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Abstract— Platforms that run artificial intelligence (AI)
pipelines on edge computing resources are transforming the
fields of animal ecology and biodiversity, enabling novel wildlife
studies in animals’ natural habitats. With emerging remote sens-
ing hardware, e.g., camera traps and drones, and sophisticated
Al models in situ, edge computing will be more significant in
future Al-driven animal ecology (ADAE) studies. However, the
study’s objectives, the species of interest, its behaviors, range,
and habitat, and camera placement affect the demand for edge
resources at runtime. If edge resources are under-provisioned,
studies can miss opportunities to adapt the settings of camera
traps and drones to improve the quality and relevance of
captured data. This paper presents salient features of ADAE
studies that can be used to model latency, throughput objectives,
and provision edge resources. Drawing from studies that span
over fifty animal species, four geographic locations, and multiple
remote sensing methods, we characterized common patterns
in ADAE studies, revealing increasingly complex workflows
involving various computer vision tasks with strict service
level objectives (SLO). ADAE workflow demands will soon
exceed individual edge devices’ compute and memory resources,
requiring multiple networked edge devices to meet performance
demands. We developed a framework to scale traces from prior
studies and replay them offline on representative edge platforms,
allowing us to capture throughput and latency data across
edge configurations. We used the data to calibrate queuing and
machine learning models that predict performance on unseen
edge configurations, achieving errors as low as 19%.

Index Terms—autonomous systems, Edge AI, imageomics,
drone, camera trap, animal ecology, distributed inference

I. INTRODUCTION

Camera traps and drones can automatically capture vi-
sual data on animals, their morphology and behaviors, and
biodiversity within an ecosystem, transforming the fields
of animal ecology and biodiversity (Figure 1). It is now
common for field-based animal ecological studies to use
more than 70 camera traps [14]. Between 2015 and 2020,
at least 19 academic studies were driven by aerial drone
imagery [16]. Drones are especially promising for animal
behavior studies that require tracking wildlife over vast,
remote landscapes [19], [43], [46], [57], [61]. Computer
vision and machine learning approaches have sped up post
hoc processing for visual data collected in the field [13],
[43], [56], [69], [74], [79]. However, as camera traps and
drones flood ecologists with data, it is challenging to curate,
process, and manage the data to discover ecological insights

Fig. 1. Data captured from animal ecology studies in the field: 1) A camera
trap captures large cats’ species range and nightly activities, adapted from
[71]. 2) Drones capture animal behavior and poses, adapted from [43].

in a timely fashion [21], [73], [80]. Further, Al pipelines
that infer complex ecological traits require images with
prescribed pixel resolution, angles, and timing: factors related
to data quality that is determined at runtime. Images with low
resolution or occlusions require expert analysis to decipher
insights or must be discarded altogether.

Edge Al the application of Al pipelines on edge com-
puting systems [66], can enable Al-driven animal ecol-
ogy (ADAE) studies. ADAE studies control remote sensing
systems at runtime, filtering images, adjusting angles, and
changing camera or drone positions to improve data quality
through adaptive sampling [15], [17], [21], [27], [73], [80].
Ecologists are beginning to use edge Al platforms to conduct
ADAE studies using networks of smart camera traps [1], [3],
[70]. Drones are innately adaptive if they are piloted well.
Edge AI can reduce the burden on pilots, allowing ADAE
studies to employ multiple drones, capture data from vast
areas, and improve data quality [9], [10], [45], [50].

Animal ecology studies collect data from predefined loca-
tions by placing camera traps or flying predefined missions.
Our study provides a critical insight: adaptive data collection
enabled by edge computing can improve study efficacy. We
present the first characterization of ADAE studies. ADAE
study workflows employ image analytics at the edge, com-
posing inter-dependent, inference pipelines from complex Al
computer vision models [37], [78]. These workflows must be
executed under strict SLOs to support runtime adaptations.
In this paper, our contribution is a characterization of ADAE
studies, their definitive features, workload demands, and the
factors affecting their performance.

The remainder of the paper is organized as follows. We
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characterize ADAE workloads in Section II and describe
our methodology to model and scale ADAE workloads in
Section III. Section IV describes our framework for exper-
imenting on representative hardware and analyzes factors
affecting SLO attainment for prior studies. Section V ex-
amines performance modeling for ADAE studies. Section VI
reviews related works. Section VII summarizes our findings
and future work.

II. CHARACTERIZATION OF ADAE STUDIES

We analyze datasets from prior Al-driven animal ecology
(ADAE) studies to characterize their workloads [43], [71].
However, instead of searching for ecological insights, we
examine when the data was collected and what software
components were triggered using timestamps provided by
camera traps and drones. To our knowledge, this work is
a first attempt to apply ADAE study traces to profile the
characteristic workload demands from an edge perspective.
Our analysis of the frequency and timing of timestamps
reveals that image capture and subsequent computational
triggers occur in bursts. Further, approaches to expand a
study’s geographic footprint affect the magnitude of bursts.
Timestamp analysis also revealed the latency window for
edge computing systems to make runtime adaptations to
improve data quality. We adapted service-level-objectives
(SLO) to characterize ADAE study demands a widely used
paradigm in cloud computing.

A. ADAE workflow: design, execution, and results

We illustrate the canonical workflows of ADAE studies
in Figure 2. The ADAE workflow comprises three phases:
design, execution, and results. The design phase consists
of establishing the study objective and study parameters.
The ADAE study objectives include the location, species of
interest, Al methods used, and ADAE hypothesis. The study
parameters include the remote sensing hardware used, such
as drones or camera traps, the Al sensitivity settings, and the
edge resource provisioning strategy. The ADAE execution
workflow includes four subphases: (1) animal dynamics, (2)
generic image processing, (3) study-specific feature extrac-
tion, and (4) runtime adaptations. The final phase produces
the results, where the dataset has been collected and is ready
for analysis.

The first subphase of ADAE study execution is animal
dynamics. This includes collecting imagery data with drones
or camera traps of the animals of interest and extracting the
collected frames for analysis. In this phase, the data arrival
rate is dictated by the behavior of the species of interest and
its interactions with the camera trap and drone hardware. The
second subphase is generic image processing. This includes
detection and localization computer vision tasks to answer the
following questions: Is there an animal in this frame? If so,
where is the animal located in the frame? The classification
computer vision task may be viewed as a component of the
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generic image processing tasks if required for a downstream
task, like individual identification. Classification may also
be considered a study-specific feature extraction if used
to complete a biodiversity ADAE study. Commonly used
computer vision models for detection, localization, and clas-
sification tasks for ADAE include YOLO [39] and PyTorch
Wildlife [28].

The third subphase is study-specific feature extraction. This
includes computer vision tasks to infer information, including
the animal’s tracks, posture, behavior, and individual iden-
tification [4]. These study-specific feature extraction tasks
inform the fourth subphase, runtime adaptations, which may
include camera relocation, adjusting the sampling duration,
and updating the edge resource management to respond to the
workload demands. The runtime adaptation instructions are
returned to the data collection module, and the ADAE study
continues execution until sufficient data has been collected.

Unlike traditional field ecological studies, ADAE work-
loads require computational resources provisioned at the
edge. Like traditional studies, ADAE studies can fail because
the data is insufficient to support or reject the hypothesis.
However, ADAE studies only succeed if the edge platform
can make runtime adaptations quickly enough to capture
high-quality study-appropriate data. We do not claim that our
study is representative of all ADAE studies, but the observed
characteristics are well-motivated and will likely generalize
to future studies.

B. Required SLOs for runtime adaptations

The latency requirement for the ADAE study is dictated
by the service-level-objective (SLOs) of the computer vision
pipeline used to gather the data and inform runtime adap-
tations. The computer vision pipeline for ADAE workloads
is illustrated in Figure 2. SLOs for specific ADAE studies
are detailed in Table I. An additional component of the SLO
is the rate of requests met or the percentage of inference
requests that must be met. The required rate of requests met
varies depending on the computer vision tasks and study
parameters. Depending on the edge hardware available and
the study design, some computer vision tasks may have
strict SLO. At the same time, other pipeline components
may be offloaded to the cloud for post-hoc analysis. The
average number of frames, from photos or video, that the
computer vision pipeline must process per second determines
the SLO requirements. Depending on the study design, the
pipeline may include one or more computer vision models
to accomplish different tasks. For computer vision pipelines
that navigate autonomous drones for ADAE, the SLO will
be stricter than studies using camera traps [9]-[11]. For
camera trap studies, the SLO is set to handle the real-
time data analysis and processing needed to inform runtime
adaptations, such as the frequency and sampling duration.

A secondary benefit of the ADAE approach is that it can
enable near-real-time ecological insights instead of solely re-
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Fig. 2. Canonical workflow for field Al-driven animal ecology (ADAE) studies.
SLO
ID  Location Hardware Species Data Al Computer Vision Tasks ADAE Result Latency
Requests Met
sec/frame
1 Yellowstone Single fixed-  Bison Photo  Detect, localize Count of calves in herd 0.4 50%
Park, USA wing drone
2 Zimbabwe Single-fixed Multiple ~ Photo  Extract frames, detect, lo- Detect endangered species 1.0 99%
wing drone species calize, classify
3 Kenya Single quad-  Giraffe Photo  Detect, localize, classify, Count by habitat type 1.0 80%
copter track
4  Kenya Quadcopter Zebra Video Extract frames, detect, lo- Behavioral time budgets 1.0 80%
swarm calize, track
5 Conservation  Single smart  African Video Extract frames, detect, lo- Behavior by time of day 0.03 95%
Center, USA camera trap Wild calize, track
Dogs
6  Columbia Single smart Multiple  Photo Detect, localize, classify Species distribution and popu- 180 99%
camera trap Species lation estimates
7  Columbia Camera trap  Multiple Video Detect, localize, classify, Behavior & individual identifi-  0.03 95%
network Species track cation

TABLE

I

AI-DRIVEN ANIMAL ECOLOGY (ADAE) STUDIES SERVICE-LEVEL OBJECTIVES (SLOS)

lying on post hoc processing techniques. Here, near real-time
means completing a request to process an image in minutes to
hours (versus days to months) from when the image was first
collected. If no edge processing is used, the large volumes of
imagery captured must all be processed offline after the study
is concluded, which may take months or years to analyze.
Moving the detection and localization computer vision tasks
to the edge hardware reduces the amount of data that must
be analyzed offline. For example, the Orinoquia camera trap
dataset contains 20% blank imagery [71]. Current state-of-
the-art for near real-time camera trap image processing is an
average of 7.35 minutes per image for a network where each
camera produced 17 images per day on average [73].

C. Representative ADAE studies

We describe seven representative ADAE studies in Table
I. We use the hardware, species of interest, data type,
computer vision tasks, and desired outputs to define the SLO
requirements for the ADAE studies. ADAE 1 uses a fixed-
wing drone to survey bison to count the number of calves
present in the herd [16]. Counting the number of young is an
important data point to quantify the success of conservation
efforts to repopulate this species in the American plains. We
assume the fixed-wing drone uses the default settings for
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a survey mission to generate an orthomosiac image of the
herd: nadir-view, 60 m altitude, 1.3 cm/pixel resolution, with
a 75% front overlap and 70% side overlap [18]. This flight
plan generates approximately one image every 0.2 seconds,
however, due to the overlap in images, it is sufficient to
analyze 30% of the images received and still be confident
that the bison are in view of the drone. ADAE 2 also uses a
single fixed-wing drone to detect the presence of endangered
wildlife in a conservation area. This approach is similar to
the SPOT Poachers in Action study [35], which reported an
average latency rate of approximately 1 second per frame
with a GPU. Endangered animals with low population levels
may be rarely spotted, therefore, the minimum requests met
for such studies is high to ensure the frames containing rare
or endangered species are not missed.

ADAE 3 uses a single quadcopter drone to count the
number of giraffes present in different habitats in Kenya
by detecting, localizing, and classifying the animals. The
imagery collected by the drone is also used to classify the
habitat as open or closed, categorized by the amount of
vegetation present. A quadcopter drone was selected for
this study because, unlike fixed-wing drones, it can more
easily navigate around occlusions from vegetation in closed
habitats. Group-living animals may be autonomously tracked
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with drones using a detection and localization model, such
as YOLO, integrated into the control software [44]. This
autonomous herd-tracking navigation model requires a 1-
second per frame latency and a tolerance of 80%. The frame
rate may be adjusted depending on the average speed of
the species of interest. If the SLO is violated, the drone
may lose sight of the animals, forcing the data collection
mission to end prematurely. ADAE 4 scales ADAE 3 by
implementing the herd-tracking navigation pipeline with a
swarm of multiple quadcopters. The aim of ADAE 4 is
to collect videos of zebra herds to study their behavioral
differences by the time of day, similar to the methodology
used in the KABR study [43]. As this study collects behavior
videos of group-living animals instead of photos of a single
species, it requires a longer sampling time compared to
ADAE 3 but maintains the same SLO.

ADAE 5 represents a single smart-camera trap study that
collects video behavior data of a pack of African Wild
Dogs at a wildlife conservation center. This study uses a
motion-activated camera to trigger video recording if an
animal is detected in view. The camera tracks the animal
until it is out of sight. This methodology for collecting
behavior videos with motion-activated smart camera traps
has been successfully used to collect large-scale ape behavior
datasets [13], [60]. For ADAE 5, the recording duration is the
essential runtime adaptation, which depends on the accuracy
of the tracking step (E1 shown in Figure 2). For this study,
African Wild Dogs are the only species in the enclosure, so
species classification is unnecessary.

ADAE 6 uses a single, smart camera trap to collect photos
to estimate species distribution and population estimates for
a biodiversity study. It is assumed an average of 20 images
are collected each hour, so the SLO for completing the CV
pipeline is 3 minutes per image, or 600 seconds per frame, to
prevent a queue from being formed. ADAE 7 independently
scales the study from ADAE 6 by adding additional smart
camera traps distributed geographically to estimate species
distributions and populations over a wider area, similar to
the Orinoquia Camera Trap study [71], which we obtained
from LILA BC repository online [2].

ADAE 8 scales the study from ADAE 6. Instead of placing
camera traps distributed geographically, it places additional
camera traps in the same spot, which produces correlated
scaling. This correlated scaling approach is better suited for
behavioral studies (F from Figure 2) and studies requiring
individual identification (H from Figure 2) using a tool like
WildMe [4]. Al computer vision models to classify behavior
and identify individual animals benefit from having access to
views of the animal(s) from multiple angles, which requires
a correlated scaling approach.

D. ADAE workloads in Edge Al research

Our group and others collected the ADAE traces profiled
in this work. However, all ADAE traces profiled contained
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two essential components. One, imagery data in the form
of videos or photos. Two, timestamped arrival rates for the
imagery data associated with request arrivals for the ADAE
computer vision tasks. Arrival rates for computer vision
tasks depend on the specific ADAE study objectives, as
described in Table I. An essential contribution of our effort
is discovering commonalities that enabled rigorous analysis.
Edge systems researchers can leverage the SLOs described in
this section to explore new distributed computing techniques
designed for use in field ADAE studies. By analyzing the
workload patterns revealed by timestamp data, researchers
can focus on optimizing SLOs for edge computing systems.
This could include developing techniques to predict and
manage latency for ADAE-specific computer vision tasks and
ensuring runtime adaptations occur within the required time
frame for improved data quality.

III. MODELING ADAE WORKLOADS

Our workload characterization of ADAE studies in Section
II suggests that their computational demand will exceed the
capacity for individual edge devices deployed in remote
settings. Meeting latency and throughput goals will require
assessing edge configurations before deployment and pre-
dicting their performance before resources are provisioned.
Evaluating proposed configurations in situ is challenging due
to ethical, logistical, and resource constraint considerations;
thus, we present a framework to enable offline evaluation.

We model ADAE workloads using the characteristic re-
quest arrival rates generated by these studies described in
Section II. We describe study features that affect ADAE
workload burstiness: ecological factors, camera placement
and scaling, and hardware and AI model considerations.
We describe our methodology to characterize and quan-
tify these bursty workloads as a time-varying Poisson pro-
cess. We also provide code to profile and scale real-
world ADAE studies along with worked examples here:
https://github.com/jennamk 14/adae_model.

A. Factors driving burstiness

Computer vision model workloads often exhibit burstiness,
with periods of high activity followed by low or no activity
intervals, depending on the ADAE study parameters [72].
These study parameters include the type and location of the
sensors, the Al models used, and the habitat and behavior
of the species of interest. Bursty workloads describe those
in which request arrival times are unpredictable, but there is
also a high degree of covariance between requests. Previous
studies demonstrate that autonomous navigation models that
track and monitor animals using drones produce bursty work-
loads [43]. Bursts of high arrival rates increase the queuing
times and processing delays, potentially violating SLO. When
determining SLO for ADAE studies, we aim to minimize
queuing delays to meet the latency requirements. Thus, the
bursty nature of these workloads must be considered when
designing systems to meet these requirements.
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1) Ecological factors: Various factors can influence
burstiness, including species-specific activity patterns, sea-
sonal variations, and inter-species interactions. Species that
share the same space may actively interact with each other
(e.g., predation or resource competition), neutrally coexist
(e.g., mixed-species groups of ungulates in the Serengeti
[65]), or actively avoid each other (e.g., tigers and leopards
[41]). Active species interactions are rare and require overlap-
ping workloads covering the potential interaction occurrence
area. Neutral coexistence leads to overlapping detection and
classification model workloads. Finally, active avoidance
leads to mostly non-overlapping workloads.

Species-specific activity patterns influence burstiness. By
definition, diurnal species are active during the day, and cre-
puscular species are active during dawn and dusk, generating
camera trap captures during different times of day. Thus,
quantified using the coefficient of variation metric, diurnal
patterns would considered bursty. However, animal ecology
patterns are less pronounced and predictable than diurnal
patterns in cloud or e-commerce systems.

2) Camera placement and scaling strategies: Placing
camera traps and drones significantly shapes the workload
dynamics and determines the appropriate scaling strategies.
Two common scaling approaches are 1) Independent scaling,
which distributes more cameras over a large area, and 2)
Correlated scaling, which increases the camera density in
specific locations. Independent scaling is typically used to
study wide-ranging species, such as wolves or migratory
ungulates, to understand their landscape-level movements and
habitat preferences [54], or studying the spatial distribution
of sympatric species, such as jaguars and pumas [26]. By
distributing the camera traps or drones over a large area,
independent scaling is suitable for studies focusing on species
distribution, habitat use, or landscape-level interactions [59].
Independently scaling the hardware increases the spatial
coverage and captures a broader range of animal activities,
reducing the burstiness of the workload. However, it may
lead to increased workload overlap as different species’ ter-
ritories or movement patterns are more likely to be captured
simultaneously.

Correlated scaling by increasing the camera density in
specific locations is appropriate for studies focusing on fine-
scale animal behavior using drones or camera traps [13],
[57], social behavior and group dynamics of species like
zebras [43], chimpanzees, or African elephants, which require
detailed observations at specific sites [47]. Inter-species inter-
actions, or monitoring hotspots of activity [42], such as water
holes or mineral licks where multiple species congregate, al-
lowing for the study of inter-species interactions and temporal
partitioning of resources [36]. This approach increases burst
intensity during events, as multiple cameras capture the same
activity from different angles or close succession.

3) Hardware and Al models: The type of hardware, e.g.,
smart camera traps or drones, and the Al computer vision
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Number of Cameras ADAE Study (Table I) CoV

Single smart camera trap 5 1.59

Smart camera trap network 7 7.33

Single quadcopter 3 3.01
TABLE 1I

QUANTIFYING BURSTINESS OF ADAE STUDIES

models used to analyze the data impact the study’s workflow.
Camera traps and drones may continuously record data,
generating a constant data stream for analysis. Or, more
commonly for camera trap studies, use a motion or heat-
activated sensor to capture photographs or videos only when
an animal is present [24]. Fixed-wing drones are typically
deployed to survey extensive, remote areas and capture
photographs, which are analyzed to detect and classify the
animals [12], [32]. The workflow generated by fixed-wing
drone missions depends on the frequency at which the drone
captures animals, which is impacted by the habitat and
species of interest. Quadcopter drones are smaller and more
agile, allowing them to follow groups of animals and quickly
navigate to capture a variety of angles, which are particularly
effective for behavior studies [43], [45]. The autonomous
navigation models used to pilot these drones often exhibit
bursty characteristics [44].

The workflow of the ADAE study is also impacted by the
computer vision tasks performed on the edge to enable the
required runtime adaptations, as shown in Figure 2. Adjusting
recording duration in camera trap studies can be dynamically
adapted based on the species or behavior detected. For drone
studies, runtime adaptations include the navigation decisions
based on the detected species or behavior [43], [45], [53].

B. Methodology for modeling workloads

We model workloads as time-varying Poisson processes,
with rate changes identified at key inflection points. This
allows the scaling of traces while maintaining the burstiness
characteristics. This method preserves the realism of animal
ecology workloads while enabling the testing of different
hardware and configurations through workload generation
based on real-world traces.

1) Quantifying burstiness: We characterize the burstiness
of ADAE workloads by the time each burst arrives, ¢t € T,
burst duration p, and arrival rate within a burst A. We quantify
the burstiness of ADAE using the coefficient of variation, a
metric commonly used to characterize bursty arrival rates
[5], with results shown in Table II. The burstiness of three
representative ADAE studies are visualized in Figure 3,
where portions with a relatively larger gradient represent a
burst. A single, smart camera trap (ADAE 5) exhibits the
least burstiness, as there are only three change points where
the arrival rates change dramatically, reflected in the CoV
score of 1.59. ADAE 3 with a single quadcopter exhibits
comparatively more bursts than ADAE 5, where the gradient
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Fig. 3. Modeling the burstiness of ADAE studies. The request count for the
Single Drone and Camera Trap network traces are shown on the left y-axis,
and the request count for a Single Camera trap is shown on the right y-axis.
Arrivals are normalized with respect to time- the single camera trap arrival
data has a 24-hour duration, while the drone and camera trap arrival times
have a 2-hour duration.

increases more rapidly with a CoV of 3.01. A network of
smart camera traps, ADAE 7, exhibits the highest level of
burstiness, visualized in Figure 3 as steep gradients where the
arrival rate increases rapidly, which is reflected in its CoV
of 7.33. In practice, these workloads may scale, for example,
from 40% to 80% utility of a single node, due to independent
or correlate scaling, as discussed in Section III-A2.

2) Modelling and scaling bursty workloads: We model the
bursty workloads as Poisson processes with rate variations at
given change points to preserve the characteristic burstiness
in the arrival rates. To model the traces as a time-varying
Poisson process, we identified the inflection points of the
arrival rate gradient, denoted as change points. These change
points define trace segments and the average arrival rate
A was calculated for each segment duration. To scale the
traces, we multiplied all A in the trace by a factor to
generate the desired average utilization. This approach allows
to capture the expected scaling from different animal ecology
studies. For example, better cameras with a higher frame
rate, larger models, or slower hardware can be modeled
while maintaining the shape of our arrival curve. The scaling
approach focuses on the relative parametrization, normalizing
among realistic animal ecology study characteristics while
testing different configurations.

3) Workload generation: The inputs of our bursty work-
load generator is the total time of the simulation 7', and rate
R, where t is the change point, and ¢ € 7. The process
to generate bursty arrival times from real-world traces is
illustrated in Algorithm 1. For each unique change point
value ¢, we calculate the duration of the R;, corresponding
to ¢t. The arrivals are generated by randomly sampling the
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Poisson distribution of R; multiplied by the duration. Next,
the arrivals are uniformly sampled for the timestamps for the
duration of the rate R;. These arrivals are sorted and added
to the array ¢,. Finally, the arrival times for the last change
point’s interval ¢ are generated similarly.

Algorithm 1 Bursty arrival times modeled as Poisson process

with rate variation

Data: T’ (total time of the simulation), R; (rate), where ¢ are
the change points, and ¢t € T'.

Result: List of bursty arrival times.

ts <[] *// start time of current duration
te <[] *// arrival times
for ¢ in t do
rate = R;
duration =i — tg
arrivals & Poisson(rate x duration)
arrivals & Ults, ts + duration, arrivals)
tq + sort arrivals
*// handle last interval
rate = R_1 *// last rate in list
duration =T — t,
arrivals & Poisson(rate x duration)
arrivals & U(te, te + duration, arrivals)
t, < sort arrivals
return arrival_times

IV. FRAMEWORK FOR SCALING AND REPLAYING
TRACES FROM ADAE STUDIES

Replaying and scaling ADAE studies in situ presents
ethical and logistical issues. Ethically, deploying camera traps
and drones in the field can disturb natural habitats, discomfort
animals, and provide pathways for poachers to victimize
protected species. One-off, long-term deployments yielding
valuable ecological insights can address these concerns, but
throughput and latency tests do not justify the ethical risks.
Logistically, ADAE studies are conducted in remote areas
away from research labs and electrical power infrastructure.
Replaying studies in situ to test edge configurations imposes
a significant logistical burden. However, for ADAE studies,
under-provisioned edge resources hamper runtime adapta-
tions, leading to inconclusive study outcomes. It is critical to
test edge configurations before studies begin under realistic
conditions. As discussed in Section II, edge configurations for
future studies will likely need to support (1) bursty traffic, (2)
multiple, co-located workflows seeking different outcomes
(e.g., population counts and behavior profiles), and (3) large
and complex computer vision models.

Our framework considers edge environments comprising
multiple networked nodes that share computational resources
to meet aggregate demand. These edge resources can use
distributed inference, i.e., partitioning workflows and placing
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partitions on specific nodes for execution, to improve perfor-
mance [30], [33], [37]. Given edge resources and a trace from
a prior ADAE study, our framework can set up and test the
workflow offline on representative hardware. In addition, our
framework can partition and automatically distribute work-
flows, scale traffic from camera traps and drones, support
co-located studies, and test various network latency settings.
We also developed a predictive model to forecast workload
performance and service-level-objective (SLO) attainment for
different edge configurations and placement strategies. The
model accurately predicts how workloads will perform. These
predictive capabilities enable informed decisions on resource
provisioning and system deployment for ADAE studies.

Using representative edge hardware, we developed a
framework to scale and replay ADAE traces offline. Fig-
ure 4 illustrates our framework. Abstract representations of
the edge resources in terms of compute, network latency,
memory capacity per node, hosted ADAE workflows, and
workflow partitioning and placement strategies are provided
as input. Our framework automatically partitions represen-
tative workflows using distributed, model-parallel slicing
techniques [30], [48]. The workflows are distributed on
representative hardware, which receives visual data from a
workload generator that replays and scales traces from prior
studies. Our framework runs ADAE workflows on actual
hardware (mainly because ADAE studies use affordable and
accessible devices), but it could be adapted to use virtual
resources [68]. Note that our framework is designed only
to facilitate the study of ADAE under realistic conditions.
State-of-the-art edge simulation platforms provide enhanced
features and faster setup and execution [68].

A. Hardware and network infrastructure

We utilize six Raspberry Pi 4B units as our edge devices,
each equipped with a quad-core ARM Cortex-A72 CPU
(1.5GHz), 8GB LPDDR4-3200 SDRAM, and an integrated
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GPU for basic acceleration tasks. ADAE studies frequently
use Raspberry Pi units [21], [40], [73]. We seek to mirror
these setups. We implemented a custom networking frame-
work to emulate the networking environment encountered
in field studies. We utilize the Linux Traffic Control (tc)
utility to emulate various network conditions, including band-
width limitations, latency, and packet loss characteristics of
cellular and satellite links in remote areas. This allows us
to simulate various real-world networking scenarios, from
high-bandwidth, low-latency connections to unreliable, high-
latency satellite links.

B. Realistic workload generation

We used time-stamped traces for ADAE datasets collected
for prior studies. These studies include camera traps for
species distributions [71] and drones for monitoring wildlife
behavior [43]. Timestamps provide the arrival rate for data
from camera traps and drones that trigger ADAE workflow
execution. We are interested in how our system performs as
these workloads scale; however, naively increasing the arrival
rates can significantly alter the workload’s critical character-
istics. We use correlated or independent scaling, described in
Section III-A2, depending on how the specific workload is
expected to scale in a real-life deployment. The independent
scaling approach involves randomly interleaving bursts and
reduces burstiness by increasing the number of independent
bursts. The correlated scaling approach maintains burstiness
by appending requests during bursts, effectively increasing
the send rate without extending the timeframe.

C. Intelligent model splitting and placement strategies

ADAE workloads are bursty, and previous studies have
shown such workloads benefit from pipeline parallelism,
although these studies have been restricted to homogeneous
hardware [49]. ADAE studies primarily rely on heteroge-
neous hardware; thus, we focused on load-balancing place-
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ment techniques that enable pipeline parallelism on heteroge-
neous hardware. We focus on basic load balancing techniques
as a first step to demonstrate that edge computing techniques
can be applied to allow for the deployment of ADAE studies.

Edge AI systems designed for ADAE study deployment
must possess four characteristics to be effective:

1) Ability to exploit bursty workloads

2) Designed for remote regions with limited compute and

memory resources.

3) Support latency-sensitive Al computer vision tasks

4) Run efficiently on diverse edge hardware
We examine four model splitting and placement strategies
that accomplish the abovementioned goals, summarized in
Table III.

The deployment of AI models in edge computing for
ADAE studies often follows a naive approach, which we
consider our baseline. In the naive approach, the entire model
is placed on individual edge devices without consideration
for the specific capabilities of each device or the nature of
the workload [73], [80]. This naive approach has several
drawbacks: underutilization of resources, inability to handle
large models, and lack of adaptability. Some devices may
be overwhelmed while others remain underutilized, leading
to inefficient use of the overall system resources. This can
result in bottlenecks at specific nodes while others sit idle,
reducing the system’s overall efficiency. Edge devices with
limited memory may not be able to accommodate larger,
more complex models that could provide higher accuracy.
This constraint can force researchers to use simpler, less
accurate models, potentially compromising the quality of
their ecological insights. Finally, this static placement cannot
adjust to changing workload patterns or network conditions.
The inability to adapt to dynamic conditions can lead to
sub-optimal performance, especially in long-term deploy-
ments where environmental and animal behavior patterns
may change over time.

To address the limitations of the baseline approach and bet-
ter meet SLOs, we propose exploring the following strategies:
Naive Round Robin, Utilization-Balanced Model Splitting,
and Proportional Model Splitting, shown in Table III. The
naive round-robin approach does not split models but instead
assigns whole models to available nodes. This approach
is simple to implement and can provide load distribution.
However, it does not account for heterogeneous device ca-
pabilities or varying model sizes. The utilization-balanced
model splitting approach balances node utilization through
intelligent model layer splitting, using a bin-packing algo-
rithm [30] to determine optimal splitting and placement.
To implement proportional model splitting, each model is
split into segments proportional to the computational power
of the available nodes. This approach may not achieve
perfectly balanced node utilization but can provide better
throughput for collocated workloads that do not receive traffic
simultaneously.
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D. Representative computer vision models

Our experiments are conducted using the YOLOVS [39]
suite of models. We evaluated YOLO since it is currently
one of the most popular and widely used models for ADAE
computer vision tasks including detection, classification, and
behavior identification. The YOLOVS family includes models
of varying sizes and complexities, allowing us to evaluate our
strategies across a spectrum of computational demands. This
choice reflects the common use of YOLO-based models in
recent ADAE studies due to their efficiency and accuracy
in real-time object detection, localization, and classification
tasks [44], [76].

E. Experimental procedure

Our experiment procedure has four steps: establish a
baseline, evaluate the strategy, compare to the baseline, and
simulate network conditions. We establish baseline perfor-
mance metrics for each model and workload combination
using standard, non-distributed inference. This provides a
point of comparison to quantify the improvements achieved
by our proposed strategies. We systematically evaluate our
three distributed inference strategies: Naive Round Robin,
Utilization-Balanced Splitting, and Proportional Splitting.
Each strategy is tested across workload scenarios and net-
work conditions to assess its robustness and adaptability.
We implement and compare the three placement strategies
across various workload scenarios, focusing on their ability
to meet the defined SLO. This comparison helps identify the
strengths and weaknesses of each approach under different
operating conditions. We simulate different inter-node and
intra-node network conditions to evaluate the strategies’
performance under various connectivity scenarios typical in
animal ecology field studies. This includes testing under ideal
conditions and challenging scenarios with high latency and
low bandwidth.

E. Performance metrics

We collect comprehensive metrics to evaluate system per-
formance, focused on latency and resource utilization. For
latency, we capture end-to-end processing time for individual
inference requests, including network transmission delays.
This metric is crucial for assessing the system’s ability to
provide real-time adaptations, which is vital for ADAE.
We measure the utilization of CPU, GPU, and memory
across all devices in the cluster. These metrics assess the
efficiency of our placement strategies in balancing load across
heterogeneous resources. We evaluate how well each strategy
achieves SLO attainment, which captures the percentage
of inference requests meeting predefined latency thresholds
under each ADAE from Table I. For resource utilization
balance, variance in CPU, GPU, and memory utilization
across nodes for each strategy. A low variance indicates
more balanced resource utilization, which can lead to better
overall system efficiency and reduced bottlenecks. We will
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Placement Strategy

Description

Procedure

Advantages

Limitations

Single Node

Round Robin

Equal Utilization

Baseline approach

Assigns whole models to
nodes in a round-robin
fashion

Aims to balance node
utilization through intelli-
gently placing splits

One device handles all inference

Each node is assigned one entire
model, cycling through the avail-
able nodes until all models are
placed

Models are split into segments,
and these segments are distributed
across nodes in a greedy fashion to

Simple to implement

Simple to implement and
can provide basic load dis-
tribution

Can lead to reduced queue
times and more efficient
resource use

Under-utilization of re-
sources, inability to han-
dle large models, lack of
adaptability

Does not account for het-
erogeneous device capa-
bilities or varying model
sizes

Not always optimal if net-
work latency is high or if
utilization is low

achieve even utilization

Max Distribution Splits each model across

as many nodes as possible

Each model is split into segments
proportional to the computational
power of the available nodes

Does not scale well with
utilization or network la-
tency

Can improve performance
when load is concentrated
on one neural network at
a time

TABLE III
EDGE AI MODEL PLACEMENT STRATEGIES

assess how each strategy performs under varying network
conditions, measuring the degradation in performance as
network quality decreases. This analysis will help identify
which strategies are most robust to the challenging and
variable network environments often encountered in remote
field studies.

G. Characterizing performance of ADAE studies on repre-
sentative edge hardware

Figure 5 shows the effects of burstiness, network latency,
and placement strategy on SLO attainment as the arrival rate
of data increases (i.e., normalized traffic). We tested two co-
located workloads for all experiments. The first workload
comprising 30% of the aggregate traffic is ADAE 1. The
other co-located workload is shown in Figure 5. The bottom
row shows performance under slow network connectivity at
the edge with a 1-second round trip time. As expected, the
distributed inference is ineffective in this context, and the
worst-performing strategy is the equal-utilization policy. In
contrast, the top row shows equal utilization consistently
outperforms all other policies under fast-edge networks.
ADAE 4 is the most bursty and ADAE 2 is the least. Looking
across burstiness in the columns, we observe that burstier
workloads magnify the performance gains achieved by the
placement strategies.

Figure 6 depicts the effect of increasing edge resources as
the arrival rate increases. As expected under slow network
latency, the equal utilization placement strategy performed
poorly. However, under low-latency network configurations,
this approach achieves near-linear scaling. Finally, we also
tested how equal utilization placements compare to maximum
distribution when animals show avoidant behavior, increasing
burstiness. We observed a slight but consistent improvement
of roughly 5% for maximum distribution at scale.
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V. PERFORMANCE MODELING FOR ADAE STUDIES

We tested four models for estimating the performance
gains for a given edge Al system: random forest, XD
Gradient, M/D/1 queuing model, and a hybrid random forest,
M/D/1 queuing model, shown in Table IV. XD Gradient
boost has performed well in previous studies in predicting
system performance with few data points. For our study,
however, XD Gradient only produced a 35% accuracy in
estimating performance gains. We also tested a regular M/D/1
queue, assuming Poisson arrival rates, which also produced
a 30% error. The random forest takes the utility level, A,
1, and expected output latency as inputs, which generated
a 24% error. The optimal model for predicting performance
gains was a hybrid random forest, M/D/1 queue approach,
which produced a 19.6% error. This model predicts expected
random forest performance gains and fine-tunes the results
with the M/D/1 queue to predict the number of anticipated
bursts to overlap for a given workload.

Model Error Rate
XD Gradient 35 %
M/D/1 Queue 30 %
Random Forest 24 %
Random Forest M/D/1 Hybrid 19 %

TABLE IV
DISTRIBUTED EDGE PROVISIONING TECHNIQUES

We expected to see a reduction in error rates with addi-
tional data points. The advantage of this hybrid approach over
previous works, such as AlpaServe [49], is that this method
allows practitioners to create a scheduling system without
requiring historical data, using traces from a single deployed
node, optimized for their specific Edge Al system and ADAE.
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Fig. 5. Performance comparison of different placement strategies (Equal Utilization, Round Robin, Single Node) under various ADAE workloads (each
column) and network latencies (each row). The tests were conducted using a 2-node cluster. The x-axis (normalized traffic) is the utilization level of a

single node, i.e. the arrival rate of a single node.

VI. RELATED WORK

Edge computing and artificial intelligence are increasingly
being applied to ADAE studies, enabling new data collection
and analysis approaches. This convergence of technologies,
often referred to as Edge Al, has the potential to enable so-
phisticated processing of data gathered from remote sensing
devices such as camera traps and drones. Edge Al systems
perform computations at the edge near the source of the data,
as opposed to sending data to a centralized cloud server [66].
Edge AI requires massive amounts of data and computing
capacity. Still, recent advancements in sensors, hardware, and
communication technology like 5G and 6G networks have
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made this possible on the edge in remote regions [40], [66].

Edge AI is enabled by distributed computing paradigms
that allocate tasks across a network of devices. Recent stud-
ies have demonstrated how model splitting and co-location
can be applied to edge computing paradigms to improve
system performance [25], [31], [S8]. Model splitting and
co-location can reduce latency and utilize system compute
more efficiently, i.e., increase the frequency at which the
system achieves its SLO [31], [49]. Implementing model
splitting and co-location has effectively reduced latency for
bursty workloads, although this study focused on homoge-
neous hardware [49]. Heterogeneous hardware and network
conditions are considered in [29], which proposes a deep
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reinforcement learning approach to speed up convolutional
neural network inference on distributed edge devices. Edge
Al system performance can be optimized through model
architecture for distributed inference [20], [23], [64].

Optimizing camera placement to improve the performance
of computer vision pipelines has been investigated, namely
for traffic cameras [75]. Sensor position and orientation
dictate the data that cameras can capture, which in turn
dictates the accuracy of real-time image analytics. Edge Al
enables sensors to be continuously adjusted in real time
to maximize workload accuracy under resource constraints.
Traffic tasks are similar to animal ecology computer vision
tasks. They include detecting objects of interest, counting the
number of objects of interest, detection with bounding boxes,
and aggregate counting of unique objects of interest [75].
However, this traffic camera study is restricted to a single
camera and does not consider request arrival rates. ADAE
studies must consider the network of sensors, including drone
and camera traps, as well the characteristically bursty arrival
rates when designing and implementing runtime adaptations.

As the volume and complexity of ecological data continue
to grow, there is an increasing need for efficient computing
approaches that can handle the unique challenges posed by
wildlife monitoring in remote environments. Recent studies
have investigated on-device processing for a more immedi-
ate analysis of ecological data. Mobile computing devices,
such as laptops, tablets, or custom-built portable units, may
also augment in-situ processing capabilities. Such devices
could serve as intermediate processing nodes, bridging the
gap between data collection points and cloud infrastructure
[22]. However, more research is needed to establish their
effectiveness in field conditions [40], [73].

Ongoing improvements in the performance of edge pro-
cessors may enable the deployment of more sophisticated
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Al models on smart camera traps and drones. Smart camera
traps, equipped with on-board computers, can perform initial
data processing and filtering, reducing the volume of data
that needs to be transmitted or stored for later analysis [6],
[17], [21], [52], [73], [80]. Drones equipped with on-board
GPU are increasingly available, enabling real-time, on-board
processing for autonomous navigation policies [7], [8], [44],
[51]. Ecologists have raised concerns about the potential risks
of disturbance of wildlife caused by drones [62], which could
be reduced by edge-enabled autonomous navigation equipped
with safeguards.

The AI and ecology communities have a history of collab-
oration, applying state-of-the-art computer vision techniques
to uncover ecological insights. The CV4Animals: Computer
Vision for Animal Behavior workshop, held annually at The
Conference on Computer Vision and Pattern Recognition
(CVPR), published 40 works this past year alone and fea-
tured 18 previously published works on computer-vision-
based animal behavioral analysis. As computer vision models
grow in size and complexity, we expect models developed
for ADAE applications to follow this trend. CNN-based
models such as YOLO [38] remain popular for detection,
localization, and classification tasks for ADAE studies [43],
[44], [76], and YOLO-based models have been tuned to
boost performance on ADAE aerial imagery [55]. Recently,
vision transformer (ViT) models have proven to perform
well, particularly for multi-modal foundation models, such
as the species classification models BioClip [67] and Arbore-
tum [77], both based on the OpenCLIP [34] ViT architecture.
Increasingly sophisticated models have been developed for
more specialized ADAE studies, including inferring animal
behavior from video [13] and 3D pose estimation of wildlife
from drone footage [63].
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VII. CONCLUSION AND FUTURE WORK

ADAE studies have the potential to revolutionize animal
ecology and biodiversity studies. Unlike traditional ecological
studies in the field, ADAE studies leverage edge computing
resources to control smart camera traps and autonomous
drones, filtering images and adjusting the viewing angles
at runtime to improve data quality. Runtime adaptations
improve data quality, allowing ecologists to derive insights
quickly from their data. They also reduce the time spent
parsing data irrelevant to study objectives. Data captured after
runtime adaptations can differentiate between datasets that
yield insights and inconclusive studies. For these reasons,
ADAE studies are a growing edge workload.

An essential contribution of this work is discovering com-
monalities of ADAE traces that enabled rigorous analysis.
Using timestamped traces from prior studies, we observed
that (1) the workflows are characterized by interdependent,
complex computer vision tasks that transform harvested vi-
sual data into ecological datasets; (2) SLO can be repurposed
to describe the strict latency demands required for runtime
adaptation; and (3) animal dynamics partially explain the
bursty workloads observed across many studies.

We replayed ADAE traces offline on representative hard-
ware to understand interactions with edge hardware. We
found that workflow partitioning schemes have a complex
effect on SLO attainment, especially at scale. We also found
that performance modeling approaches using queuing theory
and machine learning provide a good starting point to predict
SLO attainment.

Al models will likely increase in complexity following
current trends. However, ADAE studies are still in the very
early stages of adoption. We anticipate simple models, such
as YOLO, will be the first to be implemented in real time
to inform system adaptations. Thus, we first focused on
profiling the implementation of ADAE studies using YOLO.
We will expand our approach to implement more complex
Al models and workflows in the future. We plan to explore
more sophisticated load-balancing approaches tailored to the
specific application and available edge devices. We hope
others will be interested in investigating this as well.

We encourage others to leverage our findings to propose
innovative edge systems for sophisticated ADAE to further
our ability to understand and protect our planet’s biodi-
versity. Numerous interdisciplinary innovations have been
in computer vision and ecology, but these sophisticated Al
models require edge computing innovation to be successfully
deployed. ADAE studies offer transformative potential for
animal ecology by using edge computing to control smart
camera traps and drones, enhancing biodiversity research
through advanced edge systems.
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