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Abstract
In this paper, we introduce a bilevel optimization framework for addressing
inverse mean-昀椀eld games, alongside an exploration of numerical methods
tailored for this bilevel problem. The primary bene昀椀t of our bilevel formula-
tion lies in maintaining the convexity of the objective function and the lin-
earity of constraints in the forward problem. Our paper focuses on inverse
mean-昀椀eld games characterized by unknown obstacles and metrics. We show
numerical stability for these two types of inverse problems. More importantly,
we, for the 昀椀rst time, establish the identi昀椀ability of the inverse mean-昀椀eld
game with unknown obstacles via the solution of the resultant bilevel prob-
lem. The bilevel approach enables us to employ an alternating gradient-based
optimization algorithm with a provable convergence guarantee. To validate
the effectiveness of our methods in solving the inverse problems, we have
designed comprehensive numerical experiments, providing empirical evidence
of its ef昀椀cacy.
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1. Introduction

Mean-昀椀eld games study the Nash Equilibrium in a non-cooperative game with in昀椀nitely many
agents. In the game, each agent aims to minimize a combination of dynamic cost, interaction
cost, and terminal cost by controlling its own state trajectory. At the Nash Equilibrium, the
agents cannot unilaterally reduce their costs. The theory is proposed in [4, 12, 22] and has
attracted increasing attention since then.

In most existing works, knowing the cost functions is required to solve mean-昀椀eld games.
However, in practice, these cost functions are not always easy to obtain. In contrast, the state
distribution, the strategies of agents, and sometimes the value function at the Nash Equilibrium
can be observed. Thus, a natural question arises: Can we learn the cost functions from the Nash
Equilibrium? We refer to this as the inverse mean-昀椀eld game problem, and to the original one
as the forward problem.

Unlike the forward problem, relatively few studies focus on inverse mean-昀椀eld games.
Kachroo et al [15] derives two traf昀椀c 昀氀ow models as the solutions of non-viscous mean-昀椀eld
games. Ding et al [8] reconstructs the underlying metric in the dynamic cost and the kernel
in the non-local interaction cost from the possibly noisy observation of agent distribution and
strategy. Chow et al [7] learns the running cost from population density and strategy on a given
boundary. Guo et al [10] infers the full information of population density, strategy and the
model from partial and noisy observation of the density and model through Gaussian Process,
a Bayesian non-parametric technique for supervised learning. Klibanov et al [21] proposes
a convexi昀椀cation method with global convergence for recovering the interaction coef昀椀cient
function from a single measurement data. References [24–26, 29] establish the theoretical
unique identi昀椀ability result for a general class of mean-昀椀eld games, mean-昀椀eld game bound-
ary problems and multipopulation mean-昀椀eld games, where in昀椀nite pairs of training data are
required in the proof. Following [18], a series of works [13, 16, 17, 19, 20] study the stability
and uniqueness of inverse mean-昀椀eld game through Carleman estimates.

In this paper, we study a typical class of forward problems, the potential mean-昀椀eld games.
Applications like crowd motion [30] and generative models [23] have the formulations of
potential mean-昀椀eld games. In a potential mean-昀椀eld game, the Nash Equilibrium is a pair of
agent distribution ρ and strategy m minimizing a cost L which consists of the dynamic cost
L, the interaction cost FI and the terminal cost FT, under a constraint C(µ0) for density and
strategy evolution dynamics:

(ρ∗,m∗) := argmin
ρ,m∈C(µ0)

L(ρ,m;L,FI,FT) . (1)

The inverse problem is to identify L,FI or FT given (ρ∗,m∗). Typical choices of L,FI and FT

make (1) a (strongly) convex optimization problem with linear constraint. Taking L unknown
andFI,FT known as an example, we thus consider the following bilevel optimization problem

min
L

D ((ρ∗,m∗) ,(ρ(L) ,m(L)))+R(L)

s.t. (ρ(L) ,m(L)) := argmin
ρ,m∈C(µ0)

L(ρ,m;L,FI,FT) .
(2)

HereD is a 昀椀delity term andR is a regularity term. Existing works [7, 8] use the nonlinear and
nonconvex PDE optimality conditions as constraints. Consequently, achieving a theoretical
convergence guarantee is challenging. In contrast, we propose a bilevel formulation for inverse
mean-昀椀eld games, which directly incorporates the forward problem as the constraint. This
bilevel formulation maintains the desirable convex-linear structure of the forward problem (the
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lower-level problem) and enables us to adopt a gradient-based bilevel optimization algorithm
[6, 11, 14, 31, 32] to address the inverse problem (2). Moreover, leveraging this convex-linear
structure, we have developed a convergence result, demonstrating that our algorithm converges
to the stationary point of the bilevel problem.

A common question in inverse mean-昀椀eld games concerns the stability and unique identi昀椀-
ability of the unknown parameter or function relative to the data. In our setting, we ask whether
it is possible to uniquely recover the cost functions from a single pair of observations (ρ∗,m∗)
and whether the recovered cost function continuously depends on these observations. This
setup differs signi昀椀cantly from the theoretical work discussed in [24, 25]. In those studies, the
authors demonstrate that if the interaction and terminal costs are local, holomorphic in ρ(x, t),
and meet zero admissibility conditions, then it is possible to uniquely recover them from in昀椀n-
itely many observations either throughout the full domain or on its boundary. However, in our
case, the cost function for a crowd motion model typically does not satisfy the zero admissib-
ility condition. Moreover, obtaining in昀椀nitely many observations is not feasible in practice. In
this work, we establish stability results for a general model and unique identi昀椀ability results
for crowd motion models at a discrete level. Speci昀椀cally, for a general model, we prove that
our model can achieve a close solution to the ground truth with noisy observation, and for the
crowdmotionmodel, we prove that only one pair of complete observation (ρ∗,m∗) is suf昀椀cient
to uniquely recover the obstacle function, up to a constant. Thus, compared to the requirement
of in昀椀nitely many observations in [24], our result is more practical and offers insights into
what constitutes an effective observation for accurately recovering the ground truth.

Contribution: We summarize our contributions as follows.

1. We propose a bilevel optimization framework for modeling inverse mean-昀椀eld games.
2. We study a general model of mean-昀椀eld games and show that the unknown cost parameters

continuously depend on the observation of the Nash Equilibrium.
3. For the crowd motion model, we prove that up to a constant, the ground truth obstacle

function is the unique minimizer to the bilevel optimization problem of the inverse mean-
昀椀eld game.

4. We apply an alternating gradient-based bilevel optimization algorithm to solve inverse
mean-昀椀eld games and prove the algorithm converges to the stationary point of the bilevel
problem.

5. We implement the algorithm and illustrate the effectiveness of our model and algorithm
with comprehensive numerical experiments.

Organization: The paper is organized as follows. In section 2, we brie昀氀y review the poten-
tial mean-昀椀eld games and provide two examples of forward mean-昀椀eld game models whose
inverse problem will be addressed in this paper. In section 3, we provide the bilevel optimiz-
ation model for inverse mean-昀椀eld games and discretize the model. We also state the stability
of both models and the unique identi昀椀ability of the inverse crowd motion model and prove
them in section 5. In section 4, we present the algorithm to solve our bilevel model for inverse
mean-昀椀eld games and prove the convergence in section 5. In section 6, we demonstrate our
model and algorithm with experiments. Finally, we conclude our work in section 7.

Notation: We summarize the notations frequently used throughout this paper in table 1.
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Table 1. Notations.

MFG

ρ,m,ϕ: density, momentum and value functions
g,b: metric and obstacle functions
L: objective function of a forward potential MFG
γI,γT: coef昀椀cient of entropy and KL divergence
C(µ0): constraint set of (ρ,m) with ρ(·,0) = µ0

Cg,Cb: constraint set of metric g and b

Bilevel optimization

η: the lower-level variable of bilevel optimization,
corresponding to (ρ,m) in inverse MFG setting
ξ: the upper-level variable of bilevel optimization,
corresponding to g,b or other parameters for unknown cost functions in
inverse MFG setting
L(η;ξ),U(η;ξ): lower-level and upper-level cost functions
η∗(ξ) := argminη∈HL(η;ξ): lower-level optimizer for given upper-level
variable ξ
u(ξ) := U(η∗(ξ), ξ): upper-level objective to minimizer
H= {η | Aη = c}: the constraint set of lower-level variable,
corresponding to C(µ0) in inverse MFG setting
Ξ: the constraint set of upper-level variable,
corresponding to Cg,Cb in inverse MFG setting

Alternating gradient
ku,kl: upper-level and lower-level number of iterations
τu, τl: upper-level and lower-level stepsizes

Discretization

Gρ,Gmx

,Gmy

,Gφ: discrete grids where ρ,mx,my and ϕ locate
it, ix, iy: indices on t,x and y direction
It, Ix, Iy: interpolation operator on t,x and y direction
Dt,Dx,Dy: difference operator on t,x and y direction

2. A review of potential mean-field games

In this section, we 昀椀rst review potential mean-昀椀eld games and their optimality conditions [4,
12, 22]. Then we present two example problems that we would like to solve in the inverse
problem setup.

Consider a problem de昀椀ned spatially onΩ⊂ R
d and temporally on [0,1]. ρ : Ω× [0,1]→ R

is the state density. v : Ω× [0,1]→ R
d represents the velocity (control) 昀椀eld of the agents and

m := ρv the 昀氀ux. A potential mean-昀椀eld game typically has the following formulation:

min
(ρ,m)∈C(µ0)

L(ρ,m) :=

ˆ 1

0

ˆ

Ω

ρ(x, t)L
(
x,

m(x, t)
ρ(x, t)

)
dxdt+

ˆ 1

0
FI (ρ(·, t))dt+FT (ρ(·,1))

(3)

with the constraint set being

C (µ0) := {(ρ,m) : ∂tρ+∇·m= 0,ρ(·,0) = µ0,m · n= 0 for x ∈ ∂Ω,ρ(·, ·)⩾ 0} . (4)

wherem is the normal direction on the boundary ∂Ω. It is clear to see that any pair of (ρ,m) ∈
C(µ0) satis昀椀es mass conservation and zero boundary 昀氀ux condition with the initial density of ρ
being µ0. In this objective function, L : Ω×R

d → Rmodels the dynamic cost,FI : P(Ω)→ R

the interaction cost and FT : P(Ω)→ R the terminal cost.
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To derive the optimality condition of (3), we introduce the Lagrangian multiplier ϕ and
formulate the Lagrangian

A(ρ,m,ϕ) : = L(ρ,m)−

ˆ 1

0

ˆ

Ω

ϕ(x, t)(∂tρ(x, t)+∇·m(x, t))dxdt

= L(ρ,m)+

ˆ 1

0

ˆ

Ω

ρ(x, t)∂tϕ(x, t)dxdt+
ˆ 1

0

ˆ

Ω

m(x, t) · ∇ϕ(x, t)dxdt

−

ˆ

Ω

ϕ(x,1)ρ(x,1)dx+
ˆ

Ω

ϕ(x,0)µ0 (x)dx,

(5)

where the second equality is due to integration by part. The optimal solution solves the saddle
point problem

min
ρ⩾0,m

max
ϕ

A(ρ,m,ϕ) . (6)

When L(x,v) is convex in v, let the Legendre transformation of L be

H : Ω×R
d → R,(x,p) 7→ sup

v
{−〈p,v〉− L(x,v)} . (7)

Then if ρ> 0, the optimality condition of (3) is





− ∂tϕ(x, t)+H(x,∇ϕ(x, t)) =
δFI (ρ)

δρ
(x) , ϕ(x,1) =

δFT (ρ)

δρ
(x) ,

∂tρ(x, t)−∇ · (ρ(x, t)∂pH(x,∇ϕ(x, t))) = 0, ρ(·,0) = µ0.

(8)

We use this forward-backward PDE system to explore the properties of the inverse problem
later.

In this paper, we focus on the following two problems.

Problem 2.1 (crowd motion with obstacle). A common example comes from crowd motion
[30], whose formulation is

min
(ρ,m)∈C(µ0)

L(ρ,m;b) :=
ˆ 1

0

ˆ

Ω

‖m(x, t)‖22
2ρ(x, t)

dxdt+
ˆ 1

0

ˆ

Ω

ρ(x, t)b(x)dxdt

+ γI

ˆ 1

0

ˆ

Ω

ρ(x, t) logρ(x, t)dxdt

+ γT

ˆ

Ω

ρ(x, t)(logρ(x, t)− logµ1 (x))dx.

(9)

Here the terminal cost is the KL divergenceFT(ρ(·,1)) =
´

Ω
ρ(x, t)(logρ(x, t)− logµ1(x))dx

which aims to match the terminal density ρ(·,1) to the desired density µ1. The interaction cost
contains two parts. The entropy term

´

Ω
ρ(x, t) logρ(x, t)dx penalizes the aggregation of the

density. And the obstacle term
´

Ω
ρ(x, t)b(x)dx penalizes the mass going through the obstacle
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x with larger value of b(x). With the same initial density µ0, different obstacle functions lead
to different Nash Equilibrium. Assuming that we know everything in the objective function (9)
except the obstacle function b, we aim to recover b from observations of the equilibrium (ρ,m).

Problem 2.2 (non-Euclidean metric). It is also common to consider mean-昀椀eld games on
spaces with non-Euclidean metrics. If at each x ∈ Ω,Ω⊂ R

d, there is a positive de昀椀nite matrix
g(x) ∈ Sd++ indicating the metric, then the mean-昀椀eld game problem takes the form

min
(ρ,m)∈C(µ0)

L(ρ,m;g) :=
ˆ 1

0

ˆ

Ω

m(x, t)⊤ g(x)m(x, t)
2ρ(x, t)

dxdt

+ γI

ˆ 1

0

ˆ

Ω

ρ(x, t) logρ(x, t)dxdt

+ γT

ˆ

Ω

ρ(x, t)(logρ(x, t)− logµ1 (x))dx.

(10)

We alsowork on solving themetric g from the observations of the equilibrium (ρ,m), assuming
other terms in (10) are known.

In summary, we are interested in the mean-昀椀eld game problem with the objective function

L(ρ,m;g,b) :=
ˆ 1

0

ˆ

Ω

m(x, t)⊤ g(x)m(x, t)
2ρ(x, t)

dxdt+
ˆ 1

0

ˆ

Ω

ρ(x, t)b(x)dxdt

+ γI

ˆ 1

0

ˆ

Ω

ρ(x, t) logρ(x, t)dxdt+ γT

ˆ

Ω

ρ(x,1)(logρ(x,1)− logµ1 (x))dx.

(11)

We write L(ρ,m;g) when b≡ 0 and L(ρ,m;b) when g≡ Id. With ρ > 0 , the optimality con-
dition for the problem

min
(ρ,m)∈C(µ0)

L(ρ,m;g,b) , (12)

is





− ∂tϕ(x, t)+
1
2
(∇ϕ(x, t))⊤ (g(x))−1

∇ϕ(x, t) = γI (logρ(x, t)+ 1)+ b(x) ,

ϕ(x,1) = γT (logρ(x, t)− logµ1 (x)+ 1) ,

∂tρ(x, t)−∇ ·
(
ρ(x, t)(g(x))−1

∇ϕ(x, t)
)
= 0, ρ(·,0) = µ0.

(13)

We call the potential mean-昀椀eld games (3), as well as (9) and (10), the forward problem.
In this paper, we aim to learn the unknown variables b,g from one or a set of observations
of the Nash Equilibrium

{(
ρ̃n,m̃n)}N

n=1
that solve the forward problems, and we name this

the inverse problem. Note that the forward problem has a convex objective function and linear
constraint, while the optimality condition is nonlinear and nonconvex. To preserve the nice
convex-linear structure of the forward problem, we formulate the inverse mean-昀椀eld game as
a bilevel optimization problem and treat the forward problem as the constraint.
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Remark 2.3. While this paper mainly works on the inverse problem of problems 2.1 and 2.2,
we emphasis that the bilevel formulation introduced in section 3.1 and the alternating gradient
algorithm in section 4 are applicable to a broad class of inverse mean-昀椀eld games, provided
the cost function can be parameterized, either by values on a grid or by a neural network. More
importantly, our convergence analysis holds for a very general class ofmean-昀椀eld gameswhose
forward objective exhibits convexity with respect to the density ρ and momentum m.

3. A bilevel formulation of inverse mean-field games

In this section, we 昀椀rst review the general formulation of a bilevel optimization problem, then
provide the bilevel formulation of inverse mean-昀椀eld games, as well as two concrete inverse
problems that we would like to solve in this work. After that, we discretize the model for
numerical implementation.

3.1. Bilevel formulation

The general formulation of a bilevel optimization problem is

min
ξ∈Ξ

u(ξ) := U (η∗ (ξ) ;ξ)

where η∗ (ξ) = argmin
η∈H

L(η;ξ) .
(14)

Here we consider linear constraint set H= {η | Aη = c} and convex set Ξ, where A ∈
R
dc×dη ,c ∈ R

dc . dc < dη . The optimization problem over U is referred to as the upper-level
problem and that over L as the lower-level problem. We formulate our inverse problems as
bilevel optimization problems, with the upper-level objective being a combination of 昀椀delity
Dρ,Dm and regularity R, and the lower-level problem being the forward problem.

min
L∈CL,FI∈CFI

U ((ρ,m) ,(ρ̃,m̃) ;L,FI) := (Dρ (ρ, ρ̃)+Dm (m,m̃))+R(L,FI)

s.t. (ρ,m) := argmin
(ρ,m)∈C(µ0)

L(ρ,m;L,FI) .

The dynamic cost L and interaction cost functional FI are the upper-level variables and the
density-昀氀ux pair (ρ,m) is the lower-level variable. For convenience, we choose Dρ(ρ, ρ̃) =
1
2

´ 1
0

´

Ω
(ρ(x, t)− ρ̃(x, t))2dxdt and Dρ(m,m̃) = 1

2

´ 1
0

´

Ω
‖m(x, t)− m̃(x, t)‖22dxdt

We formulate the inverse problems of problem 2.1 and 2.2 as follows.

Problem 3.1 (the inverse problem of crowd motion (problem 2.1)). Let the regularity be
R(b) = 0. The inverse problem of (11) is

min
b∈Cb

Dρ (ρ, ρ̃)+Dm (m,m̃)

s.t. (ρ,m) := argmin
(ρ,m)∈C(µ0)

L(ρ,m;b) .
(15)

Here (ρ̃,m̃) = argmin(ρ,m)∈C(µ0)
L(ρ,m; b̃) are the observed data with ground truth b̃. Notice

that for any constant c ∈ R, if (ρ̃,m̃) minimizes L(ρ,m; b̃), then (ρ̃,m̃) also minimizes
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L(ρ,m; b̃+ c). To remove the ambiguity, we restrict our focus to obstacle functions with zero
integral, i.e.

Cb :=

{
b :
ˆ

Ω

b(x)dx= 0

}
. (16)

Ideally, we expect projCb(b̃) to be the unique minimizer of the bilevel problem (15). We prove
this unique identi昀椀ability property for the discretization of (15) in section 5.

Problem 3.2 (the inverse problem of unknown metric (problem 2.2)). Similarly, we have
the bilevel formulation to recover the metric g̃ from the data (ρ̃,m̃) = argmin

(ρ,m)∈C(µ0)

L(ρ,m; g̃).

min
g∈Cg

Dρ (ρ, ρ̃)+Dm (m,m̃)+R(g)

s.t. (ρ,m) := argmin
(ρ,m)∈C(µ0)

L(ρ,m;g) .
(17)

To make sure that g induces a metric on Ω, we set the constraint of g as

Cg :=
{
g : Ω→ Sd++ : g(x) are positive de昀椀nite matrices,∀x ∈ Ω

}
. (18)

For one observation, if the density is zero in an open set, it means almost no players pass
the region and it is impossible to obtain the exact information in that region. However mul-
tiple observations may complement the missing information, and therefore it is meaningful to
consider the following inverse MFG with multiple observations.

Problem 3.3 (the inverse problem of unknown metric (problem 2.2) with multiple
observations). Suppose that we have multiple observations of the Nash Equilibrium with
a given g̃ from different initial densities µn0,n= 1, . . . ,N, i.e. (ρ̃n,m̃n

) = argmin
(ρ,m)∈C(µn

0)

L(ρ,m; g̃)

for n= 1,2, . . . ,N. Then we can solve the following bilevel optimization problem to recover
the true metric

min
g∈Cg

N∑

n=1

(
Dρ (ρ

n, ρ̃n)+Dm
(
mn,m̃n))

+R(g)

s.t. {(ρn,mn)}
N
n=1 := argmin

(ρn,mn)∈C(µn
0)

N∑

n=1

L(ρn,mn;g) .

(19)

The lower-level is equivalent to a concatenation of N forward problems since (ρn,mn) are
independent.

3.2. Discretization

We conduct numerical experiments on R
d with d= 1,2. Taking d= 2 as an example, we

let Ω= [0,1]× [0,1] and the space-time joint domain be [0,1]3, and we write m= (mx,my).
We follow the discretization in [34], with which the discrete optimizer is consistent with the
continuous optimizer under certain regularity conditions. To be precise, we equally divide
[0,1] into nx,ny,nt parts, and each cube is of size ∆x∆y∆t, with ∆x= 1

nx
,∆y= 1

ny
,∆t= 1

nt
.

Let xi = (i− 1
2 )∆x,yi = (i− 1

2 )∆y, ti = (i− 1
2 )∆t, and ( f)ixiyit approximates function f on the

8
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Figure 1. Illustrations of the staggered (left) and central (right) grids. Reproduced with
permission from [33].

point (xix ,yiy , tit). Similarly, ( f)ix,iy ≈ f(xix ,yiy). We de昀椀ne Gρ,Gm
x
and Gm

y
as the sets of grid

point indices on t-, x- and y-staggered grids, respectively, where

Gρ :=

{(
ix, iy, it+

1
2

)
: ix = 1, . . . ,nx, iy = 1, . . . ,ny, it = 1, . . . ,nt

}
,

Gm
x

:=

{(
ix+

1
2
, iy, it

)
: ix = 1, . . . ,nx− 1, iy = 1, . . . ,ny, it = 1, . . . ,nt

}
,

Gm
y

:=

{(
ix, iy+

1
2
, it

)
: ix = 1, . . . ,nx, iy = 1, . . . ,ny− 1, it = 1, . . . ,nt

}
.

Then we approximate the function ρ,mx and my on t-, x- and y-staggered grids by ρGρ ,mx
Gmx

and my
Gmy , respectively, i.e. ρGρ := {(ρ)i}i∈Gρ ∈ R

nxnynt , mx
Gmx = {(mx)i}i∈Gmx ∈ R

(nx−1)nynt

and my
Gmy = {(my)i}i∈Gmy ∈ R

nx(ny−1)nt . We denote Gm := Gm
x
×Gm

y
as the concatenation of

Gm
x
,Gm

y
andmGm := {mx

Gmx ,m
y
Gmy} as the concatenation ofmx

Gmx ,m
y
Gmy . We will omit the under

scripts of grids wherever there is no ambiguity according to context. The left part of 昀椀gure 1
illustrates the staggered grids and the corresponding ρ,mx for d= 1.

We de昀椀ne the inner products on the staggered grids as

〈ρ1,ρ2〉Gρ := ∆x∆y∆t
∑

i∈Gρ

(ρ1)i (ρ2)i ,

〈mx
1,m

x
2〉Gmx := ∆x∆y∆t

∑

i∈Gmx

(mx
1)i (m

x
2)i ,

〈my
1,m

y
2〉Gmy := ∆x∆y∆t

∑

i∈Gmy

(my
1)i (m

y
2)i ,

and denote their induced norm as ‖ · ‖Gρ ,‖ · ‖Gmx and ‖ · ‖Gmy . Based on these, we approxim-
ate the discrepancy between lower-level minimizer and observed data Dρ,Dm by the sum of
element-wise differences on grids DGρ ,DGm ,

DGρ (ρ, ρ̃) :=
1
2
‖ρ− ρ̃‖2Gρ

DGm (m,m̃) :=
1
2
‖mx− m̃x‖2Gmx +

1
2
‖my− m̃y‖2

Gmy .

(20)
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To compute the objective function, we consider the central grid (see the right plot in
昀椀gure 1)

Gϕ := {(ix, iy, it) : ix = 1, . . . ,nx, iy = 1, . . . ,ny, it = 1, . . . ,nt} .

We de昀椀ne the inner product and induced norm on the central grid similarly and denote them as
〈·, ·〉Gφ and ‖ · ‖Gφ . With the interpolation operators, ρ= It(ρ;µ0), mx = Ix(mx),my = Iy(my)
meet on the central grid points:

(ρ)ixiyit = (It (ρ;µ0))ixiyit :=





1
2

(
(µ0)ix,iy +(ρ)ix,iy,it+ 1

2

)
, it = 1,

1
2

(
(ρ)ix,iy,it− 1

2
+(ρ)ix,iy,it+ 1

2

)
, it = 2, . . . ,nt.

(mx)ixiyit = (Ix (m
x))ixiyit :=





1
2 (m

x)ix+ 1
2 ,iy,it

, ix = 1,
1
2

(
(mx)ix− 1

2 ,iy,it
+(mx)ix+ 1

2 ,iy,it

)
, ix = 2, . . . ,nx− 1,

1
2 (m

x)ix− 1
2 ,iy,it

, ix = nx.

(my)ixiyit = (Iy (m
y))ixiyit :=





1
2 (m

y)ix,iy+ 1
2 ,it

, iy = 1,
1
2

(
(my)ix,iy− 1

2 ,it
+(my)ix,iy+ 1

2 ,it

)
, iy = 2, . . . ,ny− 1,

1
2 (m

y)ix,iy− 1
2 ,it

, iy = ny.

Here, the de昀椀nition of mx on ix = 1,nx and my on iy = 1,ny are consistent with the zero-昀氀ux
boundary condition in the continuous setting. The objective functions of the forward problem
can therefore be approximated by

LG (ρ,m;g,b) := ∆x∆y∆t
∑

i∈Gφ

(
(m)⊤i (g)ix,iy (m)i

2(ρ)i
+ γI (ρ)i log((ρ)i)

)
+∆x∆y∆t

∑

i∈Gρ

(ρ)i (b)ix,iy

+ γT∆x∆y
nx∑

ix=1

ny∑

iy=1

(ρ)ix,iy,nt+ 1
2

(
log(ρ)ix,iy,nt+ 1

2
− log(µ1)ix,iy

)

(21)

wherem= {mx,my}, (m)⊤ixiyit := ((mx)ixiyit ,(my)ixiyit) and the subscript ofLG indicates the cost
is de昀椀ned on the discrete space. Similar to the continuous notation, we writeLG(ρ,m;g)when
b= 0 and LG(ρ,m;b) when g≡ 1 (d= 1) or g≡ I2 (d= 2).

With this discretization, LG(ρ,m;g,b) preserves the following properties on (ρ,m) from
the continuous setting.

Lemma 3.4. For LG(ρ,m;g,b) de昀椀ned on (ρGρ ,mx
Gmx ,m

y
Gmy ) ∈ R

nxnynt ×R
(nx−1)nynt ×

R
nx(ny−1)nt with min

i∈Gρ
(ρ)i > 0, the following statements hold:

1. If γI,γT ⩾ 0 and gix,iy is positive de昀椀nite for all ix, iy, then LG(ρ,m;g,b) is convex in ρ,m.
2. In addition to 1, if we restrict the domain to ρ with min

i∈Gρ
(ρ)i ⩾ cρ > 0, mx with max

i∈Gmx
(|mx

i |)⩽
cm, and my with max

i∈Gmy
(|my

i |)⩽ cm, then LG(ρ,m;g,b) is Lipschitz smooth in ρ,m.

3. In addition to 1,2, if we further restrict the domain to ρ ∈ R
nxnynt with max

i∈Gρ
(ρ)i ⩽ cρ, then

for any γI,γT > 0, LG(ρ,m;g,b) is strongly convex in ρ,m.

10
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We postpone the proof of the lemma in section 5 for better readability. The Lipschitz
smoothness and strong convexity of the lower-level objective are important to guarantee the
convergence of our alternating gradient algorithm, as detailed later in section 4.

Following the nature of the staggered grid, we choose a central difference scheme to approx-
imate the differential operators

(Dt (ρ;µ0))ixiyit :=





1
∆t

(
(ρ)ix,iy,it+ 1

2
− (µ0)ix,iy

)
, it = 1,

1
∆t

(
(ρ)ix,iy,it+ 1

2
− (ρ)ix,iy,it− 1

2

)
, it = 2, . . . ,nt.

(Dx (m
x))ixiyit :=





1
∆x (m

x)ix+ 1
2 ,iy,it

, ix = 1,
1
∆x

(
(mx)ix+ 1

2 ,iy,it
− (mx)ix− 1

2 ,iy,it

)
, ix = 2, . . . ,nx− 1,

− 1
∆x (m

x)ix− 1
2 ,iy,it

, ix = nx.

(Dy (m
y))ixiyit :=





1
∆y (m

y)ix,iy+ 1
2 ,it

, iy = 1,
1
∆y

(
(my)ix,iy+ 1

2 ,it
− (my)ix,iy− 1

2 ,it

)
, iy = 2, . . . ,ny− 1,

− 1
∆y (m

y)ix,iy− 1
2 ,it

, iy = ny.

Again, the de昀椀nitions of Dx,Dy on ix = 1,nx, iy = 1,ny, respectively, are consistent with the
zero-昀氀ux boundary condition. The discrete constraint set is

CG (µ0) := {(ρ,m) : Dt (ρ;µ0)+Dx (m
x)+Dy (m

y) = 0} . (22)

Based on the above notations, we restate the inverse problems 3.1 and 3.2 in the discretized
space. We intentionally write down the problems for more general cases with multiple pairs
of training data as they will reduce to the case with a single pair of data by choosing N= 1.

Problem 3.5 (the discretization of the inverse crowd motion problem 3.1). The discretiz-
ation of (15) has the following formulation

min
b∈CG,b

N∑

n=1

(
DGρ (ρn, ρ̃n)+DGm

(
mn,m̃n))

s.t. (ρn,mn) := argmin
(ρ,m)∈CG(µn

0)
LG (ρ,m;b) ,n= 1,2, . . . ,N,

(23)

where (ρ̃n,m̃n
) = argmin(ρ,m)∈CG(µn

0)
LG(ρ,m; b̃) are the observed data and

CG,b :=



b :

nx,ny∑

ix,iy

(b)ix,iy = 0



 . (24)

Problem 3.6 (the discretization of the inverse metric problem 3.2). Similarly, given the
data (ρ̃n,m̃n

) = argmin
(ρ,m)∈C(µn

0)

L(ρ,m; g̃), we implement algorithms to solve

min
g∈CG,g

N∑

n=1

(
DGρ (ρn, ρ̃n)+DGm

(
mn,m̃n))

+RG (g)

s.t. (ρn,mn) := argmin
(ρ,m)∈CG(µn

0)
LG (ρ,m;g) ,n= 1,2, . . . ,N,

(25)

11
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with the constraint of g being

CG,g :=
{
g : (g)ix,iy ∈ R

d×d are positive de昀椀nite matrices, ix = 1, . . . ,nx, iy = 1, . . . ,ny
}
.

(26)

3.3. Regularity and unique identi昀椀ability of the inverse problems

At the end of this section, we state the regularity of the inverse problems 3.5 and 3.6 and the
unique identi昀椀ability of the inverse crowd motion problem 3.5.

The regularity and unique identi昀椀ability of the inverse problem rely on the KKT system of
the discretized forward problem

min
(ρ,m)∈C(µ0)

LG (ρ,m;g,b) . (27)

To write the KKT system in a concise way, we de昀椀ne the adjoint operators of Ix, Iy, It for any
ϕ = ϕGφ on the central grid as

(I∗t (ϕ))ix,iy,it+ 1
2
:=

{
1
2

(
(ϕ)ixiyit +(ϕ)ix,iy,it+1

)
, it = 1, . . . ,nt− 1,

1
2 (ϕ)ixiyit , it = nt

(I∗x (ϕ))ix+ 1
2 ,iy,it

:=
1
2

(
(ϕ)ixiyit +(ϕ)ix+1,iy,it

)
, ix = 1, . . . ,nx− 1

(
I∗y (ϕ)

)
ix,iy+ 1

2 ,it
:=

1
2

(
(ϕ)ixiyit +(ϕ)ix,iy+1,it

)
, iy = 1, . . . ,ny− 1.

And the adjoint operators of Dx,Dy,Dt as

(D∗
t (ϕ))ix,iy,it+ 1

2
:=

{
− 1

∆t

(
(ϕ)ix,iy,it+1 − (ϕ)ixiyit

)
, it = 1, . . . ,nt− 1

1
∆t (ϕ)ixiyit , it = nt

(D∗
x (ϕ))ix+ 1

2 ,iy,it
:=

1
∆x

(
(ϕ)ix+1,iy,it

− (ϕ)ixiyit

)
, ix = 1, . . . ,nx− 1

(
D∗
y (ϕ)

)
ix,iy+ 1

2 ,it
:=

1
∆y

(
(my)ix,iy+1,it

− (my)ixiyit

)
, iy = 1, . . . ,ny− 1.

The adjoint relation in the discretized space holds based on the de昀椀nitions. To be precise, for
the interpolation operators, we have

〈It (ρ;µ0) ,ϕ〉Gφ = 〈ρ, I∗t (ϕ)〉Gρ +
1
2

nx∑

ix=1

ny∑

iy=1

(µ0)ix,iy (ϕ)ix,iy,1

〈Ix (mx) ,ϕ〉Gφ = 〈mx, I∗x (ϕ) ,〉Gmx

〈Iy (my) ,ϕ〉Gmy = 〈my, I∗y (ϕ) ,〉Gmy .

And for differential operators, we have

〈Dt (ρ;µ0) ,ϕ〉Gφ = 〈ρ,D∗
t (ϕ)〉Gρ − 1

∆t

nx∑

ix=1

ny∑

iy=1

(µ0)ix,iy (ϕ)ix,iy,1

〈Dx (m
x) ,ϕ〉Gφ = 〈mx,D∗

x (ϕ)〉Gmx

〈Dy (m
y) ,ϕ〉Gφ = 〈my,D∗

y (ϕ)〉Gmy .

12
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With the adjoint operators, we de昀椀ne theY operators as following to describe the optimality
condition for the forward problem,





i ∈ Gρ, it = 1, . . . ,nt− 1,

(Yρ (ρ,m,ϕ;g,b))i :=−(D∗
t (ϕ))i +

(
I∗t

(
− (m)

⊤ gm
2ρ2 + γI (log(ρ)+ 1)

))

i

+ bix,iy ,

i ∈ Gρ,= nt,

(Yρ (ρ,m,ϕ;g,b))i :=−(D∗
t (ϕ))i +

(
I∗t

(
− (m)

⊤ gm
2ρ2 + γI (log(ρ)+ 1)

))

i

+ bix,iy

+
γT
∆t

(
log(ρi)− log

(
(µ1)ix,iy

)
+ 1
)
,

i ∈ Gmx

, (Ymx (ρ,m,ϕ;g,b))i :=−(D∗
x (ϕ))i +

(
I∗x

(
gxxmx+ gxymy

ρ

))

i
,

i ∈ Gmy

, (Ymy(ρ,m,ϕ;g,b))i :=−
(
D∗
y (ϕ)

)
i
+

(
I∗y

(
gxymx+ gyymy

ρ

))

i
,

i ∈ Gϕ, (Yϕ(ρ,m,ϕ;g,b))i := (Dt(ρ;µ0)+Dx(m
x)+Dy(m

y))i .

(28)

Yρ,Yx
m,Yy

m,Yϕ are obtained by taking gradients on the Lagrangian of the forward prob-
lem (27). By viewing ρ,m,ϕ,b and Yρ,Yx

m,Yy
m,Yϕ as long vectors and denoting Y :=

(Yρ,Ymx ,Ymy ,Yϕ)
⊤, we de昀椀ne a functionY : Rdl ×R

du → R
dl with du = ( d(d+1)

2 + 1)nxny cor-
responding to the dimension of (g,b) and dl = nxnynt+(nx− 1)nynt+ nx(ny− 1)nt+ nxnynt to
the dimension of ρ,mx,my,ϕ. Since the constraint is linear, the optimizer of (27) satis昀椀es the
KKT condition. The formal statement is the following.

Lemma 3.7. If (ρ̃,m̃) ∈ C(µ0) is a minimizer of LG(ρ,m; g̃, b̃), and min
i∈Gρ

{ρ̃i}> 0, then there

exists ϕ̃ ∈ R
nxnynt such that

Y
(
ρ̃,m̃, ϕ̃; g̃, b̃

)
= 0. (29)

With the discrete PDE description of the Nash Equilibrium, we state the regularity result
for inverse problems 3.5 and 3.6.

Theorem 3.8 (regularity). Assume that (ρ̃,m̃) is the Nash Equilibrium given the metric g̃,
obstacle function b̃ and γI > 0,γT > 0, i.e. (27) holds, and that min

i∈Gρ
ρ̃i > 0, then there exists

ru > 0 and a radius ru open ball Bru(g̃, b̃) centered at (g̃, b̃), and a mapping T de昀椀ned on
Bru(g̃, b̃) satisfying the following

• For any (g,b) ∈ Bru(g̃, b̃), there exist a unique (ρ,m,ϕ) = T (g,b) ∈ Brl(ρ̃,m̃, ϕ̃), a radius
rl open ball centered at (ρ̃,m̃, ϕ̃), such that (ρ,m,ϕ) solves the forward problem with
LG(ρ,m;g,b).

• T (g̃, b̃) = (ρ̃,m̃, ϕ̃), T is of class C1 and

DT (g,b) =−(Dρ,m,ϕY(T (g,b);g,b)))−1
(DbY(T (g,b);g,b)) , for all (g,b) ∈ Bru(g̃, b̃).

(30)

13
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In addition, we have the unique identi昀椀ability of the inverse crowd motion problem because
the lower-level objective has a simple dependence on the obstacle b. To be concrete, by solving
the inverse crowd motion problem 3.5, we uniquely recover the ground truth obstacle b̃ up to
a constant from only one good observation of the Nash Equilibrium.

Theorem 3.9 (unique identifiability). Assume that (ρ̃,m̃) is the Nash Equilibrium given the
obstacle function b̃, i.e.

(ρ̃,m̃) := argmin
(ρ,m)∈CG(µ0)

LG

(
ρ,m; b̃

)
, (31)

and that min
i∈Gρ

ρ̃i > 0, then any minimizer b of the bilevel minimization problem

min
b

DGρ (ρ, ρ̃)+DGm (m,m̃)

s.t. (ρ,m) := argmin
(ρ,m)∈CG(µ0)

LG (ρ,m;b) ,
(32)

has the form b= b̃+ c where c ∈ R is a constant. This implies that b̃ is the unique minimizer
of the bilevel minimization problem (32) up to a constant.

The proofs are postponed to section 5. We close this section with some remarks on the
theorems.

Remark 3.10 (numerical stability). While the unique identi昀椀ability theorem 3.9 holds without
the entropy term and the regularity theorem 3.8, we emphasize that the entropy term and reg-
ularity theorem are meaningful for studying the numerical stability of the inverse problem. In
fact, the entropy term guarantees the strong convexity of the objective function and thus the
uniqueness of the forward problem. And it is important for the regularity theorem 3.8 to hold.
The regularity argument states the differentiability of the forward optimizer with respect to
the metric g and the obstacle b and reveals the rate of change. According to theorem 3.9, if
the smallest singular value of DT (g,b) is large, then a small perturbation to (ρ̃,m̃) can still
give a reasonable approximation of the ground truth g̃, b̃. It is also worth noting that when
mini ρ̃i is close to 0, the condition number of the Jacobian matrix Dρ,m,ϕY(ρ̃,m̃, ϕ̃;b) in (30)
can be extremely large. Therefore the Jacobian matrix Db(ρ,m,ϕ) is close to singular, and the
observation error may cause a failure to recover the ground truth obstacle.

Remark 3.11 (unique identifiability in the function space). Theorem 3.9 establishes the
unique identi昀椀ability of the obstacle bG ∈ R

nxny in the discretized 昀椀nite-dimensional space. To
prove the parallel result for the obstacle function b : Ω→ R in the in昀椀nite-dimension space,
it is subtle to choose the function space for b,ρ,m, and ϕ. The function space is expected
to be large enough to guarantee the existence of the lower-level optimizers ρ∗(b),m∗(b) for
different b, and to guarantee the existence of the bilevel problem optimizer b∗. Meanwhile,
the functions in the space require enough regularity for ρ∗(b),m∗(b) to be differentiable with
respect to b. This is out of the scope of this paper. We refer interested readers to [24, 25, 29] for
efforts in studying the unique identi昀椀ability in the in昀椀nite-dimensional space, where in昀椀nitely
many pairs of training data are required.

Remark 3.12 (unique identifiability of the unknown metric). To establish the local unique
identi昀椀ability of the metric as a corollary of the stability theorem 3.8, we needDgY(ρ̃,m̃, ϕ̃;g)

to have full rank. However, for 1D metric, the rank of DgY(ρ̃,m̃, ϕ̃;g) depends on the data
ρ̃,m̃, ϕ̃, which is different from DbY(ρ̃,m̃, ϕ̃;b) being a constant. Therefore, we may not
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uniquely recover the metric from the data. Besides the degenerated rank, while uniquely identi-
fying g requires the knowledge of ϕ̃, we do not have ϕ̃ in our problem setting and this can also
cause non-uniqueness of the inverse problem. By experiments in [8], the lack of information
on ϕ̃ can be overcome by giving partial true information on the metric and incorporating regu-
larity terms in the upper-level objective. For 2D metric, if we view gxx,gxy,gyy as independent
variables, then DgY(ρ̃,m̃, ϕ̃;g) is not a full-rank matrix and theoretically there is no hope to
uniquely recover the ground truth metric. If the metric gi ∈ S2++ has intrinsic structures such
that the number of variables to determine the metric is nxny instead of 3nxny, numerically we
recover the ground truth with a low error as shown by the numerical experiment in section 6.5.
The numerical experiment in section 6.2.2 also shows that another way to resolve the ambigu-
ity is to have multiple observations for more complete information in the region.

4. Alternating gradient method

In this section, we present the alternating gradient method (AGM) to solve the general bilevel
optimization problem (14), as well as two inverse mean-昀椀eld game problems 3.5 and 3.6.

4.1. Preliminary on AGM for bilevel optimization

The idea of the AGM is iteratively conducting gradient descent on the lower-level variable
and the upper-level variable. To illustrate our algorithm, we 昀椀rst consider the following uncon-
strained bilevel problem

min
ξ∈Rdu

u(ξ) := U (η∗ (ξ) ;ξ)

where η∗ (ξ) = argmin
η∈R

dl

L(η;ξ) .
(33)

The computation of the lower-level gradient is straightforward. To obtain the upper-level gradi-
ent, we assume thatU ,L are differentiable and denote the gradient operator with respect to their
昀椀rst and second entries as ∇η,∇ξ. If for any given ξ, there exists a unique η∗(ξ) solving the
lower-level optimization problem and the function mapping ξ to its corresponding minimizer
η∗(ξ) is differentiable, then by chain rule, we have

∇u(ξ) =∇ξη
∗ (ξ)

⊤∇ηU (η∗ (ξ) ;ξ)+∇ξU (η∗ (ξ) ;ξ) , (34)

with ∇ξη
∗(ξ) = (∂ξ1η

∗(ξ), . . . ,∂ξdu η
∗(ξ)) ∈ R

dl×du being the Jacobian matrix of η∗. We cla-
rify that here ∇ξU(η∗(ξ);ξ) is the gradient of U with respect to its second entry evaluated
at (η∗(ξ);ξ) without considering the dependence of η∗ on ξ. Therefore ∇ηU(η∗(ξ);ξ) and
∇ξU(η∗(ξ);ξ) in (34) are easy to compute.

When the exact lower-level solution η∗(ξ) is unavailable, the upper-level gradient ∇u(ξ)
is inaccessible. However, we can approximate η∗(ξ) and therefore approximate ∇ξ u(ξ).
Speci昀椀cally, for ξku at the ku-th iteration, we run Kl-step gradient descent of lower-level with
stepsize τl to approximate η∗(ξku), i.e.





ηku,1 = ηku ;

ηku,kl+1 = ηku,kl − τl∇ηL
(
ηku,kl ;ξku

)
,kl = 1, . . . ,Kl;

ηku+1 = ηku,Kl+1.

(35)
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It is easy to see that ηku,kl+1 = ηku,kl+1(ξku)(kl = 1, . . . ,Kl) and ηku+1 = ηku+1(ξku) are functions
of ξku . We drop the dependence for notation conciseness and estimate the upper-level gradient
∇u(ξku) by

∇̂u
(
ξku
)
:=
(
∇ξku η

ku+1
)⊤∇ηU

(
ηku+1;ξku

)
+∇ξU

(
ηku+1;ξku

)
, (36)

where the ηku is a lower-level estimator of the lower-level optimizer η∗(ξku), and
(∇ξku η

ku+1)ij = ∂ξkuj
ηku+1
i estimates ∇ξη

∗(ξku) by unrolling the lower-level iterates through

the chain rule. With the estimator in (36), we then update the upper-level variable by gradient
descent with stepsize τu, i.e.

ξku+1 = ξku − τu∇̂u
(
ξku
)
. (37)

We summarize the algorithm in algorithm 1

Algorithm 1. General AGM for unconstrained bilevel optimization problem (33).

Initialization: ξ1,η1, stepsizes {τu, τl}
for ku = 1,2, . . . ,Ku do

Initialize lower-level update by ηku,1 = ηku .
for kl = 1,2 · · · ,Kl do

lower-level gradient descent

η
ku,kl+1 = η

ku,kl − τl∇ηL
(
η
ku,kl ;ξku

)
. (38)

end for
Let the lower-level estimator be ηku+1 = ηku,Kl+1 and compute ∇̂u(ξku) by (36).
Conduct upper-level gradient descent

ξ
ku+1 = ξ

ku − τu∇̂u
(
ξ
ku
)
. (39)

end for

Remark 4.1 (error of unrolled differentiation). Equation (34) gives the exact value of the
upper-level gradient. To obtain the unknown∇ξη

∗(ξ) in (34), we refer to the 昀椀rst-order optim-
ality condition from the lower-level problem ∇ηL(η∗(ξ);ξ) = 0. We view ∇ηL(η∗(ξ);ξ) as
a vector-valued function of ξ, and its Jacobian matrix gives

∇ξη
∗ (ξ)

⊤∇ηηL(η∗ (ξ) ;ξ)+∇ξηL(η∗ (ξ) ;ξ) = 0, (40)

where (∇ξηL)ij(η,ξ) = ∂ξi∂ηjL(η,ξ) and (∇ηηL)ij(η,ξ) = ∂ηi∂ηjL(η,ξ) are blocks of the
Hessian matrix of L. Therefore

∇ξη
∗ (ξ)

⊤
=−∇ξηL(η∗ (ξ) ;ξ)(∇ηηL(η∗ (ξ) ;ξ))

−1
. (41)
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Plugging (41) into (34) gives the upper-level gradient

∇u(ξ) = ∇̂ξU (η∗ (ξ) ;ξ) , (42)

where

∇̂ξU (η;ξ) =∇ξU (η;ξ)−∇ξηL(η;ξ)(∇ηηL(η;ξ))
−1∇ηU (η;ξ) . (43)

The gradient estimator (36) approximates the true gradient by approximating η∗ by ηku+1 and
approximating (∇ηηL(η;ξ))−1 by unrolling differentiation. A key to the convergence of the
AGMalgorithm is to control the error of unrolling differentiation. For unconstrained problems,
[9, 14] proved that under suf昀椀cient smoothness assumptions, the errors of the approximations
decrease as kl increases. In lemma 5.3 of this paper, we study and prove the error can also be
bounded for linear equality constrained lower-level problems.

4.2. AGM for inverse mean-昀椀eld games

Building upon algorithm 1 for unconstrained bilevel optimization problems (33), we propose
algorithm 2 to solve the constrained bilevel optimization problem (14) and its special cases in
inverse mean-昀椀eld game problems 3.1 and 3.2.

Algorithm 2. General AGM for (14).

Initialization: ξ1,η1, stepsizes {τu, τl}
for ku = 1,2, . . . ,Ku do

Initialize lower-level update by ηku,1 = ηku .
for kl = 1,2 · · · ,Kl do

lower-level gradient descent

η
ku,kl+1 = proj

H

(
η
ku,kl − τl∇ηL

(
η
ku,kl ;ξku

))
. (44)

end for
Let the lower-level estimator be ηku+1 = ηku,Kl+1 and compute ∇̂u(ξku) by (36).
Conduct upper-level projected gradient descent

ξ
ku+1 = proj

Ξ

(
ξ
ku − τu∇̂u

(
ξ
ku
))

(45)

end for

Algorithm 2 applies the projected gradient descent to estimate the lower-level optimizer and
to update the upper-level optimizer at each iteration. Precisely, by denoting the matrix form of
the constraint (22) as Aη = c, the projection to H= {η | Aη = c} is

proj
H

(η) =
(
I−A†A

)
η+ η0,

where A† is the Moore–Penrose inverse and η0 is a 昀椀xed solution to Aη = c. The projection
operator is invariant to the lower-level objective and the number of iterations. As discussed
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in [34], the main cost of the lower-level projected gradient descent is to compute the inverse
of the discretized Laplacian operator (AA⊤)−1, which can be solved ef昀椀ciently using the fast
cosine transform. We refer to section 3.2 in [34] for all detailed discussions. Since each step
in projected gradient descent is explicit, it is possible to unroll the differentiation to estim-
ate the upper-level gradient and thus conduct AGM for the constrained bilevel optimization
problem. Although it is widely acknowledged in unconstrained bilevel optimization [9, 14]
that the error arising from unrolling differentiation is controllable, rigorously adapting this
approach to incorporate lower-level linear constraints is, to the best of our knowledge, unex-
plored. Lemma 5.3 in this paper investigates the error of this approximation, indicating that
the gradient estimation error can be effectively bounded by the accuracy of the lower-level
solution.

Remark 4.2 (the choice of lower-level (forward MFG) solver). The key of solving bilevel
optimization problems with gradient-based method is to ef昀椀ciently obtain the upper-level
gradient estimator. Usually, this requires obtaining the lower-level optimizer η∗(ξ) and the
Jacobian matrix∇ξη

∗(ξ) through equation (34). While the lower-level optimizer η∗(ξ) is easy
to obtained from many forward MFG solvers, it is impractical to obtain the Jacobian matrix
∇ξη

∗(ξ) because it is dense and of large size. Therefore, we implement our proximal gradient
forward solver for Kl iterations to approximate η∗(ξ) and use backpropagation to approxim-
ate ∇ξη

∗(ξ)⊤∇ηU(η∗(ξ);ξ). The proximal gradient solver for the lower-level problem [34]
makes it easy and ef昀椀cient to unroll the differentiation and estimate the upper-level gradient. It
is worth emphasizing that this is not the case for other popular lower-level solvers, for example,
primal-dual [27, 28], augmented Lagrangian [2, 3] and ADMM, because the implicit steps in
ADMM and primal-dual methods make it impractical expensive and complicated to tracking
the gradient.

The complexity of resolving the upper-level constraint is similar to a single-level optimiz-
ation problem. In our cases, for the inverse crowd motion problem 3.5, the upper-level con-
straint set Ξ = CG,b as de昀椀ned in (24) is the set of matrices of size nx× ny with entry sum
zero. And the projection is simply projCG,b

(b) = b̃, where (b̃)ix,iy = (b)ix,iy − 1
nxny

∑nx,ny
ix,iy (b)ix,iy .

And for the inverse metric problem 3.6, Ξ = CG,g, where CG,g is de昀椀ned in (26). We com-
pute the projection g̃ := projCG,g

(g) pointwisely. To be speci昀椀c, for (g)ix,iy , we 昀椀rst compute its

eigenvalue decomposition (g)ix,iy = QΛQ−1 whereΛ = diag(λ1,λ2) and let (g̃)ix,iy := QΛ̃Q−1

where Λ̃ = diag(max(λ1, ϵ),max(λ2, ϵ)) with a pre-selected small positive value ϵ.
Different from our bilevel formulation and AGM algorithm, [7, 8] treat the forward MFG

PDE system as the constraint of their optimization problem and apply primal-dual algorithm
[5] to solve it. However, the nonlinear and nonconvex constraint makes it challenging to prove
the algorithm convergence. On the contrary, our bilevel formulation takes advantage of the
convex-linear structure of the forward MFG and we establish the following convergence the-
orem of our algorithm 2.

If the upper-level and lower-level objective functions satisfy the following regularity
assumptions,

Assumption 1. Assume that U ,∇U ,∇L,∇2L is Lipschitz continuous with ℓu,0, ℓu,1, ℓl,1, ℓl,2,
respectively.
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Assumption 2. For any 昀椀xed ξ, assume that L(η;ξ) is µl-strongly convex with respect to η.

Assumption 3. Ξ is a linear constraint set Ξ = {ξ | Bξ = e}, and H and Ξ are nonempty.

then we have the following theorem.

Theorem 4.3. Under assumptions 1–3, let τl ⩽ 1
2ℓl,1

,Kl =O(logKu) and τu =O(1), then the
iterates of algorithm 2 satisfy

1
Ku

Ku∑

ku=1

‖ξku − proj
Ξ

(
ξku −∇u

(
ξku
))

‖2 =O
(

1
Ku

)
(46)

where O omits the log dependency.

Let us de昀椀ne ϵ stationary point as ‖ξ− projΞ(ξ−∇u(ξ))‖2 ⩽ ϵ, then theorem 4.3 states
that algorithm 2 achieves ϵ stationary point by O(ϵ−1) iterations. This matches the iteration
complexity of the single-level projected gradient descent method. We postpone the proof in
section 5.

Lemma 3.4 states that when ρ,m are bounded, and when the entropy in the objective func-
tion is non-zero (λ > 0), then our inverse problems 3.5 and 3.6 satisfy assumptions 1 and 2.
Moreover, since the upper-level constraint set of the inverse crowd motion problem 3.5 is lin-
ear, assumption 3 is satis昀椀ed and theorem 4.3 guarantees the algorithm convergence when
solving problem 3.5. For the inverse metric problem 3.6 where the upper-level constraint set
is a convex cone, the convergence of the algorithm can be established similarly. However, the
convergence rate is possibly different. We leave the study of the convergence rate for general
upper-level constraints set to future research.

At the end of this section, we discuss how to unroll differentiation in practice.

Remark 4.4 (unroll differentiation in practice). Recall that in our problem, the lower-level
variable η = (ρGρ ,mGm) and the upper-level variable ξ = (gG ,bG) are of sizeO(d2ntnxny). To
obtain the upper-level gradient estimator (36), the computation of∇ξU

(
ηku+1;ξku

)
is straight-

forward. But it is not practicable to directly formulate∇ξku η
ku+1 since the size of the Jacobian

matrix is O(dntnxny)×O(d2ntnxny) and the sparsity structure of the Jacobian matrix is not
straightforward. Denote the gradient descent mapping M(η;ξ) := η− τl∇ηL(η;ξ). Then the
Jacobian of M, ∇M= (∇ηM,∇ξM) = (I− τ∇ηηL,−τ∇ηξL) is sparse because the number
of non-zero entries of ∇ηηL and ∇ηξL is O(dntnxny). In practice, we avoid formulating the
matrix∇ξku η

ku+1 by chain rule and the sparsity structure of∇M. Speci昀椀cally, let P := I−A†A
be the projection matrix, ∇ηku,klU

(
ηku+1;ξku

)
be the gradient of U

(
ηku+1;ξku

)
with respect to

ηku,kl , and ∇ξku η
ku,kl be the Jacobian of ηku,kl with respect to ξku , then we have the following

relation by back-propagation

{
∇ηku,Kl+1U

(
ηku+1;ξku

)
=∇ηU

(
ηku+1;ξku

)
,

∇ηku,klU
(
ηku+1;ξku

)
=
(
∇ηM

(
ηku,kl ;ξku

))⊤
P∇ηku,kl+1U

(
ηku ;ξku

)
, kl = 1, . . . ,Kl.

(47)
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Consequently, the upper-level gradient estimator is

∇̂u
(
ξku
)
=
(
∇ξku η

ku,Kl+1
)⊤∇ηku,Kl+1U

(
ηku+1;ξku

)
+∇ξU

(
ηku+1;ξku

)

=
(
∇ηM

(
ηku,Kl ;ξku

)
∇ξku η

ku,Kl
)⊤

P∇ηku,Kl+1U
(
ηku+1;ξku

)

+
(
∇ξM

(
ηku,Kl ;ξku

))⊤
P∇ηku,Kl+1U

(
ηku+1;ξku

)
+∇ξU

(
ηku+1;ξku

)

by (47)
=

(
∇ξku η

ku,Kl
)⊤∇ηku,KlU

(
ηku+1;ξku

)

+
(
∇ξM

(
ηku,Kl ;ξku

))⊤
P∇ηku,Kl+1U

(
ηku+1;ξku

)
+∇ξU

(
ηku+1;ξku

)

=
(
∇ηM

(
ηku,Kl−1;ξku

)
∇ξku η

ku,Kl−1
)⊤

P∇ηku,KlU
(
ηku+1;ξku

)

+
(
∇ξM

(
ηku,Kl−1;ξku

))⊤
P∇ηku,KlU

(
ηku+1;ξku

)

+
(
∇ξM(ηku,Kl ;ξku)

)⊤
P∇ηku,Kl+1U

(
ηku+1;ξku

)
+∇ξU

(
ηku+1;ξku

)

by (47)
=

(
∇ξku η

ku,Kl−1
)⊤∇ηku,Kl−1

(
ηku+1;ξku

)

+

Kl∑

i=Kl−1

(
∇ξM(ηku,i;ξku)

)⊤
P∇ηku,i+1U

(
ηku+1;ξku

)
+∇ξU

(
ηku+1;ξku

)

= · · ·

(a)
=

Kl∑

i=1

(
∇ξM(ηku,i;ξku)

)⊤
P∇ηku,i+1U

(
ηku+1;ξku

)
+∇ξU

(
ηku+1;ξku

)
(48)

where (a) is because that ηku,1 is independent of ξku . In this way, each term in the estimator
can be computed by sparse matrix and vector multiplication.

5. Proofs of main theorems

In this section, we provide the proofs of main theorems. Theorem 3.8 shows that the observa-
tions of the Nash Equilibrium continuously depend on the unknown parameters. Theorem 3.9
states that with only one good observation of the Nash Equilibrium, we can uniquely recover
the obstacle b up to a constant by solving the bilevel problem (23). This illustrates the effective-
ness of our model. Lemma 3.4 and theorem 4.3 together guarantee that algorithm 2 converges
to a stationary point to the bilevel problem (23) if the forward problem has enough regularity.
This illustrates the effectiveness of our algorithm.

5.1. Proof of theorems 3.8 and 3.9

Recall that Y(ρ,m,ϕ;g,b) = 0 gives the optimality condition. Denote the Jacobian matrix of
Y as ∇Y = ((∇ρ,m,ϕY)dl×dl ,(∇g,bY)dl×du). The proof of the regularity theorem 3.8 is based
on the implicit function theorem and the key is to show that the matrix ∇ρ,m,ϕY is invertible
at a good observation (ρ̃,m̃, ϕ̃; g̃, b̃).
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Lemma 5.1. If γI > 0,γT > 0 and mini∈Gρ{ρ̃i}> 0, then ∇ρ,m,ϕY(ρ̃,m̃, ϕ̃; g̃, b̃) is invertible.

Proof. To prove the lemma is equivalent to showing that

∇ρ,m,ϕY
(
ρ̃,m̃, ϕ̃; g̃, b̃

)
(δρ, δm, δϕ) = 0, (49)

if and only if (δρ, δm, δϕ) = 0. Here δm := {δmx , δmy}. By de昀椀nition,

∇ρ,m,ϕY
(
ρ̃,m̃, ϕ̃; g̃, b̃

)
(δρ, δm, δϕ) = lim

ϵ→0

1
ϵ

(
Y
(
ρ̃+ ϵδρ,m̃+ ϵδm, ϕ̃+ ϵδϕ; g̃, b̃

)

−Y
(
ρ̃,m̃, ϕ̃; g̃, b̃

))
. (50)

Therefore (49) is equivalent to





i ∈ Gρ
, it = 1, . . . ,nt− 1,

− (D∗
t (δφ))i +

(
I∗t

(
−
gxxm̃x+ gxym̃y

ρ̃
2 δmx −

gxym̃x+ gyym̃y

ρ̃
2 δmy

+

(
m̃
)⊤

gm̃

ρ̃
3 δρ +

γI

ρ̃
δρ

))

i

= 0,

i ∈ Gρ
,= nt,

− (D∗
t (δφ))i +

(
I∗t

(
−
gxxm̃x+ gxym̃y

ρ̃
2 δmx −

gxym̃x+ gyym̃y

ρ̃
2 δmy

+

(
m̃
)⊤

gm̃

ρ̃
3 δρ +

γI

ρ̃
δρ

))

i

+
γT

∆t(ρ̃)i
(δρ)i = 0,

i ∈ Gmx

, −(D∗
x (δφ))i +

(
I∗x

(
gxx
ρ̃
δmx +

gxy
ρ̃
δmy −

gxxm̃x+ gxym̃y

ρ̃
2 δρ

))

i

= 0,

i ∈ Gmy

, −
(
D∗
y (δφ)

)
i
+

(
I∗y

(
gxy
ρ̃
δmx +

gyy
ρ̃
δmy −

gxym̃x+ gyym̃y

ρ̃
2 δρ

))

i

= 0,

i ∈ Gφ
, (Dt (δρ;0)+Dx (δmx)+Dy (δmy))i = 0.

(51)

Note that ρ̃,m̃, ϕ̃ are viewed as constants with respect to (δρ, δm, δϕ) in the system. It clear
that the system 51 is linear in (δρ, δm, δϕ) and therefore (49) holds if (δρ, δm, δϕ) = 0. If both
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(δρ, δm, δϕ) and (δ ′
ρ, δ

′
m, δ

′
ϕ) satisfy (49), then by plugging them into (51) and subtracting, we

have





i ∈ Gρ
, it = 1, . . . ,nt− 1,

−
(
D∗
t
(
δϕ − δ

′
ϕ

))
i +

(
I∗t

(
−
gxxm̃x+ gxym̃y

ρ̃
2

(
δmx − δ ′mx

)

−
gxym̃x+ gyym̃y

ρ̃
2

(
δmy − δ ′my

)

+

(
m̃
)⊤

gm̃

ρ̃
3

(
δρ − δ ′ρ

)
+

γI

ρ̃

(
δρ − δ ′ρ

)))

i

= 0,

i ∈ Gρ
,= nt,

−
(
D∗
t
(
δϕ − δ

′
ϕ

))
i +

(
I∗t

(
−
gxxm̃x+ gxym̃y

ρ̃
2

(
δmx − δ ′mx

)

−
gxym̃x+ gyym̃y

ρ̃
2

(
δmy − δ ′my

)

+

(
m̃
)⊤

gm̃

ρ̃
3

(
δρ − δ ′ρ

)
+

γI

ρ̃

(
δρ − δ ′ρ

)))

i

+
γT

∆t(ρ̃)i

(
δρ − δ

′
ρ

)
i = 0,

(52)





i ∈ Gmx

, −
(
D∗
x

(
δϕ − δ ′

ϕ

))
i
+

(
I∗x

(
gxx
ρ̃

(
δmx − δ ′

mx

)
+
gxy
ρ̃

(
δmy − δ ′

my

)

− gxxm̃x+ gxym̃y

ρ̃
2

(
δρ − δ ′

ρ

)
))

i

= 0,

i ∈ Gmy

, −
(
D∗
y

(
δϕ − δ ′

ϕ

))
i
+

(
I∗y

(
gxy
ρ̃

(
δmx − δ ′

mx

)
+
gyy
ρ̃

(
δmy − δ ′

my

)

− gxym̃x+ gyym̃y

ρ̃
2

(
δρ − δ ′

ρ

)
))

i

= 0,

(53)

and

i ∈ Gϕ,
(
Dt
(
δρ − δ ′

ρ;0
)
+Dx (δmx − δ ′

mx)+Dy (δmy − δ ′
my)
)
i
= 0. (54)
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Pointwisely multiplying (52) with (δρ − δ ′
ρ) and summing over Gρ gives us

−
〈
δρ − δ ′

ρ,D
∗
t

(
δφ − δ ′

φ

)〉
Gρ

−

〈
δρ − δ ′

ρ, I
∗
t

(
gxxm̃x + gxym̃y

ρ̃
2

(
δmx − δ ′

mx

))〉

Gρ

−

〈
δρ − δ ′

ρ, I
∗
t

(
gxym̃x + gyym̃y

ρ̃
2

(
δmy − δ ′

my

))〉

Gρ

+

〈
δρ − δ ′

ρ, I
∗
t




(
m̃
)⊤

gm̃

ρ̃
3

(
δρ − δ ′

ρ

)


〉

Gρ

+

〈
δρ − δ ′

ρ, I
∗
t

(
γI

ρ̃

(
δρ − δ ′

ρ

))〉

Gρ

+∆x∆y
nx∑

nx=1

ny∑

ny=1

γT

(ρ̃)ix,iy,nt

(
δρ − δ ′

ρ

)2
ix,iy,nt

= 0.

(55)

Similarly (53) and (54) imply

−
〈
δmx − δ ′

mx ,D∗
x

(
δϕ − δ ′

ϕ

)〉
Gmx

+

〈
δmx − δ ′

mx , I∗x

(
gxx
ρ̃

(
δmx − δ ′

mx

)
+
gxy
ρ̃

(
δmy − δ ′

my

))〉

Gmx

−
〈
δmx − δ ′

mx , I∗x

(
gxxm̃x+ gxym̃y

ρ̃
2

(
δρ − δ ′

ρ

)
)〉

Gmx

= 0,

(56)

and

−
〈
δmy − δ ′

my ,D∗
y

(
δϕ − δ ′

ϕ

)〉
Gmy

+

〈
δmy − δ ′

my , I∗y

(
gxy
ρ̃

(
δmx − δ ′

mx

)
+
gyy
ρ̃

(
δmy − δ ′

my

))〉

Gmy

−
〈
δmy − δ ′

my , I∗y

(
gxym̃x+ gyym̃y

ρ̃
2

(
δρ − δ ′

ρ

)
)〉

Gmy

= 0,

(57)

and

〈
δϕ − δ

′
ϕ,Dt

(
δρ − δ

′
ρ;0
)〉

Gφ +
〈
δϕ − δ

′
ϕ,Dx

(
δmx − δ

′
mx

)〉
Gφ +

〈
δϕ − δ

′
ϕ,Dy

(
δmy − δ

′
my

)〉
Gφ = 0.

(58)

Next, we add (55)–(58) and combine terms with the same components in groups. The 昀椀rst
group is

−
〈
δρ − δ

′
ρ,D

∗
t
(
δϕ − δ

′
ϕ

)〉
Gρ −

〈
δmx − δ

′
mx ,D∗

x
(
δϕ − δ

′
ϕ

)〉
Gmx −

〈
δmy − δ

′
my ,D∗

y
(
δϕ − δ

′
ϕ

)〉
Gmy

+
〈
δϕ − δ

′
ϕ,Dt

(
δρ − δ

′
ρ;0
)〉

Gφ +
〈
δϕ − δ

′
ϕ,Dx

(
δmx − δ

′
mx

)〉
Gφ +

〈
δϕ − δ

′
ϕ,Dy

(
δmy − δ

′
my

)〉
Gφ ,

(59)

and by the adjoint relation between Dt,D∗
t , this group sums to 0. The second group consists

of

〈
δρ − δ ′

ρ, I
∗
t

(
γI

ρ̃

(
δρ − δ ′

ρ

))〉

Gρ

+∆x∆y
nx∑

nx=1

ny∑

ny=1

γT
(ρ̃)ix,iy,nt

(
δρ − δ ′

ρ

)2
ix,iy,nt

. (60)
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And the sum is equal to γI‖
δρ − δ ′

ρ

ρ̃
1/2

‖2Gφ +∆x∆y
∑nx

nx=1

∑ny

ny=1

γT
(ρ̃)ix,iy,nt

(δρ − δ ′
ρ)

2
ix,iy,nt . The

rest terms form the last group and sum to

∑

i∈Gφ

1

ρ̃
3
i

∥∥∥
((

δρ − δ ′
ρ

)
m̃− ρ̃

(
δm − δ ′

m

))
i

∥∥∥
2

gi

, (61)

where ‖vi‖2gi
= (v)⊤i givi. Overall, adding (55)–(58) gives

γI

∥∥∥∥∥
δρ − δ ′

ρ

ρ̃
1/2

∥∥∥∥∥

2

Gφ

+∆x∆y
nx∑

nx=1

ny∑

ny=1

γT
(ρ̃)ix,iy,nt

(
δρ − δ ′

ρ

)2
ix,iy,nt

+
∑

i∈Gφ

1

ρ̃
3
i

∥∥∥
((

δρ − δ ′
ρ

)
m̃− ρ̃

(
δm − δ ′

m

))
i

∥∥∥
2

gi

= 0.

(62)

We conclude that each term in (62) is zero since they are non-negative and sum to zero.
Combining (δρ)ix,iy,nt = (δ ′

ρ)ix,iy,nt and δρ = δ ′
ρ gives δρ = δ ′

ρ. Consequently, δmx = δ ′
mx and

δmy = δ ′
my . Because Ix, Iy are full rank linear operators, δmx = δ ′

mx and δmy = δ ′
my . Based on δρ =

δ ′
ρ, δm = δ ′

m, (52) and (53) lead to δϕ = δ ′
ϕ. Therefore (49) has unique solution (ρ,m,ϕ) = 0,

i.e. ∇ρ,m,ϕY(ρ̃,m̃, ϕ̃; b̃) is invertible.

With lemma 5.1, we apply implicit function theorem to Y at (ρ̃,m̃, ϕ̃; g̃, b̃) and then the
regularity theorem 3.8 is true.

Next, we prove the unique identi昀椀ability theorem 3.9 for inverse obstacle problem 3.5.

Proof of theorem 3.9. Since the upper-level objective is non-negative and equals 0 when
b= b̃, any minimizer b of the bilevel minimization problem satis昀椀es

(ρ̃,m̃) = argmin
(ρ,m)∈CG(µ0)

LG (ρ,m;b) , (63)

and by lemma 3.7, there exists ϕ such that Y(ρ̃,m̃,ϕ;b) = 0. Assume that b ′ is a minimizer,
b ′ 6= b̃, and

Y
(
ρ̃,m̃, ϕ̃; b̃

)
= Y (ρ̃,m̃,ϕ ′;b ′) = 0,

then

Y
(
ρ̃,m̃, ϕ̃; b̃

)
−Y (ρ̃,m̃,ϕ ′;b ′) = 0,

which is equivalent to




i ∈ Gρ,−
(
D∗
t

(
ϕ ′ − ϕ̃

))
i
+

(
(b ′)ix,iy −

(
b̃
)
ix,iy

)
= 0,

i ∈ Gmx

,
(
D∗
x

(
ϕ ′ − ϕ̃

))
i
= 0,

i ∈ Gmy

,
(
D∗
y

(
ϕ ′ − ϕ̃

))
i
= 0.

(64)

The equation on Gρ gives (ϕ ′ − ϕ̃)ixiyit = (nt− it+ 1)(b ′ − b̃)ix,iy . Plugging in equations on

Gmx
,Gmy

, we have (b ′ − b̃)ix,iy = c where c is a constant for different ix, iy.
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5.2. Proof of theorem 4.3 and lemma 3.4

In this section, we provide the nonasymptotic analysis for AGM on general constrained bilevel
optimization (14). We follow conventional notations in bilevel optimization by using commas
to separate lower-level and upper-level variables, i.e. L(η,ξ) = L(η;ξ),U(η,ξ) = U(η;ξ).

Recall that the lower level constraint isH= {η | Aη = c}. Denote the singular value decom-
position of A as A= UΣV⊤, where

Σ=

[
Σ1 0
0 0

]
∈ R

dc×dη ,

U= [U1 U2],V= [V1 V2],U ∈ R
dc×dc ,V ∈ R

dη×dη are orthogonalmatrix andU1 ∈ R
dc×r,V1 ∈

R
dη×r are the submatrix corresponds to full rank diagonal submatrix Σ1 ∈ R

r×r. Then V2 is
the orthogonal basis of Ker(A) := {η | Aη = 0}. Let η0 ∈ H be a feasible lower-level solution,
then the lower-level update is equivalent to

ηku,1 = ηku ; ηku,kl+1 = V2V
⊤
2

(
ηku,kl − τl∇ηL

(
ηku,kl , ξku

))
+ η0; ηku+1 = ηku,Kl+1. (65)

With ηku+1 approximating η∗(ξku), we approximate the lower-level gradient with

∇̂u
(
ξku
)
:=∇ξU

(
ηku+1, ξku

)
+
(
∇ξku η

ku+1
)⊤∇ηU

(
ηku+1, ξku

)
(66)

and ∇ξku η
ku+1 is obtained by unrolling the lower-level iterates





∇ξku η
ku,1 = 0,

∇ξku η
ku,kl+1 = V2V

⊤
2 ∇ξku η

ku,kl − τlV2V
⊤
2

(
∇ηξL

(
η
ku,kl , ξ

ku
)
+∇ηηL

(
η
ku,kl , ξ

ku
)
∇ξku η

ku,kl
)

= V2V
⊤
2

(
I− τl∇ηηL

(
η
ku,kl , ξ

ku
))

∇ξku η
ku,kl − τlV2V

⊤
2 ∇ηξL

(
η
ku,kl , ξ

ku
)
,kl = 1, . . . ,Kl.

(67)

To prove the convergence, we 昀椀rst present the regularity of the lower-level optimizer estab-
lished in [32]. To be self-contained, we also provide its proof.

Lemma 5.2 (The regularity of lower-level optimizer). Under assumptions 1 and 2, η∗(ξ) is
differentiable with respect to ξ with the following gradient

∇η∗ (ξ) =−V2
(
V⊤
2 ∇ηηL(η∗ (ξ) , ξ)V2

)−1
V⊤
2 ∇ηξL(η∗ (ξ) , ξ)

where V2 is the orthogonal basis of Ker(A). Therefore, η∗(ξ) is Lη-Lipschitz continuous and
Lηξ smooth with

Lη :=
ℓl,1
µl

=O (κ) , Lηξ :=
ℓl,2

(
1+ ℓl,1

µl

)2

µl
=O

(
κ3
)
.

Proof. First, we prove the differentiability and compute the Jacobian matrix. We choose a
昀椀xed η0 satisfying Aη0 = c. Using the aforementioned SVD of A, the constraint set H=
{η0 +V2z | z ∈ R

dη−r}. Letting Lz(z, ξ) := L(η0 +V2z, ξ) and z∗(ξ) = argminzLz(z, ξ), we
have η∗(ξ) = η0 +V2z∗(ξ). By optimality condition, z∗(ξ) satis昀椀es

∇zLz (z
∗ (ξ) , ξ) = V⊤

2 ∇ηL(η0 +V2z
∗ (ξ) , ξ) = 0. (68)
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Since

∇zzLz (z
∗ (ξ) , ξ) = V⊤

2 ∇ηηL(η0 +V2z
∗ (ξ) , ξ)V2 (69)

and by strong convexity of L with respect to η,∇zzLz(z∗(ξ), ξ) is invertible. By implicit func-
tion theorem, z∗(ξ) is differentiable with respect to ξ. As a consequence, η∗(ξ) is differentiable
with respect to ξ. Taking the gradient with respect to ξ on both sides of (68) gives us

0=∇ξηL(η0 +V2z
∗ (ξ) , ξ)V2 +

(
∇ξ z

∗ (ξ)
⊤V⊤

2

)
∇ηηL(η0 +V2z

∗ (ξ) , ξ)V2

=∇ξηL(η0 +V2z
∗ (ξ) , ξ)V2 +∇ξ z

∗ (ξ)
⊤V⊤

2 ∇ηηL(η0 +V2z
∗ (ξ) , ξ)V2.

Then, we have (cf ∇ηηL(η∗(ξ), ξ) =∇ηηL(η0 +V2z∗(ξ), ξ))

∇z∗ (ξ) =−
(
V⊤
2 ∇ηηL(η∗ (ξ) , ξ)V2

)−1
V⊤
2 ∇ηξL(η∗ (ξ) , ξ) (70)

and as a result,

∇η∗ (ξ) = V2∇z∗ (ξ)

=−V2
(
V⊤
2 ∇ηηL(η∗ (ξ) , ξ)V2

)−1
V⊤
2 ∇ηξL(η∗ (ξ) , ξ) .

Next, utilizing the fact that V2 is the orthogonal matrix, we know µlI� V⊤
2 ∇ηηL(η,ξ)V2.

Therefore, we have for any ξ,η,

V2
(
V⊤
2 ∇ηηL(η,ξ)V2

)−1
V⊤
2 � 1

µl
I. (71)

As a result, ∇η∗(ξ) is bounded by

‖∇η∗ (ξ)‖⩽ ‖V2
(
V⊤
2 ∇ηηL(η∗ (ξ) , ξ)V2

)−1
V⊤
2 ‖‖∇ηξL(η∗ (ξ) , ξ)‖⩽ ℓl,1

µl
= Lη

which implies η∗(ξ) is Lη Lipschitz continuous.
Finally, we aim to prove the smoothness of η∗(ξ). For any ξ1 and ξ2, we have

‖∇η∗(ξ1)−∇η∗(ξ2)‖

= ‖V2
(
V⊤
2 ∇ηηL(η∗(ξ1), ξ1)V2

)−1
V⊤
2 ∇ηξL(η∗(ξ1), ξ1)

−V2
(
V⊤
2 ∇ηηL(η∗(ξ2), ξ2)V2

)−1
V⊤
2 ∇ηξL(η∗(ξ2), ξ2)‖

⩽ ‖V2B
−1
1 V⊤

2 ‖‖∇ηξL(η∗(ξ1), ξ1)−∇ηξL(η∗(ξ2), ξ2))‖
+ ‖V2(B

−1
1 −B−1

2 )V⊤
2 ‖‖∇ηξL(η∗(ξ2), ξ2)‖

(a)
⩽

1
µl
‖∇ηξL(η∗(ξ1), ξ1)−∇ηξL(η∗(ξ2), ξ2)‖

+
ℓl,1
µ2
l

‖∇ηηL(η∗(ξ1), ξ1)−∇ηηL(η∗(ξ2), ξ2)‖

(b)
⩽

ℓl,2(1+
ℓl,1
µl
)2

µl
‖ξ1 − ξ2‖ (72)
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where B1 = V⊤
2 ∇ηηL(η∗(ξ1), ξ1)V2 and B2 = V⊤

2 ∇ηηL(η∗(ξ2), ξ2)V2, (a) comes from (71)
and the following fact:

V2
(
B−1
1 −B−1

2

)
V⊤
2

= V2B
−1
1 (B2 −B1)B

−1
2 V⊤

2

= V2B
−1
1

((
V⊤
2 ∇ηηL(η∗ (ξ2) , ξ2)V2

)
−
(
V⊤
2 ∇ηηL(η∗ (ξ1) , ξ1)V2

))
B−1
2 V⊤

2

= V2B
−1
1 V⊤

2 (∇ηηL(η∗ (ξ2) , ξ2)−∇ηηL(η∗ (ξ1) , ξ1))V2B
−1
2 V⊤

2

and (b) comes from

‖∇2L(η∗ (ξ1) , ξ1)−∇2L(η∗ (ξ2) , ξ2)‖⩽ ℓl,2 [‖ξ1 − ξ2‖+ ‖η∗ (ξ1)− η∗ (ξ2)‖]

⩽ ℓl,2

(
1+

ℓl,1
µl

)
‖ξ1 − ξ2‖.

In algorithm 2, we approximate ∇η∗(ξ) by unrolling the differentiation. The following
lemma investigates the error of this approximation in constrained bilevel problems for the 昀椀rst
time, indicating that the gradient estimation error can be effectively bounded by the accuracy
of the lower-level solution.

Lemma 5.3 (Error of unrolling differentiation). Suppose that assumptions 1–3 hold and
choose τl ⩽ 1

2ℓl,1
, the error of implicit gradient estimator can be bounded by

‖∇η∗
(
ξku
)
−∇ξku η

ku+1‖2 ⩽ 2(1− τlµl)
2Kl+2

+ 2CKlC
2
l ‖η∗

(
ξku
)
− ηku‖2

where C2
l := (1+ ℓl,1

µl
)ℓ2l,2(

2
µ2
l
+ 3

2ℓ2l,1
) and CKl is the upper bound of Kl(1− τlµl)

Kl−1 and is

昀椀nite.

Proof. According to (67), we know that ∇ξku η
ku,1 = 0 and

∇ξku η
ku,kl+1 = V2V

⊤
2

(
I− τl∇ηηL

(
ηku,kl , ξku

))
∇ξku η

ku,kl − τlV2V
⊤
2 ∇ηξL

(
ηku,kl , ξku

)
.

For any given ξku , we can de昀椀ne an auxiliary sequence {wkl}∞kl=0 and w∗ := limKl→∞wKl ,
where w1 = 0 and

wkl+1 = V2V
⊤
2

(
I− τl∇ηηL

(
η∗
(
ξku
)
, ξku
))
wkl − τlV2V

⊤
2 ∇ηξL

(
η∗
(
ξku
)
, ξku
)
. (73)

We can see that (67) and (73) only differ in η∗(ξku) and ηku,kl . For the sequence wkl , we can
calculate the explicit form of wKl+1 as

wKl+1 =

Kl∑

s=0

(
V2V

⊤
2 − τlV2V

⊤
2 ∇ηηL

(
η∗
(
ξku
)
, ξku
))s (−τlV2V

⊤
2 ∇ηξL

(
η∗
(
ξku
)
, ξku
))

=

Kl∑

s=0

(
V2V

⊤
2 − τlV2V

⊤
2 ∇ηηL

(
η∗
(
ξku
)
, ξku
)
V2V

⊤
2

)s (−τl∇ηξL
(
η∗
(
ξku
)
, ξku
))

=

Kl∑

s=0

(
V2
(
I− τlV

⊤
2 ∇ηηL

(
η∗
(
ξku
)
, ξku
)
V2
)
V⊤
2

)s (−τl∇ηξL
(
η∗
(
ξku
)
, ξku
))

27



Inverse Problems 40 (2024) 105016 J Yu et al

=

Kl∑

s=0

V2
(
I− τlV

⊤
2 ∇ηηL

(
η∗
(
ξku
)
, ξku
)
V2
)s
V⊤
2

(
−τl∇ηξL

(
η∗
(
ξku
)
, ξku
))

= V2

(
Kl∑

s=0

(
I− τlV

⊤
2 ∇ηηL(η∗(ξku), ξku)V2

)s
)
V⊤
2

(
−τl∇ηξL(η∗(ξku), ξku)

)
(74)

where the 昀椀rst equality comes from unrolling (73), the second and the fourth equality are
due to (V2V⊤

2 )
s = V2V⊤

2 . Let D := I− τlV⊤
2 ∇ηηL(η∗(ξku), ξku)V2. When τl <

2
ℓl,1

, the oper-

ator norm of D satis昀椀es ‖D‖< 1, the limit
∑+∞

s=0 D
s := limKl→+∞

∑Kl
s=0D

s = (I−D)−1 =
(τlV⊤

2 ∇ηηL(η∗(ξku), ξku)V2)
−1. Therefore, the limit point of wkl is equal to ∇η∗(ξku) since

w∗ := lim
Kl→∞

wKl = V2

(
∞∑

s=0

(
I− τlV

⊤
2 ∇ηηL

(
η
∗
(
ξ
ku
)
, ξ

ku
)
V2

)s
)
V⊤
2

(
−τl∇ηξL

(
η
∗
(
ξ
ku
)
, ξ

ku
))

= V2

(
τlV

⊤
2 ∇ηηL

(
η
∗
(
ξ
ku
)
, ξ

ku
)
V2

)−1
V⊤
2

(
−τl∇ηξL

(
η
∗
(
ξ
ku
)
, ξ

ku
))

=−V2

(
V⊤
2 ∇ηηL

(
η
∗
(
ξ
ku
)
, ξ

ku
)
V2

)−1
V⊤
2 ∇ηξL

(
η
∗
(
ξ
ku
)
, ξ

ku
)
=∇η

∗
(
ξ
ku
)
.

(75)

Moreover, the error by 昀椀nite-step approximation can be bounded by

∥∥∥∥∥(I−D)−1 −
Kl∑

s=0

Ds

∥∥∥∥∥=
∥∥∥∥∥

∞∑

s=Kl+1

Ds

∥∥∥∥∥⩽
∞∑

s=Kl+1

‖D‖s = ‖D‖Kl+1

1−‖D‖ .

Since (1− τlℓl,1)I� D= I− τlV⊤
2 ∇ηηL(η∗(ξku), ξku)V2 � (1− τlµl)I and according to (75)

and (74), we know that if τl ⩽ 1
2ℓl,1

,

‖wKl+1 −∇η∗
(
ξku
)
‖⩽ τlℓl,1

(1− τlµl)
Kl+1

1− τlℓl,1
⩽ (1− τlµl)

Kl+1
. (76)

Next, we aim to bound the distance between ∇ξku η
ku,kl and the auxiliary sequence wkl . For

any kl, according to (67) and (73), we have

∥∇ξku η
ku,kl+1 −wkl+1∥2 = ∥

(
V2V⊤

2 − τlV2V⊤
2 ∇ηηL(η

ku,kl , ξku )
)
∇ξku η

ku,kl − τlV2V⊤
2 ∇ηξL(η

ku,kl , ξku )

−
(
V2V⊤

2 − τlV2V⊤
2 ∇ηηL(η

∗(ξku ), ξku )
)
wkl + τlV2V⊤

2 ∇ηξL(η
∗(ξku ), ξku )∥2

⩽ (1+ γ)∥
(
V2V⊤

2 − τlV2V⊤
2 ∇ηηL(η

ku,kl , ξku )
)
(∇ξku η

ku,kl −wkl )∥2+

+ 2
(
1+

1
γ

)
∥τlV2V⊤

2 (∇ηηL(η
ku,kl , ξku )−∇ηηL

(
η∗(ξku ), ξku

)
wkl∥2

+ 2
(
1+

1
γ

)
∥τlV2V⊤

2 (∇ηξL(η
ku,kl , ξku )−∇ηξL

(
η∗(ξku ), ξku

)
∥2

⩽ (1+ γ)(1− τlµl)
2 ∥∇ξku η

ku,kl −wkl∥2

+

(
1+

1
γ

)
τ 2
l ℓ

2
l,2∥η

∗(ξku )− ηku,kl∥2
(
2+ 2∥wkl∥2

)
(77)

where the 昀椀rst inequality is derived from ‖a+ b+ c‖22 ⩽ (1+ γ)‖a‖22 +(2+ 2
γ )‖b‖22 +(2+

2
γ )‖c‖22 and the second inequality is due to assumptions 1 and 2. On the one hand, ‖wkl‖⩽
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‖∇η∗(ξku)‖+ ‖wkl −∇η∗(ξku)‖⩽ ℓl,1(
1
µl
+ τl) is bounded according to lemma 5.2 and (76).

Thus, if τl ⩽ 1
2ℓl,1

and letting γ = τlµl, (77) becomes

‖∇ξku η
ku,kl+1 −wk+1‖2 ⩽ (1− τlµl)‖∇ξku η

ku,kl −wkl‖2

+

(
1+

1
τlµl

)
τ 2
l ℓ

2
l,2

(
4ℓ2l,1
µ2
l

+ 3

)
‖η∗

(
ξku
)
− ηku,kl‖2

⩽ (1− τlµl)‖∇ξku η
ku,kl −wkl‖2 +C2

l ‖η∗
(
ξku
)
− ηku,kl‖2 (78)

where C2
l := (1+ ℓl,1

µl
)ℓ2l,2(

2
µ2
l
+ 3

2ℓ2l,1
).

On the other hand, we know that projected gradient descent is a contraction according to
[32], i.e.

‖ηku,kl+1 − η∗
(
ξku
)
‖2 ⩽ (1− τlµl)‖ηku,kl − η∗

(
ξku
)
‖2 (79)

for 0⩽ τl ⩽
1
ℓl,1

. By induction, we have

‖ηku,kl+1 − η∗
(
ξku
)
‖2 ⩽ (1− τlµl)

kl ‖ηku − η∗
(
ξku
)
‖2. (80)

Then (78) becomes

‖∇ξku η
ku,kl+1 −wkl+1‖2 ⩽ (1− τlµl)‖∇ξku η

ku,kl −wkl‖2 +C2
l (1− τlµl)

kl−1‖ηku − η∗
(
ξku
)
‖2.
(81)

Then by induction and w1 =∇ξku η
ku,1 = 0,ηku+1 = ηku,Kl+1, we obtain that

‖∇ξku η
ku+1 −wKl+1‖2 ⩽ Kl (1− τlµl)

Kl−1C2
l ‖η∗

(
ξku
)
− ηku‖2. (82)

Combining (82) with (76) and setting τl ⩽
1

2ℓl,1
, we know that

‖∇ξku η
ku+1 −∇η∗

(
ξku
)
‖2 ⩽ 2(1− τlµl)

2Kl+2
+ 2Kl (1− τlµl)

Kl−1C2
l ‖η∗

(
ξku
)
− ηku‖2.

(83)

Then given τl and let f(Kl) = Kl(1− τlµl)
Kl−1, we know log( f(Kl)) = logKl+(Kl−

1) log(1− τlµl). Taking the gradient of log( f(Kl)), we get 1/Kl+ log(1− τlµl). As log(1−
τlµl)< 0, we know log( f(Kl)) 昀椀rst increases and then decreases and thus, log( f(Kl)) and f(Kl)
have a 昀椀nite upper bound. Let us denote the upper bound of Kl(1− τlµl)

Kl−1 as CKl =O(1).
Then (83) becomes

‖∇ξku η
ku+1 −∇η∗

(
ξku
)
‖2 ⩽ 2(1− τlµl)

2Kl+2
+ 2CKlC

2
l ‖η∗

(
ξku
)
− ηku‖2. (84)

which yields the conclusion.

Besides, we have the lower-level contraction and error.

Lemma 5.4 (Lower-level error). Suppose that assumptions 1–3 hold and τl ⩽
1
ℓl,1
, then for

any γ > 0 , we have

‖ηku+1 − η∗
(
ξku
)
‖2 ⩽ (1− τlµl)

Kl ‖ηku − η∗
(
ξku
)
‖2 (85a)
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‖ηku+1 − η∗
(
ξku+1

)
‖2 ⩽ (1+ γ)‖ηku+1 − η∗

(
ξku
)
‖2 + L2

η

(
1+

1
γ

)
‖ξku

− ProjΞ
(
ξku − τu∇̂u

(
ξku
))

‖2. (85b)

Proof. Equation (85a) comes from (80) when setting kl = Kl. Moreover,

∥ηku+1 − η∗
(
ξku+1

)
∥2 = ∥ηku+1 − η∗

(
ξku
)
+ η∗

(
ξku
)
− η∗

(
ξku+1

)
∥2

(a)
⩽ (1+ γ)∥ηku+1 − η∗

(
ξku
)
∥2 +

(
1+

1
γ

)
∥η∗

(
ξku
)
− η∗

(
ξku+1

)
∥2

(b)
⩽ (1+ γ)∥ηku+1 − η∗

(
ξku
)
∥2 + L2

η

(
1+

1
γ

)
∥ξku − ξku+1∥2

= (1+ γ)∥ηku+1 − η∗
(
ξku
)
∥2 + L2

η

(
1+

1
γ

)
∥ξku − ProjΞ

(
ξku − τu∇̂u

(
ξku
))

∥2

where (a) is due to ‖a+ b‖22 ⩽ (1+ γ)‖a‖22 +(1+ 1
γ )‖b‖22 for any γ > 0, and (b) comes from

the Lipschitz continuity of η∗(ξ) in lemma 5.2.

Lemma 5.5 (Upper-level error). Under Suppose that assumptions 1–3 hold and τl ⩽
1

2ℓl,1
,

then it holds that

u
(
ξku+1

)
− u
(
ξku
)
⩽−

τu

2
∥ξku − ProjΞ

(
ξku −∇u

(
ξku
))

∥2 −

(
1
2τu

−
Lu
2

)
∥ξku − ProjΞ

(
ξku −∇̂u

(
ξku
))

∥2

+ τu
(
ℓu,1 (1+ Lη)+ 2ℓu,0CKlC

2
l

)2
∥η∗

(
ξku
)
− ηku∥2 + 2τu (1− τlµl)

4Kl+4 .

Proof. According to lemma 5.2, we know u(ξ) = U(η∗(ξ), ξ) is Lipschitz smooth and

∇u(ξ) =∇ξU (η∗ (ξ) , ξ)+∇⊤
ξ η

∗ (ξ)∇ηU (η∗ (ξ) , ξ)

and for any ξ1, ξ2, we have

∥∇u(ξ1)−∇u(ξ2)∥= ∥∇ξU (η∗ (ξ1) , ξ1)+∇⊤
ξ η∗ (ξ1)∇ηU (η∗ (ξ1) , ξ1)−∇ξU (η∗ (ξ2) , ξ2)

−∇⊤
ξ η∗ (ξ2)∇ηU (η∗ (ξ2) , ξ2)∥

⩽ ∥∇ξU (η∗ (ξ1) , ξ1)−∇ξU (η∗ (ξ2) , ξ2)∥+ ∥∇⊤
ξ η∗ (ξ1)∥∥∇ηU (η∗ (ξ1) , ξ1)

−∇ηU (η∗ (ξ2) , ξ2)∥+ ∥∇ηU (η∗ (ξ2) , ξ2)∥∥∇ξ η
∗ (ξ1)−∇ξ η

∗(ξ2)∥

⩽ ℓu,1(∥η
∗(ξ1)− η∗(ξ2)∥+ ∥ξ1 − ξ2∥)+ Lηℓu,1(∥η∗(ξ1)− η∗(ξ2)∥+ ∥ξ1 − ξ2∥)

+ ℓu,0Lηξ∥ξ1 − ξ2∥

⩽ (ℓu,1(1+ Lη)2 + ℓu,0Lηξ)∥ξ1 − ξ2∥.

By denoting the smoothness constant of u(ξ) as Lu := ℓu,1(1+ Lη)2 + ℓu,0Lηξ, we have the
following expansion

u
(
ξku+1

)
⩽ u
(
ξku
)
+
〈
∇u
(
ξku
)
, ξku+1 − ξku

〉
+
Lu
2
∥ξku+1 − ξku∥2

= u
(
ξku
)
−
〈
∇u
(
ξku
)
, ξku − ProjΞ

(
ξku − τu∇̂u

(
ξku
))〉

+
Lu
2
∥ξku − ProjΞ

(
ξku − τu∇̂u

(
ξku
))

∥2

(a)
= u

(
ξku
)
−

1
τu

〈
ξku − ProjΞ

(
ξku − τu∇u

(
ξku
))

, ξku − ProjΞ
(
ξku − τu∇̂u

(
ξku
))〉

+
Lu
2
∥ξku − ProjΞ

(
ξku − τu∇̂u

(
ξku
))

∥2
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(b)
= u

(
ξku
)
−

1
2τu

∥ξku − ProjΞ
(
ξku − τu∇u

(
ξku
))

∥2

+
1
2τu

∥ProjΞ
(
ξku − τu∇u

(
ξku
))

− ProjΞ
(
ξku − τu∇̂u

(
ξku
))

∥2

−

(
1
2τu

−
Lu
2

)
∥ξku − ProjΞ(ξ

ku − τu∇̂u(ξku ))∥2

(c)
⩽ u(ξku )−

τu

2
∥ξku − ProjΞ(ξ

ku −∇u(ξku ))∥2 +
τu

2
∥∇u(ξku )−∇̂u(ξku )∥2

−

(
1
2τu

−
Lu
2

)
∥ξku − ProjΞ(ξ

ku − τu∇̂u(ξku ))∥2 (86)

where (a) comes from ξku = ProjΞ(ξ
ku) and the fact that ProjΞ onto a linear equality constraint

set is a linear operator, (b) is derived from 2a⊤b= ‖a‖2 + ‖b‖2 −‖a− b‖2 and (c) is because
ProjΞ is a linear operator and ‖Proj(A)− Proj(B)‖⩽ ‖A−B‖. Besides, we can decompose
the gradient bias term as follows

∥∇u
(
ξ
ku
)
−∇̂u

(
ξ
ku
)
∥= ∥∇ξ U

(
η
∗
(
ξ
ku
)
, ξ
ku
)
−∇η

∗
(
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)⊤

∇ηU
(
η
∗
(
ξ
ku
)
, ξ
ku
)

−∇ξ U
(
η
ku+1

, ξ
ku
)
+∇⊤

ξku η
ku+1∇ηU

(
η
ku+1

, ξ
ku
)
∥

⩽ ∥∇ξ U
(
η
∗
(
ξ
ku
)
, ξ
ku
)
−∇ξ U

(
η
ku+1

, ξ
ku
)
∥

+ ∥∇η
∗
(
ξ
ku
)
∥∥∇ηU

(
η
∗
(
ξ
ku
)
, ξ
ku
)
−∇ηU

(
η
ku+1

, ξ
ku
)
∥

+ ∥∇ηU
(
η
ku+1

, ξ
ku
)
∥∥∇η

∗
(
ξ
ku
)
−∇ξku η

ku+1∥

⩽ ℓu,1 (1+Lη)∥η
∗
(
ξ
ku
)
− η

ku+1∥+ ℓu,0∥∇η
∗
(
ξ
ku
)
−∇ξku η

ku+1∥

(a)
⩽

(
ℓu,1 (1+Lη)+ 2ℓu,0CKlC

2
l

)
∥η∗(ξku)− η

ku∥+ 2(1− τlµl)
2Kl+2

(87)

where (a) comes from lower-level contraction (80). Thus, plugging (87) to (86), we get that

u
(
ξku+1

)
− u
(
ξku
)
⩽−

τu

2
∥ξku − ProjΞ

(
ξku −∇u

(
ξku
))

∥2 −

(
1
2τu

−
Lu
2

)
∥ξku − ProjΞ

(
ξku −∇̂u

(
ξku
))

∥2

+
τu

2

((
ℓu,1 (1+ Lη)+ 2ℓu,0CKlC

2
l

)
∥η∗

(
ξku
)
− ηku∥+ 2(1− τlµl)

2K+2)2

⩽−
τu

2
∥ξku − ProjΞ

(
ξku −∇u

(
ξku
))

∥2 −

(
1
2τu

−
Lu
2

)
∥ξku − ProjΞ

(
ξku −∇̂u

(
ξku
))

∥2

+ τu
(
ℓu,1 (1+ Lη)+ 2ℓu,0CKlC

2
l

)2
∥η∗

(
ξku
)
− ηku∥2 + 2τu (1− τlµl)

4Kl+4 .

With lemmas 5.2–5.5, we restate the convergence theorem 4.3 in a more formal way and
prove the theorem as follows.

Theorem 5.6. Under assumptions 1–3, let τl ⩽ 1
2ℓl,1

,Kl =O(logKu) and τu =O(1) satis昀椀es

τu ⩽min





1
2Lu (1+ 2Lη)

,
τlLuµl

Lη
((

ℓu,1 (1+ Lη)+ 2ℓu,0CKlC
2
l

)2
+ 4L2

u

)



 ,
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then the iterates of algorithm 2 satisfy

1
Ku

Ku∑

ku=1

‖ξku − ProjΞ
(
ξku −∇u

(
ξku
))

‖2 =O
(

1
Ku

)
(88)

where O omits the log dependency.

Proof. We can de昀椀ne Lyapunov function as

V
ku = u

(
ξku
)
+
Lu
Lη

‖η∗
(
ξku
)
− ηku‖2.

On the one hand, plugging (85a) to (85b), we get

‖ηku+1 − η∗
(
ξku+1

)
‖2 ⩽ (1+ γ)(1− τlµl)‖ηku − η∗

(
ξku
)
‖2

+ L2
η

(
1+

1
γ

)
‖ξku − ProjΞ

(
ξku − τu∇̂u

(
ξku
))

‖2. (89)

On the other hand, according to lemma 5.5 and (89), it holds that

V
ku+1 −V

ku ⩽−
τu

2
∥ξku − ProjΞ

(
ξku −∇u

(
ξku

))
∥2 −

(
1

2τu
−
Lu
2

)
∥ξku − ProjΞ

(
ξku −∇̂u

(
ξku

))
∥2

+ τu
(
ℓu,1 (1+ Lη)+ 2ℓu,0CKlC

2
l

)2
∥η∗

(
ξku

)
− ηku∥2 + 2τu (1− τlµl)

4K+4

+
Lu
Lη

[(1+ γ)(1− τlµl)− 1]∥ηku − η∗
(
ξku

)
∥2 + LuLη

(
1+

1

γ

)
∥ξku − ProjΞ

(
ξku − τu∇̂u

(
ξku

))
∥2

(a)
⩽ −

τu

2
∥ξku − ProjΞ

(
ξku −∇u

(
ξku

))
∥2 −

(
1

4τu
−
Lu
2

− LuLη

)
∥ξku − ProjΞ

(
ξku − τu∇̂u

(
ξku

))
∥2

−

(
τlLuµl
Lη

− τu

((
ℓu,1 (1+ Lη)+ 2ℓu,0CKlC

2
l

)2
+ 4L2

u

))
∥η∗(ξku )− ηku∥2 + 2τu (1− τlµl)

4Kl+4

(b)
⩽ −

τu

2
∥ξku − ProjΞ(ξ

ku −∇u(ξku ))∥2 + 2τu (1− τlµl)
4Kl+4 (90)

where (a) is earned by setting γ = 4LuLητu and (b) comes from the conditions

1
4τu

− Lu
2

− LuLη ⩾ 0, and
τlLuµl
Lη

− τu

((
ℓu,1 (1+ Lη)+ 2ℓu,0CKlC

2
l

)2
+ 4L2

u

)
⩾ 0.

(91)

The suf昀椀cient conditions for (91) are

τu ⩽min





1
2Lu (1+ 2Lη)

,
τlLuµl

Lη
((

ℓu,1 (1+ Lη)+ 2ℓu,0CKlC
2
l

)2
+ 4L2

u

)



 .
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Rearranging terms and telescoping (90) yield

1
Ku

Ku∑

ku=1

∥∥ξku − ProjΞ
(
ξku −∇u

(
ξku
))∥∥2 ⩽ 2

(
V

1 −V
Ku+1

)

τuKu
+ 4(1− τlµl)

4Kl+4

⩽
2
(
V

1 − infξ u(ξ)
)

τuKu
+ 4(1− τlµl)

4Kl+4
.

Then by choosing Kl =O(log(Ku)), the convergence rate of algorithm 2 is O( 1
Ku
).

The above theorem guarantees the algorithm 2 converges to an ϵ stationary point given that
assumptions 1–3 are satis昀椀ed. And lemma 3.4 states the convexity and Lipschitz smoothness
of the lower-level objective functionsLG(ρ,m;g,b) in (21) and shows that our problem setting
satis昀椀es the assumptions.

Since the interpolation operators Ix, Iy, It are linear and positive de昀椀nite, to prove lemma
3.4, it is suf昀椀cient to prove the (strong) convexity and the Lipschitz smoothness of LG,γ : R+ ×
R
d → R,(α,β) 7→ β⊤Gβ

2α + γα log(α).

Lemma 5.7. Let G be a d× d symmetric positive de昀椀nite matrix and LG,γ : R+ ×R
d →

R,(α,β) 7→ β⊤Gβ
2α + γα log(α). For any γ ⩾ 0, LG,γ is convex in R

+ ×R
d and Lipschitz

smooth in {α ∈ R : α⩾ cρ > 0}×{β ∈ R
d : ‖β‖⩽ cm} (cm > 0). And for any γ > 0 , LG,γ

is strongly convex in {α ∈ R : cρ ⩾ α⩾ cρ > 0}×R
d.

Proof. Since G is symmetric and positive de昀椀nite, we write the singular value decom-
position of G as G= UΣGU⊤, with UU⊤ = U⊤U= I, ΣG = diag(σG,d,σG,d−1, . . . ,σG,1),
(σG,d ⩾ σG,d−1 ⩾ · · ·⩾ σG,1). And σG,i, i = 1, . . . ,d are the singular values of G. Denote

Σ
1
2
G := diag(

√
σG,d,

√
σG,d−1, . . . ,

√
σG,1) and S=Σ

1
2
GU

⊤. Then G= S⊤S and the singular val-
ues of S are σS,i =

√
σG,i.

Obviously, LG,γ is twice differentiable in R
+ ×R

d and

∇2LG,γ (α,β) =
1
α3

[
β⊤Gβ −αβ⊤G⊤

−αGβ α2G

]

=
1
α3

[
1

S⊤

][
(Sβ)⊤ Sβ+ γα2 −α(Sβ)⊤

−αSβ α2I

][
1

S

]

=
1
α3

[
1

S⊤

]
∇2LI,γ (α,Sβ)

[
1

S

]
.

(92)

We denote the minimal and maximal singular values of ∇2LG,γ(α,β) as σG,γmin (α,β) and
σG,γmax(α,β). Then we have

σG,γmin (α,β)⩾
min(1,σG,1)

α3
σI,γmin (α,Sβ) , σG,γmax (α,β)⩽

max(1,σG,d)
α3

σI,γmax (α,Sβ) . (93)

By computation, the eigenvalues λI,γ(α,β) of ∇2LI,γ(α,β) satisfy

(
λ2 −

(
‖β‖2 +(γ+ 1)α2

)
λ+ γα4

)(
λ−α2

)d−1
= 0. (94)
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Therefore λI,γ(α,β)⩾ 0 and




σI,γmin (α,β)⩾

γα4

‖β‖2 +(γ+ 1)α2
⩾ 0,

σI,γmax (α,β)⩽ ‖β‖2 +(γ+ 1)α2

(95)

For γ ⩾ 0, σG,γmin (α,β)⩾ 0 hold for anyα > 0,β ∈ R
d, which implies Lγ is convex. For γ ⩾

0,α⩾ cρ,‖β‖⩽ cm, σ
G,γ
max(α,β)⩽max(1,σG,d)(

σG,dc
2
m+(γ+1)c2

ρ

c3
ρ

) hold for any α⩾ cρ,‖β‖⩽
cm, which implies LG,γ is Lipschitz smooth. And for γ > 0,cρ ⩾ α⩾ cρ, σG,γmin (α,β)⩾

min(1,σG,1)min( γcρ
σG,dc2m+(γ+1)c2ρ

,
γc

ρ

σG,dc2m+(γ+1)c2
ρ

).

6. Numerical experiments

6.1. Experiment settings

This section presents several numerical experiments to illustrate the effectiveness of our model
and algorithm. We generate the data by solving the forward problem using the projected gradi-
ent descent algorithm proposed in [34] based on the FISTA algorithm [1]. In each experiment,
we report the relative error versus the number of iterations for recovering the obstacle and the
metric. The relative error for recovering the obstacle is

√√√√√√√

∑nx
ix=1

∑ny
iy=1

(
(bKu)ix,iy −

(
b̃
)
ix,iy

)2

∑nx
ix=1

∑ny
iy=1

(
b̃
)2

ix,iy

, (96)

and the relative errors for the metrics are

(1D)

√√√√
∑nx

ix=1

(
(gKu)ix − (g̃)ix

)2
∑nx

ix=1 (g̃)
2
ix

, (2D)

√√√√
∑nx

ix=1

∑ny
iy=1 ‖(gKu)ix,iy − (g̃)ix,iy ‖F 2

∑nx
ix=1

∑ny
iy=1 ‖(g̃)ix,iy ‖F 2

, (97)

where bKu ,gKu are the numerical results after Ku upper-level updates and b̃, g̃ are the ground
truth. We implement all of our numerical experiments in Matlab on a PC with an Intel(R)
i7-8550U 1.80GHz CPU and 16 GB memory.

6.2. Theoretical arguments veri昀椀cation

6.2.1. Algorithm convergence and obstacle unique identi昀椀ability. The 昀椀rst experiment aims
to numerically verify the stability theorem 3.8, the unique identi昀椀ability theorem 3.9 and
convergence analysis in theorem 4.3 of the bilevel algorithm with lower and upper-level
constraints.

We discretize the space with nt = 16,nx = ny = 64. Denote pg(x,y;µx,µy,σx,σy) as the
probability density function of Gaussian distribution with mean (µx,µy) and covariance mat-
rix diag(σ2

x ,σ
2
y ). We feed the model with one pair of observations, i.e. N= 1, with µ0 =

pg(·, ·;−0.25,0,0.08,0.08), µ1 = pg(·, ·;0.25,0,0.08,0.08) and γI = 0.1,γT = 5. We choose
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Figure 2. Convergence test of the inverse crowd motion problem. Top to bottom: the
snapshot of ρ̃ at t= 0.5, recovered b with smallest relative error, upper-level objective
value versus the number of iterations, relative error of b versus the number of iterations.
Left to right: γb = 0.05,0.1,0.5,1. Reproduced with permission from [33].

Table 2. Convergence test of the inverse crowd motion problem.

γb ρ̃(0,0,0.5)
Upper-level Relative error Relative error Time elapsed

objective value (best) (last) (second)

0.05 0.7831 1.1792 0.0139 0.0148 1570.1611
0.1 0.0293 2.2504 0.0134 0.0161 1537.9703
0.5 0.0079 6.2426 0.2186 0.3500 1565.9526
1 0.0054 8.5889 0.3326 0.4354 1549.7152

the obstacle function as b(x,y) = γbpg(x,y;0,0,0.08,0.1). With different values of γb, the
agents avoid the center of the obstacle to different degrees. Higher values of γb lead to lower
density values at (x,y) = (0,0). According to remark 3.10, low-density values in the data result
in dif昀椀culties in accurately reconstructing the obstacle.

Figure 2 and table 2 compare the results with γb = 0.05,0.1,0.5,5. For a fair comparison,
we initialize the algorithm with obstacle b0 = 0 so that the initial relative errors all start from
1 for different γb. We run each inner loop for 5 iterations and run the outer loop for 6000
iterations.

The 昀椀rst row in 昀椀gure 2 plots training data ρ̃(·, ·,0.5) and m̃(·, ·,0.5). In the 昀椀rst column
of table 2, we report the density value ρ̃(·, ·,0.5) at the center, re昀氀ecting the value of min ρ̃.
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It is clear to see that more agents avoid the center of the obstacle as γb grows larger, thus the
density value in the center decreases.

The third row of 昀椀gure 2 presents the progression of upper-level objective values across
upper-level iterations, while table 2, Column 2, details the 昀椀nal upper-level objective values.
To enhance the precision of the upper-level objective calculation, we execute the forward solver
to convergence every 10 upper-level iterations. This approach yields a re昀椀ned approximation of
(ρ∗(b(k)),m∗(b(k))), thereby providing a more accurate estimation of the upper-level objective
values. Theorem 4.3 implies that convergence is achieved when min ρ̃ > 0. Supporting this,
table 2, Column 1, indicates that min ρ̃ > 0 for all considered γb values. Furthermore, 昀椀gure 2,
Row 3, demonstrates numerical convergence for each γb selection. This veri昀椀es the algorithm
convergence theorem 4.3.

We qualitatively show the numerical solutions of the obstacle in the second row of 昀椀gure 2,
while we report the relative error in the fourth row of 昀椀gure 2 and list the best relative error
and terminal step relative error in the third and fourth columns of table 2, respectively. Given
that min ρ̃ > 0, theorem 3.9 suggests the possibility of uniquely recovering the ground truth
obstacle, up to a constant, for all γb values of 0.05,0.1,0.5, and 1. Numerically, this unique
recovery is observed for γb = 0.05 and 0.1. However, for higher γb values of 0.5 and 1, the
reconstructed b does not align perfectly with the ground truth b̃, as onemight expect. This devi-
ation is accounted for by remark 3.10, which discusses the robustness of the reconstruction.
Speci昀椀cally, when γb is set to 0.5 or 1, the lower bound of the data ρ̃ decreases. According to
remark 3.10, a smaller ρ̃ lower bound leads to less robust solutions, making themmore suscept-
ible to distortions from small perturbations in the ground truth. In our experiments, since the
forward solver typically produces an approximation of the exact minimizer after a 昀椀nite num-
ber of iterations, the data represents a slight deviation from the ground truth. Consequently,
This causes the reconstructed obstacle to differ from the exact obstacle and the discrepancy is
more obvious when γb = 0.5,1.

6.2.2. Improving results with multiple data. We conduct an experiment to show that multiple
training data help to enhance reconstruction results for the inverse metric problem.

The example is de昀椀ned on space domain [−0.5,0.5] and time domain [0,1]. We discretize
the space domain [−0.5,0.5]with nx = 64 and the time domain [0,1]with nt = 16. The ground
truth metric is g̃(x) = 0.7− 0.3cos(2π x). The parameters in the forward problem are γI =
0.01,γT = 0.5. Then we obtain the 昀椀rst pair of data with µ0(x) = 1.25− 0.25cos(4π x),µ1 =
1.25+ 0.25cos(2π x) and the second pair with µ0(x) = pg(x;0,0.1),µ1 = 1.

We solve the inverse problem with the 昀椀rst pair of data (N= 1) or both data (N= 2). When
solving the inverse problem, we take the information on the left endGk = {ix : ix = 1} as known
and 昀椀x it. We choose R(g) := 1

2γR
´

‖∇g(x)‖22dx to regularize the smoothness of the metric.

The discretization is therefore RG(g) := 1
2γR∆x

∑nx−1
ix=1 ((g)ix+1 − (g)ix)

2.
We run the algorithm 2 for 5000 iterations with 5 iterations per each inner loop. The initial-

ization on ix = 1 is set as the true value and the initialization on other points is 0.7. Figure 3
shows the comparison of numerical results and ground truth (row 1) and the relative error of
the metric versus the number of upper-level iterations (row 2). Table 3 reports the weight of
regularization γR, relative error, and running time of the algorithm. For one comparison, we
choose no regularization (γR = 0) in the model. The results with the 昀椀rst data (N= 1) are
presented in row 1 and the results with both data (N= 2) are in row 2. Then we tune the regu-
larization parameter and report the best results with the 昀椀rst data in row 3 and with both data in
row 4. It is easy to see that when using both data, our model captures the ground truth metric
better and achieves lower relative error. It is worth noting that when using both data to solve
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Figure 3. Improving results with multiple data. Top to bottom: comparison of numerical
g and the ground truth g̃, the relative error of g versus the number of iterations. Left to
right: (N= 1,γR = 0), (N= 2,γR = 0), (N= 1,γR = 10−5), (N= 2,γR = 10−4).

Table 3. Improving results with multiple data.

N γR Relative error Time elapsed (seconds)

1 0 0.1700 60.0653
2 0 0.0673 128.5328
1 1× 10−5 0.1073 67.3291
2 1× 10−4 0.0145 118.9042

the inverse problem, our model captures the shape of the ground truth metric even without
smoothness regularization. However, when using the 昀椀rst data, the model fails to learn the
information in the center and on both ends.

6.3. Robustness with respect to data

6.3.1. Unknown obstacles. To test the robustness of our method for noisy input as discussed
in remark 3.10, we design the following numerical experiment.

We discretize the space [−0.5,0.5]2 with nx = ny = 64 and choose nt = 16. We let the

obstacle function be b(x,y) =

{
0.5, x< 0,0.05< y< 0.1, or x> 0,−0.1< y<−0.05,

0, otherwise.
.

Assume there is one pair of observations, with initial density µ0 = pg(·, ·;−0.3,0.3,0.1,0.1),
preferred terminal density µ1 = pg(·, ·;0.3,−0.3,0.1,0.1) and γI = 0.1,γT = 1. We use
the perturbed observation ρ̃+ γnnρ,m̃+ γnnm to solve the inverse problem, where γn =
0,0.25,0.5,0.75 and noise nρ,nm are generated by pointwise i.i.d sampling from the uniform
distributionU[−0.5,0.5]. To avoid numerical instability caused by zero value or negative dens-
ity values, we threshold the perturbed density by 0.01. All experiments initialize with the same
random choice of b. Every inner loop contains 5 iterations and 5000 outer iterations have been
conducted. In addition, we do not add any regularizer in this experiment. From 昀椀gure 4 and
table 4, we observe that with larger noise, the relative errors between numerical results and
the ground truth are larger. Overall, the numerical results capture the shape of the ground truth
and the algorithm converges to a close result to the ground truth b̃with reasonably low relative
errors.
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Figure 4. Robustness test of the inverse crowd motion problem. Top to bottom: numer-
ical b, the difference between the numerical results and the ground truth b− b̃, the
relative error of b versus the number of iterations. Left to right: noise level γn =
0,0.25,0.5,0.75. Reproduced with permission from [33].

Table 4. Robustness test of the inverse crowd motion problem.

γn Relative error (last) Time elapsed (second)

0 0.0081 1437.0926
0.25 0.0897 1343.8082
0.5 0.3771 1397.4578
0.75 0.7035 1379.7269

6.3.2. Unknown 1D metric. This is a 1D example on [−0.5,0.5]× [0,1]. We discretize the
space domain [−0.5,0.5] with nx = 64 and the time domain [0,1] with nt = 16. The ground
truth metric is g̃(x) = 8x(x− 0.375)(x+ 0.375)+ 1. The data is obtained by taking µ0(x) =
pg(x;0,0.1),µ1 = 1 and γI = 0.01,γT = 0.5. We test the robustness of the model by perturbing
the observation ρ̃,m̃. The noises nρ,nm share the same size with ρ̃,m̃ and are pointwise i.i.d
samples from U[−0.5,0.5]. We use the perturbed data ρ̃+ γnnρ,m̃+ γnnm to solve the inverse
problem, where γn = 0,0.1,0.2,0.3. Row 1–2 of 昀椀gure 5 illustrate the perturbed data.

When solving the inverse problem, we take the information on the left end Gk = {ix : ix = 1}
as known and 昀椀x it. Same as section 6.2.2, we chooseR(g) := 1

2γR
´

‖∇g(x)‖22dx to regularize
the smoothness of the metric. The regularization weight γR takes different values for different
γn and the values are in table 5. We run algorithm 2 for 5000 iterations with 5 iterations per
each inner loop. The initialization of g takes value 1 everywhere. Figure 5 and table 5 compare
the result with different γn.

From the comparison in 昀椀gure 5 and the relative error in table 5, we observe that as the
noise level increases, the recovered metric deviates more from the ground truth. However, it
is crucial to highlight that, on the whole, our model adeptly captures the underlying shape of
the metric with reasonable 昀椀delity, and the associated relative error remains consistently small.
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Figure 5. Robustness test of the inverse metric problem. Left to right: γn =
0,0.1,0.2,0.3. Top to bottom: perturbed data ρ̃+ γnnρ, perturbed data m̃+ γnnm, com-
parison of numerical g and the ground truth g̃, the relative error of g versus the number
of iterations.

Table 5. Robustness test of the inverse metric problem.

γn γR Relative error (last) Time elapsed (second)

0 1× 10−5 0.0358 63.4809
0.1 3× 10−4 0.0380 63.2121
0.2 1× 10−3 0.0645 61.5193
0.3 3× 10−3 0.0815 60.7215

This robust performance underscores the resilience of our model in the presence of added noise
to the data.

6.4. Robustness with respect to unknowns

We present more numerical results to show that our method effectively recovers various types
of obstacles and metrics.

6.4.1. Unknown obstacles. Besides the obstacle of the Gaussian type and of a ‘two-bar’
shape, we conduct experiments on obstacles with more irregular shapes. We plot examples of
‘the segmented ring’ and ‘clover’ in 昀椀gure 6. In both experiments, only one pair of data is used
to recover the unknown obstacle. The 昀椀gure shows that our algorithm produces consistently
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Figure 6. Robustness test of the inverse obstacle problem with respect to the obstacle.
Mesh grid size: nt = 16,nx = ny = 64. Left to right: ground truths, numerical results, the
difference between ground truths and numerical results, the relative error of the obstacle
versus the number of iterations. Top to bottom: relative error = 0.3837, 0.1935, time
elapsed = 4103 s, 3247 s.

Figure 7. Robustness test of the inverse metric problem with respect to the metric.
Mesh grid size: nt = 16,nx = ny = 64. Columns 1,3: comparison of numerical g and
the ground truth g̃, columns 2,4: the relative error of g versus the number of iterations.
Column 1,2: λ= 10−5, relative error = 0.0172, time elapsed = 62.8513 s, column 3,4:
λ= 10−5, relative error = 0.0172, time elapsed = 63.0395 s.

good results when recovering various obstacles. Our model and algorithm recover the shape
of the obstacle and achieve very low relative errors.

6.4.2. Unknown 1D metric. Apart from the experiments in sections 6.2.2 and 6.3.2, we con-
duct experiments onmore different metrics and plot the results in 昀椀gure 7. In both experiments,
we use only one pair of data and the ground truth information on the left end. The 昀椀gure shows
that our model and algorithm consistently recover the ground truth metric and achieve low rel-
ative errors.

6.5. Unknown 2D metric

The last example is a 2D inverse metric problem on [−0.5,0.5]2 × [0,1]. We take nx = ny = 64

and nt = 16. The ground truth metric is g̃(x,y) = (
g0(x,y)+ 4 g0(x,y)+ 2
g0(x,y)+ 2 g0(x,y)+ 1

) with g0(x,y) =

0.75+ 0.5sin(2π x)cos(2π y− 0.5π). The data is obtained by taking γI = 0.1,γT = 1.We take
N= 4, i.e. 4 observations, in this example. The initial densities are µ0 = pg(·, ·;ax,ay,0.1,0.1)
with (ax,ay) = (−0.3,−0.3),(−0.3,0),(−0.3,0.3),(0,0.3), and the terminal densities are
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Figure 8. Solving an inverse problem with an unknown metric in 2D. Mesh grid size:
nt = 16,nx = ny = 64. Left to right: ground truths, numerical results, the difference
between ground truths and numerical results. Top to bottom: gxx,gxy,gyy. Relative error
= 0.0260, time elapsed = 4327.5671 s.

µ1(x,y) = pg(·, ·;ax,ay,0.1,0.1) with (ax,ay) = (0.3,0.3),(0.3,0),(0.3,−0.3),(0,−0.3). We
solve the inverse problem with the weights of smoothness regularizers γR = 10−4. The
algorithm initiates from gxx = 4,gxy = 2 and gyy = 1. Each inner loop takes 5 iterations and
each outer loop takes 5000 iterations. Columns 1–3 of 昀椀gure 8 shows the ground truth, the
recovered metric, and the difference between the numerical result and ground truth. Our model
and algorithm capture the symmetricity of the ground truth metric and achieve a relative error
of value 0.0260.

7. Conclusion

In conclusion, this paper introduces a novel bilevel optimization framework to tackle inverse
mean-昀椀eld games for learning metrics and obstacles. We also design an alternating gradient
descent algorithm to solve the proposed bilevel problems. The primary advantage of our pro-
posed formulation is its ability to retain the convexity of the objective function and the linear-
ity of constraints in the forward problem. Focusing on the inverse mean-昀椀eld games involving
unknown obstacles and metrics, we have achieved numerical stability in these setups. A sig-
ni昀椀cant contribution of our research is establishing unique identi昀椀ability in the inverse crowd
motionmodel with unknown obstacles based on one pair of inputs and revealing when the solu-
tion of the bilevel problem is stable to the noisy data. Employing an alternating gradient-based
optimization algorithm within our bilevel approach, we ensure its convergence and illustrate
its effectiveness through comprehensive numerical experiments. These experiments serve as
robust validation, underscoring the practical applicability and reliability of our algorithm in
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resolving inverse problems. Our model and techniques offer a new approach to understanding
and further explorations and application of inverse mean-昀椀eld games.
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