the hyper-parameters in the method
are set as follows. For each robot link, we sample 100 surface
points. The margin " = 0.02 in computing the collision
cost (Eq. (2)). The grid resolution of the signed distance
field is 5cm. In the optimization problem Eq. (3), �1 = 10,
�2 = 0.01 and � = 10. The standoff pose for grasping is set
as 10cm and 20cm from the grasping pose for the tabletop
scenes and the shelf scenes, respectively. The number of time
steps is T = 50, and the time span of a trajectory is set to
10 seconds. Therefore, dt = 0.2 in Eq. (6).

B. The Effect of Point Matching for Goal Reaching
We evaluated the effectiveness of our point cloud-based

representation for goal reaching. We solve the inverse kine-

9889

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on March 17,2025 at 15:47:15 UTC from IEEE Xplore.  Restrictions apply. 



(a) A shelf grasping scene (e) Trajectory execution(b) Robot view (c) Object segmentation (d) Grasping trajectory optimization

Fig. 6. Illustration of the model-free grasping in the real world.

TABLE I
COMPARISON BETWEEN DIFFERENT LOSS FUNCTIONS FOR IK. COUNT

IS THE TOTAL NUMBER OF GRASPS TESTED FOR IK. THE NUMBERS OF

FOUND IK SOLUTIONS ARE PRESENTED FOR THREE LOSS FUNCTIONS.
Tabletop (success ") Shelf (success ")

Tabletop (success " / collision #) Shelf (success " / collision #)

Robot Count Point Quater- Euler Count Point Quater- Euler
matching nion angle matching nion angle

Fetch 18,758 9,665 9,600 8,288 10,917 2,911 2,824 2,364
Panda 20,000 16,397 15,905 10,596 12,000 3,925 3,867 3,172

TABLE II
STATISTICS OF GRASPING EXPERIMENTS IN THE PYBULLET SIMULATOR

Tabletop (success " / collision #) Shelf (success " / collision #)

Object Count Ours Ours OMG [16] Count Ours Ours OMG [16]
Fetch Panda Panda Fetch Panda Panda

cracker box 12 7 / 0 7 / 0 5 / 2 6 3 / 0 2 / 0 4 / 0
sugar box 10 10 / 0 10 / 0 10 / 0 5 4 / 0 5 / 0 4 / 0
tomato soup can 14 13 / 2 14 / 0 12 / 2 7 7 / 1 2 / 1 2 / 4
mustard bottle 14 12 / 0 11 / 0 11 / 0 5 3 / 0 4 / 0 4 / 0
tuna fish can 12 0 / 5 0 / 3 0 / 12 6 5 / 5 0 / 0 0 / 6
pudding box 10 7 / 0 6 / 0 6 / 2 7 5 / 1 4 / 0 2 / 3
gelatin box 14 11 / 0 10 / 0 4 / 2 7 6 / 1 1 / 1 2 / 3
potted meat can 14 10 / 0 14 / 0 12 / 0 10 8 / 0 10 / 0 6 / 1
banana 14 12 / 6 11 / 4 9 / 4 7 3 / 4 1 / 2 1 / 7
bleach cleanser 10 9 / 0 5 / 0 8 / 0 7 5 / 0 6 / 0 4 / 4
bowl 14 11 / 2 9 / 0 8 / 1 11 8 / 3 8 / 2 2 / 7
mug 10 8 / 1 4 / 1 6 / 0 10 3 / 4 6 / 2 5 / 4
power drill 14 14 / 2 12 / 0 12 / 0 7 4 / 0 2 / 1 1 / 4
scissors 14 2 / 0 1 / 6 1 / 13 11 5 / 7 1 / 5 0 / 10
large marker 12 1 / 3 4 / 5 4 / 9 5 3 / 2 0 / 3 0 / 5
extra large clamp 12 5 / 6 2 / 5 4 / 11 9 6 / 2 1 / 2 1 / 9
ALL 200 132 / 27 120 / 24 112 / 58 120 78 / 30 53 / 19 38 / 67

matics optimization problem in Eq. (10) with three different
cost functions and compare their performance. The first one
is the point-matching cost function in Eq. (1) to measure
the difference between two transformations TT and Tg . For
the other two cost functions, we use quaternions (q̃T , q̃g)
and Euler angles (eT , eg) to represent the 3D rotations, and
compute costs for rotation and translation separately:

cquat
goal(TT ,Tg) = ktT � tgk2 + 1� (q̃T · q̃g)

2, (12)

ceuler
goal (TT ,Tg) = ktT � tgk2 + keT � egk2, (13)

where the distance between two quaternions measures the
angular distance between the two rotations.

Using the three cost functions, we solve IK for each
grasp of each object in the tabletop scenes and the shelf
scenes. Table I presents the statistics of this experiment,
where we count the number of successful IK solutions among
all the trials. We consider an IK solution to be found after
optimization if the translation error is less than 1 cm and
the rotation error is less than 5 degrees. From the table,
we can see that using the point matching cost function
finds the maximum number of IK solutions, which validates
the effectiveness our point-cloud based representation. Using
distances between Euler angles is not a good choice due to

the discontinuity between �⇡ and ⇡.

C. Simulation Results
The results of our grasping experiments in PyBullet are

presented in Table II, where we compare our approach to
the OMG-Planner [16]. The OMG-Planner is a trajectory
optimization method based on first-order gradient descent
for joint motion and grasp planning. It alternates between
goal selection and fixed-goal trajectory optimization. Grasps
of the 16 YCB objects are generated using GraspIt! [9].
In the simulation, we query the object poses directly and
then transform the grasps according to the object poses. We
evaluate the number of successful grasps and the number of
collisions during grasping. Using our point-cloud representa-
tion, we treat a grasping trajectory as in collision if there are
5 surface points of the robot with negative signed distances.

For the table, we can see that 1) our method improves
over the OMG-Planner in both the tabletop scenes and the
shelf scenes. Our method achieves higher grasping success
rates and lower collision rates. The main advantage of our
method is that we solve a constrained nonlinear optimization
problem with an advanced solver (Ipopt) compared to a
gradient descent-based optimization. In addition, our point-
cloud representation enables more accurate goal reaching
and collision avoidance. 2) The Fetch robot achieves higher
success rates compared to the Panda robot, largely due to
its greater reachability and wider gripper. We cannot run the
OMG-Planner for the Fetch robot since its implementation
is tightly coupled with the Panda robot. In contrast, our
implementation can be easily applied to different robots,
where it only requires an URDF of a robot as input. 3)
Some objects are more difficult to grasp. These are small
or flat objects such as the tuna fish can, the scissors, the
large marker, and the extra large clamp. Nonprehensile
grasping strategies might be needed to grasp these objects
successfully, which can be explored in future work.

D. Model-free Grasping in the Real World
Lastly, we conduct grasping experiments in the real world

to evaluate our trajectory optimization method. We consider
the task of model-free grasping, where we do not have
3D models of objects for perception and motion planning.
Model-free grasping is applicable to diverse environments,
and our approach does not rely on 3D object models. Figure 6
illustrates the perception, planning, and control pipeline for
model-free grasping.
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TABLE III
COMPARISON BETWEEN OUR GRASPING TRAJECTORY OPTIMIZATION (GTO) AND THE OMPL PLANNING IN [20] FOR MODEL-FREE GRASPING.

Method # Perception Grasp Planning Motion Planning Control Ordering Pick-and-Place Success Grasping Success
Model-free Grasping

1 MSMFormer [33] Contact-graspnet [29] + Top-down OMPL [34] MoveIt Near-to-far 57 / 100 65 / 100
2 MSMFormer [33] Contact-graspnet [29] + Top-down GTO (Ours) MoveIt Near-to-far 65 / 100 71 / 100

(a) Tabletop (b) Shelf

Fig. 7. Examples of real-world grasping: (a) tabletop scenes and (b) shelf scenes

TABLE IV
STATISTICS OF OUR GRASPING EXPERIMENTS FOR EACH YCB OBJECT.

S: #PICK-AND-PLACE SUCCESS, PEF: #PERCEPTION FAILURE, PLF:
#PLANNING FAILURE, EF: #EXECUTION FAILURE

Object Count Method 1 (OMPL-based) Method 2 (GTO-based Ours)
S PEF PLF EF S PEF PLF EF

Order: Near-to-Far
cracker box 6 4 1 - 1 4 - - 2
sugar box 5 5 - - - 5 - - -
tomato soup can 7 2 2 3 - 4 1 1 1
mustard bottle 7 6 - 1 - 2 1 3 1
tuna fish can 6 5 1 - - 6 - - -
pudding box 5 4 1 - - 5 - - -
gelatin box 7 6 - 1 - 7 - - -
potted meat can 7 5 2 - - 2 1 4 -
banana 7 6 - - 1 7 - - -
bleach cleanser 5 - 1 2 2 2 1 - 2
bowl 7 6 - - 1 7 - - -
mug 5 2 - 2 1 2 - 3 -
scissors 7 - 2 2 3 3 3 - 1
power drill 7 3 3 - 1 2 3 1 1
large marker 6 1 2 2 1 3 1 2 -
extra large clamp 6 2 1 2 1 4 - 2 -
ALL 100 57 16 15 12 65 11 16 8

We utilized the MSMFormer [33] to segment unseen
objects in an input RGB-D image for tabletop scenes. For
shelf scenes, we found that MSMFormer cannot successfully
segment objects in the shelf since it is not trained with
similar scenes. Therefore, we used Grounding DINO [35]
with text prompt “objects” to detect generic objects, and
then used SAM [36] to segment objects inside the bounding
boxes from Grounding DINO. To synthesize grasps for a
target object, we used Contact-GraspNet [29], which takes a
segmented point cloud of an object as input and generates
grasping poses of a parallel jaw gripper. These planned
grasps are treated as goals in the goal set for joint motion
and grasp planning. To execute a planned trajectory on a real
robot, we also need to generate accelerations of the robot
joints on the trajectory. Since our method does not solve
for joint accelerations, we apply the path parameterization
method [37] to reparameterize the planned trajectory.

We compare our method with an OMPL [34]-based plan-
ning baseline in the SceneReplica benchmark [20]. This
baseline algorithm simply loops over all goals in the goal set
and checks if there is a collision-free motion plan to reach
a goal. The comparison results are presented in Table III.
Our method achieves a better grasping success rate and
a better pick-and-place success rate. Detailed evaluation

statistics for each YCB object are presented in Table IV,
where we classify pick-and-place failures into perception
failures, planning failures, and execution failures. A detailed
description of these failure types can be found in [20].
Most failures are due to errors in object segmentation, grasp
planning, and grasping goal selection. Because stable grasp is
critical for pick-and-place success. By solving the trajectory
optimization problem, our method benefits from better goal
selection compared to the baseline algorithm. Figure 7 shows
some examples of successful grasping in the real world.
Grasping videos can be found on the project page and in
the supplementary material.

E. Planning Time

Our approach has demonstrated a significant improvement
in planning efficiency over the OMPL-based baseline in the
experiments conducted using the SceneReplica Benchmark
[20]. On average, our method achieves a planning time of
15.4 seconds, which includes the computation time for the
grasp collision checking, the IK checking, and the trajectory
optimization. However, the OMPL-based baseline takes 45.6
seconds to find a grasp trajectory for a target object. In
contrast, the OMG-Planner achieves 3.2 seconds planning
time by solving parallel IKs and using GPUs for acceleration.
We consider speeding up our method for future work.

V. CONCLUSION AND DISCUSSION

We introduce a new trajectory optimization method for
joint motion and grasp planning. The core component of
our method is a point cloud-based representation for robots
and task spaces. This representation is generalizable to
different robots and different environments. We formulate
goal reaching and collision avoidance in the trajectory opti-
mization using the point-cloud representation. By solving a
constrained nonlinear optimization problem using the Ipopt
solver, our method can generate robot trajectories for grasp-
ing. Experiments are conducted in simulation and in the real
world to demonstrate the effectiveness of our method.

One limitation of our method is that trajectory optimiza-
tion is slow when relying on an external solver. Future
work includes speeding up the optimization. One direction
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is to explore using GPUs for parallel computing. Another
direction is to explore model predictive control with our
point-cloud representation for robotic grasping. To further
improve the grasp success rate, a grasp planner that considers
force closure or grasp stability will be helpful.
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