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Abstract

In this paper, we introduce a bilevel optimization framework for addressing
inverse mean-field games, alongside an exploration of numerical methods
tailored for this bilevel problem. The primary benefit of our bilevel formula-
tion lies in maintaining the convexity of the objective function and the lin-
earity of constraints in the forward problem. Our paper focuses on inverse
mean-field games characterized by unknown obstacles and metrics. We show
numerical stability for these two types of inverse problems. More importantly,
we, for the first time, establish the identifiability of the inverse mean-field
game with unknown obstacles via the solution of the resultant bilevel prob-
lem. The bilevel approach enables us to employ an alternating gradient-based
optimization algorithm with a provable convergence guarantee. To validate
the effectiveness of our methods in solving the inverse problems, we have
designed comprehensive numerical experiments, providing empirical evidence
of its efficacy.
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1. Introduction

Mean-field games study the Nash Equilibrium in a non-cooperative game with infinitely many
agents. In the game, each agent aims to minimize a combination of dynamic cost, interaction
cost, and terminal cost by controlling its own state trajectory. At the Nash Equilibrium, the
agents cannot unilaterally reduce their costs. The theory is proposed in [4, 12, 22] and has
attracted increasing attention since then.

In most existing works, knowing the cost functions is required to solve mean-field games.
However, in practice, these cost functions are not always easy to obtain. In contrast, the state
distribution, the strategies of agents, and sometimes the value function at the Nash Equilibrium
can be observed. Thus, a natural question arises: Can we learn the cost functions from the Nash
Equilibrium? We refer to this as the inverse mean-field game problem, and to the original one
as the forward problem.

Unlike the forward problem, relatively few studies focus on inverse mean-field games.
Kachroo et al [15] derives two traffic flow models as the solutions of non-viscous mean-field
games. Ding et al [8] reconstructs the underlying metric in the dynamic cost and the kernel
in the non-local interaction cost from the possibly noisy observation of agent distribution and
strategy. Chow et al [7] learns the running cost from population density and strategy on a given
boundary. Guo et al [10] infers the full information of population density, strategy and the
model from partial and noisy observation of the density and model through Gaussian Process,
a Bayesian non-parametric technique for supervised learning. Klibanov et al [21] proposes
a convexification method with global convergence for recovering the interaction coefficient
function from a single measurement data. References [24-26, 29] establish the theoretical
unique identifiability result for a general class of mean-field games, mean-field game bound-
ary problems and multipopulation mean-field games, where infinite pairs of training data are
required in the proof. Following [18], a series of works [13, 16, 17, 19, 20] study the stability
and uniqueness of inverse mean-field game through Carleman estimates.

In this paper, we study a typical class of forward problems, the potential mean-field games.
Applications like crowd motion [30] and generative models [23] have the formulations of
potential mean-field games. In a potential mean-field game, the Nash Equilibrium is a pair of
agent distribution p and strategy m minimizing a cost £ which consists of the dynamic cost
L, the interaction cost F; and the terminal cost Fr, under a constraint C(uo) for density and
strategy evolution dynamics:

(p*,m*) := argmin L(p,m;L,F, Fr). (1)
p’mEC(MU)

The inverse problem is to identify L, F; or Fr given (p*,m*). Typical choices of L, F; and Fr
make (1) a (strongly) convex optimization problem with linear constraint. Taking L unknown
and J7, Fr known as an example, we thus consider the following bilevel optimization problem

min D((p"m°), (p(L), m(L))) + R (L)

st. (p(L).m(L)):= argmin £ (p,m;L, Ty, Fp).
pmEC(10)

2

Here D is a fidelity term and R is a regularity term. Existing works [7, 8] use the nonlinear and
nonconvex PDE optimality conditions as constraints. Consequently, achieving a theoretical
convergence guarantee is challenging. In contrast, we propose a bilevel formulation for inverse
mean-field games, which directly incorporates the forward problem as the constraint. This
bilevel formulation maintains the desirable convex-linear structure of the forward problem (the
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lower-level problem) and enables us to adopt a gradient-based bilevel optimization algorithm
[6, 11, 14, 31, 32] to address the inverse problem (2). Moreover, leveraging this convex-linear
structure, we have developed a convergence result, demonstrating that our algorithm converges
to the stationary point of the bilevel problem.

A common question in inverse mean-field games concerns the stability and unique identifi-
ability of the unknown parameter or function relative to the data. In our setting, we ask whether
it is possible to uniquely recover the cost functions from a single pair of observations (p*, m*)
and whether the recovered cost function continuously depends on these observations. This
setup differs significantly from the theoretical work discussed in [24, 25]. In those studies, the
authors demonstrate that if the interaction and terminal costs are local, holomorphic in p(x, ),
and meet zero admissibility conditions, then it is possible to uniquely recover them from infin-
itely many observations either throughout the full domain or on its boundary. However, in our
case, the cost function for a crowd motion model typically does not satisfy the zero admissib-
ility condition. Moreover, obtaining infinitely many observations is not feasible in practice. In
this work, we establish stability results for a general model and unique identifiability results
for crowd motion models at a discrete level. Specifically, for a general model, we prove that
our model can achieve a close solution to the ground truth with noisy observation, and for the
crowd motion model, we prove that only one pair of complete observation (p*, m*) is sufficient
to uniquely recover the obstacle function, up to a constant. Thus, compared to the requirement
of infinitely many observations in [24], our result is more practical and offers insights into
what constitutes an effective observation for accurately recovering the ground truth.

Contribution: We summarize our contributions as follows.

—

. We propose a bilevel optimization framework for modeling inverse mean-field games.

2. We study a general model of mean-field games and show that the unknown cost parameters
continuously depend on the observation of the Nash Equilibrium.

3. For the crowd motion model, we prove that up to a constant, the ground truth obstacle
function is the unique minimizer to the bilevel optimization problem of the inverse mean-
field game.

4. We apply an alternating gradient-based bilevel optimization algorithm to solve inverse
mean-field games and prove the algorithm converges to the stationary point of the bilevel
problem.

5. We implement the algorithm and illustrate the effectiveness of our model and algorithm

with comprehensive numerical experiments.

Organization: The paper is organized as follows. In section 2, we briefly review the poten-
tial mean-field games and provide two examples of forward mean-field game models whose
inverse problem will be addressed in this paper. In section 3, we provide the bilevel optimiz-
ation model for inverse mean-field games and discretize the model. We also state the stability
of both models and the unique identifiability of the inverse crowd motion model and prove
them in section 5. In section 4, we present the algorithm to solve our bilevel model for inverse
mean-field games and prove the convergence in section 5. In section 6, we demonstrate our
model and algorithm with experiments. Finally, we conclude our work in section 7.

Notation: We summarize the notations frequently used throughout this paper in table 1.

3
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Table 1. Notations.

p,m, ¢: density, momentum and value functions
g, b: metric and obstacle functions

L: objective function of a forward potential MFG
~1,yr: coefficient of entropy and KL divergence
C(f0): constraint set of (p,m) with p(-,0) = po
Cy,Cp: constraint set of metric g and b

MFG

7: the lower-level variable of bilevel optimization,
corresponding to (p,m) in inverse MFG setting
&: the upper-level variable of bilevel optimization,
Bilevel optimization corresponding to g, b or other parameters for unknown cost functions in
inverse MFG setting
L(n;€),U(n;€): lower-level and upper-level cost functions
n*(§) := argmin, ., £(n;§): lower-level optimizer for given upper-level
variable &
u(€) :==U(n"(€),&): upper-level objective to minimizer
H = {n | An = c}: the constraint set of lower-level variable,
corresponding to C (o) in inverse MFG setting
=: the constraint set of upper-level variable,
corresponding to Cg,Cp in inverse MFG setting

ku,k;: upper-level and lower-level number of iterations

Alternating gradient Tu, T1: upper-level and lower-level stepsizes

GP,G™ ,G™ ,G?: discrete grids where p,m*,m’ and ¢ locate
ir, Ix, Iy: indices on ¢,x and y direction

I, I, I,: interpolation operator on ¢,x and y direction

D;, Dy, D,: difference operator on ¢,x and y direction

Discretization

2. A review of potential mean-field games

In this section, we first review potential mean-field games and their optimality conditions [4,
12, 22]. Then we present two example problems that we would like to solve in the inverse
problem setup.

Consider a problem defined spatially on 2 C R and temporally on [0,1]. p: Q x [0,1] — R
is the state density. v : © x [0, 1] — R¢ represents the velocity (control) field of the agents and
m := pv the flux. A potential mean-field game typically has the following formulation:

) . ! m (X, 1) !
Jomin Ly [ p(x,oL(x, o )dxdr+ | FoCas Frp(1)
3)

with the constraint set being
C(po) :=={(pm): 0p+V -m=0,p(-,0) = po,m-n=0forx € 0 p(-,-) >0}. (4

where m is the normal direction on the boundary 0€2. It is clear to see that any pair of (p,m) €
C (o) satisfies mass conservation and zero boundary flux condition with the initial density of p
being 1. In this objective function, L : Q x R? — R models the dynamic cost, 7; : P(Q) — R
the interaction cost and F7 : P(£2) — R the terminal cost.

4
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To derive the optimality condition of (3), we introduce the Lagrangian multiplier ¢» and
formulate the Lagrangian

1
A(p,m, ) : :E(p,m)f/ /cz)(x,t)(a,p(x,t)+V-m(x,t))dxdt

=L(p,m // xza,¢xtdxdt+//mxt Vo (x,r)dxdr )
Q
- ool naxs [ 6(x0)um(x)dx
Q Q

where the second equality is due to integration by part. The optimal solution solves the saddle
point problem

min m;le(p,m, }). (6)

p20,m

When L(x, V) is convex in v, let the Legendre transformation of L be

H: QxR =R, (x,p) — sup{—(p,v) —L(x,v)}. @)

Then if p > 0, the optimality condition of (3) is

— 0 (x,1) +H(x, Vo (x,1)) = 5};1;/)) (x), o(x1)=

Ohp(x,1) =V - (p(x,0) OpH X,V (x,1))) =0, p(:,0) = po.

We use this forward-backward PDE system to explore the properties of the inverse problem
later.
In this paper, we focus on the following two problems.

Problem 2.1 (crowd motion with obstacle). A common example comes from crowd motion
[30], whose formulation is

min /:(p,m;b);/ ”m ||2dxdt+// (x,1) b (x) dxdr
(p,m)€EC (o) Q

+w/ / x,1)logp (x,1) dxdr )

w1 | o) Gogp (x.1) o () d.

Here the terminal cost is the KL divergence Fr(p(-,1)) = [, p(x,1) (log p(x,7) — log 11 (x)) dx
which aims to match the terminal density p(-, 1) to the desired density ;. The interaction cost
contains two parts. The entropy term [, p(x,7)log p(x,r)dx penalizes the aggregation of the
density. And the obstacle term [, p(x,7)b(x)dx penalizes the mass going through the obstacle
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x with larger value of b(x). With the same initial density 1, different obstacle functions lead
to different Nash Equilibrium. Assuming that we know everything in the objective function (9)
except the obstacle function b, we aim to recover b from observations of the equilibrium (p, m).

Problem 2.2 (non-Euclidean metric). It is also common to consider mean-field games on
spaces with non-Euclidean metrics. If at each x € Q,2 C RY, there is a positive definite matrix
g(x) e Si  indicating the metric, then the mean-field game problem takes the form

1 T
min L (p,m;g) ::/ m(x,f)_g(x)m(x ) dxdr
(p:m)€C (o) 0 p(x,1)

0 2
1

+% /p(xvt)logp(x,t)dxdt (10)
0 Q

47 [ p(xr) (ogp (x,1) ~ logr () dx.
Q

We also work on solving the metric g from the observations of the equilibrium (p, m), assuming
other terms in (10) are known.

In summary, we are interested in the mean-field game problem with the objective function

t
m; g, b //mx dxdt+// (x,1) b (x) dxdr
2p )

0 Y g X dX

We write £(p,m;g) when b =0 and L(p,m;b) when g = I,. With p > 0, the optimality con-
dition for the problem

min  L(p,m;g,b), 12
(p,m)€C (ko) (p,m;g.,b) (12

is

00060+ 5 (Vo (x0) (80)) ™ V6 (x,0) = (logp (x,1) + 1) +b(x),
6 (x,1) =7 (logp (x.1) — loguy (x) + 1), (13)
A (x,1) = V- (p(x.0) (g (%)~ Vo (x,0)) =0, p(-,0) = o

We call the potential mean-field games (3), as well as (9) and (10), the forward problem.
In this paper, we aim to learn the unknown variables b, g from one or a set of observations

of the Nash Equilibrium { (", m )} that solve the forward problems, and we name this
the inverse problem. Note that the forward problem has a convex objective function and linear
constraint, while the optimality condition is nonlinear and nonconvex. To preserve the nice
convex-linear structure of the forward problem, we formulate the inverse mean-field game as
a bilevel optimization problem and treat the forward problem as the constraint.
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Remark 2.3. While this paper mainly works on the inverse problem of problems 2.1 and 2.2,
we emphasis that the bilevel formulation introduced in section 3.1 and the alternating gradient
algorithm in section 4 are applicable to a broad class of inverse mean-field games, provided
the cost function can be parameterized, either by values on a grid or by a neural network. More
importantly, our convergence analysis holds for a very general class of mean-field games whose
forward objective exhibits convexity with respect to the density p and momentum m.

3. A bilevel formulation of inverse mean-field games

In this section, we first review the general formulation of a bilevel optimization problem, then
provide the bilevel formulation of inverse mean-field games, as well as two concrete inverse
problems that we would like to solve in this work. After that, we discretize the model for
numerical implementation.

3.1. Bilevel formulation

The general formulation of a bilevel optimization problem is

min  u(&):=UMn"(&);¢E)

£eE

where n* (§) = argmin £ (7;€) . (a4
neH

Here we consider linear constraint set H={n|An=c} and convex set Z, where A €
Ré-xdn ¢ € R%. d. < d,. The optimization problem over U is referred to as the upper-level
problem and that over £ as the lower-level problem. We formulate our inverse problems as
bilevel optimization problems, with the upper-level objective being a combination of fidelity
D,, D and regularity R, and the lower-level problem being the forward problem.

i p,m);L = (D D m L
LECB’I}I-}EC}'I u((p?m)7(p7m)7 7f1) ( p(pvﬁ)+ m(mam))+R( afl)
s.t. (p,m):= argmin L (p,m;L,F}).
(p,m)€C(po0)

The dynamic cost L and interaction cost functional F; are the upper-level variables and the
density-flux pair (p,m) is the lower-level variable. For convenience, we choose D, (p,p) =

1 ~ ~ 1 .
2 Iy Jo(p(x,1) = p(x,1))*dxds and D, (m,m) = 1 [0 [, [[m(x,7) — m(x,7)|[3dxds
We formulate the inverse problems of problem 2.1 and 2.2 as follows.

Problem 3.1 (the inverse problem of crowd motion (problem 2.1)). Let the regularity be
R(b) = 0. The inverse problem of (11) is

min D, (p,p) + Dm (m,m)
beC), 15
s.t. (p,m) := argmin L(p,m;b). (15

(pm)€C (1)

Here (p,m) = argmin, ., cc( L(p,m;b) are the observed data with ground truth b. Notice

Ho)
that for any constant ¢ € R, if (p,m) minimizes £(p,m;b), then (p,m) also minimizes

7
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L(p, m;E + ¢). To remove the ambiguity, we restrict our focus to obstacle functions with zero

integral, i.e.
Cp = {b:/b(x)dX:O}. (16)
Q

Ideally, we expect proj, (b) to be the unique minimizer of the bilevel problem (15). We prove
this unique identifiability property for the discretization of (15) in section 5.

Problem 3.2 (the inverse problem of unknown metric (problem 2.2)). Similarly, we have

the bilevel formulation to recover the metric g from the data (p,m) = argmin L(p,m;g).
(p,m)€E€C(p0)

min D, (p;P) + Dm (m,m) +R(g)
8&ly

17
s.t. (p,m):= argmin L(p,m;g). a7
(p,m)E€C (o)
To make sure that g induces a metric on €2, we set the constraint of g as
Co={g:Q— S‘i+ : g (x) are positive definite matrices, Vx € Q} . (18)

For one observation, if the density is zero in an open set, it means almost no players pass
the region and it is impossible to obtain the exact information in that region. However mul-
tiple observations may complement the missing information, and therefore it is meaningful to
consider the following inverse MFG with multiple observations.

Problem 3.3 (the inverse problem of unknown metric (problem 2.2) with multiple
observations). Suppose that we have multiple observations of the Nash Equilibrium with
a given g from different initial densities ug,n = 1,...,N, ie. (p",m") = argmin L(p,m;g)

(p,m)€C (1)
forn=1,2,...,N. Then we can solve the following bilevel optimization problem to recover
the true metric

N

?elicn Z (Dp (", 0") + Dm (mnaﬁln)) +R(g)
& n=1

N
n o\ N .
s.t. {(p",m )}Vl:l = argimn Zﬁ(pnamrdg)'
(pmmn)EC(uﬁ) n=1

19)

The lower-level is equivalent to a concatenation of N forward problems since (p”,m") are
independent.

3.2. Discretization

We conduct numerical experiments on R? with d = 1,2. Taking d =2 as an example, we
let Q = [0,1] x [0, 1] and the space-time joint domain be [0, 1], and we write m = (m*,m"”).
We follow the discretization in [34], with which the discrete optimizer is consistent with the
continuous optimizer under certain regularity conditions. To be precise, we equally divide
[0,1] into ny,ny,n, parts, and each cube is of size AxAyAt, with Ax = nix,Ay =1 Ar= ni,

ny’

Letx; = (i — 3)Ax,y; = (i— 1) Ay,t; = (i — 3)At,and (f);.1,; approximétes function fon the

8



Inverse Problems 40 (2024) 105016 JYuetal

t=1 t t=1 t
) Ll - - - - _ L1
ip=n+= i =ny+=
L] * ¢ * ¢ ) ° ° ° . °
L 2 * L 2 * [ ] [ ] [ ] [ ] [ ]
¢ ¢ * ¢ ° ° ° . °
o - = - = -
t:O L 3 * L 2 * o t:O [ ] [ ] [ ] [ ] [ ]
¢ p o1 X e pymy 1 X
k=3 =5
¢ m* x=0 x=1 x=0 x=1
T ) 1 1
k=7 x =t k=3 b=y 5

Figure 1. Illustrations of the staggered (left) and central (right) grids. Reproduced with
permission from [33].

point (x;,,y;, ). Similarly, (f);,;, ~f(x;,, ;). We define G#,G" and G" as the sets of grid
point indices on t-, x- and y-staggered grids, respectively, where

1
gr .= {(imiy,i,—i-z) =100, =1,...,n,,i; = 1,...,n[},

X 1
gm .= {(ix—i—z,iy,i,) =1, n—Li,=1,...,ny,i = 1,...,n,},

v 1
gm = {(ix,iy+2,i,) Dy = 1,...,nx,iy—1,...,nyl,i,—l,...,n,}.

Then we approximate the function p,m* and m” on #-, x- and y-staggered grids by PGe s MG

y 1 1 -—_ xteylty e . ,‘(_1 y
and Mg respectively, i.e. pge :={(p)i}icgr € R™™™, m)émx _ v(mx)l}ieg"f‘ c Ru—Dmn
and mz,) ={(m)i}icgm € R (=1 We denote G™ := G™ x G as the concatenation of

G"™,G" and mgn := (G ,myg,,,, } as the concatenation of mz,,. ,mygmv . We will omit the under
scripts of grids wherever there is no ambiguity according to context. The left part of figure 1
illustrates the staggered grids and the corresponding p,m* for d = 1.

We define the inner products on the staggered grids as

(p1,p2)ge = DxAYAL Y~ (p1); (p2)s

iegr
() g = AXAYAL Y | () (m3);,
iegm
(my,my) gw = AxAyAt Z (my); (m3); ,
iegm’
and denote their induced norm as || - ||g», || - [|g» and || - || g~ . Based on these, we approxim-

ate the discrepancy between lower-level minimizer and observed data D,, Dy, by the sum of
element-wise differences on grids Dg,, Dgn,

1
Dge (p,5) =5 lp = pllG
(20)

~ 1 - Lo -,
Dgn (m,m) ::§||m" — |G + §||m> — || G-

9
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To compute the objective function, we consider the central grid (see the right plot in
figure 1)

G? = {(inyiyyiy) tiy =1, ngyiy = 1, ny iy =1, m )
We define the inner product and induced norm on the central grid similarly and denote them as

(-,-)gs and || - ||ge. With the interpolation operators, p = I;(p; i), m* = L(m*),m¥ = I,(m”)
meet on the central grid points:

() + Pigirs) s =1
_ 2 \\H0)iiy ™ \Pliigi4d ) =15
(p)ixiyi, = (PWO))iXiyi, =93 ‘ o .
(i + Pigins) s =200
% (mx)lmL% iy it ? iy =1,
(), 0 = (e (), =14 4 ((mX)iX_%’iy,i, + (), +%,,»,.,i,) =21,
L), o=
1 .
i(ml)ir l}-i-%,l‘,’ ly: 1,
= — ) )1 o
()4, = (I (1)), = E(On)hh ZJ,+(”ﬂ>mq+$m)7 by=2,...,my— 1,
1 .
E(m )l“l} 2,1, Iy = ny.

Here, the definition of m* on iy = 1,n, and m” on iy = 1,n, are consistent with the zero-flux
boundary condition in the continuous setting. The objective functions of the forward problem
can therefore be approximated by

Lg (p,mig,b) = AxAyAL Y |
ieg?

( )] (g), ,, (m),

2(0); +71(p);log ((P)J) + AxAyAt Z (P); (b)ix,iy

iege

ne Ny

+ ’YTAXA)’Z Z (p)imiy,nﬁ»% (IOg (p)i“i“nﬁ% —log (pu1 )1,,,\.)

i=li,=1

@1

T

Lxlyly

where m = {m*,m"}, (m),; . := ((m);,i,, (M”);;,) and the subscript of Lg indicates the cost
is defined on the discrete space. Similar to the continuous notation, we write Lg(p, m;g) when
b=0and Lg(p,m;b) wheng=1(d=1)org=1L (d=2).

With this discretization, L¢g(p,m;g,b) preserves the following properties on (p,m) from
the continuous setting.

Lemma 3.4. For Lg(p,m;g,b) defined on (pge,n € R o Rm—Dmm o

X y
gmx 9 mgnx" )
R =1m i .rnén(p)i > 0, the following statements hold:

iegr

L If yr,yr = 0 and g, ;, is positive definite for all iy, iy, then Lg(p,m;g,b) is convex in p,m
2. In addition to 1, if we restrict the domain to p with mén(p) > ¢, > 0, m* with max (|m; |)
iegr iegm

Cm, and m’ with max (| |) < S, then Lg(p,m; g, b) is Lipschitz smooth in p,m
iegm
3. In addition to 1,2, if we further restrict the domain to p € R™"™ with mgx(p)i < Cp, then
iegr

Sor any y1,yr > 0, Lg(p,m; g, b) is strongly convex in p,m

10
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We postpone the proof of the lemma in section 5 for better readability. The Lipschitz
smoothness and strong convexity of the lower-level objective are important to guarantee the
convergence of our alternating gradient algorithm, as detailed later in section 4.

Following the nature of the staggered grid, we choose a central difference scheme to approx-
imate the differential operators

(D (p; 110)),.1.5, = Ai’((p)"*”’“’"*i - (”O)fn’lv)’ ’:f =1,
At ((p)ix,iy.,iﬁr% - (P),’X,iyy,-,_%) , hr=2,...,n.
2 ()it =1,
(Da(m"));is = 2 ((mx)ix-&-%,iy,i, - (mx)ix_%wil) y h=2,..,m— 1,
_% (mx)h Ligi Iy =ny
%v (M) 1, iy=1,
(Dy (my))ixi).i, = Aly ((my)ix,ier%,i, - (my)ix_,,-y,%,,}) s b =2,...,m,—1,
_A%‘ (my)ix,iy—%,i, ) Iy = ny.

Again, the definitions of Dy,D, on i, = 1,n,,i, = 1,n,, respectively, are consistent with the
zero-flux boundary condition. The discrete constraint set is

C (110) = {(p.m) : Dy (p: o) + Dy (m*) + D, (") = 0}. (22)

Based on the above notations, we restate the inverse problems 3.1 and 3.2 in the discretized
space. We intentionally write down the problems for more general cases with multiple pairs
of training data as they will reduce to the case with a single pair of data by choosing N =1.

Problem 3.5 (the discretization of the inverse crowd motion problem 3.1). The discretiz-
ation of (15) has the following formulation

N
Jmin " (Dge (p",7) + Dgn (m", m"))
Ser a (23)
s.t. (p",m"):= argmin Lg(p,m;b),n=1,2,...,N,
(pam)eCQ(Hg)

where (p",m") = argmin, e,y £6 (p,m;b) are the observed data and

Hy,ny

Cop:=3b:Y (b),, =0¢. (24)

Lysly

Problem 3.6 (the discretization of the inverse metric problem 3.2). Similarly, given the

data (p",m") = argmin L(p,m;g), we implement algorithms to solve
(p,m)€C (1)

N
min > (Dgs (¢,7") + Do (m", ")) + R (g)
8€lge —1 (25)
s.t. (p",m"):= argmin Lg(p,m;g),n=1,2,....N,
(pm)eCq (1)

1
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with the constraint of g being

Cg,q:= {g : (g>imiy e R are positive definite matrices, i, = L. ngiy = 17...,ny} .
(26)

3.3. Regularity and unique identifiability of the inverse problems

At the end of this section, we state the regularity of the inverse problems 3.5 and 3.6 and the
unique identifiability of the inverse crowd motion problem 3.5.

The regularity and unique identifiability of the inverse problem rely on the KKT system of
the discretized forward problem

min  Lg(p,m;g,b).
(o ) £0 (P mi8:) 27)

To write the KKT system in a concise way, we define the adjoint operators of I,1,,I; for any
¢ = ¢ge on the central grid as

) ' % ((dj)le)lz+(¢)i-”i"’i’+l) ) iz: 17...,71[_ 17
(It (qb))imivair"‘z ’ 1 | .
Yy E (¢)le>11 ll - nl
(Ix (¢))ix+%,iwlz E ( i zz, tﬂrl,iy,i,) Jhy=1,...n,—1
* 1 ‘
(5@); 4010 = 3 ((sb)ixiyir + <¢)fx,iy+1»fr> A= heom =l

And the adjoint operators of Dy,D,, D, as

_L o —(9)... ), i=1,...,n,—1
WWMMH:LMWMW‘@W>f f
: 2 (D) =1
. 1 .
(Dx (‘ls))iﬁ%,iy,i, = Ax ((¢)ix+17iy7il - (¢),‘X,'V,‘,) =1, —1

(D3 (@), p1s = & ((m})ix,iy-&-l,il _ (’"y),;.iy@) y=1,...n,— 1.

The adjoint relation in the discretized space holds based on the definitions. To be precise, for
the interpolation operators, we have

X n Y

(I (p;0) @ )go = (p. I} (0))ge + 5 ZZ (10);, i, (D) i

lr—ll)—l

(L (m),8)go = ("I (8),) g
(I, (1), 8) go = ("5 (9) ) gor-

And for differential operators, we have

<Dt (P%Ho)7¢>g¢ = <p7D* gp AIZZ /”LO lt,l\ t»,i,,l
iy=1i,=1
<Dx (mx)7¢>g¢ = <mxﬂD:rk (¢)>gm‘
(Dy (m"),¢)ge = (m" DY (&) gm
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With the adjoint operators, we define the ) operators as following to describe the optimality
condition for the forward problem,

iEgP,itil,...,ntfl,

T
O&Uum¢£$ﬁp=—030@%+<ﬁ<—0gﬁ?n+w0%0ﬁ+10> b,
ic G’ =n,, l

T
Ohﬁum¢£ﬁDp=—UﬁGm%+<ﬁ<—m2ﬁgn+wﬂ%0ﬁ+10> i

X5

+ - (tog () —tog (), ) +1)
iw%<%wmmwmf<mmw(¢

v e W
iEgm7 (ymv(p7m7¢7g7b))l :7(D)*(¢))l+ I; gJQ—;_gyy,n))7

i € g¢a (y¢(p7m7 ¢7g7b))l = (Dt(p7:u‘0) +Dx(mx) +Dy(my))l

(28)

0, Vi, Vi, Yy are obtained by taking gradients on the Lagrangian of the forward prob-
lem (27). By viewing p,m,¢,b and yp,y;;,y,y,,,y(ﬁ as long vectors and denoting ) :=
Yy, y,,,.r,ym,\-,y@i we define a function ) : R% x R% — R% withd, = (@ + 1)nyny cor-
responding to the dimension of (g, b) and d; = nunyn, + (n, — 1)nyn, + ne(ny, — 1)n, + nenyn, to
the dimension of p,m*, m”, ¢. Since the constraint is linear, the optimizer of (27) satisfies the
KKT condition. The formal statement is the following.

Lemma 3.7. If (p,m) € C(uo) is a minimizer of Lg(p,m;g,b), and mén {pi} > 0, then there
iegr

exists (;NS € R™™"™ such that
Y (p.m.é:z.b) = 0. 29)

With the discrete PDE description of the Nash Equilibrium, we state the regularity result
for inverse problems 3.5 and 3.6.

Theorem 3.8 (regularity). Assume that (p,m) is the Nash Equilibrium given the metric g,
obstacle function b and ~1 > 0,vr > 0, i.e. (27) holds, and that mignﬁi > 0, then there exists
iegr

ry >0 and a radius r, open ball B, (g,b) centered at (g,b), and a mapping 7 defined on

B, (g,b) satisfying the following

e For any (g,b) € B,, (3,b), there exist a unique (p,m,¢) = T (g,b) € B, (p,m, ¢), a radius
r; open ball centered at (p,m,®), such that (p,m,d) solves the forward problem with
Lg(p,m;g.b).

e 7(g,b)=(p,m,¢), 7 is of class C' and

DT (8,b) = — (DypmoV(7 (8,b);8.0))) " (DpY(T (g,b);8,b)), forall (,b) € B,, <:§(3}5O)
)
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In addition, we have the unique identifiability of the inverse crowd motion problem because
the lower-level objective has a simple dependence on the obstacle b. To be concrete, by solving
the inverse crowd motion problem 3.5, we uniquely recover the ground truth obstacle » up to
a constant from only one good observation of the Nash Equilibrium.

Theorem 3.9 (unique identifiability). Assume that (p,m) is the Nash Equilibrium given the
obstacle function b, i.e.

(p,m):= argmin Lg (p,m;5> , (31)
(p,m)E€Cg (ko)

and that mén pi > 0, then any minimizer b of the bilevel minimization problem
iegr

Il’lbin Dg. (paﬁ) + Dgn (maﬁl)

s.t. (p,m):= argmin Lg(p,m;d), ©2)

(pm)€Cg (1)

has the form b = b+ c where ¢ € R is a constant. This implies that b is the unique minimizer
of the bilevel minimization problem (32) up to a constant.

The proofs are postponed to section 5. We close this section with some remarks on the
theorems.

Remark 3.10 (numerical stability). While the unique identifiability theorem 3.9 holds without
the entropy term and the regularity theorem 3.8, we emphasize that the entropy term and reg-
ularity theorem are meaningful for studying the numerical stability of the inverse problem. In
fact, the entropy term guarantees the strong convexity of the objective function and thus the
uniqueness of the forward problem. And it is important for the regularity theorem 3.8 to hold.
The regularity argument states the differentiability of the forward optimizer with respect to
the metric g and the obstacle b and reveals the rate of change. According to theorem 3.9, if
the smallest singular value of D.7 (g,b) is large, then a small perturbation to (p,m) can still
give a reasonable approximation of the ground truth ’g[E. It is also worth noting that when
min; pj; is close to 0, the condition number of the Jacobian matrix D, m 4)(p,m, 5; b) in (30)
can be extremely large. Therefore the Jacobian matrix Dj(p, m, ¢) is close to singular, and the
observation error may cause a failure to recover the ground truth obstacle.

Remark 3.11 (unique identifiability in the function space). Theorem 3.9 establishes the
unique identifiability of the obstacle bg € R™™ in the discretized finite-dimensional space. To
prove the parallel result for the obstacle function b : {2 — R in the infinite-dimension space,
it is subtle to choose the function space for b, p,m, and ¢. The function space is expected
to be large enough to guarantee the existence of the lower-level optimizers p*(b), m*(b) for
different b, and to guarantee the existence of the bilevel problem optimizer b*. Meanwhile,
the functions in the space require enough regularity for p*(b), m* (b) to be differentiable with
respect to b. This is out of the scope of this paper. We refer interested readers to [24, 25, 29] for
efforts in studying the unique identifiability in the infinite-dimensional space, where infinitely
many pairs of training data are required.

Remark 3.12 (unique identifiability of the unknown metric). To establish the local unique
identifiability of the metric as a corollary of the stability theorem 3.8, we need D, ) (p, m, gzNS; g)
to have full rank. However, for 1D metric, the rank of D,)Y(p, m, b g) depends on the data
p,m, ¢, which is different from D, (5, M, ¢;b) being a constant. Therefore, we may not

14
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uniquely recover the metric from the data. Besides the degenerated rank, while uniquely identi-
fying g requires the knowledge of ¢, we do not have ¢ in our problem setting and this can also
cause non-uniqueness of the inverse problem. By experiments in [8], the lack of information
on 5 can be overcome by giving partial true information on the metric and incorporating regu-
larity terms in the upper-level objective. For 2D metric, if we view g, gy, &yy as independent
variables, then D,)(p,m, ;) is not a full-rank matrix and theoretically there is no hope to
uniquely recover the ground truth metric. If the metric g; € Si . has intrinsic structures such
that the number of variables to determine the metric is nyn, instead of 3n,n,, numerically we
recover the ground truth with a low error as shown by the numerical experiment in section 6.5.
The numerical experiment in section 6.2.2 also shows that another way to resolve the ambigu-
ity is to have multiple observations for more complete information in the region.

4. Alternating gradient method

In this section, we present the alternating gradient method (AGM) to solve the general bilevel
optimization problem (14), as well as two inverse mean-field game problems 3.5 and 3.6.

4.1. Preliminary on AGM for bilevel optimization

The idea of the AGM is iteratively conducting gradient descent on the lower-level variable
and the upper-level variable. To illustrate our algorithm, we first consider the following uncon-
strained bilevel problem

min (&) =U" (€):6)
” . (33)
where n* (§) = argmin £ (7;€) .

neER

The computation of the lower-level gradient is straightforward. To obtain the upper-level gradi-
ent, we assume that U/, £ are differentiable and denote the gradient operator with respect to their
first and second entries as V), V. If for any given &, there exists a unique 7*(§) solving the
lower-level optimization problem and the function mapping £ to its corresponding minimizer
n* (&) is differentiable, then by chain rule, we have

Vu(€) = Ven* (€) T VUl (* (€):€) + Veld (7 (€);€), (34)

with Ven*(€) = (0e,n*(£),. .., 0¢, n* (€)) € R¥*4 being the Jacobian matrix of n*. We cla-
rify that here VU (1*(£);€) is the gradient of &/ with respect to its second entry evaluated
at (n*(§);€) without considering the dependence of n* on . Therefore V,U(n*(£);&) and
Vel (n*(€);€) in (34) are easy to compute.

When the exact lower-level solution 7*(£) is unavailable, the upper-level gradient Vu(¢)
is inaccessible. However, we can approximate 7* (&) and therefore approximate V¢ u(§).
Specifically, for £ at the k,-th iteration, we run K;-step gradient descent of lower-level with
stepsize 7 to approximate n*(¢%), i.e.

ot =l
nkl4:kl+l _ T]kuykl _ Tlvn£ (T]ku’kl;gku) dk=1,... K (35)
! = kit
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Itis easy to see that nfwkit! = phukitl(¢hi)(jy = 1,... K;) and plet! = ket 1(¢k) are functions
of £k, We drop the dependence for notation conciseness and estimate the upper-level gradient
Vu(&) by

Yu (&) == (Veur™) T VUl (et €5) + Veld (nhets ¢4, (36)

where the 7% is a lower-level estimator of the lower-level optimizer n*(¢%), and

(Vernnfeth); = Dt nit! estimates Ven*(€5) by unrolling the lower-level iterates through
]

the chain rule. With the estimator in (36), we then update the upper-level variable by gradient
descent with stepsize 7,, i.e.

ghtt = ghe 7 Ty (). (37

We summarize the algorithm in algorithm 1

Algorithm 1. General AGM for unconstrained bilevel optimization problem (33).

Initialization: £!, 7', stepsizes {7, 7/}
for k, =1,2,...,K, do
Initialize lower-level update by 77"”’1 = 77"“.
fork;=1,2--- ,K;do
lower-level gradient descent

e = el = £ (). (38)

end for
Let the lower-level estimator be r+! = n*£+1 and compute Vu(fk") by (36).
Conduct upper-level gradient descent

€k,,+1 _ £k“ — (gku) ) (39)

end for

Remark 4.1 (error of unrolled differentiation). Equation (34) gives the exact value of the
upper-level gradient. To obtain the unknown V¢n* () in (34), we refer to the first-order optim-
ality condition from the lower-level problem V, L(n*(£);§) = 0. We view V, L(n*(£);§) as
a vector-valued function of &, and its Jacobian matrix gives

Ve ()T VonL (07 (€):6) + Ve, L (07 (£):€) =0, (40)

where (Ve £)5(1.€) = 00, £(n.€) and (V. L);(1,€) = 9,0, L(1,€) are blocks of the
Hessian matrix of £. Therefore

Ven (€)1 = —Ven L (0" (€):6) (Vg L (7 (€);)) " (41)
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Plugging (41) into (34) gives the upper-level gradient

V(&) = Vel (17 (€):€) (42)

where
Vel (10:€) = Veld (1;€) — Ve L(0:€) (Vo £ (1:6)) ™ Vil (m5). (43)

The gradient estimator (36) approximates the true gradient by approximating n* by n**! and
approximating (V,,£(n;§ ))_] by unrolling differentiation. A key to the convergence of the
AGM algorithm is to control the error of unrolling differentiation. For unconstrained problems,
[9, 14] proved that under sufficient smoothness assumptions, the errors of the approximations
decrease as k; increases. In lemma 5.3 of this paper, we study and prove the error can also be
bounded for linear equality constrained lower-level problems.

4.2. AGM for inverse mean-field games

Building upon algorithm 1 for unconstrained bilevel optimization problems (33), we propose
algorithm 2 to solve the constrained bilevel optimization problem (14) and its special cases in
inverse mean-field game problems 3.1 and 3.2.

Algorithm 2. General AGM for (14).

Initialization: £', 7', stepsizes {7, 7/}
for k, =1,2,...,K, do
Initialize lower-level update by nk“’l = nk“.
fork;=1,2--- ,K;do
lower-level gradient descent

kit pg)j (nk,“kI VL (nku,k;;gk“)) . (44)

end for
Let the lower-level estimator be n+! = n*&+1 and compute Vu(fk") by (36).
Conduct upper-level projected gradient descent

€t = proj (€ 7 Vu (¢)) (43)

end for

Algorithm 2 applies the projected gradient descent to estimate the lower-level optimizer and
to update the upper-level optimizer at each iteration. Precisely, by denoting the matrix form of
the constraint (22) as Ay = ¢, the projection to H = {n | An =c} is

proj (n) = (1—ATA) n+no,

where AT is the Moore—Penrose inverse and 7 is a fixed solution to Ay = c. The projection
operator is invariant to the lower-level objective and the number of iterations. As discussed

17
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in [34], the main cost of the lower-level projected gradient descent is to compute the inverse
of the discretized Laplacian operator (AAT)~!, which can be solved efficiently using the fast
cosine transform. We refer to section 3.2 in [34] for all detailed discussions. Since each step
in projected gradient descent is explicit, it is possible to unroll the differentiation to estim-
ate the upper-level gradient and thus conduct AGM for the constrained bilevel optimization
problem. Although it is widely acknowledged in unconstrained bilevel optimization [9, 14]
that the error arising from unrolling differentiation is controllable, rigorously adapting this
approach to incorporate lower-level linear constraints is, to the best of our knowledge, unex-
plored. Lemma 5.3 in this paper investigates the error of this approximation, indicating that
the gradient estimation error can be effectively bounded by the accuracy of the lower-level
solution.

Remark 4.2 (the choice of lower-level (forward MFG) solver). The key of solving bilevel
optimization problems with gradient-based method is to efficiently obtain the upper-level
gradient estimator. Usually, this requires obtaining the lower-level optimizer n*({) and the
Jacobian matrix V¢n* () through equation (34). While the lower-level optimizer * (&) is easy
to obtained from many forward MFG solvers, it is impractical to obtain the Jacobian matrix
Ven*(§) because it is dense and of large size. Therefore, we implement our proximal gradient
forward solver for K; iterations to approximate n*(£) and use backpropagation to approxim-
ate Ven* (&) TV,U(n*(€);€). The proximal gradient solver for the lower-level problem [34]
makes it easy and efficient to unroll the differentiation and estimate the upper-level gradient. It
is worth emphasizing that this is not the case for other popular lower-level solvers, for example,
primal-dual [27, 28], augmented Lagrangian [2, 3] and ADMM, because the implicit steps in
ADMM and primal-dual methods make it impractical expensive and complicated to tracking
the gradient.

The complexity of resolving the upper-level constraint is similar to a single-level optimiz-
ation problem. In our cases, for the inverse crowd motion problem 3.5, the upper-level con-
straint set = = Cg 5 as defined in (24) is the set of matrices of size n, X n, with entry sum
zero. And the projection is simply projcgyb(b) = b, where (13) iviy = (D)iiy — mlny ZZ*,"‘ )i i,-
And for the inverse metric problem 3.6, = = Cg ,, where Cg , is defined in (26). We com-
pute the projection g := proj¢,, (g) pointwisely. To be specific, for (g);, ;. we first compute its
= QAQ " where A = diag(\;, \;) and let (8);,;, := QAQ ™!
where A = diag(max (), €), max (), €)) with a pre-selected small positive value e.

Different from our bilevel formulation and AGM algorithm, [7, 8] treat the forward MFG
PDE system as the constraint of their optimization problem and apply primal-dual algorithm
[5] to solve it. However, the nonlinear and nonconvex constraint makes it challenging to prove
the algorithm convergence. On the contrary, our bilevel formulation takes advantage of the
convex-linear structure of the forward MFG and we establish the following convergence the-
orem of our algorithm 2.

If the upper-level and lower-level objective functions satisfy the following regularity
assumptions,

eigenvalue decomposition (g)

iy, iy

Assumption 1. Assume that U/, Vi/,V L, VL is Lipschitz continuous with Ly 0, lu1,41, 42,
respectively.
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Assumption 2. For any fixed &, assume that £(n;£) is y-strongly convex with respect to 7.
Assumption 3. = is a linear constraint set = = {£ | B = e}, and H and = are nonempty.
then we have the following theorem.

Theorem 4.3. Under assumptions 1-3, let 7; < ulﬁ,Kl = O(logK,) and 7, = O(1), then the
iterates of algorithm 2 satisfy '

1 :
2 -l —proj (6~ Vu(e) =0 () (@6)
u ku:l = u

where O omits the log dependency.

Let us define € stationary point as ||¢ — proj= (£ — Vu(€))|* < ¢, then theorem 4.3 states
that algorithm 2 achieves e stationary point by O(e~!) iterations. This matches the iteration
complexity of the single-level projected gradient descent method. We postpone the proof in
section 5.

Lemma 3.4 states that when p, m are bounded, and when the entropy in the objective func-
tion is non-zero (A > 0), then our inverse problems 3.5 and 3.6 satisfy assumptions 1 and 2.
Moreover, since the upper-level constraint set of the inverse crowd motion problem 3.5 is lin-
ear, assumption 3 is satisfied and theorem 4.3 guarantees the algorithm convergence when
solving problem 3.5. For the inverse metric problem 3.6 where the upper-level constraint set
is a convex cone, the convergence of the algorithm can be established similarly. However, the
convergence rate is possibly different. We leave the study of the convergence rate for general
upper-level constraints set to future research.

At the end of this section, we discuss how to unroll differentiation in practice.

Remark 4.4 (unroll differentiation in practice). Recall that in our problem, the lower-level
variable ) = (pg»,mg~) and the upper-level variable ¢ = (gg,bg) are of size O(d?nn,n,). To
obtain the upper-level gradient estimator (36), the computation of V¢l (n*!; %) is straight-
forward. But it is not practicable to directly formulate V ¢, n%+! since the size of the Jacobian
matrix is O(dnn.ny,) x O(d*nmnny) and the sparsity structure of the Jacobian matrix is not
straightforward. Denote the gradient descent mapping M(n;€) :=n— 7V, L (n;£). Then the
Jacobian of M, VM = (V,M,N¢M) = (I — 7V, L,—TV ¢ L) is sparse because the number
of non-zero entries of V,,,£ and V¢ L is O(dn,n,ny). In practice, we avoid formulating the
matrix V¢, 7% ! by chain rule and the sparsity structure of VM. Specifically, let P :=1— ATA
be the projection matrix, V, x,.o U (n*!;£%) be the gradient of ¢/ (n*«*+'; %) with respect to
nkek, and Ve, " be the Jacobian of nf* with respect to £, then we have the following
relation by back-propagation

{vnk,,,K,Hu (nhtheh) = v (g A7)

punld (1 1565) = (T M (P4569)) TPV igintd (5 6%), k=1, K.
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Consequently, the upper-level gradient estimator is

Vu (€") :(vgkﬂnk“,Kﬁl)Tv wild (1 k,,+1.§ku) VU (et gk
= (VM (K €5) T, 1f ) T P (15 6%)
(VM (045 64)) TP gl (71569) + Tl (o 56)
LY (Teunf )Vl (1)
(VM (15564)) TPV sl (7 H36%) + Ve (7 +:6%)
= (VMO 1368) TS ) Pt (4 1564)
+ (Ve (K=t ) TPV (5 65
+ (VeM(1:65)) T PV il (145 68) + Vel (165
LD (Teut ) TV e (%)

K;
Y0 (VeMOf5€) P nd (nf+'360) + Vel (116
i K[ 1
S T
éz VeM (s €)) TP il (515 65) 4+ Vel (o 65) 48)

where (a) is because that 77*! is independent of £, In this way, each term in the estimator

can be computed by sparse matrix and vector multiplication.

5. Proofs of main theorems

In this section, we provide the proofs of main theorems. Theorem 3.8 shows that the observa-
tions of the Nash Equilibrium continuously depend on the unknown parameters. Theorem 3.9
states that with only one good observation of the Nash Equilibrium, we can uniquely recover
the obstacle b up to a constant by solving the bilevel problem (23). This illustrates the effective-
ness of our model. Lemma 3.4 and theorem 4.3 together guarantee that algorithm 2 converges
to a stationary point to the bilevel problem (23) if the forward problem has enough regularity.
This illustrates the effectiveness of our algorithm.

5.1. Proof of theorems 3.8 and 3.9

Recall that Y(p,m, ¢; g,b) = 0 gives the optimality condition. Denote the Jacobian matrix of
Yas VY = ((VomeX)dxd,(Vesd)axa,) The proof of the regularity theorem 3.8 is based
on the implicit function theorem and the key is to show that the matrix V, m ¢J is invertible

at a good observation (g, m ,¢ g, )

20
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Lemma 5.1. If~; > 0,77 > 0 and minjeg {pi} > 0, then V , m 4V (p,m

Proof. To prove the lemma is equivalent to showing that

e (50 58) (550

if and only if (0,,0m,d¢) = 0. Here 0 := {J,sx, 3, }. By definition,

pm¢y(p, 5:3,b )(5p,5m,5¢)_11m1 (y(ﬁ+e(sp,ﬁl+65m,5+ea¢-g,~)

-y (p, 62, ))

Therefore (49) is equivalent to

IGQ 1—1 —1,
* * gmm +ghm — mx-&-g_vﬁ
_(Dr (5¢))i+(1t( ;) - O 8y ;) 22 Oy
P P
(T)T f
m) gm
) 25)) <o
P i

iegp7:nt7

I - e+ gy
_(Dt* (5¢))i+ ([f*(_gum :rzgxym 5m}_gxym + gyym

Smy
p

. , 4 guiD
ieg”, —(D(d))+ (1;‘ (gfémx 4 8oy, But go )

ieg”, (D;(5¢))i+< <ghy6mx+g“5 g>'"+gv>'"’>)
P b

icg?,

(D1(8,30) + D (65) + Dy (3)); = .

¢ are viewed as constants with respect to (6,,0m,d4) in the system. It clear
that the system 51 is linear in (,,m,d,) and therefore (49) holds if (6,,0m,d4) = 0. If both
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, ¢, g, ) is invertible.

(49)

(50)
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(6p:0m;0¢) and (8,,0,05) satisfy (49), then by plugging them into (51) and subtracting, we
have

iegp,l}zl,...,nt—l,

* / * gxxﬁ‘i‘gxyﬁ =7
01 - st (1 - T (5 )
P
X Y o
— Sxym :zg}ym (5’") _5]1/1})
P
T

+(ﬁ’)fﬁ (5-3) ﬂﬁ'(%—%)))i:&

)

ieg’ =m,
* / * gXx$+gxy@ N
— (D7 (3 —64)) + (I, <— S B (G — )
P
Qo+ g [ —
R RS ST
P
m) gm , .
+Q}(5p5;)+;(ap5;))> I
p i !
(52)
icg™, — (D (6s—00)) + (1| &= (G =00 ) + 22 (50 — 50,
o oo+ (2 (% (-7) + 2 (- )
gﬂﬁ—&-g mw o
STl 55 )) <o
p i (53)
icg™, — (D (6,—05)) + (1| &2 (G =57, ) + 22 (5,0 — 57,
0 o (8 (%2 () + 2 (- )
gxyﬁ"‘f_g”ﬁ YA
— ST oW (5, 5;))) =0,
p i
and
i€G%  (Di (6 —8730) + Dy (Gr — 8yc) + Dy (O = 8,)); = 0. (5
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Pointwisely multiplying (52) with (J, —d,) and summing over G gives us

= (8 =05,D7 (3 = 34)) g,

e 2l i o [ 8om* + gy —
—<5p—5;L ( . <&f_5%>>> —<5p—5;g ( & (&ﬂ—5%)>>
p gr P gr

(m) em _ g
oo | LG 5 +<5,,_5,;,1:(;(5p_5,;))>
P Gr

p

gr

ENIND B) SE L T
ne=1n,=1 (Al)[“i‘.,n, o

(55
Similarly (53) and (54) imply

- <5m)‘ - 6111"’0; (645 - %»9’"“

+<5m,_5,;1,1;: <g,;i" (ﬁ—éi) +%y (%‘5>)>g (56)

gmﬁ‘kg [ pe—
_<6mx—5,;x,1j (ﬂ (5p_5;/))>> =0,
pP agm*

and
~ (O = 83, D5 (85 =35 ) g
+<5mv54wl§f <g§ (3 —7) *% (‘”"5"'))>g (57)
(o (BT ) ) o
p g
and

(96 = 86, D1 (8 = 6930)) g + (86 = 86, Dx (9 = 8w ) ) g + (35 = 8 Dy (mr = ) ) g = 0.
(58)

Next, we add (55)—(58) and combine terms with the same components in groups. The first
group is
(8= 532D7 (89 = 35)) g — (e — 030,05 (59— 5) ) g — (3w — 8 D5 (35— 55) g
+ (86— 04, Dr (99 = 630) ) g + (85 = 0, Dx (9 = ) ) g + (0 = 8 Dy (S = O ) ) g
(59

and by the adjoint relation between D;, D}, this group sums to 0. The second group consists
of

(=t (20-5)))  +Asdy > S (08, (0
ge Lyyly My :

ny=I1ny=1
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T N2
And the sum is equal to fy,|| ,Z)“l/z Hg¢ + AxAyZ - Zn._l i (6p = 6,)ii,.n,- The
rest terms form the last group and sum to
N2
> (G -mm-5Ea-m) | 61)
icge Pi e
where [|vi[|3 = (v); givi. Overall, adding (55)~(58) gives
— =12 n
6p _ 5/3 ny y 2
R ) + AxAy Z Z (m 6P)ix,iy,n,
P G¢ n=1n,=1 U (62)
2
(5, -3 3m — 07 ) —0.
e )]

We conclude that each term in (62) is zero since they are non-negative and sum to zero.
Cimbmjlg (6p)icsiym = (0,)iiyn, and 6, =0/ gives &, =¢,. Consequently, 0, = 0, and
Omy = 6, Because I, are full rank linear operators, d,,x = ¢, and &, = J,,,. Based on 6, =

550m = Op» (52) arid~(53) lead to 6 = 5;5. Therefore (49) has unique solution (p,m, ¢) =
i.e. V) m,Y(p,m,¢;b) is invertible. O

With lemma 5.1, we apply implicit function theorem to ) at (p,m ,zj), g, ) and then the
regularity theorem 3.8 is true.
Next, we prove the unique identifiability theorem 3.9 for inverse obstacle problem 3.5.

Proof of theorem 3.9. Since the upper-level objective is non-negative and equals 0 when
b = b, any minimizer b of the bilevel minimization problem satisfies

(P, ﬁl) = argmin Lg(p,m;b), (63)
(p;m)€Cg (ko)

and by lemma 3.7, there exists ¢ such that Y(p,m,¢;b) = 0. Assume that b’ is a minimizer,
b’ # b, and

Y (7, dib) =¥ (5,0":b') =0,
then
V(P i) =¥ (5, o'5b) =0,
which is equivalent to
icg’— (D (¢'-9)) + ((b’),»x,,‘_v - (?5)) 0,
icg, (D* (¢ ¢)) _ | (64)
<07, (55 (0-3)) =0

The equation on G gives (¢’ — @)i,ii, = (1 — i+ 1)(b’ —Fl;)in,-}_. Plugging in equations on
G™,G™, we have (b’ —b); ; = c where c is a constant for different i, . O
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5.2. Proof of theorem 4.3 and lemma 3.4

In this section, we provide the nonasymptotic analysis for AGM on general constrained bilevel
optimization (14). We follow conventional notations in bilevel optimization by using commas
to separate lower-level and upper-level variables, i.e. £(1,&) = L(n;€),U(n,&) =U(n;&).

Recall that the lower level constraintis H = {5 | An = c}. Denote the singular value decom-
position of A as A = UXVT, where

_ | X% 0 doxd,
Z_[O O]GR ,

U=[U Uy],V=[V; V5], U € R&Xd 'V € R*n are orthogonal matrix and U; € R%*" V| €
R " are the submatrix corresponds to full rank diagonal submatrix ¥; € R"™*". Then V; is
the orthogonal basis of Ker(A) := {n | An = 0}. Let 1y € H be a feasible lower-level solution,
then the lower-level update is equivalent to

il = ke kel =y, T (nk,,,kI — VL (nkl,,k17§ku>) gy gt = phekitl - (65)
With 7%+ approximating n* (%), we approximate the lower-level gradient with
EN T
Vu (§4) = Veld (%) + (Ve ™t v (ot ¢k) (66)
and Ve, n%«+1 is obtained by unrolling the lower-level iterates
Ve =0,
kuki+1 T K ki T kuski ¢k sk ¢k K ki
Veu = Va2V Ve = mVaVa (Vngﬁ (77 € ) + VL (77 € ) Veun )
= VZV;I— ([— TNWE (’I]k“’k/,fk">> ngu nk“'k/ — T]VzV;rVng,C (’r}k"’k',fk”> Jki=1,...,K].
(67)
To prove the convergence, we first present the regularity of the lower-level optimizer estab-

lished in [32]. To be self-contained, we also provide its proof.

Lemma 5.2 (The regularity of lower-level optimizer). Under assumptions 1 and 2, n*(§) is
differentiable with respect to & with the following gradient

Vi (€) = Vo (Vi Vo £ (7 (€),6) Va) ™ VI Ve £ (7 () ,€)

where V, is the orthogonal basis of Ker(A). Therefore, n*(§) is Ly-Lipschitz continuous and
Ly ¢ smooth with

lin 1_1_5,7‘],
L,:= ” =0 (k), LnEZ:(mM):O(HS).

Proof. First, we prove the differentiability and compute the Jacobian matrix. We choose a
fixed 7o satisfying Any = c. Using the aforementioned SVD of A, the constraint set H =
{00+ Vaz | z€ R4}, Letting £,(z,€) := L(no + Vaz,€) and z*(¢) = argmin, £,(z,£), we
have n* (&) = no + Vaz*(€). By optimality condition, z*(£) satisfies

VoL (25 (€),6) = V) VL (o + Vaz" (€),€) =0. (68)
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Since
VLo (25(€),€) = Vi VL (o + Vaz* (€),6) Va (69)

and by strong convexity of £ with respect to 7, V.L,(z*(£), &) is invertible. By implicit func-
tion theorem, z*(£) is differentiable with respect to . As a consequence, n* (€) is differentiable
with respect to £. Taking the gradient with respect to & on both sides of (68) gives us

0= Ve, L (m+Vaz" (€),6) Va+ (Ve () VI ) Vil (o +Vaz" (€).6) V2
= Ven L (10 + Vaz* (€),€) Va + Vez* (€)' VI VoL (o + Vaz* (€) ,6) V.

Then, we have (cf V,,, L(n* (€),£) = Vi, L(no + V2z*(£),€))

V2 (€) = — (Vi Vo L (17 (€),6) Vo) ™ VI Ve L (7 (£) 1) (70)

and as a result,

Vi (€) = VoV (€)
— Vo (V] VoL (7 (€),6) Va) ™ VI Ve L (" (€),6).

Next, utilizing the fact that V, is the orthogonal matrix, we know ju;I <V, Vo £(1,6)Va
Therefore, we have for any &, 7,

_ 1
Va (Vi VoL (n,€)Va) ™ Vi < —I. (71)

As aresult, Vn*(§) is bounded by

_ V4
V0™ (€) | < IV (V3 Vo £ (0" (€),€) Va) VI Ve L (0" (€),6) || < ﬁ =L,

which implies 7*(§) is L, Lipschitz continuous.
Finally, we aim to prove the smoothness of * (). For any &; and &, we have

V™ (&) — V" (&)l
=[|Va (V;Vnnﬁ(n*(&%fl)Vz) Y Ve L(n*(&1),&1)
-V, (V;Vnnﬁ(n*(&%fz)‘/z) ) Ve L (&).&)||
<|Iv2B7'vy H||Vng£(n*<a)7a>— ngan (&),&))ll
+Va(By ! = By YWV (Ve L0y (€2),6)
< LIVl (6),6) ~ Ve Ll (€.

" LIV L0 (€).6) = V07 (€0, 2

(b) 51,2(1 + e’fl')
< T“II& - & (72)
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where B) =V, V., L(n*(&1),&)Va and B, =V, V., L(n*(£),&) Va, (a) comes from (71)
and the following fact:
V2 (B - By') Vo
= VB, ' (B,—B1)B; 'V,
= VaB ' (VI Vi L (0" (€2),2) V2) = (V2 Vi £ (0" (&1) &) V2)) By 'V
= V2B]_] VZT (vrmﬁ (n* (&2),&) — VL (0" (&1),61)) V2Bz_] VZT

and (b) comes from
IV2L(n* (&1),61) = VPL(n* (&), &) | < bz [llé — &l + In* (&) —n™ (&) ]
<o <1 + &1) 161 = &l
Hi

O

In algorithm 2, we approximate V7n*(£) by unrolling the differentiation. The following
lemma investigates the error of this approximation in constrained bilevel problems for the first
time, indicating that the gradient estimation error can be effectively bounded by the accuracy
of the lower-level solution.

Lemma 5.3 (Error of unrolling differentiation). Suppose that assumptions 1-3 hold and
choose 11 < ﬁ, the error of implicit gradient estimator can be bounded by

* 2 2 *
IV (€%) = Ve > < 2(1 =)™ 2 4+ 2Ck ChlIn™ (%) — |

where C? := (1 + %‘)E%Z(% + ﬁ) and Ck, is the upper bound of K;(1 — 1yu;)X=1 and is
’ 1 1,1
finite.
Proof. According to (67), we know that Vg, nf«! =0 and
kau nku-,kl"l'l _ V2V2T (] _ Tlvnﬁ‘c (nkmkl,gku)) vgku ,rlkmkl _ TIVZVZTVW&C (nk147k17 §ku) )

. K oy ki oo * .13 K
For any given £, we can define an auxiliary sequence {w"}2° and w* := limg, . w"/,
where w! = 0 and

whtl = v, v (I=nV L (n* (fk) ,fk“)) Wi — VoV Ve £ (n* (§k”) ,fk“) . (73)

We can see that (67) and (73) only differ in 7*(¢%) and n**. For the sequence w", we can
calculate the explicit form of wXi*! as

K;
WAL =Y S (VaV] = VoI V£ (7 (6%) .6%))" (=nVaV3 Ve (" (1) ,€"))
s=0
K
=D (VaV] = mVaVy V£ (7 (€%) ,€4) VaV] ) (~miVe L (n* (€%) .€%))
s=0
K,
=D (Va(I=nVI Vi £ (77 (€4) ,€4) V2) Vi) (=¥ e £ (7 (6%) .€%))
s=0
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K;
=Y Vo (I=mV] Vi L (i (€%) ,64) V2) VI (=¥ e £ (" (€%) ™))
s=0
K;
=V, (Z (I—- Tlvavnnﬁ(W*(fk“%fk")Vz)s> Vy (=1iVyeL(n* (€5),€4)) (74)
s=0

where the first equality comes from unrolling (73), the second and the fourth equality are
due to (VoV3 ) =VaoV] . Let D:=1—7V) V,, L(n*(€5),£5)V,. When 7 < Z%, the oper-

ator norm of D satisfies ||D|| < 1, the limit "% D* := limg, 4 o ZfIZODS =(I-D)'=
(11V3 Vg L (1 (€%),£5) V5 ) ~1. Therefore, the limit point of w¥ is equal to Vn* (&%) since

wh = K}me WK’ =V (i (1— Tlvav'rmE (77* <£k“) 7£k“) V2)5> V2T (_Tlvnﬁﬁ (77* (‘fk“) 7£ku))

s (S o (). ) (o (o () )

o (T (). ) T (€)= ()
(75)

Moreover, the error by finite-step approximation can be bounded by

o - - D fr+t
s=0 s=K;+1 s=K;+1

Since (1 =7l ) <D =1— TIV;'—VME(n* (€k), &%)V, < (1 — 734)1 and according to (75)

and (74), we know that if 7; < Tlu’
1_ Ki+1
”WK,—H _ Vﬁ* (fk") | <7l 1% < (1 _Tl/il)KlJrl ) (76)
’ 1 —Tlez)l
kM7

Next, we aim to bound the distance between V¢, k and the auxiliary sequence w*. For

any k;, according to (67) and (73), we have

[V gr bt —whH 2 = | (VaV] = 7Va V) Vg L0, €4)) Ve — VoV Ve L(nfeb, €4)
— (VaV] —7VaVy Vo L(n* (€"),64)) wh + 7 VoV Ve L(n* (€5),€5) 12
SN I(VaVE = mVaV) Vi £(n4,65)) (Vernt —wh) P+

1
+2(1 1) VT (T 008064 = Vo o (64,68 wh
1
+2 (1 + ;> T VaVy (Ve Ltk ehe) — e £ (0" (€5),€5) |2
S H+7) (1= 7)* [V granh —wh|1?
1
+ (14 2 ) 2l (€)= 1R (24 20 ) a7
where the first inequality is derived from ||a +b +c||3 < (1 +7)l|alj3 + (2 + %)||b||% +(2+
%)Hc”% and the second inequality is due to assumptions 1 and 2. On the one hand, [|w| <
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[V (€5) || + [k = Vp* (&)
Thus, if 77 < ﬁ“ and letting v = 7514, (77) becomes

<A (i + 7;) is bounded according to lemma 5.2 and (76).

IV eran™ ST = w2 < (1= mpag) | T gnanf 1 — w2

+<1+1> il 44, +3 ) [In* (€") —nfeb?
T 1 %12 /1'2

1

< (U= mp) [V g™ —wh| >+ G lln* (€%) — |7 (78)

i
On the other hand, we know that projected gradient descent is a contraction according to

[32], i.e.

Whel‘eCl2 = (1+@)512’2(H%2+%121)'

||T’ku,k1+l _ 77* (é‘ku)

for0 <7y < ﬁ. By induction, we have

? (79)

> < (1= ) || = m* (")

bt — (€5 (2 < (1= 7ypa) | — ™ (€5) |12 (80)

Then (78) becomes

k-1 X
Vg — W2 < (1 = ) [ Vgnarf™ = w2+ CF (1= 7pag)" I — o (€%) |1
(81)
Then by induction and w' = Vg, nfe! = 0,n% 1 = pfKit! we obtain that
-1 «
IV er = w2 <K (1= 7)™ Rl (€8) — 1 (82)
Combining (82) with (76) and setting 7; < Tl“’ we know that
X 2K+2 Ki—1 *

[V eun ™ =V (€9) [P < 2(1 = mypa) ™2 4 2K, (1 = 7)™~ CPl|m* (€8) — ||

(83)

Then given 7, and let f(K;) = K;(1 —7)%~!, we know log(f(K;)) =logK;+ (K; —
1)log(1 — 7). Taking the gradient of log(f(K;)), we get 1/K;+log(1 — 7). As log(1 —
i) < 0, we know log(f(K;)) first increases and then decreases and thus, log(f(K;)) and f(K;)
have a finite upper bound. Let us denote the upper bound of K;(1 — 7;;)X~! as Cx, = O(1).
Then (83) becomes

2, (84)

* 2 2 *
[Ver ot = (€5) |12 < 2(1 — )2 +2Cx,CF |1 (€5) —

which yields the conclusion. O
Besides, we have the lower-level contraction and error.

Lemma 5.4 (Lower-level error). Suppose that assumptions 1-3 hold and 7 < ﬁ, then for
any v > 0, we have ’

([t —m* () & (85a)

2 < (1= 7)™ Jff — o (€5)
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* * 1
I (€)1 < () st = (6 P (14 ) e
— Proj= (gku —7.Vu (§k~)) I2. (85b)
Proof. Equation (85a) comes from (80) when setting k; = K;. Moreover,

([t —m* (€5 HT) 12 = [t = (€5) 4" (€5) —m* (€5 H1) |

(a) 1
< (L) [l —n* (€5) |12 + (1 + ;) l[n* (&%) —n* (&) |17
(b) k,+1 * k, 2 2 1 k, k4112
< (L) It —n () IP+L2 (14 = ) [1€5 —
Y
1 . = .
= (L47) ln*+t —n* (&) 2+ L2 (1 + ;) [| €% — Proj= (sk" —uVu (5‘“)) II?

where (a) is due to ||a + b||3 < (1 +7)]al5 + (1 + %)Hb”% for any v > 0, and (b) comes from
the Lipschitz continuity of n*(£) in lemma 5.2. O

Lemma 5.5 (Upper-level error). Under Suppose that assumptions 1-3 hold and 1; < ﬁ“,
then it holds that '

1 L,

u (€ ) —u(gh) < - 7 llg — Projz (€ — Vu (")) | - (; - 7) " —Projz (& — Vu (") ) I

+ 7 (buy 1+ Ly) + qu,oCK,sz)z [l (€%) = nb[|? + 27 (1 — ypag) o4
Proof. According to lemma 5.2, we know u(§) = U(n*(£),€) is Lipschitz smooth and

Vu(€) = Vel (1 (€) ,€) + V™ () Vol (" (€).€)
and for any &;,&,, we have

[Vu (&) = Vu (&) || = IVeld (0% (&1),61) + V0™ (&) Vol (0 (£1),61) — Vell (1% (&) ,&)
=V (&) Vol (1" (£),6) |
S|Vl (0" (£1),61) = Veld (0" (£2),&) | + IV 0™ ) NI Vald (n* (&1),€1)
=V (0" (£).&) I+ IVald (0" (&2),&) IIIVen™ (§1) — Ven™ (&)
< lu1([In” (&) =™ (@) + 11& = &) + Lol (In* (&) — 7™ (&)1 + 1161 — &11)
+ LuoLnellér — &l
< (b1 (14 Ly)* + LuoLne) 1€ — & -

By denoting the smoothness constant of u(€) as L, := £, (1 + Ln)* + £, oL,¢, we have the
following expansion

() Su(eh) 4 (Tu(eh) € g+ e g
= () — (Vu(gh) % —Projg (€ — T (¢) ) ) + Zligh — Projz (& — mTu (%) ) |
D u(gh) - — (&~ Projz (e —nVu(gh)) &b — Proj (6 — nTu(¢)) )
+ gk — Projg (€ — 7 Tu (64)) I
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1 .
D () = 5™ — Projz (% — mVu (64)) IP
1 . . -~
+ 5[ Proiiz (£ — 7 Vu (6%)) ~ Projz (& T (¢%) ) I”
1L " -
B (? T2 ) " = Projz (8" — nuVu(e))|*

(©) u . u S
< u(gh) = Z1g — Proj(eh — Vu(€)[I? + 5| Vu(e™) - V()|
1 Ly . ES
) (T - 7) g = Projz (¢ — 7 Vu(e"))|? (86)
Tu
where (a) comes from &% = Projz (€%) and the fact that Projz onto a linear equality constraint
set is a linear operator, (b) is derived from 2a " b = ||a||> + ||b||* — ||a — b||* and (c) is because

Projz is a linear operator and || Proj(A) — Proj(B)|| < ||A — B||. Besides, we can decompose
the gradient bias term as follows

9 () = u () 1 = 76 (i (6 6) v () " wapu (i (64 .6%)
= Vet () £ Vg (g ) |
<IVett (0" (€%) .6%) = veu (e |
1 () 7ot (07 (€4) €)= vt (g |
VU () NIV () = V™|
<l (14 Lg) [0 (64) = 1+ 0l " (6) = Ve

(a) *
< (Bt (1 L) +26,0Cx, €T ) 0 (€)= | +2(1 = g2
(87)

where (a) comes from lower-level contraction (80). Thus, plugging (87) to (86), we get that

Tu . 1 Lu . =
u (€M) —u(gh) < = llgh — Projg (€ — Vu (¢)) I* - (; - 7) J¢* — Proj (£ — Tu (¢%) ) I
2 (g (14 L) +26,0Cx,CP) ™ (€5) — ]| +2.(1 = 7pay)*+2)°

2
u . 1 Lu . S
< =g — Projz (€% — Vi (%)) [* - (— - 7) ¢ — Projz (&% — Yu (¢%) ) I

27y

2 *
+ 7 (Gt (14 L) +2600Cx, €)™ [l (€5) — || + 27 (1 — mypg) ¥4,
O

With lemmas 5.2-5.5, we restate the convergence theorem 4.3 in a more formal way and
prove the theorem as follows.

Theorem 5.6. Under assumptions 1-3, let 7, < zgﬁ,Kl = O(logK,) and 7, = O(1) satisfies

1 1Lt
2Lu (U 2L0)" Ly (0 (14 L) +2600Cr CF) +413)

T, < min
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then the iterates of algorithm 2 satisfy

1
Z " — Projz (6% — Vu (¢%)) I O(K) (88)
" k=1 u
where O omits the log dependency.
Proof. We can define Lyapunov function as
kY o Luy s ek k2
=u (&) + -l (€) —n
n
On the one hand, plugging (85a) to (85b), we get
I+t =" (€5 P < (L) (1= 7upe) I — ™ (€%) |17
1 . ~
+ L1 <1+7) ¢ — Proj (& — 7, Vu () ) I (89)

On the other hand, according to lemma 5.5 and (89), it holds that

u . 1
W - VR < - Tk — Projz (6% — Vu (%)) [1* (;——) % — Projz (& — Vu (¢™) ) I

7 (Gt (1+ L) +26,0Cx, C) (|0 (€5) — 1| + 273 (1 — mypag) ¥+
L, =

+ () (U= ) = Wl = (€ )H2+LuLn(1+ >H£ —Projz (¢% — . Vu(¢")) I
”7

(ﬂ T

Lu . —
- g% = Projz (&% — Vu (6“))II* - (4— -5 L Ln)Hék" — Projz (»:k" —7.Vu (&k")) &

7Ly *
- (—IL 1 (B (4 L) + 280 Co )7 423) ) (€)= P+ 27 (1 = g+
m

< T~ Proja (€ — V(eI + 2 (1 - ) S+ (90)

where (a) is earned by setting v = 4L, L, T, and (b) comes from the conditions

1 LM T[LM/M
ar, -5 L,L,>0, and

— Ty ((Eu,l (14 Ly) +26,0Cx,C2)° + 4L§) > 0.
oD

n

The sufficient conditions for (91) are

1 7Ly

T, < min )
2L,(1+2Ly) ((a,,1 (14 Ly) +26,0Cx, C2)° +4Lg)
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Rearranging terms and telescoping (90) yield

5 2 Vl _ VKu'H
k=1 uly
2 (V! —infeu(§)) 4K -4
< 4(1— .
K, +4(1 = 1)
Then by choosing K; = O(log(K,)), the convergence rate of algorithm 2 is O(Ki) O

The above theorem guarantees the algorithm 2 converges to an € stationary point given that
assumptions 1-3 are satisfied. And lemma 3.4 states the convexity and Lipschitz smoothness
of the lower-level objective functions Lg(p, m; g, b) in (21) and shows that our problem setting
satisfies the assumptions.

Since the interpolation operators I,,1,,1; are linear and positive definite, to prove lemma
3.4, itis sufficient to prove the (strong) convexity and the Lipschitz smoothness of Lg ~ : Rt x

R? = R, (o, B) — 8 B ~alog(a).

2 o

Lemma 5.7. Let G be a d x d symmetric positive definite matrix and Lg - : RT x R? —
R, (a,3) — ﬁ G'@ +~yalog(a). For any v >0, Lg., is convex in RT x R? and Lipschitz
smooth in {« 6 R:a >c,>0} x{BeR:[|B]| <Cu} (Cn>0). And for any v >0, L
is strongly convex in {a € R: ¢, > > ¢, >0} x R%,
Proof. Since G is symmetric and positive definite, we write the singular value decom-
position of G as G=UXgU', with UUT =U"U =1, ¢ = diag(06.4,06.4-1,---,06.1),
(064> 0G4—1 2+ =>061). And og;,i =1,...,d are the singular values of G Denote
1 1
Y2 = diag(\/0G.d,\/TGd—1,---,1/0G1) and S = ZéUT. Then G = ST S and the singular val-
ues of S are og,; = /06 ;.
Obviously, Lg - is twice differentiable in R* x R? and

1T T o TA~T
V2L, (@.B)=—= é agg szGG }
_i 1 (SIB)TS/B+’7042 _a(S/B)T 1 (92)
a3 ST —asSpB a?l N
o
- _1 ST] V2L, (o, SB) {1 S]

We denote the minimal and maximal singular values of V2L . (,3) as ag"? (o, ) and

o a(a,3). Then we have

max(l oG d)

n’lm( Sﬁ) max (a /6) # mZx (a S/B) (93)

G, min (1 0G,1
o2 08> ML)

By computation, the eigenvalues A7 (v, 3) of V2L, - (v, 3) satisfy

(2= (182 + (v + 1) e?) A+70*) (A —a?) " =0. (94)
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Therefore A7 (o, 3) > 0 and

vo

Ly >0,
Tpiin (@ 8) = 18I+ (v +1)a2 95)
T (@ B) < [BI> + (v +1)?

For7 0,57 (v, B) > 0 hold for anyr > 0, 3 € R?, which implies L. is convex. For

min
s 18I < Cns amdx(a B) < max(1, OGd)(M) hold for any o> ¢, || B||
p

Cpm» which implies Lg is Lipschitz smooth. And for v>0,¢,>a>¢,, o a%7(a,B)

AR/ \\/

YCp e )
06,40+ (V+1)E? o6,aca+(v+1)e2

min(1, 0, ;) min(

O

6. Numerical experiments

6.1. Experiment settings

This section presents several numerical experiments to illustrate the effectiveness of our model
and algorithm. We generate the data by solving the forward problem using the projected gradi-
ent descent algorithm proposed in [34] based on the FISTA algorithm [1]. In each experiment,
we report the relative error versus the number of iterations for recovering the obstacle and the
metric. The relative error for recovering the obstacle is

2
T T (0= (), )

— : (96)
Zi::l i1 (b) .
? ix,ly
and the relative errors for the metrics are
o Ky, —(2),)° S i @k, i = (@) 172
(1D) thl ((g )lx (g)h) 7 (2D) =1 iy=1 iy, iy ix,ly (97)

Z:l: 1 (E)z Zt)—l Z‘—l ||( )lx,l‘ || ,
where b%«, g&« are the numerical results after K, upper-level updates and 'B,’g are the ground
truth. We implement all of our numerical experiments in Matlab on a PC with an Intel(R)
i7-8550U 1.80 GHz CPU and 16 GB memory.

6.2. Theoretical arguments verification

6.2.1. Algorithm convergence and obstacle unique identifiability. ~ The first experiment aims
to numerically verify the stability theorem 3.8, the unique identifiability theorem 3.9 and
convergence analysis in theorem 4.3 of the bilevel algorithm with lower and upper-level
constraints.

We discretize the space with n, = 16,n, = ny, = 64. Denote p,(x,y; Ly, fty, Ox,0y) as the
probability density function of Gaussian distribution with mean (i, it,) and covariance mat-
rix diag(o?, y) We feed the model with one pair of observations, i.e. N=1, with py =
Pe(+,+;—0.25,0,0.08,0.08), 11 = pg(+,-;0.25,0,0.08,0.08) and v; = 0.1,77 = 5. We choose
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Figure 2. Convergence test of the inverse crowd motion problem. Top to bottom: the
snapshot of p at r = 0.5, recovered b with smallest relative error, upper-level objective
value versus the number of iterations, relative error of b versus the number of iterations.
Left to right: 7, = 0.05,0.1,0.5, 1. Reproduced with permission from [33].

Table 2. Convergence test of the inverse crowd motion problem.

Upper-level Relative error  Relative error  Time elapsed

Vb p(0,0,0.5) objective value (best) (last) (second)

0.05 0.7831 1.1792 0.0139 0.0148 1570.1611
0.1 0.0293 2.2504 0.0134 0.0161 1537.9703
0.5 0.0079 6.2426 0.2186 0.3500 1565.9526
1 0.0054 8.5889 0.3326 0.4354 1549.7152

the obstacle function as b(x,y) = y,p,(x,y;0,0,0.08,0.1). With different values of ~;, the
agents avoid the center of the obstacle to different degrees. Higher values of +, lead to lower
density values at (x,y) = (0,0). According to remark 3.10, low-density values in the data result
in difficulties in accurately reconstructing the obstacle.

Figure 2 and table 2 compare the results with ~, = 0.05,0.1,0.5,5. For a fair comparison,
we initialize the algorithm with obstacle b° = 0 so that the initial relative errors all start from
1 for different ~,. We run each inner loop for 5 iterations and run the outer loop for 6000
iterations.

The first row in figure 2 plots training data p(-,-,0.5) and m(-,-,0.5). In the first column
of table 2, we report the density value p(-,-,0.5) at the center, reflecting the value of min p.
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It is clear to see that more agents avoid the center of the obstacle as y, grows larger, thus the
density value in the center decreases.

The third row of figure 2 presents the progression of upper-level objective values across
upper-level iterations, while table 2, Column 2, details the final upper-level objective values.
To enhance the precision of the upper-level objective calculation, we execute the forward solver
to convergence every 10 upper-level iterations. This approach yields a refined approximation of
(p* (bW), m* (b)), thereby providing a more accurate estimation of the upper-level objective
values. Theorem 4.3 implies that convergence is achieved when minp > 0. Supporting this,
table 2, Column 1, indicates that minp > 0 for all considered ~, values. Furthermore, figure 2,
Row 3, demonstrates numerical convergence for each -y, selection. This verifies the algorithm
convergence theorem 4.3.

We qualitatively show the numerical solutions of the obstacle in the second row of figure 2,
while we report the relative error in the fourth row of figure 2 and list the best relative error
and terminal step relative error in the third and fourth columns of table 2, respectively. Given
that min p > 0, theorem 3.9 suggests the possibility of uniquely recovering the ground truth
obstacle, up to a constant, for all v, values of 0.05,0.1,0.5, and 1. Numerically, this unique
recovery is observed for v, = 0.05 and 0.1. However, for higher ~;, values of 0.5 and 1, the
reconstructed b does not align perfectly with the ground truth b, as one might expect. This devi-
ation is accounted for by remark 3.10, which discusses the robustness of the reconstruction.
Specifically, when ~, is set to 0.5 or 1, the lower bound of the data p decreases. According to
remark 3.10, a smaller p lower bound leads to less robust solutions, making them more suscept-
ible to distortions from small perturbations in the ground truth. In our experiments, since the
forward solver typically produces an approximation of the exact minimizer after a finite num-
ber of iterations, the data represents a slight deviation from the ground truth. Consequently,
This causes the reconstructed obstacle to differ from the exact obstacle and the discrepancy is
more obvious when v, = 0.5, 1.

6.2.2. Improving results with multiple data. ~ We conduct an experiment to show that multiple
training data help to enhance reconstruction results for the inverse metric problem.

The example is defined on space domain [—0.5,0.5] and time domain [0, 1]. We discretize
the space domain [—0.5,0.5] with n, = 64 and the time domain [0, 1] with n, = 16. The ground
truth metric is g(x) = 0.7 — 0.3 cos(27x). The parameters in the forward problem are ~; =
0.01,77 = 0.5. Then we obtain the first pair of data with ug(x) = 1.25 — 0.25cos(4mx), u; =
1.25 4 0.25cos(27x) and the second pair with 1i9(x) = pe(x;0,0.1), ;= 1.

We solve the inverse problem with the first pair of data (N = 1) or both data (N = 2). When
solving the inverse problem, we take the information on the left end G, = {i; : i, = 1} as known

and fix it. We choose R(g) := vr [ [|Vg(x)||3dx to regularize the smoothness of the metric.

The discretization is therefore Rg(g) := 3yrAx SN ()i — (8)0)

i=1

We run the algorithm 2 for 5000 iterations with 5 iterations per each inner loop. The initial-
ization on i, = 1 is set as the true value and the initialization on other points is 0.7. Figure 3
shows the comparison of numerical results and ground truth (row 1) and the relative error of
the metric versus the number of upper-level iterations (row 2). Table 3 reports the weight of
regularization g, relative error, and running time of the algorithm. For one comparison, we
choose no regularization (yg = 0) in the model. The results with the first data (N=1) are
presented in row 1 and the results with both data (N = 2) are in row 2. Then we tune the regu-
larization parameter and report the best results with the first data in row 3 and with both data in
row 4. It is easy to see that when using both data, our model captures the ground truth metric
better and achieves lower relative error. It is worth noting that when using both data to solve
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Figure 3. Improving results with multiple data. Top to bottom: comparison of numerical
g and the ground truth g, the relative error of g versus the number of iterations. Left to
right: (N = 1,92 =0), (N=2,92 =0), (N= 1,92 = 107%), (N =2,y = 107%).

Table 3. Improving results with multiple data.

N YR Relative error Time elapsed (seconds)
1 0 0.1700 60.0653
2 0 0.0673 128.5328
1 1x107° 0.1073 67.3291
2 1x107* 0.0145 118.9042

the inverse problem, our model captures the shape of the ground truth metric even without
smoothness regularization. However, when using the first data, the model fails to learn the
information in the center and on both ends.

6.3. Robustness with respect to data

6.3.1. Unknown obstacles.  To test the robustness of our method for noisy input as discussed
in remark 3.10, we design the following numerical experiment.

We discretize the space [—0.5,0.5]* with n, =n, =64 and choose n, = 16. We let the
0.5, x<0,0.05<y<0.1,0orx>0,-0.1 <y< —0.05,
0, otherwise. ’
Assume there is one pair of observations, with initial density i = p,(-,-;—0.3,0.3,0.1,0.1),
preferred terminal density 1 = pg(+,-;0.3,—0.3,0.1,0.1) and v, =0.1,77=1. We use
the perturbed observation p+ ~,n,,m+ v,nm to solve the inverse problem, where -, =
0,0.25,0.5,0.75 and noise 7, ny, are generated by pointwise i.i.d sampling from the uniform
distribution U[—0.5,0.5]. To avoid numerical instability caused by zero value or negative dens-
ity values, we threshold the perturbed density by 0.01. All experiments initialize with the same
random choice of b. Every inner loop contains 5 iterations and 5000 outer iterations have been
conducted. In addition, we do not add any regularizer in this experiment. From figure 4 and
table 4, we observe that with larger noise, the relative errors between numerical results and
the ground truth are larger. Overall, the numerical results capture the shape of the ground truth
and the algorithm converges to a close result to the ground truth b with reasonably low relative
errors.

obstacle function be b(x,y) =
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Figure 4. Robustness test of the inverse crowd motion problem. Top to bottom: numer-

ical b, the difference between the numerical results and the ground truth b —Z, the
relative error of b versus the number of iterations. Left to right: noise level ~, =
0,0.25,0.5,0.75. Reproduced with permission from [33].

Table 4. Robustness test of the inverse crowd motion problem.

Yn Relative error (last) Time elapsed (second)
0 0.0081 1437.0926
0.25 0.0897 1343.8082
0.5 0.3771 1397.4578
0.75 0.7035 1379.7269

6.3.2. Unknown 1D metric.  This is a 1D example on [—0.5,0.5] x [0, 1]. We discretize the
space domain [—0.5,0.5] with n, = 64 and the time domain [0, 1] with n, = 16. The ground
truth metric is g(x) = 8x(x — 0.375)(x+ 0.375) + 1. The data is obtained by taking pio(x) =
Pe(x;0,0.1), 111 = 1 and y; = 0.01,~7 = 0.5. We test the robustness of the model by perturbing
the observation p,m. The noises 7,,ny share the same size with p,m and are pointwise i.i.d
samples from U[—0.5,0.5]. We use the perturbed data p + ,n,,m + 7,1y, to solve the inverse
problem, where v, = 0,0.1,0.2,0.3. Row 1-2 of figure 5 illustrate the perturbed data.

When solving the inverse problem, we take the information on the leftend G, = {i, : i, = 1}
as known and fix it. Same as section 6.2.2, we choose R(g) := 1vr [ || Vg(x)||3dx to regularize
the smoothness of the metric. The regularization weight vz takes different values for different
7, and the values are in table 5. We run algorithm 2 for 5000 iterations with 5 iterations per
each inner loop. The initialization of g takes value 1 everywhere. Figure 5 and table 5 compare
the result with different ,,.

From the comparison in figure 5 and the relative error in table 5, we observe that as the
noise level increases, the recovered metric deviates more from the ground truth. However, it
is crucial to highlight that, on the whole, our model adeptly captures the underlying shape of

the metric with reasonable fidelity, and the associated relative error remains consistently small.
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Figure 5. Robustness test of the inverse metric problem. Left to right: ~, =
0,0.1,0.2,0.3. Top to bottom: perturbed data p + vun,, perturbed data m + ,71m, com-
parison of numerical g and the ground truth g, the relative error of g versus the number
of iterations.

Table 5. Robustness test of the inverse metric problem.

Y R Relative error (last) Time elapsed (second)
0 1x1073 0.0358 63.4809
0.1 3x107* 0.0380 63.2121
0.2 1x1073 0.0645 61.5193
0.3 3x1073 0.0815 60.7215

This robust performance underscores the resilience of our model in the presence of added noise

to the data.

6.4. Robustness with respect to unknowns

We present more numerical results to show that our method effectively recovers various types
of obstacles and metrics.

6.4.1. Unknown obstacles.
shape, we conduct experiments on obstacles with more irregular shapes. We plot examples of
‘the segmented ring’ and ‘clover’ in figure 6. In both experiments, only one pair of data is used
to recover the unknown obstacle. The figure shows that our algorithm produces consistently
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Figure 6. Robustness test of the inverse obstacle problem with respect to the obstacle.
Mesh grid size: n; = 16, n, = n, = 64. Left to right: ground truths, numerical results, the
difference between ground truths and numerical results, the relative error of the obstacle
versus the number of iterations. Top to bottom: relative error = 0.3837, 0.1935, time
elapsed = 4103 s, 3247 s.
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Figure 7. Robustness test of the inverse metric problem with respect to the metric.
Mesh grid size: n; = 16,n, = ny = 64. Columns 1,3: comparison of numerical g and
the ground truth g, columns 2,4: the relative error of g versus the number of iterations.
Column 1,2: A = 10’5, relative error = 0.0172, time elapsed = 62.8513 s, column 3,4:
A = 107>, relative error = 0.0172, time elapsed = 63.0395 s.

good results when recovering various obstacles. Our model and algorithm recover the shape
of the obstacle and achieve very low relative errors.

6.4.2. Unknown 1D metric. ~ Apart from the experiments in sections 6.2.2 and 6.3.2, we con-
duct experiments on more different metrics and plot the results in figure 7. In both experiments,
we use only one pair of data and the ground truth information on the left end. The figure shows
that our model and algorithm consistently recover the ground truth metric and achieve low rel-
ative errors.

6.5. Unknown 2D metric

The last example is a 2D inverse metric problem on [—0.5,0.5]* x [0, 1]. We take n, = n, = 64
go(x,y) +4  golx,y)+2, .
th go(x,y) =
go(ry) +2 golxy)+1) Vi &0lY)
0.75 4 0.5sin(27x) cos(2wy — 0.57). The data is obtained by taking y; = 0.1,y = 1. We take
N =4, i.e. 4 observations, in this example. The initial densities are 119 = p, (-, ;ay, ay,0.1,0.1)
with (ay,ay) = (—0.3,-0.3),(—0.3,0),(—0.3,0.3),(0,0.3), and the terminal densities are

and n, = 16. The ground truth metric is g(x,y) = (
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Figure 8. Solving an inverse problem with an unknown metric in 2D. Mesh grid size:
n; = 16,ny = ny = 64. Left to right: ground truths, numerical results, the difference
between ground truths and numerical results. Top to bottom: g, gy, &yy. Relative error
= 0.0260, time elapsed = 4327.5671 s.

w1 (x,y) = pg(-,;ax,ay,0.1,0.1) with (ay,ay,) = (0.3,0.3),(0.3,0),(0.3,-0.3),(0,—0.3). We
solve the inverse problem with the weights of smoothness regularizers vz = 10~*. The
algorithm initiates from g, = 4,8, =2 and g,, = 1. Each inner loop takes 5 iterations and
each outer loop takes 5000 iterations. Columns 1-3 of figure 8 shows the ground truth, the
recovered metric, and the difference between the numerical result and ground truth. Our model
and algorithm capture the symmetricity of the ground truth metric and achieve a relative error
of value 0.0260.

7. Conclusion

In conclusion, this paper introduces a novel bilevel optimization framework to tackle inverse
mean-field games for learning metrics and obstacles. We also design an alternating gradient
descent algorithm to solve the proposed bilevel problems. The primary advantage of our pro-
posed formulation is its ability to retain the convexity of the objective function and the linear-
ity of constraints in the forward problem. Focusing on the inverse mean-field games involving
unknown obstacles and metrics, we have achieved numerical stability in these setups. A sig-
nificant contribution of our research is establishing unique identifiability in the inverse crowd
motion model with unknown obstacles based on one pair of inputs and revealing when the solu-
tion of the bilevel problem is stable to the noisy data. Employing an alternating gradient-based
optimization algorithm within our bilevel approach, we ensure its convergence and illustrate
its effectiveness through comprehensive numerical experiments. These experiments serve as
robust validation, underscoring the practical applicability and reliability of our algorithm in
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resolving inverse problems. Our model and techniques offer a new approach to understanding
and further explorations and application of inverse mean-field games.
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