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COGNITIVE VIGILANCE 3

Abstract

The ability to monitor for rare critical events generally deteriorates over time on task, an
effect termed the vigilance decrement. Although the decrement has been replicated many
times, it has generally been studied with sensory discrimination tasks. Research using
cognitive vigilance tasks, which require judgments of symbolic stimulus characteristics, has
produced less consistent results. To test the robustness and nature of the cognitive
vigilance decrement, the current study developed a computational performance model of a
novel monitoring task. Participants performed a monitoring task that required them to
estimate the central tendency of a set of three-digit readings each trial. For analysis, data
from the first and last 4-min blocks of trials were fit with a model based on signal detection
theory. The model assumed that participants could either perform the task in an attentive
state in which decisions were stimulus-driven, or could lapse into an inattentive state in
which decisions were guessed. Parameter estimats indicated an increase in mental lapse
rate and decrease in positive guess rate over time, coupled with a decrease in internal
processing noise. The effects of these latent changes on observable response rates, however,
were modest and partially offsetting. Results suggest that mental lapses and a tendency to
negative guesses are a common causes of vigilance loss across sensory and cognitive tasks,

but may have small effects on observed responses.

Keywords: vigilance decrement, sustained attention, signal detection
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COGNITIVE VIGILANCE 4

Computational Modeling Reveals Minimal Vigilance Changes in a Cognitive Monitoring

Task

Vigilance tasks like quality control and security surveillance require observers to
monitor for infrequent signals over extended periods. A common finding is that detection
falters over time on task (Mackworth, 1948), sometimes beginning within 5 minutes of task
onset (Nuechterlein, Parasuraman, & Jiang, 1983). This pattern, the vigilance decrement
(Proctor & Vu, 2023), has been replicated in hundreds of laboratory studies over multiple
decades (See, Howe, Warm, & Dember, 1995; Warm, Finomore, Vidulich, & Funke, 2015),
and has been observed in naturalistic tasks (Molloy & Parasuraman, 1996;
Reinerman-Jones, Matthews, & Mercado, 2016).

Although the effect is familiar and well-studied, the psychological mechanisms
underlying the vigilance decrement remain the subject of debate. Vigilance is commonly
studied using yes-no detection tasks. In a task of this form, the observer is presented each
trial with a stimulus from one of two categories, typically designated noise versus signal,
and is asked to report whether a signal is present (yes) or absent (no). Data can be
evaluated using signal detection theory (SDT: Green & Swets, 1966; Hautus, Macmillan, &
Creelman, 2022). Under SDT, the observer encodes the evidence for the presence of a
signal as a unidimensional decision variable, X. Variance in the decision variable is
determined by the combination of external noise, variability that is inherent in the stimulus
itself, and internal noise, variability that arises during the observer’s sensory encoding and
information processing. Confusability between signal and non-signal events exists when the
distributions of X corresponding to the two categories overlap. Sensitivity, the observer’s
ability to distinguish signal from non-signal events, therefore increases as overlap between
the distributions decreases. The observer transforms the decision variable to a yes or no
judgment by comparing it to a response cutoff, rendering a positive judgment when X
exceeds the cutoff value. Placement of the cutoff determines the observer’s response bias; a

low cutoff is liberal, favoring positive responses, and a high cutoff is conservative, favoring
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COGNITIVE VIGILANCE 5

negative responses. A cutoff that favors neither positive or negative responses is unbiased.

Assuming that task demands and stimulus characteristics are held constant, detection
rates in a vigilance task might drop over time for either of two reasons under SDT. One
possibility is an increase in internal noise, reducing the observer’s sensitivity. The second is
a conservative shift in response cutoff. Data suggest that, in fact, both mechanisms can
contribute to the vigilance decrement, but tend to do so unequally. Cutoff shifts are
common (e.g., Broadbent & Gregory, 1963, 1965; A. Craig, 1987; Parasuraman, 1979;
Swets, 1977), and presumably occur as the observer adapts to the low frequency of signal
events (Colquhoun & Baddeley, 1967; A. Craig, 1978). Sensitivity losses are more selective,
and in particular, are believed to obtain when the event rate of the task (i.e., number of
trials per minute) is high and information processing demands are heavy (Nuechterlein et
al., 1983; Parasuraman, 1979; Parasuraman & Mouloua, 1987; See et al., 1995).
Theoretical accounts attribute sensitivity losses to gradual reductions in the attention
allocated to the vigilance task. Resource depletion theory proposes that maintaining
vigilance is mentally taxing (Grier et al., 2003; Warm, Parasuraman, & Matthews, 2008)
and exhausts “reservoirs of energy” (Warm et al., 2015, p. 261) that determine the
observers’ information processing capacity (Caggiano & Parasuraman, 2004; Neigel et al.,
2020; Schumann et al., 2022; Warm et al., 2015). Resource control theory argues that
processing capacity remains constant, but that executive control failures or strategic
choices let resources drift to task-unrelated thoughts (Thomson, Besner, & Smilek, 2015).
Under either model, resources dedicated to the vigilance task dwindle over time, resulting
in poorer sensitivity. However, generative modeling suggests that even when they occur,
sensitivity decrements might produce relatively small declines in raw detection rates
(Gyles, McCarley, & Yamani, 2023; McCarley & Yamani, 2021).

Mechanisms outside standard signal detection theory can also contribute to vigilance
failures. At times, attention may lapse, disengaging entirely from the vigilance task

(Esterman & Rothlein, 2019; Gyles et al., 2023; McCarley & Yamani, 2021). Lapses might
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COGNITIVE VIGILANCE 6

result from any of multiple causes (Unsworth & Robison, 2016), including external
distractions (Drody, Pereira, & Smilek, 2023; Robison & Unsworth, 2015; Unsworth &
McMillan, 2014), microsleeps (Buckley, Helton, Innes, Dalrymple-Alford, & Jones, 2016),
an intentional or unintentional (Seli, Risko, & Smilek, 2016; Thomson et al., 2015) drift of
processing to off-task thoughts or stimuli (McVay & Kane, 2009, 2012), or a breakdown of
goal representation (Ariga & Lleras, 2011; Manly, Robertson, Galloway, & Hawkins, 1999).
Lapses become more common with longer time on task and are associated with
performance losses (Cunningham, Scerbo, & Freeman, 2000; Krimsky, Forster, Llabre, &
Jha, 2017; McVay & Kane, 2009, 2012; Unsworth & Robison, 2016; Zanesco, Denkova, &
Jha, 2024), and thus contribute to the vigilance decrement (Esterman & Rothlein, 2019;
Gyles et al., 2023; McCarley & Yamani, 2021) .

Lapses also introduce a further mechanism of declining response rates over the course
of a vigil. Whatever its cause, the effect of an attention lapse within a signal detection task
is that the participants’ response is selected independent of the stimulus (Kingdom &
Prins, 2016). Responses during lapses can therefore be modeled as guesses (Kuss, Jékel, &
Wichmann, 2005; Lee, 2018). A decrease in the probability of guessing a positive response
is then an additional source of vigilance loss; as the participant adapts to the low signal
rate, the positive guess rate declines (Gyles et al., 2023).

Unfortunately, attention lapses and guesses complicate efforts to distinguish
sensitivity from bias with yes-no response data. The most common measure of sensitivity,
d’, assumes that the values of X associated with signal and noise events are normal with
equal variance. Guessed responses violate this parametric assumption. Although it is often
described as non-parametric, an alternative measure of yes-no sensitivity, A’ also
incorporates parametric assumptions that are violated by response guessing (Macmillan &
Creelman, 1996; Pastore, Crawley, Berens, & Skelly, 2003). More generally, yes-no data
provide only two degrees of freedom, hit and false alarm rate, too few to identify a model

with sensitivity, response bias, lapse rate, and cutoff rate as parameters.
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COGNITIVE VIGILANCE 7

As an alternative method to isolate sensitivity losses, bias changes, lapses, and
guesses, McCarley and Yamani (2021) proposed the analysis of psychometric functions for
vigilance tasks. The psychometric function for a detection task presents the positive
response rate as a function of stimulus intensity, and is typically an S-shaped curve. The
form and position of the function reflect the four mechanisms of vigilance decrement
discussed above. Placement of the response cutoff, specifically, determines the horizontal
position of the function, sensitivity determines its steepness, and lapse and guess rates
determine its upper and lower asymptotes. Changes in the psychometric function over time
on task can therefore reveal mechanisms of vigilance loss. Studies using psychometric
curves to analyze vigilance data have suggested that sensitivity losses are possible
(McCarley & Yamani, 2021), but that changes of response cutoff, lapse rate, and guess rate
are more common (Gyles et al., 2023; McCarley & Yamani, 2021; Romén-Caballero,
Martin-Arévalo, & Lupidnez, 2022). Conservative cutoff shifts appear to account for the

majority of the change in raw detection rates over time on task.

Sensory vs. Cognitive Vigilance

Much of what’s known about the vigilance decrement has come from studies of
sensory detection and discrimination. In tasks of this type, noise and signal conditions are
distinguished by differences in physical stimulus properties, for example, shape (e.g.,
Helton & Warm, 2008; Nuechterlein et al., 1983), brightness (Broadbent & Gregory, 1965),
spatial alignment (Dillard et al., 2019; Hitchcock, Dember, Warm, Moroney, & See, 1999)
or size (Colquhoun & Baddeley, 1964; e.g., Deaton & Parasuraman, 1993; McCarley &
Yamani, 2021). These can be distinguished from cognitive discrimination tasks, in which
signal and noise stimuli are defined by symbolic properties (See et al., 1995). Given pairs of
digits as stimuli, for instance, the signal in a cognitive discrimination task might be defined
as a trial in which one digit is even and the other is odd (Deaton & Parasuraman, 1993) or

a trial in which the difference between values is between -1 and +1 (Claypoole, Dever,
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COGNITIVE VIGILANCE 8

Denues, & Szalma, 2019).

Comparisons between sensory and cognitive discrimination tasks are potentially
valuable for theories of the vigilance decrement. A finding that the vigilance decrement was
similar for sensory and cognitive tasks, for instance, would imply that vigilance failures
occurred at a post-sensory, supramodal stage of information processing (cf., Greenlee,
DeLucia, & Lui, 2022; Shaw et al., 2009). A finding that the effect was small or absent for
cognitive tasks would implicate sensory or perceptual processing limitations as a major
source of the conventional vigilance decrement.

Studies of cognitive vigilance, though, have produced wildly inconsistent effects.
Experiments by Warm and colleagues (1984), using pairs of digits as stimuli, found a drop
in detection rates over time when signal events were defined by a simple rule (digits differ
by no more than +1), but a gradual increase in detection rates—that is, a vigilance
increment—when signals were defined by a more complex rule (digits differ by no more than
+1 and have a sum between 4 and 14). Other experiments failed to recreate the vigilance
increment under conditions of high task complexity (Loeb, Noonan, Ash, & Holding, 1987),
however, and a meta-analysis suggested that the effect might obtain only under very select
task conditions (See et al., 1995). Several studies have reported null or modest effects of
time on task in cognitive monitoring tasks (Deaton & Parasuraman, 1993; Koelega,
Brinkman, Hendriks, & Verbaten, 1989; Loeb et al., 1987), and others have reported
conventional vigilance decrements, including sensitivity losses (Claypoole et al., 2019;
Claypoole & Szalma, 2018b, 2018a; Matthews, Davies, & Holley, 1993; Mouloua &
Parasuraman, 1995) and apparent cutoff shifts (Matthews, Warm, Reinerman-Jones,
Washburn, & Tripp, 2010).

Methodological considerations seem likely to explain some of these inconsistencies. In
at least some studies, the tasks used to test cognitive vigilance might not have been
well-suited for analysis using SDT. SDT presumes that states of knowledge are inherently

continuous, and that errors arise from external and internal noise in the evidence



180

181

182

184

185

186

187

189

190

191

192

194

195

196

197

199

200

201

202

204

205

206

COGNITIVE VIGILANCE 9

representing alternative states of the world (Hautus et al., 2022; Wixted, 2020). Although
this model will probably hold for sensory vigilance tasks, it might be less appropriate to
some of the tasks used in studies of cognitive vigilance. For instance, consider the task of
judging whether the difference between two one-digit numbers is less than or equal to one
(Claypoole et al., 2019; Claypoole & Szalma, 2018b, 2018a; Warm et al., 1984), or whether
one digit in a pair is even and the other is odd (Deaton & Parasuraman, 1993). In these
cases, signal and noise categories are discrete, and assuming that stimuli are not
perceptually degraded and processing is not terminated prematurely, encoding or decisional
noise seems unlikely to cause confusability. Errors more probably reflect guesses or
response blunders, violating the parametric assumptions of SDT. In cases like this,
apparent sensitivity losses might be spurious.

A related concern is that performance in some tasks classified as cognitive might have
actually been limited by sensory or perceptual processes. For example, a study by Mouloua
and Parasuraman (1995) asked participants to monitor for occasional lowercase letters in a
temporal stream of uppercase letters. Although the task was framed as a cognitive
discrimination, vigilance losses were more pronounced when the task-relevant letters were
surrounded by distractors, and when they were presented with spatial uncertainty in the
visual periphery, than when they appeared alone in central vision. The vigilance decrement
was thus largest when discriminability is likely to have been degraded by visual crowding
and lateral masking (Bouma, 1970; Coates, Levi, Touch, & Sabesan, 2018; Loomis, 1978;
Strasburger, Rentschler, & Juttner, 2011), implying that performance losses might have
been sensory, not cognitive. Another experiment (Matthews et al., 1993) asked participants
to identify targets in a stream of single digits presented in the central visual field, but
degraded the stimuli with pixelated noise. Again, it seems possible that performance was
limited more by sensory stimulus quality than by symbolic processing demands.

The goal of the current study was to test for vigilance effects in a cognitive

monitoring task, isolating changes of response bias, sensitivity, mental lapse rate, and guess
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COGNITIVE VIGILANCE 10

rate, with a task that meets the assumptions of signal detection analysis and is not limited
by sensory or perceptual noise. To analyze performance, we develop a cognitive model
motivated by the findings of psychometric function analyses reported in earlier studies

(Gyles et al., 2023; McCarley & Yamani, 2021; Roman-Caballero et al., 2022).

Modeling a Cognitive Vigilance Task

As described above, signal detection analysis of cognitive vigilance requires a task
that meets at least two characteristics. First, discrete states of the world do not map onto
discrete mental states, but are represented by variations in an internal decision variable
that is continuous and contaminated by random error (Hautus et al., 2022; Wixted, 2020).
Second, performance is not limited by sensory information quality, but by the quality of
post-sensory processing. Toward that end, we adapted a numeric signal detection task
(Healy & Kubovy, 1981) from earlier studies (Duncan-Reid & McCarley, 2021; Tikhomirov,
Bartlett, Duncan-Reid, & McCarley, 2023) for use in a vigilance context. As shown in
Figure 1, the stimulus each trial was a column of four three-digit readings sampled from
one of two normal distributions, one that represented noise events and the other that
represented signal events. Source distributions had a common standard deviation but
differed in means. The participant’s task each trial was to make a key press response if
they judged that the displayed readings were drawn from the signal distribution. Accurate
task performance thus required participants to mentally estimate the central tendency of
the stimulus readings displayed each trial. Signals occurred randomly, with a probability of
0.20 each trial. Trials occurred at a pace of 40 per second, a rate that has been reported to
be high enough to engender losses of sensitivity over time (Parasuraman, 1979).

For analysis, data were fit with a cognitive model built on SDT. As shown in Panel A
of Figure 2, the model assumed that on some trials the participant rendered their decision
in an attentive state, and that on the remaining trials, the participant lapsed into an

inattentive state. The participant’s state was determined randomly each trial, with the
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Task: Judge which distribution
values were sampled from
* 1500 ms per trial

+ Signal rate = 20%

Noise trials Signal trials
u=490, 0=20 u=510,0=20

Density

400 450 500 550 600
Reading

Figure 1. Schematic illustration of the stimuli and task.

lapse rate being the probability of an inattentive state. The assumption of discrete
attentive and inattentive states is consistent with evidence from neural and
behavioral-cognitive modeling (Hawkins, Mittner, Forstmann, & Heathcote, 2019; Mittner
et al., 2014; Yamashita et al., 2021; Zanesco, Denkova, & Jha, 2021; Zeigenfuse & Lee,
2010) that processing on attention-demanding decision tasks can be modeled as a binary
mixture distribution of identifiable latent states: a task-focused state generating efficient,
stimulus-driven responses and an off-task state producing inefficient or contaminant
responses. These binary attentive and inattentive states might themselves reflect a variety

of underlying processing modes. The attentive state, for example, might be dissected into
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substates reflecting gradations of attentional focus (Zanesco, Denkova, Witkin, & Jha,
2020). Similarly, the inattentive state might be taken to subsume different forms of off-task
thought (Unsworth & McMillan, 2014; Unsworth & Robison, 2016). To a reasonable
approximation, though, attentive and inattentive states can be treated as binary.

Here, on attentive trials, the participant was assumed to make a stimulus-driven
response using a conventional signal detection strategy, as illustrated in Panel B of Figure
2. Consistent with our earlier work (Duncan-Reid & McCarley, 2021; Tikhomirov et al.,
2023), the model assumed that the participant used the estimated mean value of the
displayed readings as a decision variable, but that the participant’s estimate of the mean
reading was contaminated by random error (Brezis, Bronfman, & Usher, 2015, 2018; cf.,
Brusovansky, Glickman, & Usher, 2018) modeled as zero-centered Gaussian noise. The
participant rendered a judgment by comparing the estimated mean to a response cutoff.
On the inattentive trials, the participant rendered a judgment by guessing, responding yes
with a probability termed the guess rate.

Under the model, performance on the attentive trials was thus limited by the
combination of variability in the stimulus source distributions and error in the participants’
estimation of the mean readings. Performance on inattentive trials was determined by the
guess rate; given the low frequency of signal events, a strategy of always guessing no would
have maximized response accuracy. Attentive and inattentive trials were distinguished by
the pattern of errors they produced. On attentive trials, errors would have been most
common when the mean reading was very near the observer’s response cutoff, and would
have been rare when the mean reading was more extreme in either direction. On
inattentive trials, on which responses were guessed, errors would have been equally
common across all values of the stimulus readings.

To identify potential vigilance effects, lapse rate, estimation error, cutoff placement,
and guess rate were allowed to vary between blocks of trials. Parameters were estimated

using a Bayesian hierarchical procedure (Kruschke, 2015; Lee & Wagenmakers, 2013).
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/A_ Attentive State N /B Attentive State Model N
Make stimulus-driven Operator compares the estimated mean reading
response to a response cutoff to reach a Noise or Signal
decision.
p(1 - lapse rate)
Response Cutoff
512 ; lean Readin:
ggg M for?rial(j{ ¢
516 >
‘@
. c
Trlal t 8 = Estimation Error
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Figure 2. Schematic illustration of the model fit to the data.

Methods

We report how we determined our sample size, all data exclusions, all manipulations,
and all measures in the study. The methods for this study were preregistered.
Preregistration, data, and analytic code are available at
https://osf.io/eytbz/?view__only=8dce3ec5d659450db3a5694435d21c8b. Deviations from

the preregistered plan are noted below.

Participants

Two hundred participants were recruited from the online research platform Prolific
(https://prolific.co/). Sample size was determined by a preregistered adaptive stopping
rule. Under the stopping rule, we recruited an initial 125 participants then continued
recruitment in increments of 25 until either, 1) the Bayes factors for the effects of block on
response cutoff, estimation error, and lapse rate indicated an evidence ratio of at least 1:10

in either direction (i.e., in favor of or against the null), or, 2) sample size reached 200. Data
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collection ceased at 200 participants.

All participants gave informed consent and reported that they were fluent in English
and had normal color vision and normal or corrected-to-normal visual acuity. Data
exclusions described below left 180 participants for analysis (mean age = 22.58 years,
gender = 73 females, 100 males, 4 non-binary, 3 not specified). Participants were

reimbursed USD 5.00 for an experimental session lasting approximately 25 minutes.

Apparatus

Participants performed the experimental task online. The task was controlled by
software written in PsychoPy (Peirce et al., 2019) and hosted on Pavlovia
(https://pavlovia.org). Participation was restricted to participants using either laptop or

desktop computers, not smartphones or tablet computers.

Procedure

Participants performed a numeric signal detection task after Healy and Kubovy
(1978). The stimulus each trial was a set of four three-digit numeric readings, presented in
a column in the center of the display. Readings were displayed in Arial font with a height

4% of the participant’s display size.

On noise trials, the stimulus readings were sampled independently from a
pseudorandom Gaussian distribution with ;1 = 490 and o = 20. On signal trials, they were
sampled independently from a pseudorandom Gaussian distribution with x4 = 510 and
o = 20. Event type, noise or signal, was determined pseudorandomly each trial, with
p(signal) = 0.20. We note that this signal rate (20%) is higher than in many traditional
vigilance experiments, but matches that of our earlier studies of sensory vigilance (Gyles et
al., 2023), which produced robust vigilance decrements. The participants’ optimal strategy

was to use the mean of the four readings each trial as the decision variable (Sorkin, Mabry,
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Weldon, & Elvers, 1991). Basing judgments on a single reading allowed a maximum
sensitivity of d’ = 1.0. Basing judgments on the mean of the four readings allowed a
maximum sensitivity of d’ = 2.0.

Experimental trials occurred at a forced pace of 1 every 1500 ms, producing an event
rate of 40 trials per minute. The stimulus display appeared at the start of the trial and
remained visible until the start of the next trial, giving an exposure duration of 1500 ms
and an interstimulus interval of 0 ms. Participants were asked to press the space bar if
they believed the readings on a given trial represented a signal state, and to withhold their
response otherwise. A response was attributed to a given trial if it occurred any time
between stimulus onset for that trial and stimulus onset for the subsequent trial.
Participants did not receive post-trial feedback to indicate whether their judgments were
correct or incorrect.

Written instructions were presented onscreen after the participant had indicated their
consent to take part in the experiment. The instructions framed the task as cybersecurity
monitoring. Participants were told, “For this task, imagine that you are a cybersecurity
officer monitoring for malicious activity on your network. The system will provide a
snapshot of network activity every 1.5 seconds. On every update, you will see four numbers,
and each number represents the amount of activity on a single server. On average, normal
network activity produces values below 500, and malicious activity produces values above
500. However, network activity is highly variable, meaning that there is no precise cut-off
for detecting malicious activity. Normal activity will sometimes produce values above 500
and malicious activity will sometimes produce values below 500. For each trial, your job is
to evaluate the set of four numbers and judge whether, collectively, they represent normal
or malicious activity. If you think the set of numbers represents normal activity, you don’t
need to make a response. If you think the set of numbers represents malicious activity, you
should press the space bar to report it. You will have 1.5 seconds to view the display and

make a response before the system updates and new numbers appear.”
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After reading the instructions and indicating they were ready to proceed, the
participant completed a practice vigil of 90 trials followed by a 12-minute experimental
vigil. The vigil was limited to 12 minutes, a duration briefer than in many studies of
sustained monitoring, in order to reduce the risk that online participants would withdraw
before completing the task. Past work, including studies in our lab (Gyles et al., 2023), has
found that 12 minutes on task is enough time to produce a detectable vigilance decrement
in monitoring tasks (C. M. Craig & Klein, 2019; Neigel, Dever, Claypoole, & Szalma, 2019;
Temple et al., 2000). The practice vigil was the same as the experimental vigil except that
signal and noise events were equally probable, the first 25 trials occurred at a pace of 20
per minute (3000 ms/trial), and response errors were followed by a 1-second feedback
message reading either, “Oops! It was not a target.”, or “Oops! You missed a target.”, as
appropriate. Error-free performance resulted in a practice vigil of 2 minutes 15 seconds and
each error added 1 second. Instructions in between the practice vigil and experimental vigil
informed the participants, “You will now perform the task for a longer block and you will
no longer receive feedback. Targets will also appear less frequently than they did during
the practice.”

To avoid potential end-spurt effects (Bergum & Lehr, 1963), participants were not
told the exact length of the experimental vigil, but were aware that the entire session was
expected to last less than 30 minutes.

At the end of the vigil, participants completed a computerized A-SWAT mental
workload scale (Luximon & Goonetilleke, 2001). The A-SWAT consists of three subscales:
time load, mental effort, and psychological stress. The subscales were presented one at a
time. Participants made their rating of each subscale by clicking a horizontal line anchored
with text descriptions of the subscale endpoints. Ratings were scored on a scale of 0 to 100.
Mental workload data were collected to characterize the task for comparison to earlier

studies.
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Data analysis

Data were analyzed using R (Version 4.4.1; R Core Team, 2023) and the R-packages
cowplot (Version 1.1.3; Wilke, 2024), dplyr (Version 1.1.4; Wickham, Francois, Henry,
Miiller, & Vaughan, 2023), forcats (Version 1.0.0; Wickham, 2023), ggplot2 (Version 3.5.1;
Wickham, 2016), jagsUI (Version 1.6.2; Kellner, 2021), magrittr (Version 2.0.3; Bache &
Wickham, 2022), papaja (Version 0.1.3; Aust & Barth, 2022), purrr (Version 1.0.2;
Wickham & Henry, 2023), tidybayes (Version 3.0.7; Kay, 2023), tidyr (Version 1.3.1;
Wickham, Vaughan, & Girlich, 2023), tidyverse (Version 2.0.0; Wickham et al., 2019) and
tinylabels (Version 0.2.4; Barth, 2023).

Signal Detection. Trials from the 12-minute experimental block were grouped into
three consecutive, non-overlapping blocks of four minutes each. As in our earlier studies
(Gyles et al., 2023; McCarley & Yamani, 2021), a duration of four minutes was chosen in
order to minimize the risk that substantial vigilance losses might occur within the first
block of trials; past work has shown that the vigilance decrement can begin after less than
five minutes on task (Nuechterlein et al., 1983). A preliminary screening was conducted to
identify participants who might have misunderstood or failed to follow task instructions.
For this, binary responses were converted to the sensitivity measure d’ using the log-linear
correction (Hautus, 1995), and data were excluded from participants who failed to achieve
a preregistered minimum sensitivity of d = 0.25 in any of the three experimental blocks.
Twenty participants were excluded on the basis of this screening.

For the main analysis, response choice data were fit with a hierarchical Bayesian
model based on SDT and earlier analyses of sensory vigilance data (Gyles et al., 2023;
McCarley & Yamani, 2021; Roman-Caballero et al., 2022). Analysis was restricted to the
first and last four-minute blocks of trials, allowing us to test for differences between blocks
using the Savage-Dickey ratio (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010), as

discussed below.
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The model assumed that the participant performed the detection task each trial in
one of two states, attentive or inattentive, where the inattentive state reflected an
attentional lapse. On attentive trials, the participant made a stimulus-driven choice by
estimating the mean of the displayed stimulus readings and comparing it to a response
cutoff. The participant’s estimated mean reading for a given trial was equal to the true
mean contaminated by zero-centered Gaussian noise (Brusovansky et al., 2018; Tikhomirov
et al., 2023) of standard deviation 7. Sensitivity, the participant’s ability to correctly
distinguish signal from noise events, therefore decreased as 7 increased. The participant
classified the stimulus as noise or signal by comparing the estimated mean to a cutoff, ,
rendering a positive judgment if the decision variable exceeded the cutoft.

In the inattentive state, the participant chose a response by guessing, responding
“yes” with probability 7 independent of the displayed stimulus readings. The participant’s
state each trial, attentive or inattentive, was determined randomly each trial. The
probability of being in an inattentive state, or lapse rate, was ¢. Internal noise 7, cutoff &,
lapse rate ¢, and guess rate m were all allowed to vary between participants and between
experimental blocks. The probability of participant ¢ in block j performing trial k
responding “yes” was thus,

peas(yes') = (1= i) x B(BE =Ry 4o,
7
where R; ;i represents the mean of that trial’s displayed stimulus readings and @
represents the standard normal transformation.

Note that the inclusion of the guess rate as a free parameter is a deviation from the
pregistered analysis plan, which assumed that the participants never responded in the
inattentive state. Guess rate was added as a free parameter in light of results obtained
following the preregistration (Gyles et al., 2023; Romén-Caballero et al., 2022). Fixing 7 to
a value of 0 did not substantially change the patterns of effect in other model parameters
described below.

Values of 7; ;, ki j, ¢ij, and 7, ; reflected additive effects of the subject mean
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parameter values and the subject-specific effects of block. To ensure that values of the
lapse rate ¢ and guess rate m remained between 0 and 1, the model placed priors on
probit-transformed proportions rather than on raw values (Rouder & Lu, 2005). Likewise,
to ensure positive values for the standard deviation of estimation error, the model placed

priors on the log of 72 (Pratte & Rouder, 2011) rather on 7 directly. Thus,

log7? — 0.5 x Al 5 first,

log 72 + 0.5 x AiOgTQ, j = last,
ki — 0.5 x AF, j = first,
K"i,j =
ki + 0.5 X Af, 7 = last,
D(¢;) — 0.5 x AT j = first,
(i) =
B(¢;) + 0.5 x AT j = last,
and,
O(m;) — 0.5 x A?(W), J = first,
O(m;;) =

O(m;) + 0.5 x AP™ | j = last.

Here, log 72, k;, ®(¢;), and ®(7;) are subject-level mean parameter values, and A% 72, AF,
A?? and AT™ are subject-level effects of block.

To maintain consistency and facilitate comparisons across parameters, the model
placed unit normal priors on the group-level means of the standardized mean difference
between blocks (Lee & Wagenmakers, 2013), rather than placing priors on the raw effects
of block. The standard deviation of the difference between blocks was assigned a uniform
distribution between 0 and 100. For example, for the parameter x, A = 6 x oF,

§" ~ Normal(0, 1), 0" ~ Uniform(0, 100), where 6" is the standardized mean difference in

cutoff placement between the first and last blocks.
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Finally, subject-level means 7;, ;, ¢;, and 7; were sampled from group-level
distributions with vague priors. Ggroup-level means of log 72 and k were assigned normal
prior distributions with a mean of 0 and variance of 1000. Group-level values of the mean
probit-transformed lapse and guess rates were assigned normal priors with a mean of 0 and
standard deviation of 1, corresponding to uniform distributions over the interval (0.0, 1.0)

on the raw lapse and guess rates.

Stimulus readings were zero-centered for analysis. Estimation was performed using
JAGS (Plummer, 2019). The model was run for four MCMC chains of 10,000 warmup
steps and 25,000 estimation steps each, providing 100,000 total MCMC steps for analysis.
All parameter estimates showed R-hat values of less than 1.02, indicating satisfactory

convergence of MCMC chains (Gelman & Rubin, 1992).

We used the Savage-Dickey ratio (Wagenmakers et al., 2010) to estimate Bayes
factors for or against an effect of block on each of the four parameters of interest. We
describe Bayes factors using the evidence categories (anecdotal, substantial, strong, very
strong, decisive) proposed by Wetzels et al. (2011). As a check of model fit, we calculated
95% posterior predictive equal-tail Bayesian credible intervals (BCIs) on the basis of a

random sample of 1000 steps from the MCMC chains.

Parameter recovery tests using simulated data (Heathcote, Brown, & Wagenmakers,
2015) confirmed that the model estimated true parameter values well, though with a
tendency to underestimate differences in lapse rate between blocks. Simulated data and

outputs of parameter recovery tests are available at the OSF site linked above.

Response Times. A non-preregistered analysis estimated the difference in mean
response time (RT) between the first and last blocks of trials in order to test for a change
in response speed over time on task. Data were subject-mean RTs for correct responses,
calculated separately for the first and last trial blocks. Scores were assigned a normal

likelihood with mean RT;; and residual variance o.. RT); reflected the sum of a
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subject-level grand mean RT, RT};, and a fixed effect of block, RT;. Subject-level grand
means were assigned a normal prior with mean pn7 and standard deviation o7 Finally,
Hzr was assigned a normal prior with mean 0 and variance 1000, truncated below 0, and
op7 Was assigned a uniform prior between 0 and 100. The Bayes factor for an effect of
block, versus a point-null hypothesis of 0, was estimated using the Savage-Dickey ratio

(Wagenmakers et al., 2010).

Workload Ratings. Responses for the A-SWAT subscales were analyzed
separately within a model that placed a normal likelihood function on observed ratings,
and uniform priors between 0 and 100 on the group means and standard deviations of the
ratings. The estimation procedure again ran four MCMC chains for 10,000 warmup trials
then 25,000 estimation trials each. All parameter estimates showed R-hat values of less

than 1.01, indicating satisfactory convergence of MCMC chains.

Results
Signal Detection

Figure 3 shows empirical and posterior predictive yes rates as a function of trial type
and trial block. Yes rates for signal trials are hit rates and yes rates for noise trials are false
alarm rates. Posterior predictive BCIs are narrow and contain the empirical means,
implying a satisfactory model fit. Yes rates for signal trials are clearly higher than those for
noise trials, confirming that participants could discriminate signal from noise events at

levels above chance.

Yes rates showed no obvious changes between the first and last blocks,
Mp;sr = —0.010, 95% BCI[—0.025, 0.006] for signal trials,
Mpigr = —0.008, 95% BCI[—0.016,0.002] for noise trials. Raw response rates thus gave no

clear evidence of a vigilance decrement.

In contrast, analysis of latent model parameters produced substantial or strong
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Figure 3. Empirical and posterior predictive yes rates, as a function of trial type and block.
NOTE: Small symbols represent empirical means for individual participants, large symbols
represent empirical group means, error bars represent 95% posterior predictive BCIs for
group mean scores. Filled symbols correspond to hit rates, unfilled symbols correspond to

false alarm rates.
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evidence of changes in three out of four potential mechanisms of vigilance decrement.
Figure 4 presents density plots of the standardized mean differences in decision model
parameters between the first and last blocks on task. Note that the panel labeled Internal
Noise depicts standardized differences in the log variance of participants’ estimation error.
The panels labeled Lapse Rate and Guess Rate present standardized differences in

probit-transformed rates.

Data gave substantial evidence against a change in response cutoff over blocks,
Mpioek 1 = —1.39, 95% BCI[—2.26, —0.53], Mpjoek 3 = —1.44, 95% BCI[—2.30, —0.58],
Mpig = —0.05, 95% BCI[—0.59,0.50], By = ﬁ. Data also gave substantial evidence for a
decrease in internal noise-that is, an improvement in the ability to distinguish signal from
noise—over blocks, Mpoex 1 = 8.71, 95% BCI|[8.28,9.16] for the standard deviation of the
error in participants’ estimates of the mean reading, Mgjoek 3 = 7.96, 95% BCI[7.55,8.39],

Mpig = —0.75, 95% BCI[—1.29,0.21], B;o = 6.01.

Analyses of the remaining two parameters showed effects more consistent with a
conventional vigilance decrement. Data gave strong evidence for an increase in the lapse
rate between the first and last trial blocks, Mpj,a1 = .05, 95% BCI[0.03,0.06],

Mpioek 3 = 0.07, 95% BCI[0.06, 0.09], Mp;z = 0.03 95% BCI[0.01, 0.05], By = 28.12, and
substantial evidence for a decrease in the guess rate, Mpioek 1 = 0.70, 95% BCI[0.57,0.82],
Mpioek 3 = 0.56, 95% BCI[0.45, 0.68], Mp;z = —0.14 95% BCI[—0.26, —0.01], By = 3.17.
With time on task, that is, participants became more likely to lapse into inattentiveness

and less likely to make a positive guess during a lapse.

On the surface, the finding that estimates of internal noise, lapse rate, and guess rate
all changed over time on task appears inconsistent with the finding that mean yes rates
were roughly constant. At least two potential explanations seem plausible. One possibility
is that the effects of parameter changes on raw yes rates were simply negligible; effects that

are large and statistically credible in a standardized latent variable, like the parameter
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Figure 4. Posterior distributions of standardized mean differences in decision model param-
eters between the first and last blocks of trials. NOTE: Panel labeled Internal Noise depicts
standardized differences in the log variance of participants’ estimation error. Panels labeled

Lapse Rate and Guess Rate present standardized differences in probit-transformed rates.

estimates shown in Figure 4, might not translate to large effects in an observed measure
(Pek & Flora, 2018). A second possibility is that changes in internal noise and
inattentiveness might have offset one another in the yes rates for signal trials. By itself, a
decrease in internal noise would tend to improve signal-noise discriminability and raise
signal detection rates. Conversely, an increase in lapse rate and a decrease in guess rate
would tend to reduce target detection rates. This makes it possible that the changes in
internal noise and lapse rate/guess rate might have effectively washed out within the yes

rates to signal events.
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To test these two possibilities, we conducted non-preregistered analyses to estimate
the selective effects of internal noise changes and lapse and guess rate changes on yes rates.
In the first case, we generated posterior predictive yes rates incorporating the effects of
block on internal noise, but holding the cutoff, lapse rate, and guess rate fixed at their
mean values for each participant. In the second case, we generated posterior predictive
data incorporating the effects of block on lapse and guess rates, but holding the cutoff
placement and internal noise estimate fixed at their mean values for each participant.

Results provide evidence for both the possibilities discussed above. As expected,
changes in internal noise and inattention parameters had opposite effects on yes rates for
signal events. In both cases, though, the effects of parameter changes on raw yes rates were
small. In isolation, decreases in internal noise between blocks 1 and 3 would have increased
hit rates by about 1 percentage point, Mgioq 1 = 0.759, 95% BCI[0.749, 0.769],

Mpioek 3 = 0.769, 95% BCI[0.779,0.780], Mp;z = 0.010, 95% BCI[—0.003,0.022], and
decreased false alarm rates by about the same amount,

Mpioek 1 = 0.304, 95% BCI[0.299, 0.310], Mpjoa 3 = 0.295, 95% BCI[0.289, 0.301],

Mpig = —0.009, 95% BCI[—0.017, —0.002]. Conversely, changes in lapse and guess rates
would have reduced hit rates by about 1 percentage point,

Mpioek 1 = 0.770, 95% BCI[0.759, 0.780], Mpock 3 = 0.755, 95% BCI[0.744,0.767,

Mpig = —0.014, 95% BCI[—0.030, 0.001], and reduced false alarm rates by less than 1
percentage point, Mgy 1 = 0.301, 95% BCI[0.295, 0.308],

Mgioek 3 = 0.297, 95% BCI[0.290, 0.304, Mp;g = —0.004, 95% BCI[—0.014, 0.005].
Altogether, results suggest that changes in internal noise and in lapse and guess rates had

very small, and partially offsetting, effects on raw yes rates.

Robustness Checks. As a check on the robustness of the results reported above,
we conducted two additional, non-preregistered analyses. The first was intended to confirm
that results were not distorted by the exclusion of data from the middle four minutes. For

this, the analysis described above was repeated, except that the Block 1 data included all
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trials from the first six minutes of the twelve-minute vigil and the Block 2 data included all
trials from the second six minutes. Results again gave substantial evidence (Bjp = 0.11)
against a change in cutoff over time,strong evidence (Bjg = 13.85) for an increase in lapse
rate, and substantial evidence for a decrease in the guess rate (Bjp = 5.93}. Data trended
again toward a decrease in internal noise between blocks 1 and 2,

Mpig = —0.49 95% BCI[—0.97, —0.00]. However, the Bayes factor for this effect was now
indifferent between the alternative and null hypotheses (Bjy = 1.08), implying that the

changes in internal noise might have largely occurred by roughly midway through the vigil.

As the second robustness check, we used deviance information criterion (DIC)
(Spiegelhalter, Best, Carlin, & van der Linde, 2002) scores to compare versions of the
model above selectively excluding effects of block on internal noise, cutoff, and lapse and
guess rates. Consistent with the results described above, DIC values favored a model
including effects of block on internal noise, lapse rate and guess rate, but excluding an

effect of block on response cutoff placement.

Full results of the robustness checks are included at the OSF site linked above.

Response Times. Estimated group mean RT was
Mpioek 1 = 819 ms, 95% BCI[798, 839] for the first block of trials and
Mpiock 3 = 816 ms, 95% BCI[795, 836] for the third block of trials,
Mpig = —3 ms, 95% BCI[—24, 15|, By = ﬁ. Data thus gave decisive evidence against a

change in mean RT between blocks.

Subjective Workload. Estimated group mean ratings were
M = 23.41, 95% BCI[20.11, 26.73] for the time stress subscale of the ASWAT,
M = 80.48, 95% BCI[77.99,82.97] for the mental effort subscale, and
M = 52.62, 95% BCI[49.13,56.11] for the psychological stress subscale. Values were very
similar to those observed in our earlier online experiments using a sensory vigilance task

(Gyles et al., 2023) and are consistent with other evidence indicating that vigilance tasks
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are mentally demanding (Claypoole et al., 2019; e.g., Deaton & Parasuraman, 1993; Warm,
Dember, & Hancock, 1996).

Discussion

Research on cognitive vigilance has produced inconsistent results, with some studies
reporting vigilance losses, others showing null effects, and others reporting gains over time
on task. The current experiment tested for a cognitive decrement in a task designed to
minimize sensory performance constraints and conform to the assumptions of signal
detection theory. Participants performed a vigilance task that asked them to monitor for
infrequent signal events within a stream of numeric readings. The stimulus each trial was a
set of four three-digit numbers, sampled from either a signal or non-signal distribution.
Participants were asked to make a keypress response on any trial in which they judged that
the readings were drawn from the signal distribution. Signals occurred with probability of
0.20.

Observed data of central interest were yes rates (i.e., positive responses rates) to
signal and non-signal events. Data were fit with a model that assumed the participant
made their judgment each trial in either an attentive or inattentive state. In the attentive
state, the participant selected a response by estimating the mean of the stimulus readings
and comparing it to a decision cutoff. In the inattentive state, they selected a response by
guessing. Four parameters were allowed to vary across blocks of trials: internal noise
corrupting the participant’s estimates of the mean reading; cutoff placement; the
probability of lapsing into the inattentive state; and the probability of guessing a positive
response from inside the inattentive state.

Model fits suggested that time on task affected processing both by increasing noise in
the participants’ estimates of mean readings, and by increasing the lapse rate and
decreasing the guess rate. Posterior predictive data confirmed that by itself, an increase in

internal noise would have tended to increase hit rates and decrease false alarm rates. In
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contrast, the observed change in lapse and guess rates would have tended to drive hit and
false alarm rates both downward. As manifest in observable data, however, these effects
were small, however, and partially offset one another. As as result, yes rates showed little

change between the first and last blocks of the task.

Results imply similarities and dissimilarities between cognitive and sensory vigilance
decrements. One notable point of difference is the absence of a conservative shift of
response bias in the current data. Conservative cutoff shifts have been nearly ubiquitous in
sensory vigilance tasks (Broadbent & Gregory, 1965; A. Craig, 1987; Swets, 1977) and have
also been reported in some cognitive vigilance tasks (Claypoole et al., 2019). In contrast,
cutoff placement here was stable over blocks of trials. Two characteristics of the current
experiments seem likely to have allowed participants to maintain a fixed cutoff (Kubovy,
Rapoport, & Tversky, 1971). First, because stimuli were digital, participants could hold a
deterministic cutoff value in verbal memory, rather than relying on an implicit and
potentially noisy (Benjamin, Diaz, & Wee, 2009) cutoff representation in sensory memory.
Second, because the task instructions explained that noise values were generally less than
500 and signal values greater than 500, participants were not required to discover an
appropriate cutoff value through learning (Erev, 1998).

The current results also differ from those of sensory vigilance studies in indicating a
reduction in observers’ internal noise over time. Here, participants showed a small but
credible decrease between blocks in the random error contaminating their estimates of the
mean reading. This result mirrors the findings of Warm et al. (1984), who reported an
improvement in signal detection rates over time in a cognitive vigilance task. The current
data do not tell us the cause of this effect. One possibility, consistent with Warm et al.
(1984)’s explanation of their own findings, is that participants became more motivated over
time, investing greater effort in the task. However, this seems inconsistent with the finding
that estimated lapse rates rose over over time.

A different possibility is that participants modified their task strategies over time.
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One source of error in the participants’ judgments, for instance, might have been a
tendency to attend to fewer than all four of the readings displayed each trial. Thus, a
participant who began the vigil attending to a subset of the readings each trial and
gradually expanded their attention to incorporate a larger subset would have shown a
decrease in estimation noise over time. A third possibility is that participants simply
learned to estimate the mean reading more accurately with practice. But under any of
these accounts, performance was robust against increases internal noise between blocks.
Modeling gave no evidence that on the trials in which they made stimulus-driven
responses, participants lost sensitivity over time. Notably, this result is inconsistent with
the resource depletion theory of vigilance losses, which holds that the gradual consumption
of processing resources over time on task reduces the observer’s ability to discern signal
from noise (Caggiano & Parasuraman, 2004; Parasuraman, 1979; Warm et al., 2015).

Finally, data showed evidence for a conventional vigilance decrement in a tendency
for lapse rates to increase over time. This effect matches results seen in sensory vigilance
(Gyles et al., 2023; McCarley & Yamani, 2021; Roman-Caballero et al., 2022) and speeded
response (Unsworth & Robison, 2016) tasks, and suggests that lapses are a very general
mechanism of vigilance failure, showing up across various forms of monitoring tasks. The
mean increase in estimated lapse rates between blocks 1 and 3 was modest, roughly 3%. It
is possible that this value underestimates the true difference between blocks, since, as
noted above, parameter recovery exercises indicated a tendency for the model to
underestimates changes lapse rate. At best, though, the increase in lapse rate from the first
to last block was too small to manifest as a detectable change in yes rates.

The current data do not reveal the nature of the participants’ occasional lapses, for
example, whether they reflected external distraction (Drody et al., 2023; Robison &
Unsworth, 2015; Unsworth & McMillan, 2014), microsleeps (Buckley et al., 2016), or
mind-wandering (McVay & Kane, 2009, 2012) or other breakdowns of task-set maintenance

(Ariga & Lleras, 2011). However, given that off-task thoughts are common (McVay &
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Kane, 2009) and increase with time on task (Kane et al., 2007; Zanesco et al., 2024), they
seem very likely to be at least one source of the lapses observed here. Interestingly, the
average estimated lapse rate here, collapsed across blocks, was roughly 6%. This value
closely matches the rate at which participants in an early study reported themselves as
being off-task in response to occasional thought probes (6.09%), and is similar to the rate
at which a Markov chain model using probe response and choice RT data estimated those
participants to be in a discrete state of full task disengagement (8.40%) (Zanesco et al.,
2020). The correspondence between these values hints that the attentional lapses inferred
from the current data might reflect the same state of mental disengagement identified by
participants’ self-reports. The current data do not indicate whether this potential increase
in off-task thoughts was intentional, or was the result of attention control failures (Kane &
McVay, 2012; McVay & Kane, 2009; Thomson et al., 2015).

Additional research will be necessary to test whether the pattern of effects seen here
holds over longer vigils or variations in signal rate. Of note, the effects of time on task in
the current data were strikingly smaller than those seen in some earlier work. In the study
reported by Claypoole et al. (2019), for instance, hit rates dropped by roughly 35
percentage points from the first 6-minute block of trials to the second. In the experiments
reported by Warm et al. (1984), hit rates in several variants of the task under study fell by
10 percentage points or more between the first and second 20-minute blocks on task. In
contrast, lapse rates in the current data fell by only 2 percentage points over the course of
a 12-minute vigil. Although all of these experiments used digits as stimuli, and required
participants to perform mental arithmetic operations, they differed in multiple other ways.
Participants in the current study were asked to estimate the mean of a set of 3-digit
numbers, whereas those in Claypoole et al. (2019) and Warm et al. (1984) were asked to
find the sum and difference of pairs of single digits. Maybe more notably, signal rate in the
current task (20%) was substantially higher than in either Warm et al. (1984) (10% or

lower) or Claypoole et al. (2019) (2% or lower). These comparisons suggest that the
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sz magnitude of the cognitive vigilance decrement might be highly sensitive to task demands,

e3 and that increases in lapse rate might not be the sole mechanism of cognitive vigilance loss.
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