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Introduction: Advancements in machine learning (ML) algorithms that make
predictions from data without being explicitly programmed and the increased
computational speeds of graphics processing units (GPUs) over the last decade
have led to remarkable progress in the capabilities of ML. In many fields,
including agriculture, this progress has outpaced the availability of sufficiently
diverse and high-quality datasets, which now serve as a limiting factor. While
many agricultural use cases appear feasible with current compute resources
and ML algorithms, the lack of reusable hardware and software components,
referred to as cyberinfrastructure (Cl), for collecting, transmitting, cleaning,
labeling, and training datasets is a major hindrance toward developing solutions
to address agricultural use cases. This study focuses on addressing these
challenges by exploring the collection, processing, and training of ML models
using a multimodal dataset and providing a vision for agriculture-focused Cl to
accelerate innovation in the field.

Methods: Data were collected during the 2023 growing season from three
agricultural research locations across Ohio. The dataset includes 1 terabyte (TB)
of multimodal data, comprising Unmanned Aerial System (UAS) imagery (RGB
and multispectral), as well as soil and weather sensor data. The two primary crops
studied were corn and soybean, which are the state’s most widely cultivated
crops. The data collected and processed from this study were used to train ML
models to make predictions of crop growth stage, soil moisture, and final yield.

Results: The exercise of processing this dataset resulted in four Cl components
that can be used to provide higher accuracy predictions in the agricultural
domain. These components included (1) a UAS imagery pipeline that reduced
processing time and improved image quality over standard methods, (2)
a tabular data pipeline that aggregated data from multiple sources and
temporal resolutions and aligned it with a common temporal resolution, (3)
an approach to adapting the model architecture for a vision transformer (ViT)
that incorporates agricultural domain expertise, and (4) a data visualization
prototype that was used to identify outliers and improve trust in the data.
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Discussion: Further work will be aimed at maturing the Cl components and
implementing them on high performance computing (HPC). There are open
questions as to how Cl components like these can best be leveraged to serve
the needs of the agricultural community to accelerate the development of ML
applications in agriculture.

KEYWORDS

precision agriculture, multimodal data, machine learning, Unmanned Aerial Systems,
crop phenotyping, cyberinfrastructure

1 Introduction

In recent years, there has been a surge in interest across
various domains in leveraging machine learning (ML) techniques
to tackle complex, long-standing challenges. While technically a
subfield of artificial intelligence (AT), the two terms, Al and ML, are
often used interchangeably. ML is a branch of Al that focuses on
developing algorithms and models that enable computers to learn
from and make predictions or decisions based on data, without
being explicitly programmed for specific tasks. Al refers to the
broader field of creating systems or machines capable of performing
tasks that typically require human intelligence and can include
both rule-based systems that are explicitly programmed as well as
learning-based systems like ML. In this article, we will specifically
use the term ML for clarity and consistency. Since 2012, ML
techniques have achieved remarkable milestones across multiple
domains, such as AlexNet’s victory in the ImageNet competition
(Krizhevsky et al., 2012) and the introduction of the transformer
architecture in 2017 (Vaswani et al., 2017). These milestones have
propelled ML into unprecedented popularity.

This growing recognition of MDs potential has led experts in
various domains to explore its applicability to their most daunting
challenges. However, while the latest ML approaches are powerful,
they perform best with extensive, high-quality datasets which are
often expensive and labor-intensive to collect (Whang et al., 2023).
Existing public datasets in agriculture, though useful, are often
insufficient to harness the latest advances in model complexity
and compute resources. Further, the process of collecting and
processing agricultural data for ML faces numerous challenges,
including sensor failures, data pipelines, and data privacy concerns.

The notion that data harnessed from agriculture, coupled with
the latest advancements in ML, can significantly enhance both
the profitability and sustainability of farming practices is not
novel. Indeed, the agricultural industry’s dominant players in seed,
chemicals, fertilizer, and equipment along with tech companies and
startups have invested heavily in farm management information
systems (FMIS) to serve farmers. While many of these systems
are focused on providing accurate records of past events, falling
into the realm of descriptive analytics, there are increasing efforts
to include predictive and prescriptive analytics into these software
platforms using ML.

For example, Microsoft’s Farmbeats project (Kapetanovic et al.,
2017), launched in 2014, focuses on data-driven farming by
integrating various data sources, like field sensors and UAS, to
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provide insightful analytics through computer vision and machine
learning algorithms. It establishes an end-to-end Internet of Things
(IoT) infrastructure for efficient data collection and utilizes TV
white spaces for transmitting data to computing centers, thus
enabling advanced data analytics, and, in turn, empowering farmers
to enhance productivity and sustainability (Chandra et al., 2022).
Another example is Mineral, originating from Google/ Alphabet’s X
facility, which claims to have surveyed 10% of the world’s farmland
and developed 80 machine-learning models to boost production
and mitigate agriculture’s impact on the environment (Burwood-
Taylor, 2023).

The creation of large-scale, high-quality multimodal datasets,
carefully curated and made ready for ML applications, can
significantly advance predictive and prescriptive analytics in
agriculture. These datasets encompass spatial, spectral, and
temporal dimensions. Spatial intensity refers to ground sampling
distance (GSD) measured in centimeters or meters per pixel.
Spectral resolution refers to the number of wavelength intervals,
while temporal denotes the frequency of data collection. Gadiraju
et al. (2020) demonstrated a 60% reduction in prediction error
by using a multimodal deep-learning approach that leveraged
spatial, spectral, and temporal data characteristics to identify crop
types. This involved integrating a Convolutional Neural Network
(CNN), often used for analyzing images, with spatially intensive
data and a Long Short-Term Memory network (LSTM), often used
to analyze text corpora, with highly temporal data. Presently, there
is a growing research focus on data-driven agriculture systems
that involve deploying a diverse array of IoT sensors for vast
data generation and Big Data Analytics on these datasets (BDA)
(Ur Rehman et al., 2019). This trend holds promise for enabling
farmers to make more profitable and environmentally sustainable
farming decisions. Furthermore, edge-cloud architectures (Taheri
et al., 2023) can enhance real-time decision-making by hastening
data processing.

In addition to the importance of data quantity, it is crucial to
consider data quality prior to processing and incorporating data
into model pipelines. The utilization of data quality indicators, such
as data source, collection time, and environmental conditions, can
serve to flag datasets with undesirable traits (Wang et al., 1993).
These considerations underpin the critical role of data quality in
agriculture’s data-intensive domains.

The objective of this manuscript is to outline a vision for
software and hardware infrastructure, or cyberinfrastructure (CI)
that is oriented toward serving agricultural use cases.To illustrate
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the envisioned CI vision, we focus on three concrete and illustrative
use cases: predicting soil moisture, crop growth stages, and yield.
Examples of CI elements discussed in this paper include approaches
to processing of Unmanned Aerial Systems (UAS) imagery that
are optimized to reduce processing time, retain image quality,
and increase spatial accuracy; use of application programming
interfaces (API) to aggregate structured weather and in-situ sensor
data; Vision Transformer (ViT) models adapted for agricultural
use cases; and an interactive data visualization prototype to view
geospatial data at various stages of the ML pipeline.

This proposed CI aims to facilitate the collection and processing
of agricultural data at scale by providing a framework for reusable
CI elements like those shared above that can run on a spectrum of
hardware architectures from high performance computing (HPC)
to edge processing.

While it is important to share these concrete examples, a
more expansive vision is that a vibrant community sharing and
exchanging CI components like these can create leverage that
lowers the efforts to building the requisite datasets needed and
subsequent creation of ML applications in agriculture, accelerating
the training and inference of ML models that are ultimately used
for the benefit of farmers and other stakeholders in agriculture.

2 Vision

Many agricultural use cases now appear to be within the
capabilities of current compute resources and ML models.
However, the lack of CI dedicated to the collection, transmission,
cleaning, exploration, labeling, and training of the datasets
(hereafter referred to as data pipelines), along with the challenges of
deploying these solutions onto edge and intelligent sensing devices
for inference are a major hindrance toward the development
of solutions to address these use cases. Given the ongoing
advancements in the ML community at large and the focused efforts
within both agricultural industry and academia, we advocate for
a vision to build publicly available agricultural datasets and the
development of associated open source ML-centric CI. This CI
would support the tools and resources necessary for agriculture-
focused data pipelines. A vibrant open source community focused
on CI and datasets for ML applications in agriculture (AgCI) has
many positive benefits including:

1. Amplifies the efforts of agricultural researchers by reducing
the time needed for building and debugging data pipelines,
ultimately increasing the quality and quantity of their outputs
and their extension efforts to farmers.

2. Connects computer science researchers with meaningful
prevailing problems in the agricultural domain.

3. Lowers the capital requirements for startups to get to product
market fit for ML based products and services in agriculture by
leveraging open source software and datasets.

4. Enables positive economics for ML-based products for more of
the long-tail of agricultural commodities beyond the dominant
crops of corn, soybean, and wheat.

There are several companies that provide CI and other tooling
to support ML initiatives in general. This includes the big three
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cloud providers (AWS, Azure, GCP) as well as companies such
as HuggingFace, Kaggle, and Scale AI. However, the needs of
agriculture are unique and can benefit from CI that is focused on
salient agricultural use cases. There are several reasons for this
assertion:

1. There are very few publicly available datasets of sufficient size
and quality focused on agricultural use cases. Two examples
are PlantVillage (] and Gopal, 2019) and a corn nitrogen
research dataset (Ransom et al, 2021). PlantVillage contains
61,486 images comprising 39 different classes healthy and
diseased plants. Its images are often taken in controlled
settings with artificial backgrounds and may not be suitable
for large-scale in-field inferencing. The lack of environmental
context in these images limits their effectiveness in real-
world agricultural settings, where factors such as background
variability, lighting, and natural surroundings play a crucial
role in model performance. The corn nitrogen research dataset
contains 49 site-years from 2014-2016 across eight U.S. Midwest
states. While these datasets are valuable for machine learning
applications, they are limited in size and scope. However,
there are many universities worldwide that collect volumes of
agricultural data which if put in the right form, could be a
tremendously valuable resource for ML model training.

2. The pipelines for collecting, transmitting, cleaning, and
transforming agricultural data into formats ready for ML
are labor-intensive and error-prone. Furthermore, agricultural
researchers in many instances may not possess the data
management and software development skills to effectively and
efficiently perform these necessary tasks.

3. On-farm and small-plot research can be a rich source for
training data. However, the collected ground truth labels may
need to be modified to make them more suitable for ML model
training. Furthermore, the approach for splitting the dataset
into training, testing, and validation needs to consider the
replications in the dataset. Failure to understand this could lead
to data leakage where the test set performance is artificially
improved because there are replicates from the same treatment
in both training and test sets.

4. Commonly used ML models may need modifications to suit
agricultural data. For instance, image-based ML models typically
use a softmax layer as the final layer for classification. In
agriculture, many outputs are measured on continuous scales,
such as crop growth stages, disease severity, soil moisture,
nutrient deficiency, and yield. Therefore, it might be valuable
to evaluate both classification and regression-based approaches
to determine which approach provides the best results for the
specific use case.

For the reasons stated above, ML-amenable CI that leverages
the capabilities in the ML community at large while adapting it for
common use cases in agriculture has the potential to accelerate the
benefits of ML in agriculture. With these benefits in mind, here are
several core principles that guide our efforts to build AgCI that can
enable more impactful ML applications in agriculture:

1. Data collection and CI efforts need to co-inform each other and
should happen concurrently.
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2. The speed for both training and inference are critical measures
of value. Speed represents a holistic view that includes latency
starting from the point at which data is collected in the field to
the point where actionable insights are generated.

3. The CI should be capable of connecting to high-performance
computing (HPC) to accelerate training and inference times.

4. The CI must incorporate the latest approaches and models from
the broader ML community. Vision Transformers (ViT) (Han
et al, 2023), semi- and weak-supervised labeling techniques
(Sohn et al, 2020), and metadata formats (MLCommons,
2024) are examples. ViT techniques provide better adaptability,
efficiency, and scalability, compared to traditional ML
approaches that typically struggle with complex or spatially
diverse agricultural imagery. Similarly, semi-and weak
supervised labeling techniques allow models to learn from a few
labeled images by leveraging unlabeled or weakly labeled data.
In cases where labeled datasets are scarce and can be expensive
to produce, this reduces the cost and time required in data
annotation. Lastly, ML metadata formats such as Croissant seek
to promote the discoverability and reusability of ML datasets.

5. The CI needs to be easy to use, trustworthy, and consider the
range of technical proficiencies of potential users in agriculture.
It also needs to include interfaces that provide transparency
into the “black box” of ML and build confidence in its results.
Figure 1 depicts a vision of the mapping of platform components
to platform users.

The elements for AgCI are listed in Figure 2. It includes: (1)
Data Collection/Preprocessing pipelines to turn raw data into ML-
ready data structures. Imagery from unmanned aerial systems
(UAS) and smartphones, along with tabular data from weather
stations and IoT sensors, were utilized in the selected use case; (2)
ML Model Architecture Development which includes repositories
of untrained models, such as ViTs, CNNs, and XGBoost, that
have been optimized for agricultural use cases; (3) Repositories of
Trained Models; and (4) Inferences/recommendations generated
from trained ML models. A User Interface is important for
each step. Two important use cases for a User Interface
are Data Visualization to provide human feedback that Data
Collection/Preprocessing pipelines have correctly transformed the
data and Job Scheduling to schedule and initiate jobs for different
elements of the workflow. Lastly, our vision is that these elements
need to be built on a high-performance computing (HPC)
backbone to reduce the time needed for ML model training and
inference on sizable datasets.

It is important that visions be grounded in reality and informed
by continuous testing and feedback. Collins (2001) highlights
this in Good to Great, emphasizing the importance of embracing
the Stockdale Paradox by confronting the brutal facts while
maintaining faith in the end goal. Similarly, Ries (2011) advocates
in The Lean Startup for the importance of validated learning as
a tool to make constant adjustments to a vision. While these
books advocated approaches for companies, we think they also
have valuable application for the subject matter of this paper. With
that in mind, the following sections highlight our experiences in
building data pipelines for three important use cases in agriculture,
namely yield estimation, growth stage prediction, and soil moisture
prediction, and serve as an important source of feedback in refining
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our vision for AgCI. While the paper focuses on learnings from
three specific use cases, we believe our vision for AgCI can be useful
for a much broader range of agricultural use cases that can benefit
from ML approaches.

We note that the proposed vision in this manuscript is
particularly relevant to those land-grant universities in the United
States who were formed via the Morrill Land-Grant Acts of 1862
and 1890 “to teach such branches of learning as are related to
agriculture.” This mission was strengthened via the Hatch Act of
1887 that established funding for agricultural experiment stations
and the Smith-Lever Act of 1914 that established the Cooperative
Extension Service as a means of “diffusing among the people of
the United States useful and practical information on subjects
relating to agriculture." While the authors of these legislative acts
could not possibly have imagined the advancements in agriculture
that would have happened over the last 150 years, our vision of
establishing AgCI strongly aligns with the foundation they laid
of establishing land-grant universities with a mission to promote
agricultural advancement for the benefit of society.

3 Materials and methods
3.1 Initial data types

The initial data sources that provide feedback to our
AgCI efforts originate from three agricultural research stations
geographically dispersed across Ohio and operated by The
Ohio State University (OSU). They include Western Agricultural
Research Station in Clark County, Northwest Agricultural Research
Station in Wood County, and Wooster Campus in Wayne County.
Each site included 80 plots for corn and 80 plots for soybean. The
experiment was a split-plot randomized complete block design with
four replications of each treatment. Main plot factor included five
planting dates spaced approximately every 2 weeks from mid-April
to mid-June. Figure 3 shows an excerpt of the plot map for the
corn plots in Western Agricultural Research Station. Figure 4 shows
plots from Northwest Agricultural Research Station overlaid on an
orthomosaic processed from UAS imagery.

The subplot factor for corn consisted of four hybrids with
four different relative maturities (100-, 107-, 111-, and 115-
day), while the subplot factor for soybean involved four seeding
rates (247,000; 345,800; 444,600; and 518,700 seeds per hectare,
equivalent to 100,000; 140,000; 180,000; and 210,000 seeds per
acre, respectively). Each replicate included a border plot on both
ends of the block to reduce any edge-of-field effects on the
measured plots. Furthermore, yield measurements were based on
the center two rows (out of four) for corn and the center five
rows (out of seven or eight) for soybean. The research plots
were managed according to agronomic best management practices
for soybean (Lindsey et al, 2017) and corn (Thomison et al,
2017) outside of the main plot and subplot factors. Figure 5 is a
summary diagram that shows initial data types collected and initial
use cases.

In total, x 1 terabyte (TB) of data were collected, with the vast
majority of that being from UAS imagery. While a dataset size of
1 TB may not be considered extensive according to contemporary
standards, it signifies a substantial investment in terms of time
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and labor in the agricultural domain. The individual data types are
enumerated below.

3.1.1 Unmanned Aerial Systems imagery

The aerial image collection was facilitated using a Wingtra One
Unmanned Aerial System (UAS), equipped with both a 42MP RGB
camera, the Sony RX1R II, and a Micasense Altum Multi-spectral
camera featuring six spectral bands: Red, Green, Blue, Red-edge,
Near Infrared, and Thermal Infrared. Flight missions for the Sony
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RXI1R II were conducted at an altitude of 50 m above ground
level (AGL), resulting in a ground sampling distance (GSD) of
0.008 m/pixel. The Micasense Altum was flown at 70 m AGL,
resulting in a GSD of 0.047 m/pixel. Flight missions were executed
at approximately weekly intervals throughout the entire growing
season, beginning in May 2023 and culminating with the final
flights in mid-October 2023 shortly before harvest. This strategy
resulted in a total of between 13 and 16 flights per site for each
camera. Each flight mission generated hundreds of images covering
the corn and soybean plots at each research location.
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FIGURE 3
Portion of corn plot map for Western Agricultural Research Station.

FIGURE 4
Plots from Northwest Agricultural Research Station overlaid on orthomosaic from UAS imagery.

3.1.2 Structured soil and climate data
3.1.2.1 In-situ soil and weather sensing data

An array of soil sensors was deployed at two depths, specifically
at 30 and 60 cm, within the corn and soybean plots for both
Planting Date 2 (26-27 April 2023) and Planting Date 4 (25-30 May
2023) at all three research locations. These soil sensors included
Teros 12 (volumetric water content (VWC), soil temperature (ST),
and electrical conductivity (EC)) and Teros 21 (matric potential
(MP)) sensors at 30 cm depth and Teros 11 (VWC and ST) at
60 cm depth. Additionally, one Apogee SQ-521 photosynthetic
active radiation (PAR) sensor and one Meter ATMOS 14 weather
station were installed at each of these research sites. The ATMOS
14 weather stations collected temperature, relative humidity,
vapor pressure, and barometric pressure in the crop canopy. The
installation of these sensors occurred at all three sites in early June
2023 and collected data until shortly before harvest in mid-October
2023 at a 30-min temporal resolution.
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The data collected by these sensors were aggregated by a total
of six data loggers, with two loggers allocated at each research site.
These loggers were connected to the Meter Group’s Zentra Cloud,
a data management and visualization platform. Data visualization
was available through user-configurable dashboards on the website
and data were also accessible via an application programming
interface (API).

3.1.2.2 Weather station data

At each of the research locations, an OSU managed weather
station collects precipitation, wind speed, and air temperature at
multiple heights, which is accessible at weather.cfaes.osu.edu. In
addition, the website also provides calculated daily values such as
heat units, commonly expressed as Growing Degree Days (GDD),
using the following formula (McMaster and Wilhelm, 1997):
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FIGURE 5
Summary of initial data types and use cases.
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The base temperature for corn is typically set at 10°C. The
accumulation of GDD over the growing season is widely used in
predicting corn growth and development (sometimes referred to as
heat units accumulation). The weather data is available year-round
at both 5-min and daily temporal resolution for a number of OSU
research locations including the three that were part of this study.
This study used the daily temporal resolution data.

3.1.2.3 Soil testing data

At the beginning of the growing season in May 2023, standard
soil chemistry and soil texture tests were conducted for each
location. Soil chemistry tests provide values of the concentrations
of various nutrients, percentage of organic matter (OM), and cation
exchange capacity (CEC). Soil texture tests measure the percentage
of sand, silt, and clay. On an approximately weekly basis coinciding
with the UAS flight missions, nine soil samples were taken from
each plot at a depth of 15 cm corresponding to the locations of
the in-situ soil and climate sensors. These samples were aggregated
together for each plot and submitted to a soil testing laboratory to
measure plant-available nitrogen content, consisting of nitrate and
ammonium, as well as CO, respiration reported in mg/kg as an
indication of the rate of nitrogen mineralization of organic matter.

3.1.2.4 Ground-truth data

Similarly, weekly site visits from May to October 2023 were
conducted at all three research locations by personnel from the
OSU’s Department of Horticulture and Crop Science (HCS).
These individuals possessed expertise in the classification of
corn (Hanway, 1963) and soybean (Fehr et al., 1971) growth
stages as well as proficiency in assessing disease incidence and
quantifying disease severity. Furthermore, ears of corn and whole
soybean plants with pods were collected at harvest for detailed
measurements of the components of yield such as kernel rows,
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kernels per row and kernel weight in corn and seeds per pod, pods
per plant, and seed weight in soybean. The data generated from
these site visits will be the labels for several ML use cases derived
from this data set.

3.2 Initial use cases

3.2.1 Growth stage prediction

Growth stages are an objective way to track the progress of corn
and soybean from emergence through to maturity. The availability
of water and nutrients in each growth stage can be an important
predictor of yield. Furthermore, certain treatments for plant disease
can be more effective if applied during certain growth stages. While
temperature-based calculations such as GDD accumulated since
planting date can be used as a way to estimate growth stages, in
some cases, the planting date may not be known. Additionally,
drought stress or time of the year at which the crop is planted
(Nielsen, 2022) can reduce the accuracy of GDD-based growth
stage predictions. With the increasing prevalence of UAS-based
imagery, this use case focuses on the use of Vision Transformers
(ViT) to estimate growth stage from UAS images. We used both
classification and regression-based approaches to predict 16 growth
stages in corn from V1 to R5.

3.2.2 Soil moisture

Soil moisture is an important attribute for both rainfed
and irrigated crops. The flow of water via transpiration from
the roots through to the stomata is a necessary requirement
for photosynthesis and is also the transport mechanism for
important nutrients such as nitrogen, phosphorus, and potassium.
Furthermore, the water balance in the soil has a strong influence
on the soil nitrogen budget and optimum nitrogen fertilizer rates.
Understanding soil moisture is valuable, therefore, for informing
nutrient management and estimating yield. This use case seeks to
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predict soil moisture for different soil textures based on weather
and crop growth stages.

The approach used a Long Short-Term Memory model to
predict the daily change in volumetric water content and thus
predict a running account of total volumetric water content in the
soil.

3.2.3 Yield estimation

Yield estimation is valuable in-season for informing farmers’
grain marketing decisions. If they have a better estimate of their
yield, they can choose to lock-in pricing for a greater amount of
their harvest. Furthermore, estimates of yield potential during the
growing season can inform the profitability of field treatments such
as nitrogen and fungicide applications. In this approach, we used a
Long Short-Term Memory architecture to predict yield across 228
plots at the three research locations using a leave one out (LOO)
cross-validation approach for the five planting dates (Waltz et al.,
2024).

While the yield estimation model used the actual ground truth
labels for growth stage and running averages of precipitation as
inputs, Figure 6 shows how the three use cases could be combined
in the future with interconnected ML models to estimate yield
in a more integrated fashion that would be more amenable to
being deployed at scale. The results of soil moisture and growth
stage ML models can be combined with growing degree days
and photosynthetic active radiation during the growing season to
estimate yield.

4 Results

This section outlines the creation of CI components that
are important for developing the use cases in Section 3.2. This
includes an imagery and tabular data pipeline, a modified ViT
model architecture better suited to agricultural data, and a data
visualization prototype to improve trust and identify outliers in
the dataset. While these CI components are important for three
identified use cases, there are many other agricultural use cases that
could potentially benefit from these CI components.

4.1 UAS imagery pipeline

Over the course of the 2023 growing season, a total of 85 flight
missions were conducted. These missions included flights across
three research locations utilizing two payload sensors, namely
RGB and multi-spectral. Making use of commercially available
products, our UAS-based data acquisition relied on the use of
Secure Digital (SD) cards to store images captured during UAS
missions and subsequently transferred to a hard drive, where
proprietary software was utilized to geotag images from either the
nearest Continuously Operating Reference Station (CORS) or an
on-site Global Navigation Satellite System (GNSS) receiver. CORS
generate correction signals, including Virtual Reference Station
(VRS) signals, which are used to improve GNSS receiver position
accuracy. This can be achieved through Real-Time Kinematic
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(RTK) or Post-Processed Kinematic (PPK). The Wingtra One
utilized PPK to improve the spatial accuracy from meter to
centimeter level accuracy.

Qur initial approach wused PixdD, a
photogrammetry software provider, to generate orthomosaics
from each flight. Specifically, Pix4Dengine, a set of programming
modules, facilitated the automation of the orthomosaic creation
through a Python script. Our data pipeline also involved the
creation of plot boundaries in the form of polygon shapefiles (.shp)
corresponding to the geographic coordinates of each plot. These
shapefiles were used as a mask to create images for each plot from
each flight.

During this process, we experienced several challenges. First
was that the orthomosaic creation was a lengthy process, generally
taking 4-6 h to complete. This corresponded to x25 min of
processing time per hectare. Secondly, the stitching process caused
degradation in the resulting orthomosaic’s image quality, partially
due to motion artifacts caused by the movement of corn and
soybean plants in overlapping regions of successive images. Lastly,
in our first attempt to create orthomosaics, we experienced roughly
10% of the orthomosaics were incomplete and did not cover the
entire plot area. While we were able to get these orthomosaics
to cover the entire area by adjusting the settings on Pix4D, this
process increased processing time from 4-6 h to 1-2 days. Figure 7
illustrates the degradation in image quality that can occur while
generating an orthomosaic.

Since the settings required to generate orthomosaics involved
lengthy processing times and yet the resulting image quality was
often significantly degraded from the underlying raw image, an
alternative approach was developed with the primary goal of
retaining the original image quality.

The new approach utilized a technique called direct
georeferencing that utilizes the translational (latitude, longitude,
and altitude) and rotational (roll, pitch, and yaw) orientation of the
UAS that is associated with each geotagged image to georeference
each image individually. While this approach improved image
quality and reduced processing time, it came at the expense of
reduced geospatial accuracy from a mean error of 0.003 m to 0.5
m. While this accuracy would be suitable for training data from
on-farm research where treatment sizes are typically >12 m wide
by 100 m long, it was not suitable for small-plot research with
typical plot sizes of 3 m wide by 10 m long.

To address this reduced geospatial accuracy, we added a step
of image registration where the direct georeferenced image was
registered against the orthomosaic. This resulted in a georeferenced
image that achieved a mean error of 0.06 m that was suitable for
small-plot research.

Figure 8 illustrates the three approaches that were evaluated to
generate georeferenced plot images corresponding to agronomic
treatments in small-plot research trials. Table 1 compares the
three approaches with performance metrics of processing time,
geospatial accuracy, and image quality.

The new pipelines designed for automated creation of tiles
for each plot represent improvements over the orthomosaic
baseline approach. The Direct Georeferencing Pipeline results in an
eight-fold improvement in processing time while simultaneously
eliminating stitching artifacts that degrade image quality. While

commercial
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FIGURE 6
Interconnected machine learning models for yield estimation.
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FIGURE 7

lllustration of degradation in image quality comparing orthomosaic to original image.

Original image

there is a decrease in geospatial accuracy, this approach is well-
suited to on-farm research where a 0.5 m accuracy is acceptable.

For small-plot research where higher geospatial accuracy is
needed, the Image Registration Pipeline is able to eliminate the
stitching artifacts that degrade image quality while achieving
similar geospatial accuracy and processing times from the
Orthomosaic Pipeline. The improved image quality is expected
to boost the accuracy of machine learning models, while
faster processing time makes both training and inference
more efficient.

In addition to the quality and processing time improvements,
automated pipelines eliminate the human bottleneck that is often
the largest contributor to the latency from the point of image
collection to those images being available for ML training.
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4.2 Soil and weather structured data
pipeline

The Soil and Weather Structured Data Pipeline aggregates
structured data from three separate sources (soil sensors, weather
stations, and soil lab tests) into a database as shown in Figure 9.

This pipeline harnessed data from in-situ field sensors,
including soil volumetric water content, soil matric potential,
photosynthetic active radiation, temperature, and relative
humidity. These sensors were connected to Meter ZL6 loggers,
which recorded data at 30-min intervals. Subsequently, the
collected data was transmitted to the Meter Zentra Cloud
through cellular connections. A Python script was employed
to interface with the Zentra Cloud application programming
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Feature
Creation

FIGURE 8
lllustration of portfolio of approaches to process UAS imagery into ML ready images including Orthomosaic (OM-based), Image Reqistration
(IR-based), and Direct Georeferencing (DGR-based).

TABLE 1 Comparison of UAS image processing performance using different pipelines.

Metric Orthomosaic pipeline Direct georeferencing Imagf_e registration
(baseline) pipeline pipeline

Application On-farm research Small-plot research

Processing time from raw images to plot tiles ~ 25min/ha ~ 3min/ha ~ 30min/ha

Geospatial accuracy (mean error) 0.003 m 0.5m 0.06 m

Image degradation Stitching artifacts Minimal Minimal
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website (HTTP request) Database
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FIGURE 9
Soil and weather structured data pipeline.

interface (API) to retrieve the data and aggregate it into a Soil lab testing results were received regularly as spreadsheets

local database. sent over email. The data in these spreadsheets were also
Additionally, the pipeline incorporated data from OSU weather  incorporated into the database.

stations, which were located at each research site near the Our data cleaning process was heavily reliant on the use

field plots. The data generated by these weather stations was of Jupyter notebooks to manually handle CSV and Excel files,
accessible via a web interface, allowing for convenient querying involving unique scripts for each type of data transformation
and retrieval. required such as mapping growth stage descriptions to numeric
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values, converting irregular time-series data into a standardized
daily format, and averaging hourly sensor readings to daily values.

While this enabled batch processing of data at the end of the
growing season, the next step of maturity in the data pipeline
is to implement continuous data processing. To accomplish this,
we envision a data pipeline that would replace these manual
Jupyter notebook operations with integrated, automated tasks
enabling continuous data processing capabilities. This architecture
would incorporate an Extract, Transform, and Load (ETL) scheme
scheduled to operate continuously. As new data arrives, it would
be extracted and then transformed by applying various cleaning
techniques such as normalizing time-series data into a uniform
temporal resolution and aligning disparate data formats into a
unified format. Following transformation, the data would be loaded
into a database which would act as the central repository from
which the front-end user application can dynamically query the
database and retrieve data on-demand.

4.3 Model architecture

After acquiring and preprocessing various data types using
data pipelines, the next step is ML model training. ML models
such as Support Vector Machines (SVM), decision trees, regression
networks, Convolutional Neural Networks (CNN), and Long Short
Term Memory networks (LSTM) are popularly selected for various
agricultural use cases (Khanal et al., 2020). In this study, the state-
of-the-art Vision Transformer (ViT) model was used to identify
corn growth stages using UAS RGB images. Studies (Han et al,,
2023) have found ViT models to perform similar to or better than
other types of neural network (NN) based models such as CNN
and recurrent RNN. They better capture spatial relationships, such
as the development of leaves and the presence of flowers in the
images, which can be crucial to identify crop growth stages. To
compare the classification and regression approaches for estimating
crop development, the ViT architecture was modified to perform
these tasks (Figure 10). During the training of the classification
model, each crop growth stage is treated as an independent,
discrete observation, whereas in a regression model, crop growth
is considered a continuous observation.

After the model selection, the input data can either be
segmented or resampled to match the model specifications and
requirements. For the ViT model, UAS images from each of the
plots were divided into blocks of 224 x 224 x 3 to meet the
ViT input requirement and then passed to the position embedding
layer of ViT architecture. The embedded data is then passed to the
transformer encoder and then to either the Multi-Layer Perceptron
(MLP) head (classification) or Linear layer (regression). The MLP
head and Linear layer use categorical cross entropy and mean
squared error (MSE) as the loss function, respectively.

Each of the 224 x 224 x 3 blocks were annotated with
ground-observed crop growth labels from their respective plot.
These alphanumeric labels represent specific stages in corn growth
cycle, with vegetative and reproductive stages denoted with the
prefix “V” and “R” respectively. These labels can be considered
as independent, discrete labels (classification) or as a sequence
of continuous labels (regression). The alphanumeric growth stage
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labels from V1 to R6 were converted to numeric values from 0 to
22. The regression predictions were rounded to the nearest integer.

As we evaluated the dataset, we discovered that there was
significant class imbalance with growth stages V10 to VT having
many fewer samples than the other classes. On further reflection,
this related to the fact that the ground truth sampling frequency
was approximately weekly. However, while the growth stages prior
to V10 and subsequent to R1 transitioned approximately once every
five to seven days, the growth stages from V10 to VT happen
much more quickly at a rate of 1 to 3 days on average. The
result of this was that our dataset contained many fewer ground
truth observations per class from V10 to VT. Furthermore, when
looked at from an agricultural perspective, the importance of
distinguishing between individual growth stages from V10 to VT
carries less practical value for our yield estimation use case. For
these reasons, we evaluated model performance with the existing
classes and with a consolidated approach that grouped the classes
from V10 to VT into 2 groupings: V10-V12 and V13-VT. This
provided benefits from a technical perspective by resulting in
more balanced classes and from a pragmatic standpoint in that
the finer grained detail does not provide additional downstream
benefits. This highlights the importance of synthesizing domain
expertise in agronomy with technical expertise in ML to arrive at
better solutions.

The images were randomly partitioned into 80% for training
and 20% for testing. Figure 11 shows examples of UAS image blocks
(224 x 224 x 3) of selected growth stages along with the associated
attention maps, and attention maps overlaid on top of UAS image
blocks. Attention maps highlight the areas of an image that the ML
model learns from.

With two different approaches to growth stage labels (grouped
and non-grouped) and two different approaches to the final layer
in the ViT model architecture (classification and regression), we
evaluated four combinations and measured the performance of
each approach with respect to classification accuracy and mean
squared error (MSE).

The results in Table 2 show that the classification model
always performs better in terms of classification accuracy while the
regression model always performs better with respect to MSE. They
also show that using consolidated growth stage labels from V10-
V12 and V13-VT improve both classification accuracy and MSE.
Figure 12 shows the confusion matrix for both the classification
and regression models with the consolidated growth stage labels
enumerated. These results are a reminder that ML models optimize
to minimize their loss function and that they often perform better
with fewer classes that can enable more data samples per class.

With that in mind, it is important to consider from a
downstream point of view how the results will be used. For the
yield estimation use case presented in this paper, using consolidated
growth stage labels is expected to provide an appropriate level of
fidelity. Likewise, regression is anticipated to be a more appropriate
model architecture since it has a lower MSE and also allows for
continuous values to be provided to the LSTM model in Figure 6
instead of the discrete integers that would be required by the
classification model.

While the agricultural observations in this section would be
well understood to agronomists and the ML observations would be
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Illustrating steps in training the Vision Transformer (ViT) model using UAS images to identify crop growth stages as classification and regression tasks.
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well understood by ML engineers, they highlight that a synthesis
of both agricultural domain expertise and ML technical expertise
is important to develop ML models that are useful in agriculture.
While we think there is a human component to encouraging greater
interdisciplinary collaboration, we also envision that CI can have
some of these agricultural and ML principles built-in to provide a
valuable role in guiding the development of useful ML models in
agriculture.
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4.4 Data visualization

In the past decade, we have seen ML make an impact on a
myriad of data-rich application areas. As this trend continues,
there is a growing need for tools that help practitioners gain a
better understanding and trust of the data and insights presented
by these technologies (Beauxis-Aussalet et al., 2021). Cultivating
trust is critical for success in data-driven and sustainable agriculture
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TABLE 2 Comparison of ViT model performance metrics.

ViT regression
mode

ViT classification

model

VIiT classification model
consolidated growth stage
labels

10.3389/frai.2024.1496066

ViT regression model
consolidated growth stage
labels

Classification 52% 45% 58%
accuracy
Mean squared error 1.815 1.801 0.918 0.705

(Raturi et al., 2022). Farmers, especially, need validation that data-
driven ML tools will be able to achieve their envisioned goals of
environmental and economic sustainability (Gardezi et al., 2024).
One such tool to improve trust and provide validation is the
creation of interactive data visualizations (Beauxis-Aussalet et al.,
2021).

As an illustration, we created an interactive data visualization
dashboard using the cleaned, wrangled data from this study.
Visualization methods at this stage in the ML pipeline are generally
used to explore interesting subgroups and pinpoint particular
outliers. The purpose of this dashboard is to visualize the collected
data at the plot level, providing specific insights for each plot and
comparing them to other plots in the field. This provides the user
with a reference to see if a particular plot has characteristics that
are significantly different from the norm (i.e., out of distribution),
enabling a better understanding of the data. Figure 13 shows a
screenshot of the dashboard.

The dashboard was created with Plotly Dash, an open source
Python framework that enables the creation of interactive, data-
driven dashboards. The top left of the dashboard contains a pane
with a map focused on a specific field [A]. A 3D geospatial layer
is rendered on top of the field using the plot boundaries from the
created orthomosaic files (.geojson files). This rendering is created
with DeckGL, a WebGL-powered visualization framework. Each
plot was outlined and has its own 3D layer. The height and color
represent the current crop growth stage of each plot. To view the
exact growth stage value of a specific plot, the user may hover over
the specific plot.

Below the map, there is a time slider and a series of dropdown
menus to select field, crop type, and plot number, respectively [B].
This collection of inputs can be used to update the dashboard
figures [C] on the right side of the screen that provides information
based on the different modalities of tabular data collected in the
study. The upper chart shown in [C] is a chart of yield components
(stand count, kernel rows, kernels per row, kernel weight). Each of
these combine to account for the overall yield of corn. The lower
chart in [C] is a chart of Normalized Difference Vegetation Index
(NDVT) values over time for the specific plot. NDVT is a commonly
used vegetative index that is calculated from the near infrared (NIR)
and red spectral reflectance bands. It is a measure of the health of
the vegetation and is calculated by the following formula:

NIR — RED

NDVI= ——
NIR + RED

The position of the time slider can be altered to update the
geospatial visualization and figures across different time periods
across the growing season. A UAS image of the selected plot at the
specific time selected by the time slider is populated at the bottom
left of the screen [D].
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Perhaps the most significant feature of the dashboard is the
interactivity provided in the geospatial visualization. The user may
click on a specific plot on the 3D geospatial layer to populate the
figures with information about the selected plot, enabling the user
to derive plot-specific insights in an interactive, intuitive manner.
While the prototype dashboard currently uses plot-scale data for
visualization, it can easily be adjusted to incorporate on-farm data.
Its interactivity, combined with the time-slider, in the dashboard
enables users to explore multimodal data across both spatial and
temporal dimensions.

Overall, these figures, driven by plot-clicks and the time-slider,
provide a valuable view for users that enables further understanding
of the collected data. It can also be utilized to display ML-generated
findings alongside ground-truth data, helping to build trust in the
ML based models.

5 Discussion

In the manuscript, we have introduced some useful methods
and approaches relating to AgCl. However, they are still at
an early level of maturity and require additional research and
development. Furthermore, there is a need to integrate these
components into a cohesive CI system for enabling data driven
decision making in agriculture. For instance, direct georeferencing
techniques show promise to retain original UAS image quality
while reducing compute requirements. Further work will be
aimed at implementation on high performance computing (HPC)
to reduce processing time. Additional work is also needed for
error detection to ensure plot tile images are correctly generated.
The user interface shows promise, but more user research is
needed to tailor the interface to the unique needs of stakeholders.
The prototype was built using the prior year’s data. A valuable
next step will be to implement continuous data processing
to show data from the current growing season as data is
collected.

Furthermore, there are open questions as to how this work
can best be leveraged to serve the needs of agricultural researchers,
startups and established companies that serve farmers, and farmers
themselves. A primary consideration is lowering the barriers to
building datasets of sufficient quality and size. For this reason,
collaboration with universities worldwide conducting agricultural
research to combine efforts on common needs of AgCI is
important.

We hypothesize that various stakeholders will want to engage
at varying levels of the technology stack. While some institutions
may have the motivation, aptitude, and resources to deploy
their own instance of AgCI connected to an HPC backbone,
others may prefer to access already existing AgCI for their
research needs.
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been grouped into a single class.
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Confusion matrices representing ViT model results with precision, recall, and overall accuracy values. Growth stages V10-V12 and V13-VT have

6 Conclusion

In accordance with our land-grant university heritage, we
advocate that a vibrant community focused on contributing to
and using AgCI embodies the mission of land-grant universities
to promote agricultural research for the benefit of society. Other
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institutions across the world may have similar heritage and
traditions that provide similar motivations for advancing the field
of agriculture.

In summary, this paper articulates the importance of ML
applications in agriculture and highlights a data-centric approach
to building AgCI. Along the way, it presents some specific
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FIGURE 13

Dashboard Screenshot showing (A) Map of a small-plot research field; (B) Time slider; (C) Dashboard figures; and (D) UAS image of selected plot.

approaches that improve data quality, reduce processing time,
increase ML model performance, and promote understanding and
trust through data visualization. This is all done in the context of
three interrelated valuable use cases in agriculture of soil moisture
estimation, growth stage estimation, and yield estimation.

We acknowledge that we have only shared learnings from
a narrow slice of agricultural use cases. While we have used
very tangible examples to illustrate our vision, our vision is
not limited to these examples. We believe there is much more
agricultural research happening that could be accelerated and be
more impactful with access to AgCI connected to an HPC backbone
that provides reusable components across data collection, model
architecture development, model training, and inference.

The World Wide Web, created as an open standard more than
30 years ago, became the de facto standard over other open and
proprietary networks, fundamentally transforming communication
and commerce. We draw this analogy because we believe that
advancements in ML are ushering in a similarly transformative era.
The advancements in ML show promise to be as impactful in the
future as the World Wide Web has been over the last 30 years.

We believe this pivotal moment calls for leadership and
approaches that develop practical and innovative solutions
by synthesizing agricultural domain expertise with the latest
advancements in CI and ML technical expertise. We hope that
the work presented here inspires discussion and collaboration
among various stakeholders (e.g., researchers, crop consultants,
farmers) so that the promise of ML in agriculture can be more fully
realized by capitalizing on advancements in the ML community
at large.
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