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Abstract—Ensembles of decision trees enhance accuracy of
individual decision trees by combining the predictions of multiple
trees. Recent research accelerated inference for ensembles run-
ning on a single core. However, in most previous work, parallelism
is either not sufficiently explored or assumed to be trivial in
ensembles. Novel data structures introduced in previous can
support well known methods to parallelize inference, i.e., data
parallelism and model parallelism. In addition, ensembles also
support another method of parallelism: structure parallelism.
In structure parallelism, portions of a restructured forest are
distributed across cores, enabling parallelism even in the exe-
cution of a single sample. We compared the different methods
for parallelizing ensembles and showed that structure parallelism
can be 42% faster than existing methods alone.

I. INTRODUCTION

Decision trees [12] are hierarchical structures that split
input data sequentially until reaching a classification. Decision
trees are fast, simple and explainable Machine Learning (ML)
models [4], [6], [14]. However, individual decision trees do not
achieve accuracy as high as other ML models [8]. Ensembles
of decision trees, such as random forests and deep forests [20],
are collections of decision trees in which the predictions of
multiple trees are combined to increase accuracy. These mod-
els incur performance penalties due to the increase in trees,
redundancies across multiple trees and intrinsic inefficiencies
of breadth-first execution of individual trees [13].

Recent work has mitigated some of these concerns by
producing alternative execution paths on ensemble models.
For example, Forest Packing [3] interleaves different trees
and reorganizes nodes to increase cache locality. RADE [18]
creates a smaller random forest that accurately classifies a
high percentage of samples, and only uses the more complex
ensemble model in samples where the smaller model has low
confidence in its prediction. Bolt [13] restructures ensembles
into two separate data structures: a lookup table where paths
are matched with corresponding predictions and a dictionary
in which subsets of features are matched with entries in
the lookup table. While all of these techniques reduce the
execution time of ensemble models, they are optimized for
single core execution. To be sure, all of these methods can
be implemented in a distributed system, but they are not
by default optimized for them. While ensemble models are
trivially parallelizable, more nuanced techniques could be
more effective and are worth exploring. Better techniques for
parallelism of ensembles can further increase scalability and
allow for more complex models to be deployed.
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Parallelism in machine learning is typically done via data
parallelism or model parallelism [17]. Data parallelism con-
sists of replicating the model in multiple cores. By having
replicas of the model, batches of samples can be distributed
across the system so that each core entirely computes classi-
fication of a sample in a copy of the model. This approach
is only effective if there are enough samples to efficiently use
all cores. In an online system, this requires that samples arrive
with enough frequency to maximize utilization of all cores.
Further, for large ensemble models, a single sample could be
slow to compute in a single core. Thus, in some scenarios,
model parallelism is more effective. In model parallelism,
partitions of the model are created, and separated in differ-
ent cores. With traditional models, partitioning the ensemble
consists of simply assigning subsets of decision trees to each
core. During inference, the samples are sent to all cores and
then each core reports the answer for a given sample in its tree
subset. Then, answers are aggregated, using a central node,
establishing communication protocols between multiple cores
where some cores combine larger subsets from other cores, or
pushing partial answers to edge devices [1], [2]. Regardless
of aggregation method, this approach has the advantage of
executing a single sample in multiple cores which benefits
large models. Thus, depending on the workload demands,
either method or a combination can be appropriate.

Bolt [13] allows for both of these kinds of parallelism, plus
an additional dimension. Because Bolt transforms ensemble
models into two data structures, a lookup table and a dictionary
that determine storage and compute requirements respectively,
each of these structures can be divided according to system
needs. Thus, in Bolt, model parallelism can be done in two
ways. We refer to splitting the lookup table, i.e. reducing
memory demands, as model parallelism, while we refer to
partitioning the dictionary as structure parallelism. Due to this
extra dimension for parallelism, in Bolt model and structure
parallelism can be adjusted to adapt to memory and com-
pute demands independently. This approach can be further
combined with data and model parallelism. For this paper,
we studied the tradeoffs associated with these parallelizing
inference in ensembles of decision trees. Our experiments
showed that structure parallelism can be up to 42% faster than
data parallelism on medium-sized and large ensembles, while
data parallelism is better for small models. We also showed
how model parallelism in Bolt can reduce memory demands
by up to 90%.
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II. BACKGROUND

The key idea behind Bolt [13] is that breadth-first execution
of decision trees is inefficient because unpredictable paths to
a tree leaf can cause cache misses and errors by the branch
predictor. Further, in an ensemble of trees, redundancies are
not exploited by breadth-first execution. Bolt is an algorithm
that speeds up ensemble models by restructuring ensembles
into data structures that fit in cache and follow predictable
access patterns, thus minimizing cache misses and branch
mispredictions. Figure 1 shows an overview of a Bolt forest.
Bolt takes a trained ensemble model as input and outputs two
data structures called dictionary and lookup table. Both of
these data structures are produced by listing all root-to-leaf
paths and then grouping them by similarity. Using a tunable
parameter for the group sizes, Bolt creates dictionary entries
from each group. As shown in Figure 1, each entry in the
dictionary lists all the relevant features - i.e. features used
in the paths grouped in the entry - and adds information
about features that are common in all such paths. The lookup
table contains all the responses associated with each path and
ordered by the results of a hashing function. Note that the
lookup table is not a full memory mapping of all possible
paths in the forest. As described in Bolt [13], hashing is used
to significantly reduce the space needed by the lookup table.

Figure 2 shows the connection between the two data struc-
tures of Bolt by highlighting the inference process. In Figure 2,
there is an input sample with four binary features. Following
the prediction path in the trees (Figure 1), the classification
should be ”no.” During inference the sample is compared
to every dictionary entry sequentially. Looking at the first
(highlighted) dictionary entry, the input matches the common
feature of that dictionary entry, i.e. a 0. So, the first
dictionary entry is considered relevant. Afterwards, a binary
sequence using all relevant features (a, b and d) is created.
This sequence and the location of the entry in the dictionary
are used to hash into a position in the lookup table. This table
location contains the final prediction ("no”). After computing
this result, the other entries in the dictionary still need to be
checked. Thus, the input is compared to the entry where a = 1
and the entry where d = 1. Since the common features do not
match the input, these entries are ignored and execution ends.
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Fig. 2. Sample inference example in Bolt

Bolt showed results that are at least 2X faster than com-
peting approaches on a single core [13]. This improvement is
due to a few key ideas. First, since there is a fixed order in
which the dictionary is accessed, the next entry can always
be predicted, and loading an entry in cache likely also loads
subsequent entries. This improves cache locality. Additionally,
since the compression process also minimizes the size of the
lookup table, for small forests both structures fit entirely in
cache further reducing cache misses. The inference method
also reduces the total number of branches taken during the
execution. Branches are limited to identifying if the common
features of a dictionary entry match the input. Bolt [13] shows
that the total number of branches taken in an execution is
much smaller than with breadth-first execution. Thus, the total
number of branches missed is also reduced.

However, another advantage of the approach was not ex-
plored fully in the initial work on Bolt. The data structures
that comprise a Bolt model are easy to parallelize. To be sure,
as with any other ensemble model, Bolt models support data
parallelism. Normally, a random forest also supports model
parallelism by assigning different trees to different cores. Bolt
can do the former easily, but the latter has a different meaning
in Bolt. Instead of splitting trees, Bolt can partition the lookup
table to reduce memory demands. However, this is not the
only way of splitting the model in Bolt. Bolt can also support
a novel parallelism method, called structure parallelism, in
which the dictionary is split. This is a step forward with respect
to assigning subsets of trees to a core. Since the paths in
a dictionary entry do not necessarily correspond to a single
subtree, splitting the dictionary can be equivalent to splitting
a single decision tree. For example, in Figure 1, the first
dictionary entry corresponds to paths in both of the decision
trees in the original forest. Further, Bolt [13] showed that its
benefits are greater in smaller ensemble models, achieving
results that are orders of magnitude faster than competing
approaches. This is because with smaller forests the likelihood
that both data structures fit entirely in lower levels of cache
increases. Thus, the ability to split the dictionary can mimic
the effects of having a smaller forest to begin with, further
improving performance.
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III. DESIGN OF EXPERIMENTS

In our experiments, we studied the methods of parallelizing
Bolt. Figure 3(a) shows the simplest form of parallelism for
a Bolt forest, data parallelism. Here there are two cores, each
with an identical copy of a full Bolt forest. Input samples are
redirected to a free core. Each core handles inference fully on
a single sample. This approach is simple and it can increase
throughput in the whole system. For that to happen, however,
requests should arrive frequently enough to keep core busy,
and the ensemble model should be small enough to execute
efficiently on a single core. If inference time is bottlenecked
by the model’s memory footprint, an alternative method could
be more beneficial.

Figure 3(b) shows another approach for parallelism on Bolt:
structure parallelism. Here, the dictionary of a Bolt forest is
split across both cores. Samples are compared to common
features of each dictionary entry. Only in those entries in
which there is a match, relevant features are used to hash
into a lookup table. Reducing the dictionary size reduces the
compute time of each core.

For larger models, cache size and locality might be a
bottleneck. In these models, splitting the lookup table, i.e.
model parallelism, can reduce the memory demands of the
system. While this does not directly affect the amount of
computation during inference, it can speed up the model by
reducing cache misses. Figure 3(c) shows how to split Bolt’s
lookup table. In this example, there are two cores and each of
them has only half of the lookup table. For this approach to
work, both cores require a full copy of the dictionary. After
dictionary comparisons are made, if the entry is relevant, a
hashing function of the input features is used to find a location
in the lookup table. To avoid errors that can occur if the
hash functions goes to a portion of the table not included
in a core, such lookups must be ignored. For this not to
harm accuracy, replication of the dictionary is necessary. For
example, in Figure 3(c), if a sample from the second entry
of the dictionary maps to location 101 in the lookup table, in
core 1, this location would not be retrievable. Thus, the lookup
is simply ignored and the next dictionary entry is checked.
In core 2, however, this entry must be retrieved to maintain
correctness. Thus, all dictionary entries are necessary in both
cores and results from both cores must be aggregated in the
same manner as with the dictionary splits.

IV. EXPERIMENTAL SETUP

We tested the parallelism of Bolt using an Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz with 24 cores. The system has
30MB of LLC and 132 GB of memory and runs Red Hat
Enterprise Linux version 7.9. Our platform runs Python 3.6.8
and Scikit-Learn [11] 20. We report the results of using 1, 2,
4, 8, 16 and 23 cores for parallelism. Note that we do not use
all 24 cores for parallelism because one of them is reserved
for the client to send the requests to all other cores.
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A. Datasets

To test the different parallelism methods we used 4 datasets:
MNIST [9], CIFAR100 [7], LSTW [10], and the Yelp Restau-
rant Review Dataset [19]. MNIST and CIFAR100 are common
image recognition datasets. MNIST consists of 70000 black
and white images of handwritten digits. 60000 of those images
are used for training and the remaining 10000 are the test set.
Each image is 28 x 28 pixels where each pixel is a feature
(784 in total). There are 10 output classes corresponding to
each digit. In all our experiments using MNIST we report
the time it took our model to classify all 10000 test samples.
CIFARI100 has 60000 color images of common items (such
as airplane, cat, dog, truck, etc.) There are 100 output classes
corresponding to each of the items. Each image has 32 x 32
pixels and each pixel has 3 color channels, so, there are 3072
input features. The training set consists of 50000 images while
the test set uses the remaining 10000. In all our experiments
we report the time to classify 2500 images in the test set.
We also tested our model in a more heterogenous dataset,
such as the Large-Scale Traffic and Weather Events (LSTW)
dataset [10]. Input data to LSTW includes both numeric and
categorical features related to traffic conditions in different
locations across the USA. Each sample consists of 11 input
features and the prediction target was the “severity” column
in the dataset, which is a categorical assessment of traffic
congestion. The dataset is growing, however; at the time of
retrieval the dataset had 25M data points. We separated 700000
datapoints for testing while the rest of the almost 25M samples
were used for training. However, after testing, we report the
execution time for classification of the first 5000 samples.
Finally, we used the Yelp Restaurant Review Dataset [19].
This is a Natural Language dataset that uses 5200000 user
reviews on 174000 businesses from 11 metropolitan areas.
The input data is the text written by users. We removed stop
words, reduced words to their stems and tokenized them into a
vector that indicates the presence and number of occurrences
of the most common 1500 words in the dataset. Thus, we
transformed the dataset into 1500 numerical features. The
classification target is the number of stars out of 5 given by the
user to the restaurant, expressed as an integer. For this dataset
we report the execution time on classifying 300 reviews.

B. Measurements

All samples were sent using web sockets. One core was
used for the client to send the requests to all the Bolt servers.
Each core listened on a different port and was sent all the
appropriate samples according to the parallelism design. The
predictions given by all cores are then written to different files.
The timing of all experiments was measured from the time
a core received the samples to the time that a core finished
execution.

C. Ensembles Used

In all experiments we chose 3 different ensembles. All 3
ensembles are random forests that are then restructured using
Bolt and deployed in the reported number of cores. The first
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Fig. 3. Parallelism methods in a Bolt forest.

forest reported for each dataset is a small forest comprised
by 10 decision trees, each with a maximum height of 5. Next
we report the results on a medium forest. For the medium
forest we used the same number of trees (10), but increased
the maximum height of each tree to 8. This decision is based
on the numbers reported in Bolt [13] where the height of the
trees had the biggest impact in the execution time. Finally we
tested on a large forest. For the large forest we increased the
number of trees to 30 and the maximum tree height to 12.

V. RESULTS

For all results we report the average execution time after
10 runs as well as the error bars indicating the maximum and
minimum execution time of any of the cores in any of those
runs. Particularly, in structure and model parallelism, since
results need to be aggregated, outliers occur often and cause
significant performance degradation. However, mitigating tail
latency [5], [15], [16], is outside of the scope of this paper.

Figure 4(a) shows the execution time of the test set of
MNIST on a small forest. The average execution time is
lower for structure parallelism up to 8 cores. However, with
16 and 23 cores it is faster to use data parallelism. Further,
the maximum execution time on any of the runs with 4
and 8 cores is larger in structure parallelism even if the
average is lower. This is likely caused by the way the Bolt
dictionary is split (partitions are made by arbitrarily assigning
dictionary entries to different locations). In a very small forest,
likely only a few paths are used frequently, thus splitting the
dictionary causes some cores to frequently do lookups in Bolt’s
lookup table, while other cores discard results frequently. For
the larger amounts of cores, the advantage of having fewer
dictionary entries to explore is overshadowed by the overhead
of processing many samples. Thus, on this small ensemble
structure parallelism is advantageous up to 2 cores and after
that data parallelism becomes better.

Figure 4(b) shows the execution of the medium-sized forest
on the same dataset. As shown in Figure 4(b), structure
parallelism performs better in all numbers of cores. Structure
parallelism achieves results 4% faster on 2 cores and 33% and
30% faster on 16 and 23 cores respectively. In Bolt [13], it
is shown that smaller forests benefit more from the approach
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because of cache locality, even showing that in a small forest
Bolt only had two digit cache misses in a whole test set
execution. Further, in a small forest the number of dictionary
entries are reduced. Since dictionary entries are the only source
of branching in Bolt, smaller dictionaries minimize branch
mispredictions. Thus the benefits of Bolt on a single core are
greater on smaller forests. Structure parallelism is analogous to
reducing forest size. Since this forest is large enough to avoid
overhead taking over execution time, structure parallelism
performs better.

Similarly, structure parallelism also performs better on av-
erage on all number of cores with a large forest as shown
in Figure 4(c). However, the gain on structure parallelism is
small on 8 cores (0.1%) but much larger on 23 cores (16%).

Figure 4(d) and Figure 4(e) show the performance of the
small and medium forest on the LSTW dataset. Just like with
MNIST, data parallelism is better on the small forest and
structure parallelism gives better results on the medium forest.
For the medium-sized forest, the smallest gain in time was
19% on 4 cores, and the largest gain was 42% on 16 cores.

Figure 4(f) shows that structure parallelism performs better
on average on a large forest on LSTW for many cores. For less
cores, the average is better for structure parallelism. However,
there are outliers that take longer time in structure parallelism,
so the maximum execution time is larger in these experiments.
Consequently, the percent improvement on execution time
ranges from 2% on 4 cores to 20% on 23 cores. This is likely
because in an imbalanced dataset - as are traffic patterns -
the same dictionary entries are frequently used (they produce
searches in the lookup table), making some of the cores’
loads heavier. Additionally, if a few dictionary entries produce
lookups more frequently, and these dictionary entries appear
in the same core, inference for that core is likely to be much
slower. This last situation is more likely to happen when using
less cores.

Figure 4(g), Figure 4(h) and Figure 4(i) tell a different
story. In all these 3 cases, data parallelism performs better
on all number of cores. Further, structure parallelism does
not improve performance and is even detrimental when using
many cores. Likely, this is due to the fact that even on a
single core, the performance of this dataset is very fast (around
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Fig. 4. Comparison of Data and Structure parallelism on a small forest trained on MNIST.

0.009ms on all 300 samples). Likely, the overhead of receiving
each sample and storing the sample in cache while accessing
the dictionary is larger than the benefit of comparing each
sample to fewer entries. This is probably aided by the fact that
the ratio of the number of features used by each sample (1500
features) over the number of samples (300) is the greatest in
this dataset. This causes storing each sample to be relatively
more costly. Similar to the small forest in other datasets, here
it seems beneficial to use data parallelism exclusively for all
forest sizes.

The CIFAR100 dataset on the other hand is more similar
to MNIST than Yelp, and thus the results are closer to the
former dataset. Despite this dataset having the largest samples
(3072 features), the nature of those features and the dataset
size make the results closer to what we had seen previously.
Figure 4(j), shows the performance of Bolt on a small forest
using CIFAR100. As with the other datasets, on a small forest,
data parallelism performs better than structure parallelism.
Similarly, Figure 4(k) and Figure 4(1) show the performance of
both kinds of parallelism on medium-sized and large forests: as
with other datasets, structure parallelism performs better. On
the medium forest the improvement of structure parallelism
with respect to data parallelism is up to 23%. In the large
forest the improvement can be up to 22%.

A. Studying Model Parallelism

Figure 5 shows the effect of using model parallelism on
the medium sized forest trained on MNIST (i.e. the same one
used in Figure 4(b)). Figure 5 shows how model parallelism
on such forest can be ineffective or even counterproductive.
This is because, in Bolt, model parallelism does not directly
impact execution time. Recall from previous sections, that
model parallelism in Bolt splits the lookup table of the model
which is only accessed when a relevant dictionary entry is
found. The main benefit of model parallelism is reducing
memory demands. This could indirectly impact performance if
the reduction makes the model fit in cache or even in memory.
However, this decision is a trade-off. As the model is reduced
to fit in memory, there is additional branching added to the
model. Now, once a relevant dictionary entry is found, the
model must check if the portion of the table it is being given is
relevant to the portion of the table in that core. This introduces
overhead that likely offsets the advantages of reducing cache
misses. Nonetheless, model parallelism can still be essential
for a large forest depending on the underlying system. On the
large forest trained on MNIST, (the one used in Figure 4(c))
the lookup table had 17MB in size and the dictionary was
about 1MB. Figure 6 shows the effect in total memory usage
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of using model parallelism. By total memory usage, we include
the space needed to store the dictionary which is unaffected by
model parallelism. However, since the lookup table is an order
of magnitude larger than the dictionary, the reduction in total
memory usage is significant. Up to 8 cores, the reduction is
roughly linear (18MB in one core, 9.5MB in 2 cores, 5.3MB
in 4 cores and 3.2MB in 8 cores). After that the reduction in
memory is limited by the dictionary being a larger percentage
of space needed. However, the total memory savings using
23 cores is still an order of magnitude with respect to one
core (1.8MB vs the original 18MB). This is indicative of the
best use of model parallelism in Bolt. Given a forest that does
not fit in available memory, this approach can make execution
possible.

VI. CONCLUSIONS

Recent work on ensemble models create novel data struc-
tures that speed up such models. These data structures are
a good fit for existing parallelism techniques, namely, data
parallelism and model parallelism. However, they also add
opportunities for parallelism techniques that previously did
not exist. Structure parallelism is a new approach afforded
by the data structures of Bolt. Our experiments showed that
the appropriate parallelism technique depends on many factors
such as forest size, dataset, frequency of requests and available
hardware. For instance, on ensembles that are sufficiently
small or fast on a single core, data parallelism was far
more effective than structure parallelism. Model parallelism,
on the other hand, is effective only when there are strict
memory constraints and the reduction in memory space used is
significant. Structure parallelism is an effective technique. In
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most of our experiments, it is competitive with data parallelism
or improves latency (up to a 42%).

While the ideal approach depends on many factors, our
results suggest that structure parallelism should be one of
many tools available to performance engineers. In addition,
continued research on novel data structures for machine learn-
ing models could reveal new, subtle, and useful methods for
parallelization beyond data and model parallelism.
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