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Abstract26

The ability to monitor for rare critical events generally deteriorates over time on task, an27

effect termed the vigilance decrement. Although the decrement has been replicated many28

times, it has generally been studied with sensory discrimination tasks. Research using29

cognitive vigilance tasks, which require judgments of symbolic stimulus characteristics, has30

produced less consistent results. To test the robustness and nature of the cognitive31

vigilance decrement, the current study developed a computational performance model of a32

novel monitoring task. Participants performed a monitoring task that required them to33

estimate the central tendency of a set of three-digit readings each trial. For analysis, data34

from the first and last 4-min blocks of trials were fit with a model based on signal detection35

theory. The model assumed that participants could either perform the task in an attentive36

state in which decisions were stimulus-driven, or could lapse into an inattentive state in37

which decisions were guessed. Parameter estimats indicated an increase in mental lapse38

rate and decrease in positive guess rate over time, coupled with a decrease in internal39

processing noise. The effects of these latent changes on observable response rates, however,40

were modest and partially offsetting. Results suggest that mental lapses and a tendency to41

negative guesses are a common causes of vigilance loss across sensory and cognitive tasks,42

but may have small effects on observed responses.43
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Computational Modeling Reveals Minimal Vigilance Changes in a Cognitive Monitoring46

Task47

Vigilance tasks like quality control and security surveillance require observers to48

monitor for infrequent signals over extended periods. A common finding is that detection49

falters over time on task (Mackworth, 1948), sometimes beginning within 5 minutes of task50

onset (Nuechterlein, Parasuraman, & Jiang, 1983). This pattern, the vigilance decrement51

(Proctor & Vu, 2023), has been replicated in hundreds of laboratory studies over multiple52

decades (See, Howe, Warm, & Dember, 1995; Warm, Finomore, Vidulich, & Funke, 2015),53

and has been observed in naturalistic tasks (Molloy & Parasuraman, 1996;54

Reinerman-Jones, Matthews, & Mercado, 2016).55

Although the effect is familiar and well-studied, the psychological mechanisms56

underlying the vigilance decrement remain the subject of debate. Vigilance is commonly57

studied using yes-no detection tasks. In a task of this form, the observer is presented each58

trial with a stimulus from one of two categories, typically designated noise versus signal,59

and is asked to report whether a signal is present (yes) or absent (no). Data can be60

evaluated using signal detection theory (SDT: Green & Swets, 1966; Hautus, Macmillan, &61

Creelman, 2022). Under SDT, the observer encodes the evidence for the presence of a62

signal as a unidimensional decision variable, X. Variance in the decision variable is63

determined by the combination of external noise, variability that is inherent in the stimulus64

itself, and internal noise, variability that arises during the observer’s sensory encoding and65

information processing. Confusability between signal and non-signal events exists when the66

distributions of X corresponding to the two categories overlap. Sensitivity, the observer’s67

ability to distinguish signal from non-signal events, therefore increases as overlap between68

the distributions decreases. The observer transforms the decision variable to a yes or no69

judgment by comparing it to a response cutoff, rendering a positive judgment when X70

exceeds the cutoff value. Placement of the cutoff determines the observer’s response bias; a71

low cutoff is liberal, favoring positive responses, and a high cutoff is conservative, favoring72
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negative responses. A cutoff that favors neither positive or negative responses is unbiased.73

Assuming that task demands and stimulus characteristics are held constant, detection74

rates in a vigilance task might drop over time for either of two reasons under SDT. One75

possibility is an increase in internal noise, reducing the observer’s sensitivity. The second is76

a conservative shift in response cutoff. Data suggest that, in fact, both mechanisms can77

contribute to the vigilance decrement, but tend to do so unequally. Cutoff shifts are78

common (e.g., Broadbent & Gregory, 1963, 1965; A. Craig, 1987; Parasuraman, 1979;79

Swets, 1977), and presumably occur as the observer adapts to the low frequency of signal80

events (Colquhoun & Baddeley, 1967; A. Craig, 1978). Sensitivity losses are more selective,81

and in particular, are believed to obtain when the event rate of the task (i.e., number of82

trials per minute) is high and information processing demands are heavy (Nuechterlein et83

al., 1983; Parasuraman, 1979; Parasuraman & Mouloua, 1987; See et al., 1995).84

Theoretical accounts attribute sensitivity losses to gradual reductions in the attention85

allocated to the vigilance task. Resource depletion theory proposes that maintaining86

vigilance is mentally taxing (Grier et al., 2003; Warm, Parasuraman, & Matthews, 2008)87

and exhausts “reservoirs of energy” (Warm et al., 2015, p. 261) that determine the88

observers’ information processing capacity (Caggiano & Parasuraman, 2004; Neigel et al.,89

2020; Schumann et al., 2022; Warm et al., 2015). Resource control theory argues that90

processing capacity remains constant, but that executive control failures or strategic91

choices let resources drift to task-unrelated thoughts (Thomson, Besner, & Smilek, 2015).92

Under either model, resources dedicated to the vigilance task dwindle over time, resulting93

in poorer sensitivity. However, generative modeling suggests that even when they occur,94

sensitivity decrements might produce relatively small declines in raw detection rates95

(Gyles, McCarley, & Yamani, 2023; McCarley & Yamani, 2021).96

Mechanisms outside standard signal detection theory can also contribute to vigilance97

failures. At times, attention may lapse, disengaging entirely from the vigilance task98

(Esterman & Rothlein, 2019; Gyles et al., 2023; McCarley & Yamani, 2021). Lapses might99
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result from any of multiple causes (Unsworth & Robison, 2016), including external100

distractions (Drody, Pereira, & Smilek, 2023; Robison & Unsworth, 2015; Unsworth &101

McMillan, 2014), microsleeps (Buckley, Helton, Innes, Dalrymple-Alford, & Jones, 2016),102

an intentional or unintentional (Seli, Risko, & Smilek, 2016; Thomson et al., 2015) drift of103

processing to off-task thoughts or stimuli (McVay & Kane, 2009, 2012), or a breakdown of104

goal representation (Ariga & Lleras, 2011; Manly, Robertson, Galloway, & Hawkins, 1999).105

Lapses become more common with longer time on task and are associated with106

performance losses (Cunningham, Scerbo, & Freeman, 2000; Krimsky, Forster, Llabre, &107

Jha, 2017; McVay & Kane, 2009, 2012; Unsworth & Robison, 2016; Zanesco, Denkova, &108

Jha, 2024), and thus contribute to the vigilance decrement (Esterman & Rothlein, 2019;109

Gyles et al., 2023; McCarley & Yamani, 2021) .110

Lapses also introduce a further mechanism of declining response rates over the course111

of a vigil. Whatever its cause, the effect of an attention lapse within a signal detection task112

is that the participants’ response is selected independent of the stimulus (Kingdom &113

Prins, 2016). Responses during lapses can therefore be modeled as guesses (Kuss, Jäkel, &114

Wichmann, 2005; Lee, 2018). A decrease in the probability of guessing a positive response115

is then an additional source of vigilance loss; as the participant adapts to the low signal116

rate, the positive guess rate declines (Gyles et al., 2023).117

Unfortunately, attention lapses and guesses complicate efforts to distinguish118

sensitivity from bias with yes-no response data. The most common measure of sensitivity,119

d’, assumes that the values of X associated with signal and noise events are normal with120

equal variance. Guessed responses violate this parametric assumption. Although it is often121

described as non-parametric, an alternative measure of yes-no sensitivity, A’, also122

incorporates parametric assumptions that are violated by response guessing (Macmillan &123

Creelman, 1996; Pastore, Crawley, Berens, & Skelly, 2003). More generally, yes-no data124

provide only two degrees of freedom, hit and false alarm rate, too few to identify a model125

with sensitivity, response bias, lapse rate, and cutoff rate as parameters.126
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As an alternative method to isolate sensitivity losses, bias changes, lapses, and127

guesses, McCarley and Yamani (2021) proposed the analysis of psychometric functions for128

vigilance tasks. The psychometric function for a detection task presents the positive129

response rate as a function of stimulus intensity, and is typically an S-shaped curve. The130

form and position of the function reflect the four mechanisms of vigilance decrement131

discussed above. Placement of the response cutoff, specifically, determines the horizontal132

position of the function, sensitivity determines its steepness, and lapse and guess rates133

determine its upper and lower asymptotes. Changes in the psychometric function over time134

on task can therefore reveal mechanisms of vigilance loss. Studies using psychometric135

curves to analyze vigilance data have suggested that sensitivity losses are possible136

(McCarley & Yamani, 2021), but that changes of response cutoff, lapse rate, and guess rate137

are more common (Gyles et al., 2023; McCarley & Yamani, 2021; Román-Caballero,138

Martín-Arévalo, & Lupiáñez, 2022). Conservative cutoff shifts appear to account for the139

majority of the change in raw detection rates over time on task.140

Sensory vs. Cognitive Vigilance141

Much of what’s known about the vigilance decrement has come from studies of142

sensory detection and discrimination. In tasks of this type, noise and signal conditions are143

distinguished by differences in physical stimulus properties, for example, shape (e.g.,144

Helton & Warm, 2008; Nuechterlein et al., 1983), brightness (Broadbent & Gregory, 1965),145

spatial alignment (Dillard et al., 2019; Hitchcock, Dember, Warm, Moroney, & See, 1999)146

or size (Colquhoun & Baddeley, 1964; e.g., Deaton & Parasuraman, 1993; McCarley &147

Yamani, 2021). These can be distinguished from cognitive discrimination tasks, in which148

signal and noise stimuli are defined by symbolic properties (See et al., 1995). Given pairs of149

digits as stimuli, for instance, the signal in a cognitive discrimination task might be defined150

as a trial in which one digit is even and the other is odd (Deaton & Parasuraman, 1993) or151

a trial in which the difference between values is between -1 and +1 (Claypoole, Dever,152
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Denues, & Szalma, 2019).153

Comparisons between sensory and cognitive discrimination tasks are potentially154

valuable for theories of the vigilance decrement. A finding that the vigilance decrement was155

similar for sensory and cognitive tasks, for instance, would imply that vigilance failures156

occurred at a post-sensory, supramodal stage of information processing (cf., Greenlee,157

DeLucia, & Lui, 2022; Shaw et al., 2009). A finding that the effect was small or absent for158

cognitive tasks would implicate sensory or perceptual processing limitations as a major159

source of the conventional vigilance decrement.160

Studies of cognitive vigilance, though, have produced wildly inconsistent effects.161

Experiments by Warm and colleagues (1984), using pairs of digits as stimuli, found a drop162

in detection rates over time when signal events were defined by a simple rule (digits differ163

by no more than ±1), but a gradual increase in detection rates–that is, a vigilance164

increment–when signals were defined by a more complex rule (digits differ by no more than165

±1 and have a sum between 4 and 14). Other experiments failed to recreate the vigilance166

increment under conditions of high task complexity (Loeb, Noonan, Ash, & Holding, 1987),167

however, and a meta-analysis suggested that the effect might obtain only under very select168

task conditions (See et al., 1995). Several studies have reported null or modest effects of169

time on task in cognitive monitoring tasks (Deaton & Parasuraman, 1993; Koelega,170

Brinkman, Hendriks, & Verbaten, 1989; Loeb et al., 1987), and others have reported171

conventional vigilance decrements, including sensitivity losses (Claypoole et al., 2019;172

Claypoole & Szalma, 2018b, 2018a; Matthews, Davies, & Holley, 1993; Mouloua &173

Parasuraman, 1995) and apparent cutoff shifts (Matthews, Warm, Reinerman-Jones,174

Washburn, & Tripp, 2010).175

Methodological considerations seem likely to explain some of these inconsistencies. In176

at least some studies, the tasks used to test cognitive vigilance might not have been177

well-suited for analysis using SDT. SDT presumes that states of knowledge are inherently178

continuous, and that errors arise from external and internal noise in the evidence179
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representing alternative states of the world (Hautus et al., 2022; Wixted, 2020). Although180

this model will probably hold for sensory vigilance tasks, it might be less appropriate to181

some of the tasks used in studies of cognitive vigilance. For instance, consider the task of182

judging whether the difference between two one-digit numbers is less than or equal to one183

(Claypoole et al., 2019; Claypoole & Szalma, 2018b, 2018a; Warm et al., 1984), or whether184

one digit in a pair is even and the other is odd (Deaton & Parasuraman, 1993). In these185

cases, signal and noise categories are discrete, and assuming that stimuli are not186

perceptually degraded and processing is not terminated prematurely, encoding or decisional187

noise seems unlikely to cause confusability. Errors more probably reflect guesses or188

response blunders, violating the parametric assumptions of SDT. In cases like this,189

apparent sensitivity losses might be spurious.190

A related concern is that performance in some tasks classified as cognitive might have191

actually been limited by sensory or perceptual processes. For example, a study by Mouloua192

and Parasuraman (1995) asked participants to monitor for occasional lowercase letters in a193

temporal stream of uppercase letters. Although the task was framed as a cognitive194

discrimination, vigilance losses were more pronounced when the task-relevant letters were195

surrounded by distractors, and when they were presented with spatial uncertainty in the196

visual periphery, than when they appeared alone in central vision. The vigilance decrement197

was thus largest when discriminability is likely to have been degraded by visual crowding198

and lateral masking (Bouma, 1970; Coates, Levi, Touch, & Sabesan, 2018; Loomis, 1978;199

Strasburger, Rentschler, & Juttner, 2011), implying that performance losses might have200

been sensory, not cognitive. Another experiment (Matthews et al., 1993) asked participants201

to identify targets in a stream of single digits presented in the central visual field, but202

degraded the stimuli with pixelated noise. Again, it seems possible that performance was203

limited more by sensory stimulus quality than by symbolic processing demands.204

The goal of the current study was to test for vigilance effects in a cognitive205

monitoring task, isolating changes of response bias, sensitivity, mental lapse rate, and guess206
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rate, with a task that meets the assumptions of signal detection analysis and is not limited207

by sensory or perceptual noise. To analyze performance, we develop a cognitive model208

motivated by the findings of psychometric function analyses reported in earlier studies209

(Gyles et al., 2023; McCarley & Yamani, 2021; Román-Caballero et al., 2022).210

Modeling a Cognitive Vigilance Task211

As described above, signal detection analysis of cognitive vigilance requires a task212

that meets at least two characteristics. First, discrete states of the world do not map onto213

discrete mental states, but are represented by variations in an internal decision variable214

that is continuous and contaminated by random error (Hautus et al., 2022; Wixted, 2020).215

Second, performance is not limited by sensory information quality, but by the quality of216

post-sensory processing. Toward that end, we adapted a numeric signal detection task217

(Healy & Kubovy, 1981) from earlier studies (Duncan-Reid & McCarley, 2021; Tikhomirov,218

Bartlett, Duncan-Reid, & McCarley, 2023) for use in a vigilance context. As shown in219

Figure 1, the stimulus each trial was a column of four three-digit readings sampled from220

one of two normal distributions, one that represented noise events and the other that221

represented signal events. Source distributions had a common standard deviation but222

differed in means. The participant’s task each trial was to make a key press response if223

they judged that the displayed readings were drawn from the signal distribution. Accurate224

task performance thus required participants to mentally estimate the central tendency of225

the stimulus readings displayed each trial. Signals occurred randomly, with a probability of226

0.20 each trial. Trials occurred at a pace of 40 per second, a rate that has been reported to227

be high enough to engender losses of sensitivity over time (Parasuraman, 1979).228

For analysis, data were fit with a cognitive model built on SDT. As shown in Panel A229

of Figure 2, the model assumed that on some trials the participant rendered their decision230

in an attentive state, and that on the remaining trials, the participant lapsed into an231

inattentive state. The participant’s state was determined randomly each trial, with the232
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Figure 1 . Schematic illustration of the stimuli and task.

lapse rate being the probability of an inattentive state. The assumption of discrete233

attentive and inattentive states is consistent with evidence from neural and234

behavioral-cognitive modeling (Hawkins, Mittner, Forstmann, & Heathcote, 2019; Mittner235

et al., 2014; Yamashita et al., 2021; Zanesco, Denkova, & Jha, 2021; Zeigenfuse & Lee,236

2010) that processing on attention-demanding decision tasks can be modeled as a binary237

mixture distribution of identifiable latent states: a task-focused state generating efficient,238

stimulus-driven responses and an off-task state producing inefficient or contaminant239

responses. These binary attentive and inattentive states might themselves reflect a variety240

of underlying processing modes. The attentive state, for example, might be dissected into241
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substates reflecting gradations of attentional focus (Zanesco, Denkova, Witkin, & Jha,242

2020). Similarly, the inattentive state might be taken to subsume different forms of off-task243

thought (Unsworth & McMillan, 2014; Unsworth & Robison, 2016). To a reasonable244

approximation, though, attentive and inattentive states can be treated as binary.245

Here, on attentive trials, the participant was assumed to make a stimulus-driven246

response using a conventional signal detection strategy, as illustrated in Panel B of Figure247

2. Consistent with our earlier work (Duncan-Reid & McCarley, 2021; Tikhomirov et al.,248

2023), the model assumed that the participant used the estimated mean value of the249

displayed readings as a decision variable, but that the participant’s estimate of the mean250

reading was contaminated by random error (Brezis, Bronfman, & Usher, 2015, 2018; cf.,251

Brusovansky, Glickman, & Usher, 2018) modeled as zero-centered Gaussian noise. The252

participant rendered a judgment by comparing the estimated mean to a response cutoff.253

On the inattentive trials, the participant rendered a judgment by guessing, responding yes254

with a probability termed the guess rate.255

Under the model, performance on the attentive trials was thus limited by the256

combination of variability in the stimulus source distributions and error in the participants’257

estimation of the mean readings. Performance on inattentive trials was determined by the258

guess rate; given the low frequency of signal events, a strategy of always guessing no would259

have maximized response accuracy. Attentive and inattentive trials were distinguished by260

the pattern of errors they produced. On attentive trials, errors would have been most261

common when the mean reading was very near the observer’s response cutoff, and would262

have been rare when the mean reading was more extreme in either direction. On263

inattentive trials, on which responses were guessed, errors would have been equally264

common across all values of the stimulus readings.265

To identify potential vigilance effects, lapse rate, estimation error, cutoff placement,266

and guess rate were allowed to vary between blocks of trials. Parameters were estimated267

using a Bayesian hierarchical procedure (Kruschke, 2015; Lee & Wagenmakers, 2013).268
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Figure 2 . Schematic illustration of the model fit to the data.

Methods269

We report how we determined our sample size, all data exclusions, all manipulations,270

and all measures in the study. The methods for this study were preregistered.271

Preregistration, data, and analytic code are available at272

https://osf.io/eytbz/?view_only=8dce3ec5d659450db3a5694435d21c8b. Deviations from273

the preregistered plan are noted below.274

Participants275

Two hundred participants were recruited from the online research platform Prolific276

(https://prolific.co/). Sample size was determined by a preregistered adaptive stopping277

rule. Under the stopping rule, we recruited an initial 125 participants then continued278

recruitment in increments of 25 until either, 1) the Bayes factors for the effects of block on279

response cutoff, estimation error, and lapse rate indicated an evidence ratio of at least 1:10280

in either direction (i.e., in favor of or against the null), or, 2) sample size reached 200. Data281

https://osf.io/eytbz/?view_only=8dce3ec5d659450db3a5694435d21c8b
https://prolific.co/
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collection ceased at 200 participants.282

All participants gave informed consent and reported that they were fluent in English283

and had normal color vision and normal or corrected-to-normal visual acuity. Data284

exclusions described below left 180 participants for analysis (mean age = 22.58 years,285

gender = 73 females, 100 males, 4 non-binary, 3 not specified). Participants were286

reimbursed USD 5.00 for an experimental session lasting approximately 25 minutes.287

Apparatus288

Participants performed the experimental task online. The task was controlled by289

software written in PsychoPy (Peirce et al., 2019) and hosted on Pavlovia290

(https://pavlovia.org). Participation was restricted to participants using either laptop or291

desktop computers, not smartphones or tablet computers.292

Procedure293

Participants performed a numeric signal detection task after Healy and Kubovy294

(1978). The stimulus each trial was a set of four three-digit numeric readings, presented in295

a column in the center of the display. Readings were displayed in Arial font with a height296

4% of the participant’s display size.297

On noise trials, the stimulus readings were sampled independently from a298

pseudorandom Gaussian distribution with µ = 490 and σ = 20. On signal trials, they were299

sampled independently from a pseudorandom Gaussian distribution with µ = 510 and300

σ = 20. Event type, noise or signal, was determined pseudorandomly each trial, with301

p(signal) = 0.20. We note that this signal rate (20%) is higher than in many traditional302

vigilance experiments, but matches that of our earlier studies of sensory vigilance (Gyles et303

al., 2023), which produced robust vigilance decrements. The participants’ optimal strategy304

was to use the mean of the four readings each trial as the decision variable (Sorkin, Mabry,305

https://pavlovia.org
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Weldon, & Elvers, 1991). Basing judgments on a single reading allowed a maximum306

sensitivity of d′ = 1.0. Basing judgments on the mean of the four readings allowed a307

maximum sensitivity of d′ = 2.0.308

Experimental trials occurred at a forced pace of 1 every 1500 ms, producing an event309

rate of 40 trials per minute. The stimulus display appeared at the start of the trial and310

remained visible until the start of the next trial, giving an exposure duration of 1500 ms311

and an interstimulus interval of 0 ms. Participants were asked to press the space bar if312

they believed the readings on a given trial represented a signal state, and to withhold their313

response otherwise. A response was attributed to a given trial if it occurred any time314

between stimulus onset for that trial and stimulus onset for the subsequent trial.315

Participants did not receive post-trial feedback to indicate whether their judgments were316

correct or incorrect.317

Written instructions were presented onscreen after the participant had indicated their318

consent to take part in the experiment. The instructions framed the task as cybersecurity319

monitoring. Participants were told, “For this task, imagine that you are a cybersecurity320

officer monitoring for malicious activity on your network. The system will provide a321

snapshot of network activity every 1.5 seconds. On every update, you will see four numbers,322

and each number represents the amount of activity on a single server. On average, normal323

network activity produces values below 500, and malicious activity produces values above324

500. However, network activity is highly variable, meaning that there is no precise cut-off325

for detecting malicious activity. Normal activity will sometimes produce values above 500326

and malicious activity will sometimes produce values below 500. For each trial, your job is327

to evaluate the set of four numbers and judge whether, collectively, they represent normal328

or malicious activity. If you think the set of numbers represents normal activity, you don’t329

need to make a response. If you think the set of numbers represents malicious activity, you330

should press the space bar to report it. You will have 1.5 seconds to view the display and331

make a response before the system updates and new numbers appear.”332
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After reading the instructions and indicating they were ready to proceed, the333

participant completed a practice vigil of 90 trials followed by a 12-minute experimental334

vigil. The vigil was limited to 12 minutes, a duration briefer than in many studies of335

sustained monitoring, in order to reduce the risk that online participants would withdraw336

before completing the task. Past work, including studies in our lab (Gyles et al., 2023), has337

found that 12 minutes on task is enough time to produce a detectable vigilance decrement338

in monitoring tasks (C. M. Craig & Klein, 2019; Neigel, Dever, Claypoole, & Szalma, 2019;339

Temple et al., 2000). The practice vigil was the same as the experimental vigil except that340

signal and noise events were equally probable, the first 25 trials occurred at a pace of 20341

per minute (3000 ms/trial), and response errors were followed by a 1-second feedback342

message reading either, “Oops! It was not a target.”, or “Oops! You missed a target.”, as343

appropriate. Error-free performance resulted in a practice vigil of 2 minutes 15 seconds and344

each error added 1 second. Instructions in between the practice vigil and experimental vigil345

informed the participants, “You will now perform the task for a longer block and you will346

no longer receive feedback. Targets will also appear less frequently than they did during347

the practice.”348

To avoid potential end-spurt effects (Bergum & Lehr, 1963), participants were not349

told the exact length of the experimental vigil, but were aware that the entire session was350

expected to last less than 30 minutes.351

At the end of the vigil, participants completed a computerized A-SWAT mental352

workload scale (Luximon & Goonetilleke, 2001). The A-SWAT consists of three subscales:353

time load, mental effort, and psychological stress. The subscales were presented one at a354

time. Participants made their rating of each subscale by clicking a horizontal line anchored355

with text descriptions of the subscale endpoints. Ratings were scored on a scale of 0 to 100.356

Mental workload data were collected to characterize the task for comparison to earlier357

studies.358
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Data analysis359

Data were analyzed using R (Version 4.4.1; R Core Team, 2023) and the R-packages360

cowplot (Version 1.1.3; Wilke, 2024), dplyr (Version 1.1.4; Wickham, François, Henry,361

Müller, & Vaughan, 2023), forcats (Version 1.0.0; Wickham, 2023), ggplot2 (Version 3.5.1;362

Wickham, 2016), jagsUI (Version 1.6.2; Kellner, 2021), magrittr (Version 2.0.3; Bache &363

Wickham, 2022), papaja (Version 0.1.3; Aust & Barth, 2022), purrr (Version 1.0.2;364

Wickham & Henry, 2023), tidybayes (Version 3.0.7; Kay, 2023), tidyr (Version 1.3.1;365

Wickham, Vaughan, & Girlich, 2023), tidyverse (Version 2.0.0; Wickham et al., 2019) and366

tinylabels (Version 0.2.4; Barth, 2023).367

Signal Detection. Trials from the 12-minute experimental block were grouped into368

three consecutive, non-overlapping blocks of four minutes each. As in our earlier studies369

(Gyles et al., 2023; McCarley & Yamani, 2021), a duration of four minutes was chosen in370

order to minimize the risk that substantial vigilance losses might occur within the first371

block of trials; past work has shown that the vigilance decrement can begin after less than372

five minutes on task (Nuechterlein et al., 1983). A preliminary screening was conducted to373

identify participants who might have misunderstood or failed to follow task instructions.374

For this, binary responses were converted to the sensitivity measure d′ using the log-linear375

correction (Hautus, 1995), and data were excluded from participants who failed to achieve376

a preregistered minimum sensitivity of d′ = 0.25 in any of the three experimental blocks.377

Twenty participants were excluded on the basis of this screening.378

For the main analysis, response choice data were fit with a hierarchical Bayesian379

model based on SDT and earlier analyses of sensory vigilance data (Gyles et al., 2023;380

McCarley & Yamani, 2021; Román-Caballero et al., 2022). Analysis was restricted to the381

first and last four-minute blocks of trials, allowing us to test for differences between blocks382

using the Savage-Dickey ratio (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010), as383

discussed below.384
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The model assumed that the participant performed the detection task each trial in385

one of two states, attentive or inattentive, where the inattentive state reflected an386

attentional lapse. On attentive trials, the participant made a stimulus-driven choice by387

estimating the mean of the displayed stimulus readings and comparing it to a response388

cutoff. The participant’s estimated mean reading for a given trial was equal to the true389

mean contaminated by zero-centered Gaussian noise (Brusovansky et al., 2018; Tikhomirov390

et al., 2023) of standard deviation τ . Sensitivity, the participant’s ability to correctly391

distinguish signal from noise events, therefore decreased as τ increased. The participant392

classified the stimulus as noise or signal by comparing the estimated mean to a cutoff, κ,393

rendering a positive judgment if the decision variable exceeded the cutoff.394

In the inattentive state, the participant chose a response by guessing, responding395

“yes” with probability π independent of the displayed stimulus readings. The participant’s396

state each trial, attentive or inattentive, was determined randomly each trial. The397

probability of being in an inattentive state, or lapse rate, was ϕ. Internal noise τ , cutoff κ,398

lapse rate ϕ, and guess rate π were all allowed to vary between participants and between399

experimental blocks. The probability of participant i in block j performing trial k400

responding “yes” was thus,401

pi,j,k("yes") = (1 − ϕi,j) × Φ(Ri,j,k − κi,j

τi,j

) + ϕi,j × πi,j,

where Ri,j,k represents the mean of that trial’s displayed stimulus readings and Φ402

represents the standard normal transformation.403

Note that the inclusion of the guess rate as a free parameter is a deviation from the404

pregistered analysis plan, which assumed that the participants never responded in the405

inattentive state. Guess rate was added as a free parameter in light of results obtained406

following the preregistration (Gyles et al., 2023; Román-Caballero et al., 2022). Fixing π to407

a value of 0 did not substantially change the patterns of effect in other model parameters408

described below.409

Values of τi,j, κi,j, ϕi,j, and πi,j reflected additive effects of the subject mean410



COGNITIVE VIGILANCE 19

parameter values and the subject-specific effects of block. To ensure that values of the411

lapse rate ϕ and guess rate π remained between 0 and 1, the model placed priors on412

probit-transformed proportions rather than on raw values (Rouder & Lu, 2005). Likewise,413

to ensure positive values for the standard deviation of estimation error, the model placed414

priors on the log of τ 2 (Pratte & Rouder, 2011) rather on τ directly. Thus,415

log τ 2
i,j =


log τ 2

i − 0.5 × ∆log τ2

i , j = first,

log τ 2
i + 0.5 × ∆log τ2

i , j = last,

κi,j =


κi − 0.5 × ∆κ

i , j = first,

κi + 0.5 × ∆κ
i , j = last,

416

Φ(ϕi,j) =


Φ(ϕi) − 0.5 × ∆Φ(ϕ)

i , j = first,

Φ(ϕi) + 0.5 × ∆Φ(ϕ)
i , j = last,

and,417

Φ(πi,j) =


Φ(πi) − 0.5 × ∆Φ(π)

i , j = first,

Φ(πi) + 0.5 × ∆Φ(π)
i , j = last.

Here, log τ 2
i , κi, Φ(ϕi), and Φ(πi) are subject-level mean parameter values, and ∆log τ2

i , ∆κ
i ,418

∆Φ(ϕ)
i , and ∆Φ(π)

i are subject-level effects of block.419

To maintain consistency and facilitate comparisons across parameters, the model420

placed unit normal priors on the group-level means of the standardized mean difference421

between blocks (Lee & Wagenmakers, 2013), rather than placing priors on the raw effects422

of block. The standard deviation of the difference between blocks was assigned a uniform423

distribution between 0 and 100. For example, for the parameter κ, ∆κ
i = δκ

i × σκ
i ,424

δκ ∼ Normal(0, 1), σκ ∼ Uniform(0, 100), where δκ is the standardized mean difference in425

cutoff placement between the first and last blocks.426
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Finally, subject-level means τi, κi, ϕi, and πi were sampled from group-level427

distributions with vague priors. Ggroup-level means of log τ 2 and κ were assigned normal428

prior distributions with a mean of 0 and variance of 1000. Group-level values of the mean429

probit-transformed lapse and guess rates were assigned normal priors with a mean of 0 and430

standard deviation of 1, corresponding to uniform distributions over the interval (0.0, 1.0)431

on the raw lapse and guess rates.432

Stimulus readings were zero-centered for analysis. Estimation was performed using433

JAGS (Plummer, 2019). The model was run for four MCMC chains of 10,000 warmup434

steps and 25,000 estimation steps each, providing 100,000 total MCMC steps for analysis.435

All parameter estimates showed R-hat values of less than 1.02, indicating satisfactory436

convergence of MCMC chains (Gelman & Rubin, 1992).437

We used the Savage-Dickey ratio (Wagenmakers et al., 2010) to estimate Bayes438

factors for or against an effect of block on each of the four parameters of interest. We439

describe Bayes factors using the evidence categories (anecdotal, substantial, strong, very440

strong, decisive) proposed by Wetzels et al. (2011). As a check of model fit, we calculated441

95% posterior predictive equal-tail Bayesian credible intervals (BCIs) on the basis of a442

random sample of 1000 steps from the MCMC chains.443

Parameter recovery tests using simulated data (Heathcote, Brown, & Wagenmakers,444

2015) confirmed that the model estimated true parameter values well, though with a445

tendency to underestimate differences in lapse rate between blocks. Simulated data and446

outputs of parameter recovery tests are available at the OSF site linked above.447

Response Times. A non-preregistered analysis estimated the difference in mean448

response time (RT) between the first and last blocks of trials in order to test for a change449

in response speed over time on task. Data were subject-mean RTs for correct responses,450

calculated separately for the first and last trial blocks. Scores were assigned a normal451

likelihood with mean RT i,j and residual variance σϵ. RT i,j reflected the sum of a452
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subject-level grand mean RT, RT i, and a fixed effect of block, RT j. Subject-level grand453

means were assigned a normal prior with mean µRT and standard deviation σRT . Finally,454

µRT was assigned a normal prior with mean 0 and variance 1000, truncated below 0, and455

σRT was assigned a uniform prior between 0 and 100. The Bayes factor for an effect of456

block, versus a point-null hypothesis of 0, was estimated using the Savage-Dickey ratio457

(Wagenmakers et al., 2010).458

Workload Ratings. Responses for the A-SWAT subscales were analyzed459

separately within a model that placed a normal likelihood function on observed ratings,460

and uniform priors between 0 and 100 on the group means and standard deviations of the461

ratings. The estimation procedure again ran four MCMC chains for 10,000 warmup trials462

then 25,000 estimation trials each. All parameter estimates showed R-hat values of less463

than 1.01, indicating satisfactory convergence of MCMC chains.464

Results465

Signal Detection466

Figure 3 shows empirical and posterior predictive yes rates as a function of trial type467

and trial block. Yes rates for signal trials are hit rates and yes rates for noise trials are false468

alarm rates. Posterior predictive BCIs are narrow and contain the empirical means,469

implying a satisfactory model fit. Yes rates for signal trials are clearly higher than those for470

noise trials, confirming that participants could discriminate signal from noise events at471

levels above chance.472

Yes rates showed no obvious changes between the first and last blocks,473

MDiff = −0.010, 95% BCI[−0.025, 0.006] for signal trials,474

MDiff = −0.008, 95% BCI[−0.016, 0.002] for noise trials. Raw response rates thus gave no475

clear evidence of a vigilance decrement.476

In contrast, analysis of latent model parameters produced substantial or strong477
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Figure 3 . Empirical and posterior predictive yes rates, as a function of trial type and block.

NOTE: Small symbols represent empirical means for individual participants, large symbols

represent empirical group means, error bars represent 95% posterior predictive BCIs for

group mean scores. Filled symbols correspond to hit rates, unfilled symbols correspond to

false alarm rates.
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evidence of changes in three out of four potential mechanisms of vigilance decrement.478

Figure 4 presents density plots of the standardized mean differences in decision model479

parameters between the first and last blocks on task. Note that the panel labeled Internal480

Noise depicts standardized differences in the log variance of participants’ estimation error.481

The panels labeled Lapse Rate and Guess Rate present standardized differences in482

probit-transformed rates.483

Data gave substantial evidence against a change in response cutoff over blocks,484

MBlock 1 = −1.39, 95% BCI[−2.26, −0.53], MBlock 3 = −1.44, 95% BCI[−2.30, −0.58],485

MDiff = −0.05, 95% BCI[−0.59, 0.50], B10 = 1
9.09 . Data also gave substantial evidence for a486

decrease in internal noise–that is, an improvement in the ability to distinguish signal from487

noise–over blocks, MBlock 1 = 8.71, 95% BCI[8.28, 9.16] for the standard deviation of the488

error in participants’ estimates of the mean reading, MBlock 3 = 7.96, 95% BCI[7.55, 8.39],489

MDiff = −0.75, 95% BCI[−1.29, 0.21], B10 = 6.01.490

Analyses of the remaining two parameters showed effects more consistent with a491

conventional vigilance decrement. Data gave strong evidence for an increase in the lapse492

rate between the first and last trial blocks, MBlock 1 = .05, 95% BCI[0.03, 0.06],493

MBlock 3 = 0.07, 95% BCI[0.06, 0.09], MDiff = 0.03 95% BCI[0.01, 0.05], B10 = 28.12, and494

substantial evidence for a decrease in the guess rate, MBlock 1 = 0.70, 95% BCI[0.57, 0.82],495

MBlock 3 = 0.56, 95% BCI[0.45, 0.68], MDiff = −0.14 95% BCI[−0.26, −0.01], B10 = 3.17.496

With time on task, that is, participants became more likely to lapse into inattentiveness497

and less likely to make a positive guess during a lapse.498

On the surface, the finding that estimates of internal noise, lapse rate, and guess rate499

all changed over time on task appears inconsistent with the finding that mean yes rates500

were roughly constant. At least two potential explanations seem plausible. One possibility501

is that the effects of parameter changes on raw yes rates were simply negligible; effects that502

are large and statistically credible in a standardized latent variable, like the parameter503
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To test these two possibilities, we conducted non-preregistered analyses to estimate512

the selective effects of internal noise changes and lapse and guess rate changes on yes rates.513

In the first case, we generated posterior predictive yes rates incorporating the effects of514

block on internal noise, but holding the cutoff, lapse rate, and guess rate fixed at their515

mean values for each participant. In the second case, we generated posterior predictive516

data incorporating the effects of block on lapse and guess rates, but holding the cutoff517

placement and internal noise estimate fixed at their mean values for each participant.518

Results provide evidence for both the possibilities discussed above. As expected,519

changes in internal noise and inattention parameters had opposite effects on yes rates for520

signal events. In both cases, though, the effects of parameter changes on raw yes rates were521

small. In isolation, decreases in internal noise between blocks 1 and 3 would have increased522

hit rates by about 1 percentage point, MBlock 1 = 0.759, 95% BCI[0.749, 0.769],523

MBlock 3 = 0.769, 95% BCI[0.779, 0.780], MDiff = 0.010, 95% BCI[−0.003, 0.022], and524

decreased false alarm rates by about the same amount,525

MBlock 1 = 0.304, 95% BCI[0.299, 0.310], MBlock 3 = 0.295, 95% BCI[0.289, 0.301],526

MDiff = −0.009, 95% BCI[−0.017, −0.002]. Conversely, changes in lapse and guess rates527

would have reduced hit rates by about 1 percentage point,528

MBlock 1 = 0.770, 95% BCI[0.759, 0.780], MBlock 3 = 0.755, 95% BCI[0.744, 0.767,529

MDiff = −0.014, 95% BCI[−0.030, 0.001], and reduced false alarm rates by less than 1530

percentage point, MBlock 1 = 0.301, 95% BCI[0.295, 0.308],531

MBlock 3 = 0.297, 95% BCI[0.290, 0.304, MDiff = −0.004, 95% BCI[−0.014, 0.005].532

Altogether, results suggest that changes in internal noise and in lapse and guess rates had533

very small, and partially offsetting, effects on raw yes rates.534

Robustness Checks. As a check on the robustness of the results reported above,535

we conducted two additional, non-preregistered analyses. The first was intended to confirm536

that results were not distorted by the exclusion of data from the middle four minutes. For537

this, the analysis described above was repeated, except that the Block 1 data included all538
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trials from the first six minutes of the twelve-minute vigil and the Block 2 data included all539

trials from the second six minutes. Results again gave substantial evidence (B10 = 0.11)540

against a change in cutoff over time,strong evidence (B10 = 13.85) for an increase in lapse541

rate, and substantial evidence for a decrease in the guess rate (B10 = 5.93}. Data trended542

again toward a decrease in internal noise between blocks 1 and 2,543

MDiff = −0.49 95% BCI[−0.97, −0.00]. However, the Bayes factor for this effect was now544

indifferent between the alternative and null hypotheses (B10 = 1.08), implying that the545

changes in internal noise might have largely occurred by roughly midway through the vigil.546

As the second robustness check, we used deviance information criterion (DIC)547

(Spiegelhalter, Best, Carlin, & van der Linde, 2002) scores to compare versions of the548

model above selectively excluding effects of block on internal noise, cutoff, and lapse and549

guess rates. Consistent with the results described above, DIC values favored a model550

including effects of block on internal noise, lapse rate and guess rate, but excluding an551

effect of block on response cutoff placement.552

Full results of the robustness checks are included at the OSF site linked above.553

Response Times. Estimated group mean RT was554

MBlock 1 = 819 ms, 95% BCI[798, 839] for the first block of trials and555

MBlock 3 = 816 ms, 95% BCI[795, 836] for the third block of trials,556

MDiff = −3 ms, 95% BCI[−24, 15], B10 = 1
3199 . Data thus gave decisive evidence against a557

change in mean RT between blocks.558

Subjective Workload. Estimated group mean ratings were559

M = 23.41, 95% BCI[20.11, 26.73] for the time stress subscale of the ASWAT,560

M = 80.48, 95% BCI[77.99, 82.97] for the mental effort subscale, and561

M = 52.62, 95% BCI[49.13, 56.11] for the psychological stress subscale. Values were very562

similar to those observed in our earlier online experiments using a sensory vigilance task563

(Gyles et al., 2023) and are consistent with other evidence indicating that vigilance tasks564
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are mentally demanding (Claypoole et al., 2019; e.g., Deaton & Parasuraman, 1993; Warm,565

Dember, & Hancock, 1996).566

Discussion567

Research on cognitive vigilance has produced inconsistent results, with some studies568

reporting vigilance losses, others showing null effects, and others reporting gains over time569

on task. The current experiment tested for a cognitive decrement in a task designed to570

minimize sensory performance constraints and conform to the assumptions of signal571

detection theory. Participants performed a vigilance task that asked them to monitor for572

infrequent signal events within a stream of numeric readings. The stimulus each trial was a573

set of four three-digit numbers, sampled from either a signal or non-signal distribution.574

Participants were asked to make a keypress response on any trial in which they judged that575

the readings were drawn from the signal distribution. Signals occurred with probability of576

0.20.577

Observed data of central interest were yes rates (i.e., positive responses rates) to578

signal and non-signal events. Data were fit with a model that assumed the participant579

made their judgment each trial in either an attentive or inattentive state. In the attentive580

state, the participant selected a response by estimating the mean of the stimulus readings581

and comparing it to a decision cutoff. In the inattentive state, they selected a response by582

guessing. Four parameters were allowed to vary across blocks of trials: internal noise583

corrupting the participant’s estimates of the mean reading; cutoff placement; the584

probability of lapsing into the inattentive state; and the probability of guessing a positive585

response from inside the inattentive state.586

Model fits suggested that time on task affected processing both by increasing noise in587

the participants’ estimates of mean readings, and by increasing the lapse rate and588

decreasing the guess rate. Posterior predictive data confirmed that by itself, an increase in589

internal noise would have tended to increase hit rates and decrease false alarm rates. In590
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contrast, the observed change in lapse and guess rates would have tended to drive hit and591

false alarm rates both downward. As manifest in observable data, however, these effects592

were small, however, and partially offset one another. As as result, yes rates showed little593

change between the first and last blocks of the task.594

Results imply similarities and dissimilarities between cognitive and sensory vigilance595

decrements. One notable point of difference is the absence of a conservative shift of596

response bias in the current data. Conservative cutoff shifts have been nearly ubiquitous in597

sensory vigilance tasks (Broadbent & Gregory, 1965; A. Craig, 1987; Swets, 1977) and have598

also been reported in some cognitive vigilance tasks (Claypoole et al., 2019). In contrast,599

cutoff placement here was stable over blocks of trials. Two characteristics of the current600

experiments seem likely to have allowed participants to maintain a fixed cutoff (Kubovy,601

Rapoport, & Tversky, 1971). First, because stimuli were digital, participants could hold a602

deterministic cutoff value in verbal memory, rather than relying on an implicit and603

potentially noisy (Benjamin, Diaz, & Wee, 2009) cutoff representation in sensory memory.604

Second, because the task instructions explained that noise values were generally less than605

500 and signal values greater than 500, participants were not required to discover an606

appropriate cutoff value through learning (Erev, 1998).607

The current results also differ from those of sensory vigilance studies in indicating a608

reduction in observers’ internal noise over time. Here, participants showed a small but609

credible decrease between blocks in the random error contaminating their estimates of the610

mean reading. This result mirrors the findings of Warm et al. (1984), who reported an611

improvement in signal detection rates over time in a cognitive vigilance task. The current612

data do not tell us the cause of this effect. One possibility, consistent with Warm et al.613

(1984)’s explanation of their own findings, is that participants became more motivated over614

time, investing greater effort in the task. However, this seems inconsistent with the finding615

that estimated lapse rates rose over over time.616

A different possibility is that participants modified their task strategies over time.617
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One source of error in the participants’ judgments, for instance, might have been a618

tendency to attend to fewer than all four of the readings displayed each trial. Thus, a619

participant who began the vigil attending to a subset of the readings each trial and620

gradually expanded their attention to incorporate a larger subset would have shown a621

decrease in estimation noise over time. A third possibility is that participants simply622

learned to estimate the mean reading more accurately with practice. But under any of623

these accounts, performance was robust against increases internal noise between blocks.624

Modeling gave no evidence that on the trials in which they made stimulus-driven625

responses, participants lost sensitivity over time. Notably, this result is inconsistent with626

the resource depletion theory of vigilance losses, which holds that the gradual consumption627

of processing resources over time on task reduces the observer’s ability to discern signal628

from noise (Caggiano & Parasuraman, 2004; Parasuraman, 1979; Warm et al., 2015).629

Finally, data showed evidence for a conventional vigilance decrement in a tendency630

for lapse rates to increase over time. This effect matches results seen in sensory vigilance631

(Gyles et al., 2023; McCarley & Yamani, 2021; Román-Caballero et al., 2022) and speeded632

response (Unsworth & Robison, 2016) tasks, and suggests that lapses are a very general633

mechanism of vigilance failure, showing up across various forms of monitoring tasks. The634

mean increase in estimated lapse rates between blocks 1 and 3 was modest, roughly 3%. It635

is possible that this value underestimates the true difference between blocks, since, as636

noted above, parameter recovery exercises indicated a tendency for the model to637

underestimates changes lapse rate. At best, though, the increase in lapse rate from the first638

to last block was too small to manifest as a detectable change in yes rates.639

The current data do not reveal the nature of the participants’ occasional lapses, for640

example, whether they reflected external distraction (Drody et al., 2023; Robison &641

Unsworth, 2015; Unsworth & McMillan, 2014), microsleeps (Buckley et al., 2016), or642

mind-wandering (McVay & Kane, 2009, 2012) or other breakdowns of task-set maintenance643

(Ariga & Lleras, 2011). However, given that off-task thoughts are common (McVay &644
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Kane, 2009) and increase with time on task (Kane et al., 2007; Zanesco et al., 2024), they645

seem very likely to be at least one source of the lapses observed here. Interestingly, the646

average estimated lapse rate here, collapsed across blocks, was roughly 6%. This value647

closely matches the rate at which participants in an early study reported themselves as648

being off-task in response to occasional thought probes (6.09%), and is similar to the rate649

at which a Markov chain model using probe response and choice RT data estimated those650

participants to be in a discrete state of full task disengagement (8.40%) (Zanesco et al.,651

2020). The correspondence between these values hints that the attentional lapses inferred652

from the current data might reflect the same state of mental disengagement identified by653

participants’ self-reports. The current data do not indicate whether this potential increase654

in off-task thoughts was intentional, or was the result of attention control failures (Kane &655

McVay, 2012; McVay & Kane, 2009; Thomson et al., 2015).656

Additional research will be necessary to test whether the pattern of effects seen here657

holds over longer vigils or variations in signal rate. Of note, the effects of time on task in658

the current data were strikingly smaller than those seen in some earlier work. In the study659

reported by Claypoole et al. (2019), for instance, hit rates dropped by roughly 35660

percentage points from the first 6-minute block of trials to the second. In the experiments661

reported by Warm et al. (1984), hit rates in several variants of the task under study fell by662

10 percentage points or more between the first and second 20-minute blocks on task. In663

contrast, lapse rates in the current data fell by only 2 percentage points over the course of664

a 12-minute vigil. Although all of these experiments used digits as stimuli, and required665

participants to perform mental arithmetic operations, they differed in multiple other ways.666

Participants in the current study were asked to estimate the mean of a set of 3-digit667

numbers, whereas those in Claypoole et al. (2019) and Warm et al. (1984) were asked to668

find the sum and difference of pairs of single digits. Maybe more notably, signal rate in the669

current task (20%) was substantially higher than in either Warm et al. (1984) (10% or670

lower) or Claypoole et al. (2019) (2% or lower). These comparisons suggest that the671
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magnitude of the cognitive vigilance decrement might be highly sensitive to task demands,672

and that increases in lapse rate might not be the sole mechanism of cognitive vigilance loss.673
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