

¹ Computational Modeling Reveals Minimal Vigilance Changes in a Cognitive Monitoring
² Task

³ Shannon Gyles¹, Yusuke Yamani², & Jason S. McCarley¹

⁴ ¹ School of Psychological Science, Oregon State University

⁵ ² Department of Psychology, Old Dominion University

Authors' Accepted Manuscript

6

Author Note

7 This is the author's version of the manuscript accepted for publication in
8 *Computational Brain & Behavior*. This version has not undergone final editing,
9 copyediting, typesetting, or review of the resulting proof by the publisher. The final
10 authenticated version is available at: <https://doi.org/10.1007/s42113-024-00233-5>.

11 Shannon Gyles <https://orcid.org/0000-0001-5079-6033>

12 Yusuke Yamani <https://orcid.org/0000-0001-8990-0010>

13 Jason S. McCarley <https://orcid.org/0000-0002-8824-7491>

14 This work was supported by a grant from the National Science Foundation (2240256)
15 to Y.Y. and J.S.M. and a grant from the Human Factors and Ergonomics Society
16 Perception and Performance Technical Group to S.G.

17 The authors have no relevant financial or non-financial interests to disclose.

18 The authors made the following contributions. Shannon Gyles: Conceptualization,
19 Investigation, Software, Formal Analysis, Methodology, Writing - Original Draft
20 Preparation, Writing - Review & Editing, Funding Acquisition; Yusuke Yamani:
21 Conceptualization, Writing - Review & Editing, Funding Acquisition; Jason S. McCarley:
22 Conceptualization, Investigation, Formal Analysis, Methodology, Writing - Original Draft
23 Preparation, Writing - Review & Editing, Funding Acquisition.

24 Correspondence concerning this article should be addressed to Jason S. McCarley,
25 2950 SW Jefferson Way, Corvallis, OR, 97331. E-mail: jason.mccarley@oregonstate.edu

26

Abstract

27 The ability to monitor for rare critical events generally deteriorates over time on task, an
28 effect termed the *vigilance decrement*. Although the decrement has been replicated many
29 times, it has generally been studied with sensory discrimination tasks. Research using
30 cognitive vigilance tasks, which require judgments of symbolic stimulus characteristics, has
31 produced less consistent results. To test the robustness and nature of the cognitive
32 vigilance decrement, the current study developed a computational performance model of a
33 novel monitoring task. Participants performed a monitoring task that required them to
34 estimate the central tendency of a set of three-digit readings each trial. For analysis, data
35 from the first and last 4-min blocks of trials were fit with a model based on signal detection
36 theory. The model assumed that participants could either perform the task in an attentive
37 state in which decisions were stimulus-driven, or could lapse into an inattentive state in
38 which decisions were guessed. Parameter estimates indicated an increase in mental lapse
39 rate and decrease in positive guess rate over time, coupled with a decrease in internal
40 processing noise. The effects of these latent changes on observable response rates, however,
41 were modest and partially offsetting. Results suggest that mental lapses and a tendency to
42 negative guesses are a common causes of vigilance loss across sensory and cognitive tasks,
43 but may have small effects on observed responses.

44 *Keywords:* vigilance decrement, sustained attention, signal detection

45 Word count: 6206

46 Computational Modeling Reveals Minimal Vigilance Changes in a Cognitive Monitoring
47 Task

48 Vigilance tasks like quality control and security surveillance require observers to
49 monitor for infrequent signals over extended periods. A common finding is that detection
50 falters over time on task (Mackworth, 1948), sometimes beginning within 5 minutes of task
51 onset (Nuechterlein, Parasuraman, & Jiang, 1983). This pattern, the *vigilance decrement*
52 (Proctor & Vu, 2023), has been replicated in hundreds of laboratory studies over multiple
53 decades (See, Howe, Warm, & Dember, 1995; Warm, Finomore, Vidulich, & Funke, 2015),
54 and has been observed in naturalistic tasks (Molloy & Parasuraman, 1996;
55 Reinerman-Jones, Matthews, & Mercado, 2016).

56 Although the effect is familiar and well-studied, the psychological mechanisms
57 underlying the vigilance decrement remain the subject of debate. Vigilance is commonly
58 studied using yes-no detection tasks. In a task of this form, the observer is presented each
59 trial with a stimulus from one of two categories, typically designated noise versus signal,
60 and is asked to report whether a signal is present (yes) or absent (no). Data can be
61 evaluated using signal detection theory (SDT: Green & Swets, 1966; Hautus, Macmillan, &
62 Creelman, 2022). Under SDT, the observer encodes the evidence for the presence of a
63 signal as a unidimensional decision variable, X . Variance in the decision variable is
64 determined by the combination of external noise, variability that is inherent in the stimulus
65 itself, and internal noise, variability that arises during the observer's sensory encoding and
66 information processing. Confusability between signal and non-signal events exists when the
67 distributions of X corresponding to the two categories overlap. Sensitivity, the observer's
68 ability to distinguish signal from non-signal events, therefore increases as overlap between
69 the distributions decreases. The observer transforms the decision variable to a yes or no
70 judgment by comparing it to a response cutoff, rendering a positive judgment when X
71 exceeds the cutoff value. Placement of the cutoff determines the observer's response bias; a
72 low cutoff is *liberal*, favoring positive responses, and a high cutoff is *conservative*, favoring

73 negative responses. A cutoff that favors neither positive or negative responses is *unbiased*.

74 Assuming that task demands and stimulus characteristics are held constant, detection
75 rates in a vigilance task might drop over time for either of two reasons under SDT. One
76 possibility is an increase in internal noise, reducing the observer's sensitivity. The second is
77 a conservative shift in response cutoff. Data suggest that, in fact, both mechanisms can
78 contribute to the vigilance decrement, but tend to do so unequally. Cutoff shifts are
79 common (e.g., Broadbent & Gregory, 1963, 1965; A. Craig, 1987; Parasuraman, 1979;
80 Swets, 1977), and presumably occur as the observer adapts to the low frequency of signal
81 events (Colquhoun & Baddeley, 1967; A. Craig, 1978). Sensitivity losses are more selective,
82 and in particular, are believed to obtain when the event rate of the task (i.e., number of
83 trials per minute) is high and information processing demands are heavy (Nuechterlein et
84 al., 1983; Parasuraman, 1979; Parasuraman & Mouloua, 1987; See et al., 1995).

85 Theoretical accounts attribute sensitivity losses to gradual reductions in the attention
86 allocated to the vigilance task. *Resource depletion theory* proposes that maintaining
87 vigilance is mentally taxing (Grier et al., 2003; Warm, Parasuraman, & Matthews, 2008)
88 and exhausts "reservoirs of energy" (Warm et al., 2015, p. 261) that determine the
89 observers' information processing capacity (Caggiano & Parasuraman, 2004; Neigel et al.,
90 2020; Schumann et al., 2022; Warm et al., 2015). *Resource control theory* argues that
91 processing capacity remains constant, but that executive control failures or strategic
92 choices let resources drift to task-unrelated thoughts (Thomson, Besner, & Smilek, 2015).
93 Under either model, resources dedicated to the vigilance task dwindle over time, resulting
94 in poorer sensitivity. However, generative modeling suggests that even when they occur,
95 sensitivity decrements might produce relatively small declines in raw detection rates
96 (Gyles, McCarley, & Yamani, 2023; McCarley & Yamani, 2021).

97 Mechanisms outside standard signal detection theory can also contribute to vigilance
98 failures. At times, attention may lapse, disengaging entirely from the vigilance task
99 (Esterman & Rothlein, 2019; Gyles et al., 2023; McCarley & Yamani, 2021). Lapses might

100 result from any of multiple causes (Unsworth & Robison, 2016), including external
101 distractions (Drody, Pereira, & Smilek, 2023; Robison & Unsworth, 2015; Unsworth &
102 McMillan, 2014), microsleeps (Buckley, Helton, Innes, Dalrymple-Alford, & Jones, 2016),
103 an intentional or unintentional (Seli, Risko, & Smilek, 2016; Thomson et al., 2015) drift of
104 processing to off-task thoughts or stimuli (McVay & Kane, 2009, 2012), or a breakdown of
105 goal representation (Ariga & Lleras, 2011; Manly, Robertson, Galloway, & Hawkins, 1999).
106 Lapses become more common with longer time on task and are associated with
107 performance losses (Cunningham, Scerbo, & Freeman, 2000; Krimsky, Forster, Llabre, &
108 Jha, 2017; McVay & Kane, 2009, 2012; Unsworth & Robison, 2016; Zanesco, Denkova, &
109 Jha, 2024), and thus contribute to the vigilance decrement (Esterman & Rothlein, 2019;
110 Gyles et al., 2023; McCarley & Yamani, 2021) .

111 Lapses also introduce a further mechanism of declining response rates over the course
112 of a vigil. Whatever its cause, the effect of an attention lapse within a signal detection task
113 is that the participants' response is selected independent of the stimulus (Kingdom &
114 Prins, 2016). Responses during lapses can therefore be modeled as guesses (Kuss, Jäkel, &
115 Wichmann, 2005; Lee, 2018). A decrease in the probability of guessing a positive response
116 is then an additional source of vigilance loss; as the participant adapts to the low signal
117 rate, the positive guess rate declines (Gyles et al., 2023).

118 Unfortunately, attention lapses and guesses complicate efforts to distinguish
119 sensitivity from bias with yes-no response data. The most common measure of sensitivity,
120 d' , assumes that the values of X associated with signal and noise events are normal with
121 equal variance. Guessed responses violate this parametric assumption. Although it is often
122 described as non-parametric, an alternative measure of yes-no sensitivity, A' , also
123 incorporates parametric assumptions that are violated by response guessing (Macmillan &
124 Creelman, 1996; Pastore, Crawley, Berens, & Skelly, 2003). More generally, yes-no data
125 provide only two degrees of freedom, hit and false alarm rate, too few to identify a model
126 with sensitivity, response bias, lapse rate, and cutoff rate as parameters.

127 As an alternative method to isolate sensitivity losses, bias changes, lapses, and
128 guesses, McCarley and Yamani (2021) proposed the analysis of psychometric functions for
129 vigilance tasks. The psychometric function for a detection task presents the positive
130 response rate as a function of stimulus intensity, and is typically an S-shaped curve. The
131 form and position of the function reflect the four mechanisms of vigilance decrement
132 discussed above. Placement of the response cutoff, specifically, determines the horizontal
133 position of the function, sensitivity determines its steepness, and lapse and guess rates
134 determine its upper and lower asymptotes. Changes in the psychometric function over time
135 on task can therefore reveal mechanisms of vigilance loss. Studies using psychometric
136 curves to analyze vigilance data have suggested that sensitivity losses are possible
137 (McCarley & Yamani, 2021), but that changes of response cutoff, lapse rate, and guess rate
138 are more common (Gyles et al., 2023; McCarley & Yamani, 2021; Román-Caballero,
139 Martín-Arévalo, & Lupiáñez, 2022). Conservative cutoff shifts appear to account for the
140 majority of the change in raw detection rates over time on task.

141 **Sensory vs. Cognitive Vigilance**

142 Much of what's known about the vigilance decrement has come from studies of
143 sensory detection and discrimination. In tasks of this type, noise and signal conditions are
144 distinguished by differences in physical stimulus properties, for example, shape (e.g.,
145 Helton & Warm, 2008; Nuechterlein et al., 1983), brightness (Broadbent & Gregory, 1965),
146 spatial alignment (Dillard et al., 2019; Hitchcock, Dember, Warm, Moroney, & See, 1999)
147 or size (Colquhoun & Baddeley, 1964; e.g., Deaton & Parasuraman, 1993; McCarley &
148 Yamani, 2021). These can be distinguished from cognitive discrimination tasks, in which
149 signal and noise stimuli are defined by symbolic properties (See et al., 1995). Given pairs of
150 digits as stimuli, for instance, the signal in a cognitive discrimination task might be defined
151 as a trial in which one digit is even and the other is odd (Deaton & Parasuraman, 1993) or
152 a trial in which the difference between values is between -1 and +1 (Claypoole, Dever,

153 Denues, & Szalma, 2019).

154 Comparisons between sensory and cognitive discrimination tasks are potentially
155 valuable for theories of the vigilance decrement. A finding that the vigilance decrement was
156 similar for sensory and cognitive tasks, for instance, would imply that vigilance failures
157 occurred at a post-sensory, supramodal stage of information processing (cf., Greenlee,
158 DeLucia, & Lui, 2022; Shaw et al., 2009). A finding that the effect was small or absent for
159 cognitive tasks would implicate sensory or perceptual processing limitations as a major
160 source of the conventional vigilance decrement.

161 Studies of cognitive vigilance, though, have produced wildly inconsistent effects.

162 Experiments by Warm and colleagues (1984), using pairs of digits as stimuli, found a drop
163 in detection rates over time when signal events were defined by a simple rule (digits differ
164 by no more than ± 1), but a gradual increase in detection rates—that is, a vigilance
165 increment—when signals were defined by a more complex rule (digits differ by no more than
166 ± 1 and have a sum between 4 and 14). Other experiments failed to recreate the vigilance
167 increment under conditions of high task complexity (Loeb, Noonan, Ash, & Holding, 1987),
168 however, and a meta-analysis suggested that the effect might obtain only under very select
169 task conditions (See et al., 1995). Several studies have reported null or modest effects of
170 time on task in cognitive monitoring tasks (Deaton & Parasuraman, 1993; Koelega,
171 Brinkman, Hendriks, & Verbaten, 1989; Loeb et al., 1987), and others have reported
172 conventional vigilance decrements, including sensitivity losses (Claypoole et al., 2019;
173 Claypoole & Szalma, 2018b, 2018a; Matthews, Davies, & Holley, 1993; Mouloua &
174 Parasuraman, 1995) and apparent cutoff shifts (Matthews, Warm, Reinerman-Jones,
175 Washburn, & Tripp, 2010).

176 Methodological considerations seem likely to explain some of these inconsistencies. In
177 at least some studies, the tasks used to test cognitive vigilance might not have been
178 well-suited for analysis using SDT. SDT presumes that states of knowledge are inherently
179 continuous, and that errors arise from external and internal noise in the evidence

representing alternative states of the world (Hautus et al., 2022; Wixted, 2020). Although this model will probably hold for sensory vigilance tasks, it might be less appropriate to some of the tasks used in studies of cognitive vigilance. For instance, consider the task of judging whether the difference between two one-digit numbers is less than or equal to one (Claypoole et al., 2019; Claypoole & Szalma, 2018b, 2018a; Warm et al., 1984), or whether one digit in a pair is even and the other is odd (Deaton & Parasuraman, 1993). In these cases, signal and noise categories are discrete, and assuming that stimuli are not perceptually degraded and processing is not terminated prematurely, encoding or decisional noise seems unlikely to cause confusability. Errors more probably reflect guesses or response blunders, violating the parametric assumptions of SDT. In cases like this, apparent sensitivity losses might be spurious.

A related concern is that performance in some tasks classified as cognitive might have actually been limited by sensory or perceptual processes. For example, a study by Mouloua and Parasuraman (1995) asked participants to monitor for occasional lowercase letters in a temporal stream of uppercase letters. Although the task was framed as a cognitive discrimination, vigilance losses were more pronounced when the task-relevant letters were surrounded by distractors, and when they were presented with spatial uncertainty in the visual periphery, than when they appeared alone in central vision. The vigilance decrement was thus largest when discriminability is likely to have been degraded by visual crowding and lateral masking (Bouma, 1970; Coates, Levi, Touch, & Sabesan, 2018; Loomis, 1978; Strasburger, Rentschler, & Juttner, 2011), implying that performance losses might have been sensory, not cognitive. Another experiment (Matthews et al., 1993) asked participants to identify targets in a stream of single digits presented in the central visual field, but degraded the stimuli with pixelated noise. Again, it seems possible that performance was limited more by sensory stimulus quality than by symbolic processing demands.

The goal of the current study was to test for vigilance effects in a cognitive monitoring task, isolating changes of response bias, sensitivity, mental lapse rate, and guess

207 rate, with a task that meets the assumptions of signal detection analysis and is not limited
208 by sensory or perceptual noise. To analyze performance, we develop a cognitive model
209 motivated by the findings of psychometric function analyses reported in earlier studies
210 (Gyles et al., 2023; McCarley & Yamani, 2021; Román-Caballero et al., 2022).

211 Modeling a Cognitive Vigilance Task

212 As described above, signal detection analysis of cognitive vigilance requires a task
213 that meets at least two characteristics. First, discrete states of the world do not map onto
214 discrete mental states, but are represented by variations in an internal decision variable
215 that is continuous and contaminated by random error (Hautus et al., 2022; Wixted, 2020).
216 Second, performance is not limited by sensory information quality, but by the quality of
217 post-sensory processing. Toward that end, we adapted a numeric signal detection task
218 (Healy & Kubovy, 1981) from earlier studies (Duncan-Reid & McCarley, 2021; Tikhomirov,
219 Bartlett, Duncan-Reid, & McCarley, 2023) for use in a vigilance context. As shown in
220 Figure 1, the stimulus each trial was a column of four three-digit readings sampled from
221 one of two normal distributions, one that represented noise events and the other that
222 represented signal events. Source distributions had a common standard deviation but
223 differed in means. The participant's task each trial was to make a key press response if
224 they judged that the displayed readings were drawn from the signal distribution. Accurate
225 task performance thus required participants to mentally estimate the central tendency of
226 the stimulus readings displayed each trial. Signals occurred randomly, with a probability of
227 0.20 each trial. Trials occurred at a pace of 40 per second, a rate that has been reported to
228 be high enough to engender losses of sensitivity over time (Parasuraman, 1979).

229 For analysis, data were fit with a cognitive model built on SDT. As shown in Panel A
230 of Figure 2, the model assumed that on some trials the participant rendered their decision
231 in an attentive state, and that on the remaining trials, the participant lapsed into an
232 inattentive state. The participant's state was determined randomly each trial, with the

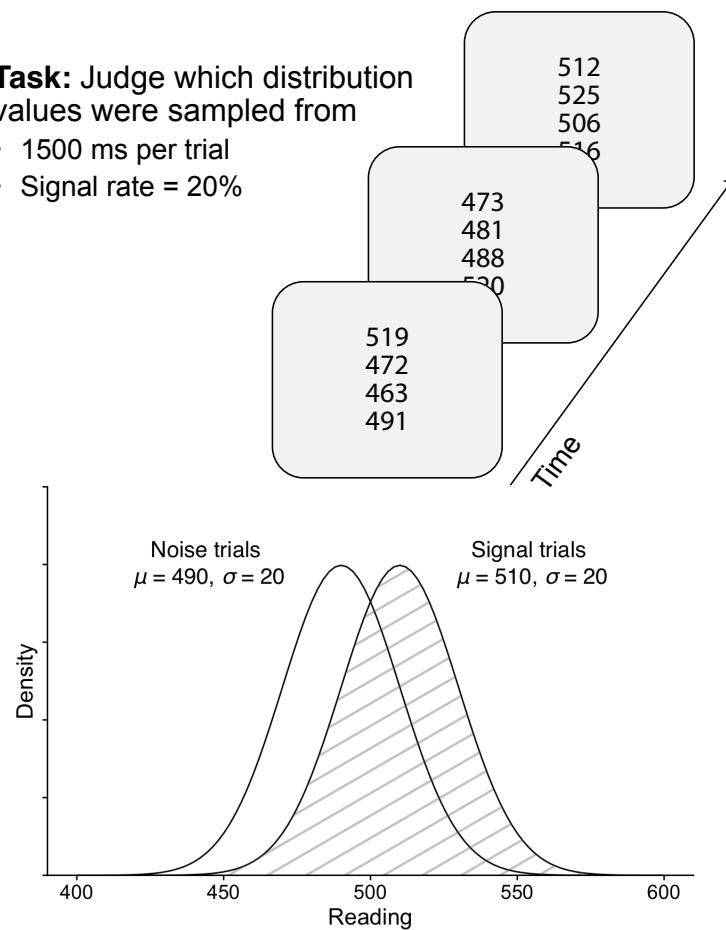


Figure 1. Schematic illustration of the stimuli and task.

233 *lapse rate* being the probability of an inattentive state. The assumption of discrete
 234 attentive and inattentive states is consistent with evidence from neural and
 235 behavioral-cognitive modeling (Hawkins, Mittner, Forstmann, & Heathcote, 2019; Mittner
 236 et al., 2014; Yamashita et al., 2021; Zanesco, Denkova, & Jha, 2021; Zeigenfuse & Lee,
 237 2010) that processing on attention-demanding decision tasks can be modeled as a binary
 238 mixture distribution of identifiable latent states: a task-focused state generating efficient,
 239 stimulus-driven responses and an off-task state producing inefficient or contaminant
 240 responses. These binary attentive and inattentive states might themselves reflect a variety
 241 of underlying processing modes. The attentive state, for example, might be dissected into

242 substates reflecting gradations of attentional focus (Zanesco, Denkova, Witkin, & Jha,
243 2020). Similarly, the inattentive state might be taken to subsume different forms of off-task
244 thought (Unsworth & McMillan, 2014; Unsworth & Robison, 2016). To a reasonable
245 approximation, though, attentive and inattentive states can be treated as binary.

246 Here, on attentive trials, the participant was assumed to make a stimulus-driven
247 response using a conventional signal detection strategy, as illustrated in Panel B of Figure
248 2. Consistent with our earlier work (Duncan-Reid & McCarley, 2021; Tikhomirov et al.,
249 2023), the model assumed that the participant used the estimated mean value of the
250 displayed readings as a decision variable, but that the participant's estimate of the mean
251 reading was contaminated by random error (Brezis, Bronfman, & Usher, 2015, 2018; cf.,
252 Brusovansky, Glickman, & Usher, 2018) modeled as zero-centered Gaussian noise. The
253 participant rendered a judgment by comparing the estimated mean to a response cutoff.
254 On the inattentive trials, the participant rendered a judgment by guessing, responding yes
255 with a probability termed the *guess rate*.

256 Under the model, performance on the attentive trials was thus limited by the
257 combination of variability in the stimulus source distributions and error in the participants'
258 estimation of the mean readings. Performance on inattentive trials was determined by the
259 guess rate; given the low frequency of signal events, a strategy of always guessing no would
260 have maximized response accuracy. Attentive and inattentive trials were distinguished by
261 the pattern of errors they produced. On attentive trials, errors would have been most
262 common when the mean reading was very near the observer's response cutoff, and would
263 have been rare when the mean reading was more extreme in either direction. On
264 inattentive trials, on which responses were guessed, errors would have been equally
265 common across all values of the stimulus readings.

266 To identify potential vigilance effects, lapse rate, estimation error, cutoff placement,
267 and guess rate were allowed to vary between blocks of trials. Parameters were estimated
268 using a Bayesian hierarchical procedure (Kruschke, 2015; Lee & Wagenmakers, 2013).

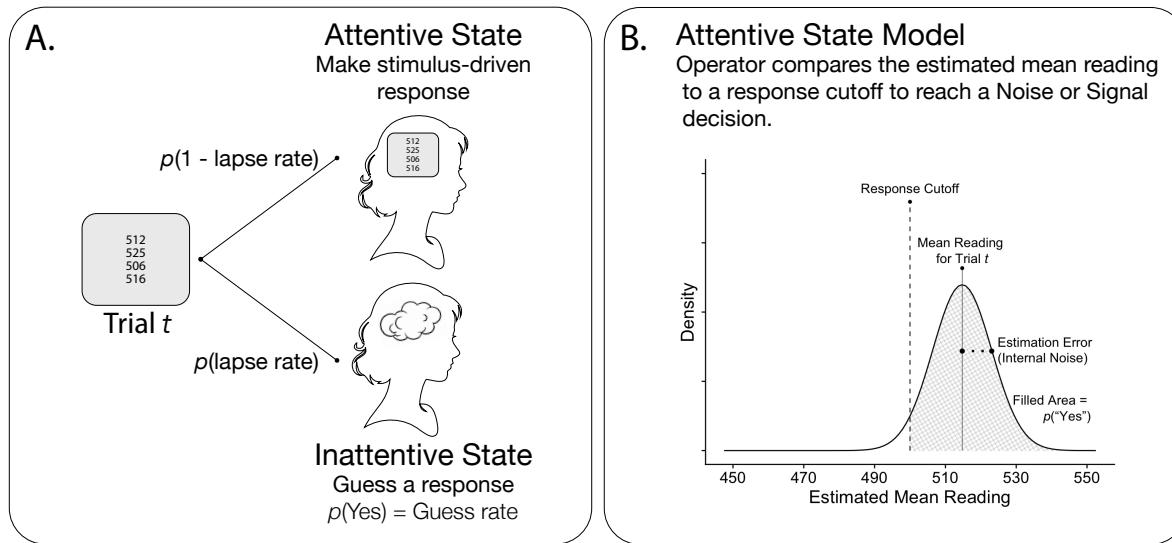


Figure 2. Schematic illustration of the model fit to the data.

269

Methods

270 We report how we determined our sample size, all data exclusions, all manipulations,
 271 and all measures in the study. The methods for this study were preregistered.
 272 Preregistration, data, and analytic code are available at
 273 https://osf.io/eytbz/?view_only=8dce3ec5d659450db3a5694435d21c8b. Deviations from
 274 the preregistered plan are noted below.

275 **Participants**

276 Two hundred participants were recruited from the online research platform Prolific
 277 (<https://prolific.co/>). Sample size was determined by a preregistered adaptive stopping
 278 rule. Under the stopping rule, we recruited an initial 125 participants then continued
 279 recruitment in increments of 25 until either, 1) the Bayes factors for the effects of block on
 280 response cutoff, estimation error, and lapse rate indicated an evidence ratio of at least 1:10
 281 in either direction (i.e., in favor of or against the null), or, 2) sample size reached 200. Data

282 collection ceased at 200 participants.

283 All participants gave informed consent and reported that they were fluent in English
284 and had normal color vision and normal or corrected-to-normal visual acuity. Data
285 exclusions described below left 180 participants for analysis (mean age = 22.58 years,
286 gender = 73 females, 100 males, 4 non-binary, 3 not specified). Participants were
287 reimbursed USD 5.00 for an experimental session lasting approximately 25 minutes.

288 **Apparatus**

289 Participants performed the experimental task online. The task was controlled by
290 software written in PsychoPy (Peirce et al., 2019) and hosted on Pavlovia
291 (<https://pavlovia.org>). Participation was restricted to participants using either laptop or
292 desktop computers, not smartphones or tablet computers.

293 **Procedure**

294 Participants performed a numeric signal detection task after Healy and Kubovy
295 (1978). The stimulus each trial was a set of four three-digit numeric readings, presented in
296 a column in the center of the display. Readings were displayed in Arial font with a height
297 4% of the participant's display size.

298 On noise trials, the stimulus readings were sampled independently from a
299 pseudorandom Gaussian distribution with $\mu = 490$ and $\sigma = 20$. On signal trials, they were
300 sampled independently from a pseudorandom Gaussian distribution with $\mu = 510$ and
301 $\sigma = 20$. Event type, noise or signal, was determined pseudorandomly each trial, with
302 $p(\text{signal}) = 0.20$. We note that this signal rate (20%) is higher than in many traditional
303 vigilance experiments, but matches that of our earlier studies of sensory vigilance (Gyles et
304 al., 2023), which produced robust vigilance decrements. The participants' optimal strategy
305 was to use the mean of the four readings each trial as the decision variable (Sorkin, Mabry,

306 Weldon, & Elvers, 1991). Basing judgments on a single reading allowed a maximum
307 sensitivity of $d' = 1.0$. Basing judgments on the mean of the four readings allowed a
308 maximum sensitivity of $d' = 2.0$.

309 Experimental trials occurred at a forced pace of 1 every 1500 ms, producing an event
310 rate of 40 trials per minute. The stimulus display appeared at the start of the trial and
311 remained visible until the start of the next trial, giving an exposure duration of 1500 ms
312 and an interstimulus interval of 0 ms. Participants were asked to press the space bar if
313 they believed the readings on a given trial represented a signal state, and to withhold their
314 response otherwise. A response was attributed to a given trial if it occurred any time
315 between stimulus onset for that trial and stimulus onset for the subsequent trial.
316 Participants did not receive post-trial feedback to indicate whether their judgments were
317 correct or incorrect.

318 Written instructions were presented onscreen after the participant had indicated their
319 consent to take part in the experiment. The instructions framed the task as cybersecurity
320 monitoring. Participants were told, “For this task, imagine that you are a cybersecurity
321 officer monitoring for malicious activity on your network. The system will provide a
322 snapshot of network activity every 1.5 seconds. On every update, you will see four numbers,
323 and each number represents the amount of activity on a single server. On average, normal
324 network activity produces values below 500, and malicious activity produces values above
325 500. However, network activity is highly variable, meaning that there is no precise cut-off
326 for detecting malicious activity. Normal activity will sometimes produce values above 500
327 and malicious activity will sometimes produce values below 500. For each trial, your job is
328 to evaluate the set of four numbers and judge whether, collectively, they represent normal
329 or malicious activity. If you think the set of numbers represents normal activity, you don’t
330 need to make a response. If you think the set of numbers represents malicious activity, you
331 should press the space bar to report it. You will have 1.5 seconds to view the display and
332 make a response before the system updates and new numbers appear.”

333 After reading the instructions and indicating they were ready to proceed, the
334 participant completed a practice vigil of 90 trials followed by a 12-minute experimental
335 vigil. The vigil was limited to 12 minutes, a duration briefer than in many studies of
336 sustained monitoring, in order to reduce the risk that online participants would withdraw
337 before completing the task. Past work, including studies in our lab (Gyles et al., 2023), has
338 found that 12 minutes on task is enough time to produce a detectable vigilance decrement
339 in monitoring tasks (C. M. Craig & Klein, 2019; Neigel, Dever, Claypoole, & Szalma, 2019;
340 Temple et al., 2000). The practice vigil was the same as the experimental vigil except that
341 signal and noise events were equally probable, the first 25 trials occurred at a pace of 20
342 per minute (3000 ms/trial), and response errors were followed by a 1-second feedback
343 message reading either, “Oops! It was not a target.”, or “Oops! You missed a target.”, as
344 appropriate. Error-free performance resulted in a practice vigil of 2 minutes 15 seconds and
345 each error added 1 second. Instructions in between the practice vigil and experimental vigil
346 informed the participants, “You will now perform the task for a longer block and you will
347 no longer receive feedback. Targets will also appear less frequently than they did during
348 the practice.”

349 To avoid potential end-spurt effects (Bergum & Lehr, 1963), participants were not
350 told the exact length of the experimental vigil, but were aware that the entire session was
351 expected to last less than 30 minutes.

352 At the end of the vigil, participants completed a computerized A-SWAT mental
353 workload scale (Luximon & Goonetilleke, 2001). The A-SWAT consists of three subscales:
354 time load, mental effort, and psychological stress. The subscales were presented one at a
355 time. Participants made their rating of each subscale by clicking a horizontal line anchored
356 with text descriptions of the subscale endpoints. Ratings were scored on a scale of 0 to 100.
357 Mental workload data were collected to characterize the task for comparison to earlier
358 studies.

359 **Data analysis**

360 Data were analyzed using R (Version 4.4.1; R Core Team, 2023) and the R-packages
361 *cowplot* (Version 1.1.3; Wilke, 2024), *dplyr* (Version 1.1.4; Wickham, François, Henry,
362 Müller, & Vaughan, 2023), *forcats* (Version 1.0.0; Wickham, 2023), *ggplot2* (Version 3.5.1;
363 Wickham, 2016), *jagsUI* (Version 1.6.2; Kellner, 2021), *magrittr* (Version 2.0.3; Bache &
364 Wickham, 2022), *papaja* (Version 0.1.3; Aust & Barth, 2022), *purrr* (Version 1.0.2;
365 Wickham & Henry, 2023), *tidybayes* (Version 3.0.7; Kay, 2023), *tidytr* (Version 1.3.1;
366 Wickham, Vaughan, & Girlich, 2023), *tidyverse* (Version 2.0.0; Wickham et al., 2019) and
367 *tinylabels* (Version 0.2.4; Barth, 2023).

368 **Signal Detection.** Trials from the 12-minute experimental block were grouped into
369 three consecutive, non-overlapping blocks of four minutes each. As in our earlier studies
370 (Gyles et al., 2023; McCarley & Yamani, 2021), a duration of four minutes was chosen in
371 order to minimize the risk that substantial vigilance losses might occur within the first
372 block of trials; past work has shown that the vigilance decrement can begin after less than
373 five minutes on task (Nuechterlein et al., 1983). A preliminary screening was conducted to
374 identify participants who might have misunderstood or failed to follow task instructions.
375 For this, binary responses were converted to the sensitivity measure d' using the log-linear
376 correction (Hautus, 1995), and data were excluded from participants who failed to achieve
377 a preregistered minimum sensitivity of $d' = 0.25$ in any of the three experimental blocks.
378 Twenty participants were excluded on the basis of this screening.

379 For the main analysis, response choice data were fit with a hierarchical Bayesian
380 model based on SDT and earlier analyses of sensory vigilance data (Gyles et al., 2023;
381 McCarley & Yamani, 2021; Román-Caballero et al., 2022). Analysis was restricted to the
382 first and last four-minute blocks of trials, allowing us to test for differences between blocks
383 using the Savage-Dickey ratio (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010), as
384 discussed below.

385 The model assumed that the participant performed the detection task each trial in
 386 one of two states, attentive or inattentive, where the inattentive state reflected an
 387 attentional lapse. On attentive trials, the participant made a stimulus-driven choice by
 388 estimating the mean of the displayed stimulus readings and comparing it to a response
 389 cutoff. The participant's estimated mean reading for a given trial was equal to the true
 390 mean contaminated by zero-centered Gaussian noise (Brusovansky et al., 2018; Tikhomirov
 391 et al., 2023) of standard deviation τ . Sensitivity, the participant's ability to correctly
 392 distinguish signal from noise events, therefore decreased as τ increased. The participant
 393 classified the stimulus as noise or signal by comparing the estimated mean to a cutoff, κ ,
 394 rendering a positive judgment if the decision variable exceeded the cutoff.

395 In the inattentive state, the participant chose a response by guessing, responding
 396 "yes" with probability π independent of the displayed stimulus readings. The participant's
 397 state each trial, attentive or inattentive, was determined randomly each trial. The
 398 probability of being in an inattentive state, or lapse rate, was ϕ . Internal noise τ , cutoff κ ,
 399 lapse rate ϕ , and guess rate π were all allowed to vary between participants and between
 400 experimental blocks. The probability of participant i in block j performing trial k
 401 responding "yes" was thus,

$$p_{i,j,k}(\text{"yes"}) = (1 - \phi_{i,j}) \times \Phi\left(\frac{R_{i,j,k} - \kappa_{i,j}}{\tau_{i,j}}\right) + \phi_{i,j} \times \pi_{i,j},$$

402 where $R_{i,j,k}$ represents the mean of that trial's displayed stimulus readings and Φ
 403 represents the standard normal transformation.

404 Note that the inclusion of the guess rate as a free parameter is a deviation from the
 405 pre-registered analysis plan, which assumed that the participants never responded in the
 406 inattentive state. Guess rate was added as a free parameter in light of results obtained
 407 following the preregistration (Gyles et al., 2023; Román-Caballero et al., 2022). Fixing π to
 408 a value of 0 did not substantially change the patterns of effect in other model parameters
 409 described below.

410 Values of $\tau_{i,j}$, $\kappa_{i,j}$, $\phi_{i,j}$, and $\pi_{i,j}$ reflected additive effects of the subject mean

411 parameter values and the subject-specific effects of block. To ensure that values of the
 412 lapse rate ϕ and guess rate π remained between 0 and 1, the model placed priors on
 413 probit-transformed proportions rather than on raw values (Rouder & Lu, 2005). Likewise,
 414 to ensure positive values for the standard deviation of estimation error, the model placed
 415 priors on the log of τ^2 (Pratte & Rouder, 2011) rather than on τ directly. Thus,

$$\log \tau_{i,j}^2 = \begin{cases} \log \tau_i^2 - 0.5 \times \Delta_i^{\log \tau^2}, & j = \text{first}, \\ \log \tau_i^2 + 0.5 \times \Delta_i^{\log \tau^2}, & j = \text{last}, \end{cases}$$

$$\kappa_{i,j} = \begin{cases} \kappa_i - 0.5 \times \Delta_i^\kappa, & j = \text{first}, \\ \kappa_i + 0.5 \times \Delta_i^\kappa, & j = \text{last}, \end{cases}$$

416

$$\Phi(\phi_{i,j}) = \begin{cases} \Phi(\phi_i) - 0.5 \times \Delta_i^{\Phi(\phi)}, & j = \text{first}, \\ \Phi(\phi_i) + 0.5 \times \Delta_i^{\Phi(\phi)}, & j = \text{last}, \end{cases}$$

417 and,

$$\Phi(\pi_{i,j}) = \begin{cases} \Phi(\pi_i) - 0.5 \times \Delta_i^{\Phi(\pi)}, & j = \text{first}, \\ \Phi(\pi_i) + 0.5 \times \Delta_i^{\Phi(\pi)}, & j = \text{last}. \end{cases}$$

418 Here, $\log \tau_i^2$, κ_i , $\Phi(\phi_i)$, and $\Phi(\pi_i)$ are subject-level mean parameter values, and $\Delta_i^{\log \tau^2}$, Δ_i^κ ,
 419 $\Delta_i^{\Phi(\phi)}$, and $\Delta_i^{\Phi(\pi)}$ are subject-level effects of block.

420 To maintain consistency and facilitate comparisons across parameters, the model
 421 placed unit normal priors on the group-level means of the standardized mean difference
 422 between blocks (Lee & Wagenmakers, 2013), rather than placing priors on the raw effects
 423 of block. The standard deviation of the difference between blocks was assigned a uniform
 424 distribution between 0 and 100. For example, for the parameter κ , $\Delta_i^\kappa = \delta_i^\kappa \times \sigma_i^\kappa$,
 425 $\delta^\kappa \sim \text{Normal}(0, 1)$, $\sigma^\kappa \sim \text{Uniform}(0, 100)$, where δ^κ is the standardized mean difference in
 426 cutoff placement between the first and last blocks.

427 Finally, subject-level means τ_i , κ_i , ϕ_i , and π_i were sampled from group-level
428 distributions with vague priors. Group-level means of $\log \tau^2$ and κ were assigned normal
429 prior distributions with a mean of 0 and variance of 1000. Group-level values of the mean
430 probit-transformed lapse and guess rates were assigned normal priors with a mean of 0 and
431 standard deviation of 1, corresponding to uniform distributions over the interval (0.0, 1.0)
432 on the raw lapse and guess rates.

433 Stimulus readings were zero-centered for analysis. Estimation was performed using
434 JAGS (Plummer, 2019). The model was run for four MCMC chains of 10,000 warmup
435 steps and 25,000 estimation steps each, providing 100,000 total MCMC steps for analysis.
436 All parameter estimates showed R-hat values of less than 1.02, indicating satisfactory
437 convergence of MCMC chains (Gelman & Rubin, 1992).

438 We used the Savage-Dickey ratio (Wagenmakers et al., 2010) to estimate Bayes
439 factors for or against an effect of block on each of the four parameters of interest. We
440 describe Bayes factors using the evidence categories (anecdotal, substantial, strong, very
441 strong, decisive) proposed by Wetzels et al. (2011). As a check of model fit, we calculated
442 95% posterior predictive equal-tail Bayesian credible intervals (BCIs) on the basis of a
443 random sample of 1000 steps from the MCMC chains.

444 Parameter recovery tests using simulated data (Heathcote, Brown, & Wagenmakers,
445 2015) confirmed that the model estimated true parameter values well, though with a
446 tendency to underestimate differences in lapse rate between blocks. Simulated data and
447 outputs of parameter recovery tests are available at the OSF site linked above.

448 **Response Times.** A non-preregistered analysis estimated the difference in mean
449 response time (RT) between the first and last blocks of trials in order to test for a change
450 in response speed over time on task. Data were subject-mean RTs for correct responses,
451 calculated separately for the first and last trial blocks. Scores were assigned a normal
452 likelihood with mean $\bar{RT}_{i,j}$ and residual variance σ_ϵ . $\bar{RT}_{i,j}$ reflected the sum of a

453 subject-level grand mean RT, \bar{RT}_i , and a fixed effect of block, \bar{RT}_j . Subject-level grand
 454 means were assigned a normal prior with mean $\mu_{\bar{RT}}$ and standard deviation $\sigma_{\bar{RT}}$. Finally,
 455 $\mu_{\bar{RT}}$ was assigned a normal prior with mean 0 and variance 1000, truncated below 0, and
 456 $\sigma_{\bar{RT}}$ was assigned a uniform prior between 0 and 100. The Bayes factor for an effect of
 457 block, versus a point-null hypothesis of 0, was estimated using the Savage-Dickey ratio
 458 (Wagenmakers et al., 2010).

459 **Workload Ratings.** Responses for the A-SWAT subscales were analyzed
 460 separately within a model that placed a normal likelihood function on observed ratings,
 461 and uniform priors between 0 and 100 on the group means and standard deviations of the
 462 ratings. The estimation procedure again ran four MCMC chains for 10,000 warmup trials
 463 then 25,000 estimation trials each. All parameter estimates showed R-hat values of less
 464 than 1.01, indicating satisfactory convergence of MCMC chains.

465 Results

466 Signal Detection

467 Figure 3 shows empirical and posterior predictive yes rates as a function of trial type
 468 and trial block. Yes rates for signal trials are hit rates and yes rates for noise trials are false
 469 alarm rates. Posterior predictive BCIs are narrow and contain the empirical means,
 470 implying a satisfactory model fit. Yes rates for signal trials are clearly higher than those for
 471 noise trials, confirming that participants could discriminate signal from noise events at
 472 levels above chance.

473 Yes rates showed no obvious changes between the first and last blocks,
 474 $M_{Diff} = -0.010$, 95% BCI[−0.025, 0.006] for signal trials,
 475 $M_{Diff} = -0.008$, 95% BCI[−0.016, 0.002] for noise trials. Raw response rates thus gave no
 476 clear evidence of a vigilance decrement.

477 In contrast, analysis of latent model parameters produced substantial or strong

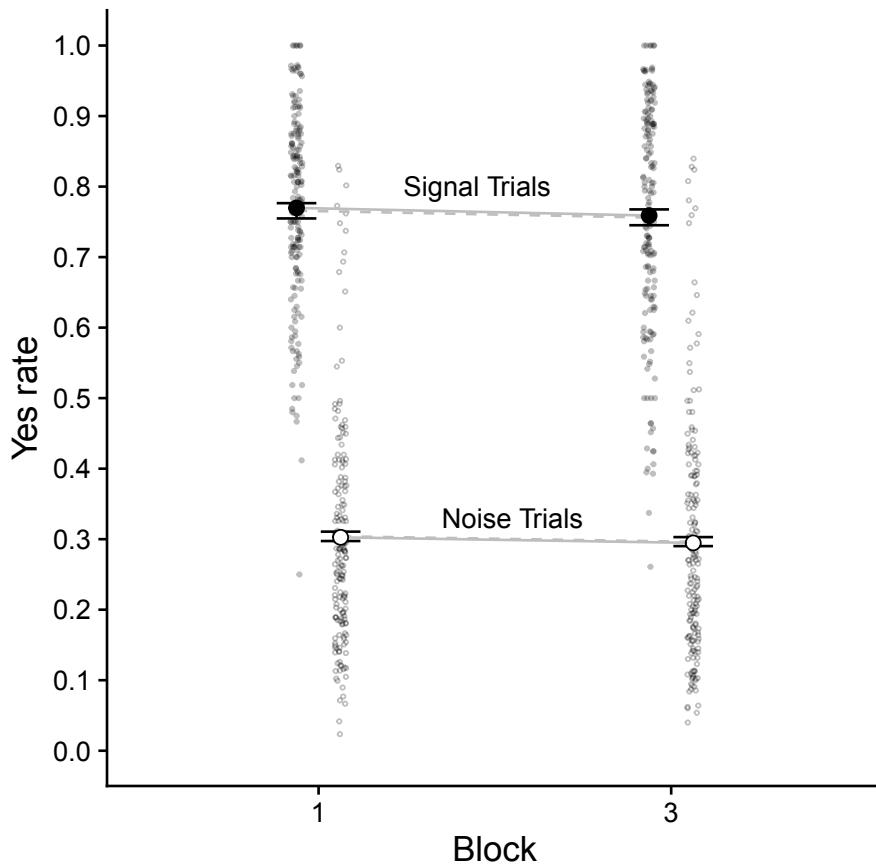


Figure 3. Empirical and posterior predictive yes rates, as a function of trial type and block.

NOTE: Small symbols represent empirical means for individual participants, large symbols represent empirical group means, error bars represent 95% posterior predictive BCIs for group mean scores. Filled symbols correspond to hit rates, unfilled symbols correspond to false alarm rates.

478 evidence of changes in three out of four potential mechanisms of vigilance decrement.
479 Figure 4 presents density plots of the standardized mean differences in decision model
480 parameters between the first and last blocks on task. Note that the panel labeled Internal
481 Noise depicts standardized differences in the log variance of participants' estimation error.
482 The panels labeled Lapse Rate and Guess Rate present standardized differences in
483 probit-transformed rates.

484 Data gave substantial evidence against a change in response cutoff over blocks,
485 $M_{\text{Block 1}} = -1.39$, 95% BCI[−2.26, −0.53], $M_{\text{Block 3}} = -1.44$, 95% BCI[−2.30, −0.58],
486 $M_{\text{Diff}} = -0.05$, 95% BCI[−0.59, 0.50], $B_{10} = \frac{1}{9.09}$. Data also gave substantial evidence for a
487 decrease in internal noise—that is, an improvement in the ability to distinguish signal from
488 noise—over blocks, $M_{\text{Block 1}} = 8.71$, 95% BCI[8.28, 9.16] for the standard deviation of the
489 error in participants' estimates of the mean reading, $M_{\text{Block 3}} = 7.96$, 95% BCI[7.55, 8.39],
490 $M_{\text{Diff}} = -0.75$, 95% BCI[−1.29, 0.21], $B_{10} = 6.01$.

491 Analyses of the remaining two parameters showed effects more consistent with a
492 conventional vigilance decrement. Data gave strong evidence for an increase in the lapse
493 rate between the first and last trial blocks, $M_{\text{Block 1}} = .05$, 95% BCI[0.03, 0.06],
494 $M_{\text{Block 3}} = 0.07$, 95% BCI[0.06, 0.09], $M_{\text{Diff}} = 0.03$ 95% BCI[0.01, 0.05], $B_{10} = 28.12$, and
495 substantial evidence for a decrease in the guess rate, $M_{\text{Block 1}} = 0.70$, 95% BCI[0.57, 0.82],
496 $M_{\text{Block 3}} = 0.56$, 95% BCI[0.45, 0.68], $M_{\text{Diff}} = -0.14$ 95% BCI[−0.26, −0.01], $B_{10} = 3.17$.
497 With time on task, that is, participants became more likely to lapse into inattentiveness
498 and less likely to make a positive guess during a lapse.

499 On the surface, the finding that estimates of internal noise, lapse rate, and guess rate
500 all changed over time on task appears inconsistent with the finding that mean yes rates
501 were roughly constant. At least two potential explanations seem plausible. One possibility
502 is that the effects of parameter changes on raw yes rates were simply negligible; effects that
503 are large and statistically credible in a standardized latent variable, like the parameter

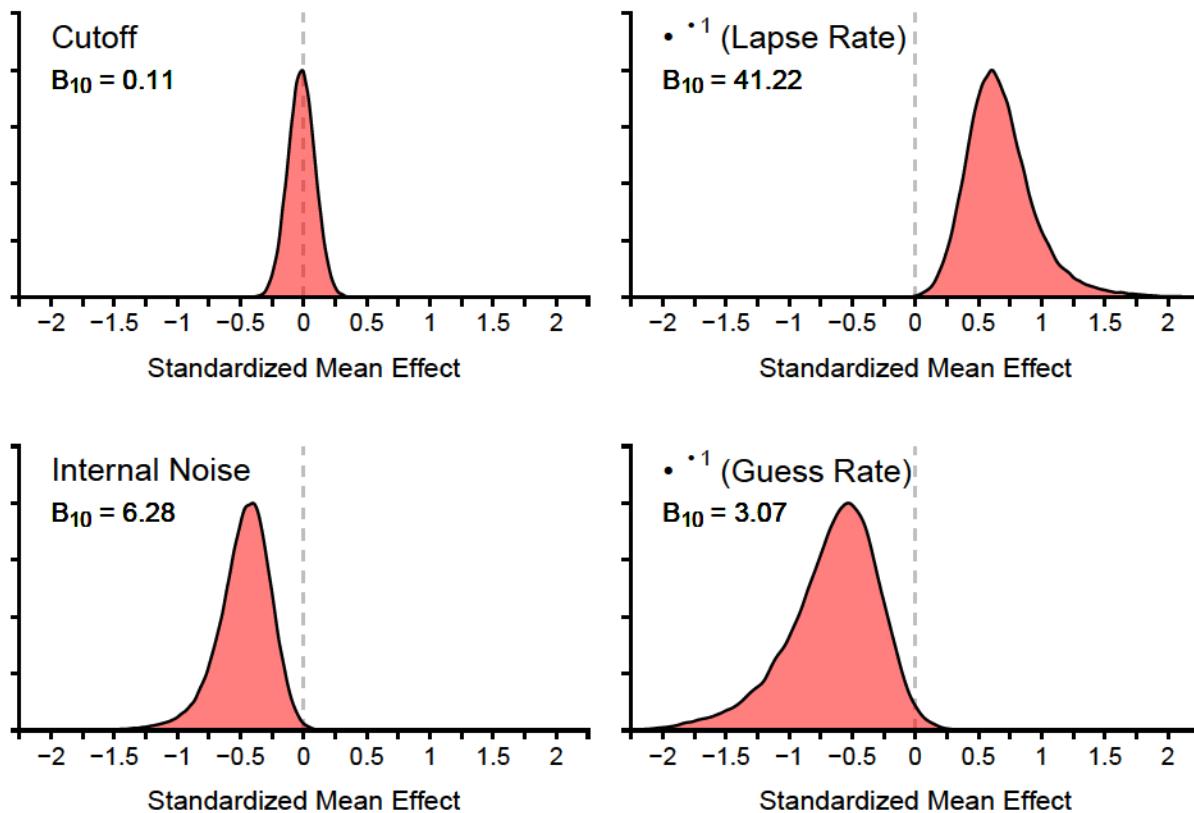


Figure 4. Posterior distributions of standardized mean differences in decision model parameters between the first and last blocks of trials. NOTE: Panel labeled *Internal Noise* depicts standardized differences in the log variance of participants' estimation error. Panels labeled *Lapse Rate* and *Guess Rate* present standardized differences in probit-transformed rates.

504 estimates shown in Figure 4, might not translate to large effects in an observed measure
 505 (Pek & Flora, 2018). A second possibility is that changes in internal noise and
 506 inattentiveness might have offset one another in the yes rates for signal trials. By itself, a
 507 decrease in internal noise would tend to improve signal-noise discriminability and raise
 508 signal detection rates. Conversely, an increase in lapse rate and a decrease in guess rate
 509 would tend to reduce target detection rates. This makes it possible that the changes in
 510 internal noise and lapse rate/guess rate might have effectively washed out within the yes
 511 rates to signal events.

512 To test these two possibilities, we conducted non-preregistered analyses to estimate

513 the selective effects of internal noise changes and lapse and guess rate changes on yes rates.

514 In the first case, we generated posterior predictive yes rates incorporating the effects of

515 block on internal noise, but holding the cutoff, lapse rate, and guess rate fixed at their

516 mean values for each participant. In the second case, we generated posterior predictive

517 data incorporating the effects of block on lapse and guess rates, but holding the cutoff

518 placement and internal noise estimate fixed at their mean values for each participant.

519 Results provide evidence for both the possibilities discussed above. As expected,

520 changes in internal noise and inattention parameters had opposite effects on yes rates for

521 signal events. In both cases, though, the effects of parameter changes on raw yes rates were

522 small. In isolation, decreases in internal noise between blocks 1 and 3 would have increased

523 hit rates by about 1 percentage point, $M_{\text{Block 1}} = 0.759$, 95% BCI[0.749, 0.769],

524 $M_{\text{Block 3}} = 0.769$, 95% BCI[0.779, 0.780], $M_{\text{Diff}} = 0.010$, 95% BCI[−0.003, 0.022], and

525 decreased false alarm rates by about the same amount,

526 $M_{\text{Block 1}} = 0.304$, 95% BCI[0.299, 0.310], $M_{\text{Block 3}} = 0.295$, 95% BCI[0.289, 0.301],

527 $M_{\text{Diff}} = -0.009$, 95% BCI[−0.017, −0.002]. Conversely, changes in lapse and guess rates

528 would have reduced hit rates by about 1 percentage point,

529 $M_{\text{Block 1}} = 0.770$, 95% BCI[0.759, 0.780], $M_{\text{Block 3}} = 0.755$, 95% BCI[0.744, 0.767],

530 $M_{\text{Diff}} = -0.014$, 95% BCI[−0.030, 0.001], and reduced false alarm rates by less than 1

531 percentage point, $M_{\text{Block 1}} = 0.301$, 95% BCI[0.295, 0.308],

532 $M_{\text{Block 3}} = 0.297$, 95% BCI[0.290, 0.304], $M_{\text{Diff}} = -0.004$, 95% BCI[−0.014, 0.005].

533 Altogether, results suggest that changes in internal noise and in lapse and guess rates had

534 very small, and partially offsetting, effects on raw yes rates.

535 **Robustness Checks.** As a check on the robustness of the results reported above,

536 we conducted two additional, non-preregistered analyses. The first was intended to confirm

537 that results were not distorted by the exclusion of data from the middle four minutes. For

538 this, the analysis described above was repeated, except that the Block 1 data included all

539 trials from the first six minutes of the twelve-minute vigil and the Block 2 data included all
540 trials from the second six minutes. Results again gave substantial evidence ($B_{10} = 0.11$)
541 against a change in cutoff over time, strong evidence ($B_{10} = 13.85$) for an increase in lapse
542 rate, and substantial evidence for a decrease in the guess rate ($B_{10} = 5.93$). Data trended
543 again toward a decrease in internal noise between blocks 1 and 2,
544 $M_{\text{Diff}} = -0.49$ 95% BCI[−0.97, −0.00]. However, the Bayes factor for this effect was now
545 indifferent between the alternative and null hypotheses ($B_{10} = 1.08$), implying that the
546 changes in internal noise might have largely occurred by roughly midway through the vigil.

547 As the second robustness check, we used deviance information criterion (DIC)
548 (Spiegelhalter, Best, Carlin, & van der Linde, 2002) scores to compare versions of the
549 model above selectively excluding effects of block on internal noise, cutoff, and lapse and
550 guess rates. Consistent with the results described above, DIC values favored a model
551 including effects of block on internal noise, lapse rate and guess rate, but excluding an
552 effect of block on response cutoff placement.

553 Full results of the robustness checks are included at the OSF site linked above.

554 **Response Times.** Estimated group mean RT was
555 $M_{\text{Block 1}} = 819$ ms, 95% BCI[798, 839] for the first block of trials and
556 $M_{\text{Block 3}} = 816$ ms, 95% BCI[795, 836] for the third block of trials,
557 $M_{\text{Diff}} = -3$ ms, 95% BCI[−24, 15], $B_{10} = \frac{1}{3199}$. Data thus gave decisive evidence against a
558 change in mean RT between blocks.

559 **Subjective Workload.** Estimated group mean ratings were
560 $M = 23.41$, 95% BCI[20.11, 26.73] for the time stress subscale of the ASWAT,
561 $M = 80.48$, 95% BCI[77.99, 82.97] for the mental effort subscale, and
562 $M = 52.62$, 95% BCI[49.13, 56.11] for the psychological stress subscale. Values were very
563 similar to those observed in our earlier online experiments using a sensory vigilance task
564 (Gyles et al., 2023) and are consistent with other evidence indicating that vigilance tasks

565 are mentally demanding (Claypoole et al., 2019; e.g., Deaton & Parasuraman, 1993; Warm,
566 Dember, & Hancock, 1996).

567 **Discussion**

568 Research on cognitive vigilance has produced inconsistent results, with some studies
569 reporting vigilance losses, others showing null effects, and others reporting gains over time
570 on task. The current experiment tested for a cognitive decrement in a task designed to
571 minimize sensory performance constraints and conform to the assumptions of signal
572 detection theory. Participants performed a vigilance task that asked them to monitor for
573 infrequent signal events within a stream of numeric readings. The stimulus each trial was a
574 set of four three-digit numbers, sampled from either a signal or non-signal distribution.
575 Participants were asked to make a keypress response on any trial in which they judged that
576 the readings were drawn from the signal distribution. Signals occurred with probability of
577 0.20.

578 Observed data of central interest were yes rates (i.e., positive responses rates) to
579 signal and non-signal events. Data were fit with a model that assumed the participant
580 made their judgment each trial in either an attentive or inattentive state. In the attentive
581 state, the participant selected a response by estimating the mean of the stimulus readings
582 and comparing it to a decision cutoff. In the inattentive state, they selected a response by
583 guessing. Four parameters were allowed to vary across blocks of trials: internal noise
584 corrupting the participant's estimates of the mean reading; cutoff placement; the
585 probability of lapsing into the inattentive state; and the probability of guessing a positive
586 response from inside the inattentive state.

587 Model fits suggested that time on task affected processing both by increasing noise in
588 the participants' estimates of mean readings, and by increasing the lapse rate and
589 decreasing the guess rate. Posterior predictive data confirmed that by itself, an increase in
590 internal noise would have tended to increase hit rates and decrease false alarm rates. In

591 contrast, the observed change in lapse and guess rates would have tended to drive hit and
592 false alarm rates both downward. As manifest in observable data, however, these effects
593 were small, however, and partially offset one another. As a result, yes rates showed little
594 change between the first and last blocks of the task.

595 Results imply similarities and dissimilarities between cognitive and sensory vigilance
596 decrements. One notable point of difference is the absence of a conservative shift of
597 response bias in the current data. Conservative cutoff shifts have been nearly ubiquitous in
598 sensory vigilance tasks (Broadbent & Gregory, 1965; A. Craig, 1987; Swets, 1977) and have
599 also been reported in some cognitive vigilance tasks (Claypoole et al., 2019). In contrast,
600 cutoff placement here was stable over blocks of trials. Two characteristics of the current
601 experiments seem likely to have allowed participants to maintain a fixed cutoff (Kubovy,
602 Rapoport, & Tversky, 1971). First, because stimuli were digital, participants could hold a
603 deterministic cutoff value in verbal memory, rather than relying on an implicit and
604 potentially noisy (Benjamin, Diaz, & Wee, 2009) cutoff representation in sensory memory.
605 Second, because the task instructions explained that noise values were generally less than
606 500 and signal values greater than 500, participants were not required to discover an
607 appropriate cutoff value through learning (Erev, 1998).

608 The current results also differ from those of sensory vigilance studies in indicating a
609 reduction in observers' internal noise over time. Here, participants showed a small but
610 credible decrease between blocks in the random error contaminating their estimates of the
611 mean reading. This result mirrors the findings of Warm et al. (1984), who reported an
612 improvement in signal detection rates over time in a cognitive vigilance task. The current
613 data do not tell us the cause of this effect. One possibility, consistent with Warm et al.
614 (1984)'s explanation of their own findings, is that participants became more motivated over
615 time, investing greater effort in the task. However, this seems inconsistent with the finding
616 that estimated lapse rates rose over time.

617 A different possibility is that participants modified their task strategies over time.

618 One source of error in the participants' judgments, for instance, might have been a
619 tendency to attend to fewer than all four of the readings displayed each trial. Thus, a
620 participant who began the vigil attending to a subset of the readings each trial and
621 gradually expanded their attention to incorporate a larger subset would have shown a
622 decrease in estimation noise over time. A third possibility is that participants simply
623 learned to estimate the mean reading more accurately with practice. But under any of
624 these accounts, performance was robust against increases internal noise between blocks.
625 Modeling gave no evidence that on the trials in which they made stimulus-driven
626 responses, participants lost sensitivity over time. Notably, this result is inconsistent with
627 the resource depletion theory of vigilance losses, which holds that the gradual consumption
628 of processing resources over time on task reduces the observer's ability to discern signal
629 from noise (Caggiano & Parasuraman, 2004; Parasuraman, 1979; Warm et al., 2015).

630 Finally, data showed evidence for a conventional vigilance decrement in a tendency
631 for lapse rates to increase over time. This effect matches results seen in sensory vigilance
632 (Gyles et al., 2023; McCarley & Yamani, 2021; Román-Caballero et al., 2022) and speeded
633 response (Unsworth & Robison, 2016) tasks, and suggests that lapses are a very general
634 mechanism of vigilance failure, showing up across various forms of monitoring tasks. The
635 mean increase in estimated lapse rates between blocks 1 and 3 was modest, roughly 3%. It
636 is possible that this value underestimates the true difference between blocks, since, as
637 noted above, parameter recovery exercises indicated a tendency for the model to
638 underestimate changes lapse rate. At best, though, the increase in lapse rate from the first
639 to last block was too small to manifest as a detectable change in yes rates.

640 The current data do not reveal the nature of the participants' occasional lapses, for
641 example, whether they reflected external distraction (Drody et al., 2023; Robison &
642 Unsworth, 2015; Unsworth & McMillan, 2014), microsleeps (Buckley et al., 2016), or
643 mind-wandering (McVay & Kane, 2009, 2012) or other breakdowns of task-set maintenance
644 (Ariga & Lleras, 2011). However, given that off-task thoughts are common (McVay &

645 Kane, 2009) and increase with time on task (Kane et al., 2007; Zanesco et al., 2024), they
646 seem very likely to be at least one source of the lapses observed here. Interestingly, the
647 average estimated lapse rate here, collapsed across blocks, was roughly 6%. This value
648 closely matches the rate at which participants in an early study reported themselves as
649 being off-task in response to occasional thought probes (6.09%), and is similar to the rate
650 at which a Markov chain model using probe response and choice RT data estimated those
651 participants to be in a discrete state of full task disengagement (8.40%) (Zanesco et al.,
652 2020). The correspondence between these values hints that the attentional lapses inferred
653 from the current data might reflect the same state of mental disengagement identified by
654 participants' self-reports. The current data do not indicate whether this potential increase
655 in off-task thoughts was intentional, or was the result of attention control failures (Kane &
656 McVay, 2012; McVay & Kane, 2009; Thomson et al., 2015).

657 Additional research will be necessary to test whether the pattern of effects seen here
658 holds over longer vigils or variations in signal rate. Of note, the effects of time on task in
659 the current data were strikingly smaller than those seen in some earlier work. In the study
660 reported by Claypoole et al. (2019), for instance, hit rates dropped by roughly 35
661 percentage points from the first 6-minute block of trials to the second. In the experiments
662 reported by Warm et al. (1984), hit rates in several variants of the task under study fell by
663 10 percentage points or more between the first and second 20-minute blocks on task. In
664 contrast, lapse rates in the current data fell by only 2 percentage points over the course of
665 a 12-minute vigil. Although all of these experiments used digits as stimuli, and required
666 participants to perform mental arithmetic operations, they differed in multiple other ways.
667 Participants in the current study were asked to estimate the mean of a set of 3-digit
668 numbers, whereas those in Claypoole et al. (2019) and Warm et al. (1984) were asked to
669 find the sum and difference of pairs of single digits. Maybe more notably, signal rate in the
670 current task (20%) was substantially higher than in either Warm et al. (1984) (10% or
671 lower) or Claypoole et al. (2019) (2% or lower). These comparisons suggest that the

672 magnitude of the cognitive vigilance decrement might be highly sensitive to task demands,
673 and that increases in lapse rate might not be the sole mechanism of cognitive vigilance loss.

Statements and Declarations**675 Funding**

676 This work was supported by a grant from the National Science Foundation (2240256)
677 to Y.Y. and J.S.M. and a grant from the Human Factors and Ergonomics Society
678 Perception and Performance Technical Group to S.G.

679 Conflicts of interest/Competing interests

680 The authors report no conflicts of interest.

681 Availability of data and material

682 Data are available at
683 https://osf.io/eytbz/?view_only=8dce3ec5d659450db3a5694435d21c8b.

684 Code availability

685 Analytic code is available at
686 https://osf.io/eytbz/?view_only=8dce3ec5d659450db3a5694435d21c8b.

687 Authors' contributions

688 The authors made the following contributions. Shannon Gyles: Conceptualization,
689 Investigation, Software, Formal Analysis, Methodology, Writing - Original Draft
690 Preparation, Writing - Review & Editing, Funding Acquisition; Yusuke Yamani:
691 Conceptualization, Writing - Review & Editing, Funding Acquisition; Jason S. McCarley:
692 Conceptualization, Investigation, Formal Analysis, Methodology, Writing - Original Draft
693 Preparation, Writing - Review & Editing, Funding Acquisition.

694 Ethics approval

695 This project was approved by the Institutional Review Board of Oregon State
696 University (protocol #8691).

697 Consent to participate

698 All participants consented to participate.

699 Consent for publication

700 NA

701 **References**

702 Ariga, A., & Lleras, A. (2011). Brief and rare mental “breaks” keep you focused:
703 Deactivation and reactivation of task goals preempt vigilance decrements. *Cognition*,
704 118(3), 439–443. <https://doi.org/10.1016/j.cognition.2010.12.007>

705 Aust, F., & Barth, M. (2022). *papaja: Prepare reproducible APA journal articles with R*
706 *Markdown*. Retrieved from <https://github.com/crsh/papaja>

707 Bache, S. M., & Wickham, H. (2022). *Magrittr: A forward-pipe operator for r*. Retrieved
708 from <https://CRAN.R-project.org/package=magrittr>

709 Barth, M. (2023). *tinylabes: Lightweight variable labels*. Retrieved from
710 <https://cran.r-project.org/package=tinylabes>

711 Benjamin, A. S., Diaz, M., & Wee, S. (2009). Signal detection with criterion noise:
712 Applications to recognition memory. *Psychological Review*, 116(1), 84–115.
713 <https://doi.org/10.1037/a0014351>

714 Bergum, B. O., & Lehr, D. J. (1963). End spurt in vigilance. *Journal of Experimental*
715 *Psychology*, 66(4), 383–385. <https://doi.org/10.1037/h0044865>

716 Bouma, H. (1970). Interaction effects in parafoveal letter recognition. *Nature*, 226,
717 177–178.

718 Brezis, N., Bronfman, Z. Z., & Usher, M. (2015). Adaptive Spontaneous Transitions
719 between Two Mechanisms of Numerical Averaging. *Scientific Reports*, 5(1), 10415.
720 <https://doi.org/10.1038/srep10415>

721 Brezis, N., Bronfman, Z. Z., & Usher, M. (2018). A Perceptual-Like Population-Coding
722 Mechanism of Approximate Numerical Averaging. *Neural Computation*, 30(2), 428–446.
723 https://doi.org/10.1162/neco_a_01037

724 Broadbent, D. E., & Gregory, M. (1963). Vigilance considered as a statistical decision.
725 *British Journal of Psychology*, 54(4), 309–323.
726 <https://doi.org/10.1111/j.2044-8295.1963.tb00886.x>

727 Broadbent, D. E., & Gregory, M. (1965). Effects of noise and of signal rate upon vigilance

728 analysed by means of decision theory. *Human Factors: The Journal of the Human*
729 *Factors and Ergonomics Society*, 7(2), 155–162.

730 <https://doi.org/10.1177/001872086500700207>

731 Brusovansky, M., Glickman, M., & Usher, M. (2018). Fast and effective: Intuitive processes
732 in complex decisions. *Psychonomic Bulletin & Review*, 25(4), 1542–1548.
733 <https://doi.org/10.3758/s13423-018-1474-1>

734 Buckley, R. J., Helton, W. S., Innes, C. R. H., Dalrymple-Alford, J. C., & Jones, R. D.
735 (2016). Attention lapses and behavioural microsleeps during tracking, psychomotor
736 vigilance, and dual tasks. *Consciousness and Cognition*, 45, 174–183.
737 <https://doi.org/10.1016/j.concog.2016.09.002>

738 Caggiano, D. M., & Parasuraman, R. (2004). The role of memory representation in the
739 vigilance decrement. *Psychonomic Bulletin & Review*, 11(5), 932–937.
740 <https://doi.org/10.3758/BF03196724>

741 Claypoole, V. L., Dever, D. A., Denues, K. L., & Szalma, J. L. (2019). The effects of event
742 rate on a cognitive vigilance task. *Human Factors: The Journal of the Human Factors*
743 *and Ergonomics Society*, 61(3), 440–450. <https://doi.org/10.1177/0018720818790840>

744 Claypoole, V. L., & Szalma, J. L. (2018a). Facilitating Sustained Attention: Is Mere
745 Presence Sufficient? *The American Journal of Psychology*, 131(4), 417–428.
746 <https://doi.org/10.5406/amerjpsyc.131.4.0417>

747 Claypoole, V. L., & Szalma, J. L. (2018b). Independent Coactors May Improve
748 Performance and Lower Workload: Viewing Vigilance Under Social Facilitation. *Human*
749 *Factors: The Journal of the Human Factors and Ergonomics Society*, 60(6), 822–832.
750 <https://doi.org/10.1177/0018720818769268>

751 Coates, D. R., Levi, D. M., Touch, P., & Sabesan, R. (2018). Foveal Crowding Resolved.
752 *Scientific Reports*, 8(1), 9177. <https://doi.org/10.1038/s41598-018-27480-4>

753 Colquhoun, W. P., & Baddeley, A. D. (1964). Role of pretest expectancy in vigilance
754 decrement. *Journal of Experimental Psychology*, 68(2), 156–160.

755 https://doi.org/10.1037/h0042875

756 Colquhoun, W. P., & Baddeley, A. D. (1967). Influence of signal probability during
757 pretraining on vigilance decrement. *Journal of Experimental Psychology*, 73(1),
758 153–155. https://doi.org/10.1037/h0024087

759 Craig, A. (1978). Is the vigilance decrement simply a response adjustment towards
760 probability matching? *Human Factors: The Journal of the Human Factors and*
761 *Ergonomics Society*, 20(4), 441–446. https://doi.org/10.1177/001872087802000408

762 Craig, A. (1987). Signal detection theory and probability matching apply to vigilance.
763 *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 29(6),
764 645–652. https://doi.org/10.1177/001872088702900604

765 Craig, C. M., & Klein, M. I. (2019). The abbreviated vigilance task and its attentional
766 contributors. *Human Factors: The Journal of the Human Factors and Ergonomics*
767 *Society*, 61(3), 426–439. https://doi.org/10.1177/0018720818822350

768 Cunningham, S., Scerbo, M. W., & Freeman, F. G. (2000). The electrocortical correlates of
769 daydreaming during vigilance tasks. *Journal of Mental Imagery*, 24(1 & 2), 61–72.

770 Deaton, J. E., & Parasuraman, R. (1993). Sensory and cognitive vigilance: Effects of age
771 on performance and subjective workload. *Human Performance*, 6(1), 71–97.

772 Dillard, M. B., Warm, J. S., Funke, G. J., Nelson, W. T., Finomore, V. S., McClernon, C.
773 K., ... Funke, M. E. (2019). Vigilance Tasks: Unpleasant, Mentally Demanding, and
774 Stressful Even When Time Flies. *Human Factors: The Journal of the Human Factors*
775 *and Ergonomics Society*, 61(2), 225–242. https://doi.org/10.1177/0018720818796015

776 Droyd, A. C., Pereira, E. J., & Smilek, D. (2023). A desire for distraction: Uncovering the
777 rates of media multitasking during online research studies. *Scientific Reports*, 13(1),
778 781. https://doi.org/10.1038/s41598-023-27606-3

779 Duncan-Reid, J., & McCarley, J. S. (2021). Strategy use in automation-aided decision
780 making. *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*,
781 65(1), 96–100. https://doi.org/10.1177/1071181321651259

782 Erev, I. (1998). Signal detection by human observers: A cutoff reinforcement learning
783 model of categorization decisions under uncertainty. *Psychological Review*, 105(2),
784 280–298.

785 Esterman, M., & Rothlein, D. (2019). Models of sustained attention. *Current Opinion in
786 Psychology*, 29, 174–180. <https://doi.org/10.1016/j.copsyc.2019.03.005>

787 Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
788 sequences. *Statistical Science*, 7(4), 457–472. <https://doi.org/10.1214/ss/1177011136>

789 Green, D. M., & Swets, J. A. (1966). *Signal detection theory and psychophysics*. New York:
790 Wiley.

791 Greenlee, E. T., DeLucia, P. R., & Lui, T. G. (2022). Modality changes in vigilance
792 displays: Further evidence of supramodal resource depletion in vigilance. *Human
793 Factors: The Journal of the Human Factors and Ergonomics Society*, 001872082210997.
794 <https://doi.org/10.1177/00187208221099793>

795 Grier, R. A., Warm, J. S., Dember, W. N., Matthews, G., Galinsky, T. L., Szalma, J. L., &
796 Parasuraman, R. (2003). The vigilance decrement reflects limitations in effortful
797 attention, not mindlessness. *Human Factors: The Journal of the Human Factors and
798 Ergonomics Society*, 45(3), 349–359. <https://doi.org/10.1518/hfes.45.3.349.27253>

799 Gyles, S. P., McCarley, J. S., & Yamani, Y. (2023). Psychometric curves reveal changes in
800 bias, lapse rate, and guess rate in an online vigilance task. *Attention, Perception, &
801 Psychophysics*. <https://doi.org/10.3758/s13414-023-02652-1>

802 Hautus, M. J. (1995). Corrections for extreme proportions and their biasing effects on
803 estimated values of d' . *Behavior Research Methods, Instruments, & Computers*, 27(1),
804 46–51. <https://doi.org/10.3758/BF03203619>

805 Hautus, M. J., Macmillan, N. A., & Creelman, C. D. (2022). *Detection theory: A user's
806 guide* (Third edition). New York, NY: Routledge.

807 Hawkins, G. E., Mittner, M., Forstmann, B. U., & Heathcote, A. (2019). Modeling
808 distracted performance. *Cognitive Psychology*, 112, 48–80.

809 https://doi.org/10.1016/j.cogpsych.2019.05.002

810 Healy, A. F., & Kubovy, M. (1978). The effects of payoffs and prior probabilities on indices
811 of performance and cutoff location in recognition memory. *Memory & Cognition*, 6(5),
812 544–553. https://doi.org/10.3758/BF03198243

813 Healy, A. F., & Kubovy, M. (1981). Probability matching and the formation of
814 conservative decision rules in a numerical analog of signal detection. *Journal of*
815 *Experimental Psychology: Human Learning and Memory*, 7(5), 344–354.

816 Heathcote, A., Brown, S. D., & Wagenmakers, E.-J. (2015). An Introduction to Good
817 Practices in Cognitive Modeling. In B. U. Forstmann & E.-J. Wagenmakers (Eds.), *An*
818 *Introduction to Model-Based Cognitive Neuroscience* (pp. 25–48). New York, NY:
819 Springer New York. https://doi.org/10.1007/978-1-4939-2236-9_2

820 Helton, W. S., & Warm, J. S. (2008). Signal salience and the mindlessness theory of
821 vigilance. *Acta Psychologica*, 129(1), 18–25.
822 https://doi.org/10.1016/j.actpsy.2008.04.002

823 Hitchcock, E. M., Dember, W. N., Warm, J. S., Moroney, B. W., & See, J. E. (1999).
824 Effects of Cueing and Knowledge of Results on Workload and Boredom in Sustained
825 Attention. *Human Factors*.

826 Kane, M. J., Brown, L. H., McVay, J. C., Silvia, P. J., Myin-Germeys, I., & Kwapil, T. R.
827 (2007). For Whom the Mind Wanders, and When: An Experience-Sampling Study of
828 Working Memory and Executive Control in Daily Life. *Psychological Science*, 18(7),
829 614–621. https://doi.org/10.1111/j.1467-9280.2007.01948.x

830 Kane, M. J., & McVay, J. C. (2012). What mind wandering reveals about executive-control
831 abilities and failures. *Current Directions in Psychological Science*, 21(5), 348–354.
832 https://doi.org/10.1177/0963721412454875

833 Kay, M. (2023). *tidybayes: Tidy data and geoms for Bayesian models*.
834 https://doi.org/10.5281/zenodo.1308151

835 Kellner, K. (2021). *jagsUI: A wrapper around 'rjags' to streamline 'JAGS' analyses*.

836 Retrieved from <https://CRAN.R-project.org/package=jagsUI>

837 Kingdom, F. A. A., & Prins, N. (2016). *Psychophysics: A practical introduction* (2nd ed.).
838 Amsterdam: Elsevier Science.

839 Koelega, H. S., Brinkman, J.-A., Hendriks, L., & Verbaten, M. N. (1989). Processing
840 demands, effort, and individual differences in four different vigilance tasks. *Human
841 Factors: The Journal of the Human Factors and Ergonomics Society*, 31(1), 45–62.
842 <https://doi.org/10.1177/001872088903100104>

843 Krinsky, M., Forster, D. E., Llabre, M. M., & Jha, A. P. (2017). The influence of time on
844 task on mind wandering and visual working memory. *Cognition*, 169, 84–90.
845 <https://doi.org/10.1016/j.cognition.2017.08.006>

846 Kruschke, J. K. (2015). *Doing Bayesian data analysis* (2nd ed.). London: Academic
847 Press/Elsevier.

848 Kubovy, M., Rapoport, A., & Tversky, A. (1971). Deterministic vs probabilistic strategies
849 in detection. *Perception & Psychophysics*, 9(5), 427–429.
850 <https://doi.org/10.3758/BF03210245>

851 Kuss, M., Jäkel, F., & Wichmann, F. A. (2005). Bayesian inference for psychometric
852 functions. *Journal of Vision*, 5(5), 8. <https://doi.org/10.1167/5.5.8>

853 Lee, M. D. (2018). Bayesian methods in cognitive modeling. In J. T. Wixted & E.-J.
854 Wagenmakers (Eds.), *The Stevens' handbook of experimental psychology and cognitive
855 neuroscience, volume 5: Methodology*. (4th ed., Vol. 5, pp. 37–84). Hoboken, N.J.:
856 John Wiley & Sons, Inc.

857 Lee, M. D., & Wagenmakers, E.-J. (2013). *Bayesian cognitive modeling: A practical course*.
858 New York: Cambridge University Press.

859 Loeb, M., Noonan, T. K., Ash, D. W., & Holding, D. H. (1987). Limitations of the
860 Cognitive Vigilance Increment. *Human Factors: The Journal of the Human Factors
861 and Ergonomics Society*, 29(6), 661–674. <https://doi.org/10.1177/001872088702900606>

862 Loomis, J. M. (1978). Lateral masking in foveal and eccentric vision. *Vision Research*,

863 18(3), 335–338. [https://doi.org/10.1016/0042-6989\(78\)90168-2](https://doi.org/10.1016/0042-6989(78)90168-2)

864 Luximon, A., & Goonetilleke, R. S. (2001). Simplified subjective workload assessment
865 technique. *Ergonomics*, 44(3), 229–243. <https://doi.org/10.1080/00140130010000901>

866 Mackworth, N. H. (1948). The breakdown of vigilance during prolonged visual search.
867 *Quarterly Journal of Experimental Psychology*, 1(1), 6–21.

868 <https://doi.org/10.1080/17470214808416738>

869 Macmillan, N. A., & Creelman, C. D. (1996). Triangles in ROC space: History and theory
870 of “nonparametric” measures of sensitivity and response bias. *Psychonomic Bulletin &
871 Review*, 3(2), 164–170. <https://doi.org/10.3758/BF03212415>

872 Manly, T., Robertson, I. H., Galloway, M., & Hawkins, K. (1999). The absent mind:
873 Further investigations of sustained attention to response. *Neuropsychologia*, 37,
874 661–670. [https://doi.org/10.1016/S0028-3932\(98\)00127-4](https://doi.org/10.1016/S0028-3932(98)00127-4)

875 Matthews, G., Davies, D. R., & Holley, P. J. (1993). Cognitive predictors of vigilance.
876 *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 35(1),
877 3–24. <https://doi.org/10.1177/001872089303500101>

878 Matthews, G., Warm, J. S., Reinerman-Jones, Washburn, D. A., & Tripp, L. (2010). Task
879 engagement, cerebral blood flow velocity, and diagnostic monitoring for sustained
880 attention. *Journal of Experimental Psychology: Applied*, 16(2), 187–203.
881 <https://doi.org/10.1037/a0019572>

882 McCarley, J. S., & Yamani, Y. (2021). Psychometric curves reveal three mechanisms of
883 vigilance decrement. *Psychological Science*, 32(10), 1675–1683.
884 <https://doi.org/10.1177/09567976211007559>

885 McVay, J. C., & Kane, M. J. (2009). Conducting the train of thought: Working memory
886 capacity, goal neglect, and mind wandering in an executive-control task. *Journal of
887 Experimental Psychology: Learning, Memory, and Cognition*, 35(1), 196–204.
888 <https://doi.org/10.1037/a0014104>

889 McVay, J. C., & Kane, M. J. (2012). Drifting from slow to “d’oh!”: Working memory

890 capacity and mind wandering predict extreme reaction times and executive control
891 errors. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 38(3),
892 525–549. <https://doi.org/10.1037/a0025896>

893 Mittner, M., Boekel, W., Tucker, A. M., Turner, B. M., Heathcote, A., & Forstmann, B. U.
894 (2014). When the brain takes a break: A model-based analysis of mind wandering. *The*
895 *Journal of Neuroscience*, 34(49), 16286–16295.
896 <https://doi.org/10.1523/JNEUROSCI.2062-14.2014>

897 Molloy, R., & Parasuraman, R. (1996). Monitoring an automated system for a single
898 failure: Vigilance and task complexity effects. *Human Factors*, 38(2), 311–322.

899 Mouloua, M., & Parasuraman, R. (1995). Aging and cognitive vigilance: Effects of spatial
900 uncertainty and event rate. *Experimental Aging Research*, 21(1), 17–32.
901 <https://doi.org/10.1080/03610739508254265>

902 Neigel, A. R., Claypoole, V. L., Smith, S. L., Waldfogle, G. E., Fraulini, N. W., Hancock,
903 G. M., ... Szalma, J. L. (2020). Engaging the human operator: A review of the
904 theoretical support for the vigilance decrement and a discussion of practical
905 applications. *Theoretical Issues in Ergonomics Science*, 21(2), 239–258.
906 <https://doi.org/10.1080/1463922X.2019.1682712>

907 Neigel, A. R., Dever, D. A., Claypoole, V. L., & Szalma, J. L. (2019). Task Engagement
908 and the Vigilance Decrement Revisited: Expanding Upon the Work of Joel S. Warm
909 Using a Semantic Vigilance Paradigm. *Human Factors: The Journal of the Human*
910 *Factors and Ergonomics Society*, 61(3), 462–473.
911 <https://doi.org/10.1177/0018720819835086>

912 Nuechterlein, K. H., Parasuraman, R., & Jiang, Q. (1983). Visual sustained attention:
913 Image degradation produces rapid sensitivity decrement over time. *Science*, 220(4594),
914 327–329. <https://doi.org/10.1126/science.6836276>

915 Parasuraman, R. (1979). Memory load and event rate control sensitivity decrements in
916 sustained attention. *Science*, 205(4409), 924–927.

917 <https://doi.org/10.1126/science.472714>

918 Parasuraman, R., & Mouloua, M. (1987). Interaction of signal discriminability and task
919 type in vigilance decrement. *Perception & Psychophysics*, 41(1), 17–22.

920 <https://doi.org/10.3758/BF03208208>

921 Pastore, R. E., Crawley, E. J., Berens, M. S., & Skelly, M. A. (2003). “Nonparametric” A'
922 and other modern misconceptions about signal detection theory. *Psychonomic Bulletin
923 & Review*, 10(3), 556–569. <https://doi.org/10.3758/BF03196517>

924 Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., ...
925 Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. *Behavior
926 Research Methods*, 51(1), 195–203. <https://doi.org/10.3758/s13428-018-01193-y>

927 Pek, J., & Flora, D. B. (2018). Reporting effect sizes in original psychological research: A
928 discussion and tutorial. *Psychological Methods*, 23(2), 208–225.
929 <https://doi.org/10.1037/met0000126>

930 Plummer, M. (2019). *Rjags: Bayesian graphical models using MCMC*.

931 Pratte, M. S., & Rouder, J. N. (2011). Hierarchical single- and dual-process models of
932 recognition memory. *Journal of Mathematical Psychology*, 55(1), 36–46.
933 <https://doi.org/10.1016/j.jmp.2010.08.007>

934 Proctor, R. W., & Vu, K.-P. L. (2023). *Attention: Selection and control in human
935 information processing*. Washington, DC: American Psychological Association.

936 R Core Team. (2023). *R: A language and environment for statistical computing*. Vienna,
937 Austria: R Foundation for Statistical Computing. Retrieved from
938 <https://www.R-project.org/>

939 Reinerman-Jones, L., Matthews, G., & Mercado, J. E. (2016). Detection tasks in nuclear
940 power plant operation: Vigilance decrement and physiological workload monitoring.
941 *Safety Science*, 88, 97–107. <https://doi.org/10.1016/j.ssci.2016.05.002>

942 Robison, M. K., & Unsworth, N. (2015). Working memory capacity offers resistance to
943 Mind-Wandering and External Distraction in a Context-Specific Manner. *Applied*

944 *Cognitive Psychology*, 29(5), 680–690. <https://doi.org/10.1002/acp.3150>

945 Román-Caballero, R., Martín-Arévalo, E., & Lupiáñez, J. (2022). Changes in response
946 criterion and lapse rate as general mechanisms of vigilance decrement: Commentary on
947 McCarley and yamani (2021). *Psychological Science*, 095679762211213.
948 <https://doi.org/10.1177/09567976221121342>

949 Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an
950 application in the theory of signal detection. *Psychonomic Bulletin & Review*, 12(4),
951 573–604.

952 Schumann, F., Steinborn, M. B., Kürten, J., Cao, L., Händel, B. F., & Huestegge, L.
953 (2022). Restoration of Attention by Rest in a Multitasking World: Theory,
954 Methodology, and Empirical Evidence. *Frontiers in Psychology*, 13, 867978.
955 <https://doi.org/10.3389/fpsyg.2022.867978>

956 See, J. E., Howe, S. R., Warm, J. S., & Dember, W. N. (1995). Meta-analysis of the
957 sensitivity decrement in vigilance. *Psychological Bulletin*, 117(2), 230–349.

958 Seli, P., Risko, E. F., & Smilek, D. (2016). On the Necessity of Distinguishing Between
959 Unintentional and Intentional Mind Wandering. *Psychological Science*, 27(5), 685–691.
960 <https://doi.org/10.1177/0956797616634068>

961 Shaw, T. H., Warm, J. S., Finomore, V., Tripp, L., Matthews, G., Weiler, E., &
962 Parasuraman, R. (2009). Effects of sensory modality on cerebral blood flow velocity
963 during vigilance. *Neuroscience Letters*, 461(3), 207–211.
964 <https://doi.org/10.1016/j.neulet.2009.06.008>

965 Sorkin, R. D., Mabry, T. R., Weldon, M. S., & Elvers, G. (1991). Integration of
966 information from multiple element displays. *Organizational Behavior and Human
967 Decision Processes*, 49(2), 167–187. [https://doi.org/10.1016/0749-5978\(91\)90047-W](https://doi.org/10.1016/0749-5978(91)90047-W)

968 Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian
969 measures of model complexity and fit. *Journal of the Royal Statistical Society: Series B
970 (Statistical Methodology)*, 64(4), 583–639. <https://doi.org/10.1111/1467-9868.00353>

971 Strasburger, H., Rentschler, I., & Juttner, M. (2011). Peripheral vision and pattern
972 recognition: A review. *Journal of Vision*, 11(5), 13–13. <https://doi.org/10.1167/11.5.13>

973 Swets, J. A. (1977). Signal detection theory applied to vigilance. In R. R. Mackie (Ed.),
974 *Vigilance* (pp. 705–718). Boston, MA: Springer US.
975 https://doi.org/10.1007/978-1-4684-2529-1_34

976 Temple, J. G., Warm, J. S., Dember, W. N., Jones, K. S., LaGrange, C. M., & Matthews,
977 G. (2000). The effects of signal salience and caffeine on performance, workload, and
978 stress in an abbreviated vigilance task. *Human Factors: The Journal of the Human*
979 *Factors and Ergonomics Society*, 42(2), 183–194.
980 <https://doi.org/10.1518/001872000779656480>

981 Thomson, D. R., Besner, D., & Smilek, D. (2015). A resource-control account of sustained
982 attention: Evidence from mind-wandering and vigilance paradigms. *Perspectives on*
983 *Psychological Science*, 10(1), 82–96. <https://doi.org/10.1177/1745691614556681>

984 Tikhomirov, L., Bartlett, M. L., Duncan-Reid, J., & McCarley, J. S. (2023). Identifying
985 inefficient strategies in automation-aided signal detection. *Journal of Experimental*
986 *Psychology: Applied*, 29(4), 869–886. <https://doi.org/10.1037/xap0000484>

987 Unsworth, N., & McMillan, B. D. (2014). Similarities and differences between
988 mind-wandering and external distraction: A latent variable analysis of lapses of
989 attention and their relation to cognitive abilities. *Acta Psychologica*, 150, 14–25.
990 <https://doi.org/10.1016/j.actpsy.2014.04.001>

991 Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of sustained
992 attention. *Cognitive, Affective, & Behavioral Neuroscience*, 16(4), 601–615.
993 <https://doi.org/10.3758/s13415-016-0417-4>

994 Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian
995 hypothesis testing for psychologists: A tutorial on the Savage–Dickey method.
996 *Cognitive Psychology*, 60(3), 158–189. <https://doi.org/10.1016/j.cogpsych.2009.12.001>

997 Warm, J. S., Dember, W. N., & Hancock, P. A. (1996). Vigilance and workload in

998 automated systems. In *Human Factors in Transportation. Automation and human*
999 *performance: Theory and applications.* (pp. 183–200). Hillsdale, NJ: CRC Press.

1000 Warm, J. S., Finomore, V. S., Vidulich, M. A., & Funke, M. E. (2015). Vigilance: A
1001 perceptual challenge. In R. R. Hoffman, P. A. Hancock, M. W. Scerbo, R.
1002 Parasuraman, & J. L. Szalma (Eds.), *The Cambridge Handbook of Applied Perception*
1003 *Research* (pp. 241–283). New York: Cambridge University Press.
1004 <https://doi.org/10.1017/CBO9780511973017.018>

1005 Warm, J. S., Howe, R., Dember, W. N., & Sprague, L. (1984). Cognitive Demand and the
1006 Vigilance Decrement. In *Trends in Ergonomics/Human Factors* (pp. 15–20). Elsevier.

1007 Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental
1008 work and is stressful. *Human Factors: The Journal of the Human Factors and*
1009 *Ergonomics Society*, 50(3), 433–441. <https://doi.org/10.1518/001872008X312152>

1010 Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E.-J.
1011 (2011). Statistical evidence in experimental psychology: An empirical comparison using
1012 855 *t* tests. *Perspectives on Psychological Science*, 6(3), 291–298.
1013 <https://doi.org/10.1177/1745691611406923>

1014 Wickham, H. (2016). *ggplot2: Elegant graphics for data analysis.* Springer-Verlag New
1015 York. Retrieved from <https://ggplot2.tidyverse.org>

1016 Wickham, H. (2023). *Forcats: Tools for working with categorical variables (factors).*
1017 Retrieved from <https://CRAN.R-project.org/package=forcats>

1018 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., ...
1019 Yutani, H. (2019). Welcome to the tidyverse. *Journal of Open Source Software*, 4(43),
1020 1686. <https://doi.org/10.21105/joss.01686>

1021 Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). *Dplyr: A
1022 grammar of data manipulation.* Retrieved from
1023 <https://CRAN.R-project.org/package=dplyr>

1024 Wickham, H., & Henry, L. (2023). *Purrr: Functional programming tools.* Retrieved from

1025 <https://CRAN.R-project.org/package=purrr>

1026 Wickham, H., Vaughan, D., & Girlich, M. (2023). *Tidyr: Tidy messy data*. Retrieved from
1027 <https://CRAN.R-project.org/package=tidyr>

1028 Wilke, C. O. (2024). *Cowplot: Streamlined plot theme and plot annotations for 'ggplot2'*.
1029 Retrieved from <https://CRAN.R-project.org/package=cowplot>

1030 Wixted, J. T. (2020). The forgotten history of signal detection theory. *Journal of
1031 Experimental Psychology: Learning, Memory, and Cognition*, 46(2), 201–233.
1032 <https://doi.org/10.1037/xlm0000732>

1033 Yamashita, A., Rothlein, D., Kucyi, A., Valera, E. M., Germine, L., Wilmer, J., ...
1034 Esterman, M. (2021). Variable rather than extreme slow reaction times distinguish
1035 brain states during sustained attention. *Scientific Reports*, 11(1), 14883.
1036 <https://doi.org/10.1038/s41598-021-94161-0>

1037 Zanesco, A. P., Denkova, E., & Jha, A. P. (2021). Self-reported mind wandering and
1038 response time variability differentiate prestimulus electroencephalogram microstate
1039 dynamics during a sustained attention task. *Journal of Cognitive Neuroscience*, 33(1),
1040 28–45. https://doi.org/10.1162/jocn_a_01636

1041 Zanesco, A. P., Denkova, E., & Jha, A. P. (2024). Mind-wandering increases in frequency
1042 over time during task performance: An individual-participant meta-analytic review.
1043 *Psychological Bulletin*. <https://doi.org/10.1037/bul0000424>

1044 Zanesco, A. P., Denkova, E., Witkin, J. E., & Jha, A. P. (2020). Experience sampling of
1045 the degree of mind wandering distinguishes hidden attentional states. *Cognition*, 205,
1046 104380. <https://doi.org/10.1016/j.cognition.2020.104380>

1047 Zeigenfuse, M. D., & Lee, M. D. (2010). A general latent assignment approach for
1048 modeling psychological contaminants. *Journal of Mathematical Psychology*, 54(4),
1049 352–362. <https://doi.org/10.1016/j.jmp.2010.04.001>