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A B S T R A C T

This study employs an innovative multi-constraint Monte Carlo simulation method to estimate suppressed
county-level cancer counts for population subgroups and extend the downscaling from county to ZIP Code
Tabulation Areas (ZCTA) in the U.S. Given the known cancer counts at a higher geographic level and larger
demographic groups at the same geographic level as constraints, this method uses the population structure as
probability in the Monte Carlo simulation process to estimate suppressed data entries. It not only ensures con-
sistency across various data levels but also accounts for demographic structure that drives varying cancer risks.
The 2016–2020 cancer incidence data from the Utah Cancer Registry is used to validate our approach. The
method yields results with high precision and consistency across the full urban-rural continuum, and signifi-
cantly outperforms several machine-learning models such as Random Forest and Extreme Gradient Boosting.

1. Introduction

Analyzing disease data at appropriate geographical scales is crucial
for understanding spatial patterns of disease burden and informing
relevant public policy (Taparra et al., 2022). However, limitations in
data collection and privacy protection requirements often result in data
aggregated at coarser scales and with missing values. Such an issue is
particularly prevalent in cancer datasets (Cook et al., 2021; Amitha
et al., 2021), yet estimates at smaller geographic units are often needed
for population-level measurement and analyses. Therefore, developing
reliable methods to estimate those suppressed values is valuable for
spatial analysis at sharper resolutions (Kim et al., 2024) and enables
precision public health interventions (Naumova, 2022).

There have been significant advancements in interpolating missing
data (Wang et al., 2020) and downscaling population (Wan et al., 2023)
over the past decades. However, health (e.g., cancer) data downscaling
faces unique challenges (Sahar et al., 2019). Cancer data suppression is
geographically nested, and the level of suppression correlates with
geographic precision (Buchin et al., 2012). While data at higher levels
might be reliable, the proportion of suppressed data increases with finer
population groupings and geographic scales. Traditional regression

methods for handling missing data often fail to satisfy total volume
constraints at higher geographic levels (Howlader et al., 2012). Popu-
lation downscaling techniques, such as areal interpolation or dasymetric
mapping, need to account for the relationship between auxiliary data
and cancer data (Walter et al., 2013). Incorrect auxiliary data can lead to
erroneous results, e.g., overestimated cases in urban areas and under-
estimated cases in rural areas (Bozigar et al., 2020). Methods based on
Monte Carlo (MC) simulations show promise by estimating cancer in-
cidences proportionally to specific population groups (Shi et al., 2013;
Luo et al., 2010). However, more work is needed to account for the
nested structure in area units and risk factors associated with de-
mographic structure for further evaluation.

This study employs an innovative multi-constraint Monte Carlo
simulation method to estimate suppressed county-level subgroup cancer
counts and extend the downscaling from county to ZIP Code Tabulation
Areas (ZCTA). Using cancer incidence data from Utah for the period
2016–2020, the proposed approach is rigorously validated and bench-
marked against several machine learning models. The National Cancer
Institute (NCI) data and Census data were selected to align with the
availability of granular ZIP Code-level cancer data from Utah’s SEER
cancer registry. Although SEER data are not publicly accessible, their
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completeness and granularity at the ZIP Code level provide a unique
opportunity to evaluate the accuracy and robustness of the Monte Carlo
simulation method. This level of validation is particularly critical for
estimating suppressed cancer counts in small subgroups, where sup-
pression rules are most frequently applied.

2. Literature review

Methods for addressing missing data and population downscaling in
health research largely derive from general population science (Chang
et al., 2014). Wright introduced dasymetric mapping in 1936 to create
downscaled density map based on inhabited and uninhabited areas in
towns (Wright, 1936). Subsequent development in this field can be
broadly classified into areal interpolation and spatial smoothing, based
on whether spatial autocorrelation is considered. Fig. 1 illustrates the
knowledge tree structure of related methods.

Initially, areal interpolation methods primarily relied on area-
weighted calculations within and across administrative boundaries
(Goodchild et al., 1980). By incorporating more ancillary data such as
cadastral data, land use information, and street data,
population-weighted methods have made significant improvements

over areal interpolation methods (Xie, 1995; Fisher et al., 1996; Reibel
et al., 2007; Comber et al., 2008; Bentley et al., 2013). High-quality
ancillary data provide proxies for population downscaling based on
geographic boundaries or locations, marking a substantial shift towards
data-driven and precise mapping techniques (Liu et al., 2018). Regres-
sion methods have been used to integrate the effects of various
geographic and demographic variables (Harvey, 2002; Cromley et al.,
2012; Harris et al., 2005). The introduction of machine learning and
deep learning techniques adds a new dimension to population mapping,
enables the incorporation of complex nonlinear relationships, and
thereby enhances prediction accuracy (Li et al., 2011; Zhu et al., 2020;
Doshi et al., 2023).

Tobler’s Pycnophylactic interpolation method was among the first
spatial smoothing methods for considering spatial autocorrelation and
meeting the total number of observations (Tobler, 1979). Subsequent
developments have shifted away from total volume constraints towards
pure spatial smoothing techniques such as centroid kernel density
methods, inverse distance weighting (IDW), geostatistics, and kriging
(Martin, 1989; Kyriakidis et al., 2005). Methods like geographically
weighted regression (GWR) and spatial Bayesian models integrate
spatial correlation with regression and smoothing concepts, and become

Fig. 1. Evolution in population downscaling methods.

Fig. 2. Evolution of geo-imputation methods for cancer data.
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an adaptable tool for areal interpolation or spatial smoothing (Liu et al.,
2008; Schroeder et al., 2013; Li et al., 2020). By integrating deep
learning and machine learning methods with geographic features,
Geospatial AI (GeoAI) represents the forefront in a knowledge tree for
spatially varying models on population downscaling (Liu, 2024).

These methods need to be adjusted to account for the specific nature
of medical data and enforce total volume constraints (Lam, 1983), when
applied to cancer data processing. More recently, areal interpolation has
gained more attention than spatial smoothing in health research and
been expanded into geo-imputation (Chien et al., 2013). Fig. 2 illustrates
the evolution of the related methods suitable for cancer data imputation.

Areal interpolation method was first introduced to interpolate breast
cancer cases from towns to census tracts based on the proportion of fe-
males (Joseph Sheehan et al., 2004). The methods are termed “geo--
imputation” by using population data segmented by sex, age, and race to
allocate cancer proportions to smaller spatial unit centroids (Klassen
et al., 2005). Based on comparisons of multiple imputation methods in
nested geographic units, population weighting has been validated as
more optimal than area weighting (Curriero et al., 2010). However, a
recent study argued that population weighting could underestimate case
numbers in rural areas (Dilekli et al., 2018). These discussions highlight
the importance of selecting appropriate auxiliary data for downscaling
to better align with the target dataset.

Random cancer case simulation was introduced in geo-imputation to

conduct uncertainty analysis on distribution statistics, and thus
extended fixed proportion allocation to probability distribution (Henry
et al., 2008). Building on this, the Monte Carlo simulation method was
further applied with simple constraints to improve dynamic proportion
constraints during the case generation process (Luo et al., 2010).
Random spatial imputation began with generating random spatial points
based on population proportions to enhance data granularity (Huang
et al., 2007). These methods later incorporated dasymetric mapping
techniques by using additional ancillary data such as property locations
and daily activity spaces for finer spatial distribution (Walter et al.,
2013; Avanasi et al., 2016). A combination of random case numbers and
random geographic locations was proposed as the Restricted and
Controlled Monte Carlo method, which combines the restriction of
geographic boundaries and controls of health data prevalence by pop-
ulation (Shi et al., 2013).

Similar to population downscaling, regression methods and spatial
smoothing were also applied on cancer data. For example, some
employed both geo-imputation and regression methods to disaggregate
or predict cancer cases at different scales (Klassen et al., 2005). Subse-
quent regression and prediction methods, ranging from Tobit models to
machine learning, were widely applied to various types of data impu-
tation (Lipscomb et al., 1998; Boulton et al., 2018; Kim et al., 2018).
Spatial smoothing methods such as kriging, spatial Bayesian, and spatial
panel models were also commonly used (Chien et al., 2013; Baker et al.,

Fig. 3. (a) population and cancer data at the county level data, (b) population at ZCTA level, (c) population interpolation for ZCTA across multiple counties; and (d)
Total cancer counts of Utah Registry data in 2016–2020.
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Fig. 4. Population discrepancy between county totals and ZCTA-interpolated values.

Fig. 5. Multiple constraints in Monte Carlo simulation.

Fig. 6. Monte Carlo Simulation for estimating ZCTA subgroup cases.
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Fig. 7. An illustrative example for simulating suppressed cancer counts in 6 ZCTAs: the top shows optimal scenario vs. means, and the bottom shows fre-
quency histograms.

Fig. 8. Cancer Incidences at the county level in Utah: (a) NCI data, and (b) UCR data.

Table 1
Annual cancer incidences in ZCTAs based on the UCR data.

Population Groups # of valid observations Min Max Mean Standard deviation

Total 153 6.0 295.8 72.6 62.5
Male 153 2.6 162.8 37.9 32.7
Female 153 2.2* 133.0 34.7 30.2
Under 50 119 2.2* 52.6 17.2 11.9
50–64 119 2.8 81.0 26.1 17.0
65→ 153 2.4 213.6 38.2 35.2
White, Non Hispanic (W) 153 2.4 274.0 63.1 54.5
Black, Non Hispanic (B) 10 2.2* 4.8 3.3 1.0
American Indian or Alaskan Native, Non Hispanic (I) 4 2.4 5.2 3.8 1.3
Asian or Pacific Islander, Non Hispanic (A) 47 2.2* 16.2 4.5 2.9
Hispanic, Any Race (H) 85 2.2* 36.8 10.4 7.9
Others (O) 7 2.2* 7.0 3.8 2.0

Note: * 2.2 ↑ 11 (i.e., threshold for data suppression)/5 (i.e., number of years for 2016–2020).
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2014). However, these methods cannot ensure total volume consistency.
In general, despite significant advancements in data imputation and

population downscaling techniques, several critical gaps remain unad-
dressed in the context of health data, particularly cancer data. Most
existing methods, such as regression-based approaches and machine
learning models, struggle to simultaneously satisfy demographic and
geographic constraints, often leading to biased estimates. For example,
population-weighted methods, while effective in some scenarios, have
been shown to underestimate rural case numbers and overestimate
urban cases, reducing their robustness across diverse geographic

contexts. Furthermore, many spatial smoothing and regression methods
fail to ensure total volume consistency, a critical requirement for accu-
rate health data imputation.

The Restricted and Controlled Monte Carlo method generally pro-
vides accurate and comprehensive insights for cancer data imputation
while preserving total volume at higher geographic scales (Hu et al.,
2015; Huang et al., 2022). However, additional challenges remain in
implementing simulations that span nested geographic levels and ac-
count for multiple subgroup population controls. This study addresses
these challenges by proposing an innovative multi-constraint Monte

Fig. 10. The variance difference between the cumulative mean and the overall mean with the number of iterations (n).

Fig. 9. Simulations for Cancer Incidences of White Male 65→ Subgroup across 16 ZCTAs in Two Counties in Utah (x-axis for Cancer Count, y-axis for Frequency
among 1000 Scenarios).
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Carlo simulation method. The method ensures total volume consistency,
robust performance across urban and rural contexts, and reliable esti-
mation of suppressed cancer counts at fine geographic levels, thus filling
a critical gap in the existing literature. By integrating dynamic de-
mographic constraints and probabilistic case generation, the proposed
approach provides actionable insights for precision public health
interventions.

3. Data and methodology

3.1. Data sources and preprocessing

3.1.1. Open datasets for MC cancer data downscaling
Annual average statistics of cancer incidence counts by age, sex, and

racial/ethnic group: The data for Utah, spanning the years 2016–2020,

Fig. 11. Reported vs. interpolated cancer incidences by the Monte Carlo Method.

Table 2
Confusion matrix for interpolating cancer incidences across ZCTAs.

UCR Values

Suppressed (ω2.2) Reported (↓2.2)

Interpolated values x ω 2.2 True Positive: 2110 False Negative: 48

x ↓ 2.2 False Positive: 202 True Negative: 1108

Total number of values 2312 1156
Precision rate 91.3% 95.8%

Fig. 12. Reported vs. interpolated cancer incidences by machine learning models.

Table 3
Performance comparison across interpolation methods.

Methods Mean Absolute
Error (MAE)*

Correlation
Coefficient (r)*

Precision % based on
Confusion Matrix**

OLS 27.95 0.827 72.8%
GLM 121.10 0.606 46.9%
RF 12.57 0.480 41.0%
GBM 12.49 0.606 33.3%
XGB 10.29 0.910 33.3%
Monte
Carlo

3.49 0.991 92.3%

Notes: * Number of observations (UCR reported values) n↑ 1156; ** Percentage
of interpolated values in the right categories of suppression.
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was obtained from the National Cancer Institute (NCI) database (https
://statecancerprofiles.cancer.gov/incidencerates/). It is categorized by
race and ethnicity (All Races, Non-Hispanic White, Non-Hispanic Black,
Non-Hispanic American Indian and Alaska Native, Non-Hispanic Asian
and Pacific Islander, Hispanic, Other), sex (female, male), and age
groups (under 50, 50–65, over 65). There are a total of 42 subgroups, i.
e., (1 all races → 6 racial-ethnic categories) ↔ 2 sex categories ↔ 3 age
groups. Removing “all races” results in 36 meaningful subgroups, i.e., 6
racial-ethnic categories↔ 2 sex categories↔ 3 age groups. Both the state
and county level data are utilized, where the state-level aggregate values
will be used as constraints for Monte Carlo (MC) simulations to impute
missing values at the county level. These datasets comply with estab-
lished privacy protection standards, particularly through the suppres-
sion of annual avareage counts fewer than 3 cases over five years,
effectively preventing the direct exposure of individual-level data.
Fig. 3a shows the total population, cancer counts and incidence at the
county level in Utah.

Population data by age, sex, and racial/ethnic group: It was extracted
from the 2020 Decennial Census data on Demographic and Housing
Characteristics (https://api.census.gov/data/2020/dec/dhc.html).
These data are categorized by race and ethnicity using the P12 series,
which includes the following groups: All Races (P12), Non-Hispanic
White (P12I), Non-Hispanic Black (P12J), Non-Hispanic American In-
dian and Alaska Native (P12K), Non-Hispanic Asian and Pacific Islander
(P12L), and Hispanic (P12H). Each racial and ethnic category is further
disaggregated by sex (female, male) and detailed age groups. For the
purpose of this study, the age groups are aggregated into three broader
categories: under 50, 50–65, over 65. It was then aggregated to the
corresponding 42 population subgroups consistent with the above can-
cer data at the state, county, and ZIP Code Tabulation Areas (ZCTA)
levels in order to match with cancer data. Such data were used for Monte
Carlo simulations to calculate missing case counts from the state to the
county level, and from the county to the ZCTA level.

Note that a ZCTA may span across different counties or even states,
as shown in Fig. 3b. For better accuracy, population in each portion of
such a ZCTA is calculated using census block data as auxiliary data. This
approach utilizes the clear spatial correspondence between ZCTAs and
the census blocks they encompass, eliminating the need for interpola-
tion. Cross-county ZCTAs are subdivided into county-level subregions
based on their spatial relationships. Population counts for each subre-
gion are then calculated by aggregating data from the corresponding
census blocks. These population estimates serve as the basis for allo-
cating cancer counts to each county. After the county-level allocations
are finalized, the subregions are recombined to produce a comprehen-
sive dataset of cancer counts for the entire ZCTA. For example, as shown
in Fig. 3c, the green ZCTA is split between two counties. Population in
portion A is the sum of four blocks on the left side, and population in
portion B is the sum of three blocks on the right side. Block is the
smallest census unit with population data by subgroups. Therefore,
cancer data at the county level will be disaggregated to whole or partial
ZCTAs within each county according to the underlying demographic
structure, and interpolated cancer data in partial ZCTAs will then be
consolidated to whole ZCTAs.

As shown in Fig. 3c, some areas with very small population are not
covered by ZCTAs, and thus are left out. As a result, the aggregated
population from the ZCTA level in a county may be slightly below its
total population. As shown in Fig. 4, the discrepancy ranges between
0 and 500 across 29 counties in Utah, with an average error rate of
0.011%.

3.1.2. Utah Cancer Registry data for model validation
Population-based cancer incidence counts were taken from the Utah

Cancer Registry (UCR) (https://uofuhealth.utah.edu/utah-cancer
-registry), which has been providing high quality cancer data since
1968. The UCR is a Surveillance, Epidemiology, and End Results (SEER)
registry (https://seer.cancer.gov/), which requires adherence to the

highest quality standards for ascertainment and reporting. The Utah
Cancer Registry (UCR) dataset comprises 57,534 cancer cases diagnosed
over the five-year period from 2016 to 2020, geocoded to county and ZIP
code levels. This dataset, especially at the ZIP code level, provides an
opportunity for validating our cancer data imputation (Fig. 3d). The
same minimum number of cases (11) is applied in cancer data sup-
pression at both county and ZIP code levels. In other words, the numbers
for cancer cases of fewer than 11 are suppressed for any demographic
groups or total at either the county or ZIP code level. The demographic
subgroups correspond to those NCI data as discussed earlier. Use of data
from the UCR was approved by the Institutional Review Board (IRB) at
the University of Utah. This study does not directly handle suppressed
values; rather, they are utilized to validate the accuracy of the model’s
results. Specifically, the results generated through Monte Carlo and geo-
imputation methods are evaluated using numeric scores for valid values
and binary scores for suppressed values, ensuring robustness and
reliability.

One issue encountered in data processing involves some minor
discrepancy between ZCTA area codes in the NCI data and ZIP codes in
the UCR. Out of 323 entries in the UCR data, 289 ZIP codes match with
ZCTA codes. For the remaining 34 ZIP codes, only one (ZIP Code 84068)
contains valid data. To resolve this issue, we utilize USPS services to
query the city name, geocode the address of these ZIP codes, and assign
them to their corresponding ZCTAs (https://tools.usps.com/zip-code-
lookup.htm?citybyzipcode). For instance, postal ZIP code 84068 is
assigned to ZCTA 84060, corresponding to Park City, Utah.

3.2. Methods

As stated previously, compared to regression models or machine
learning, the Monte Carlo method excels in achieving total consistency
through explicit multi-constraints, such as population subgroups and
cancer incidence rates. While traditional methods offer flexibility, they
often fail to satisfy both total constraints and spatial consistency. The
Monte Carlo approach also reduces bias when estimating suppressed
values for small samples by leveraging probabilistic modeling, making it
well-suited for spatially constrained health data. Our method involves
two steps: (1) a Multi-Constraints Monte Carlo (MC) simulation to esti-
mate suppressed cancer counts at the county level, (2) a Monte Carlo
with Population Cumulative Share approach to downscale from counties
to ZIP Code Tabulation Areas (ZCTAs). An Optimal Scenario Selection
strategy is used to refine simulation parameters for improved accuracy.
To benchmark our approach, we compare it against machine learning
models, testing cases with population data alone, with additional
ancillary variables (e.g., poverty, education), and using cancer incidence
as the target variable.

3.2.1. Multi-constraints MC for suppressed county cancer counts
The multi-constraint MC simulation method is proposed to estimate

suppressed values of county-level subgroup cancer counts. Fig. 5 illus-
trates the constraints and the task to be accomplished. The constraints
are reported cancer counts of county-level major demographic groups
(e.g., Total, by 2 sexes, 3 age groups, 6 racial-ethnic groups) and state-
level subgroups (e.g., by the intersected subgroups of sex, age and
race-ethnicity). This method uses a combination of the county-level
subgroup population distribution and state-level cancer incidence
rates to control the probability in the Monte Carlo simulation process to
estimate the suppressed county-level cancer counts in the intersected
subgroups. It not only ensures consistency across various data levels but
also accounts for demographic structures that drive varying cancer risks.

The Monte Carlo method is divided into four steps.

(1) Extract constraints to construct an initial data framework for row
sums and column sums from state-level subgroup counts and
county-level group counts. Only the rows containing suppressed
values will be simulated.
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(2) Randomly assign 1 case to the cells according to the proportion of
each subgroup in the total population weighted by state-level
incidence, ensuring accuracy in the representation of subgroup
proportions throughout the data filling process. Once assigned,
subtract 1 from row sum and column sum.

(3) Repeat Step 2 until all row and column constraints are satisfied.
(4) Repeat Steps 2–3 1000 times and choose the optimal simulation

scenario based on the mean and standard deviation (detailed in
sub-section 3.3).

This method is deployed from groups to subgroups hierarchically, as
the prevalence of suppressed data increases with more detailed de-
mographic groupings. For example, it first estimates suppressed cancer
counts for “females” in counties, then uses the information to estimate
suppressed cancer counts for “females under 50 years”, and finally uses
newly interpolated counts to estimate suppressed cancer counts for
“Black females under 50 years.” As a result, the missing cancer data for
36 subgroups (i.e., 2 sexes↔ 3 age groups↔ 6 racial-ethnic categories) at
the county level are estimated. Logically, the reliability of estimation
declines with finer groupings.

To assess the convergence and stability of the Monte Carlo simula-
tion method, a sensitivity analysis is conducted to evaluate the rela-
tionship between the number of simulations and the variance difference
between the cumulative mean and the overall mean.

3.2.2. MC with Population Cumulative Share for suppressed ZCTA cancer
counts

For estimating subgroup cancer counts at the ZCTA level, another
Monte Carlo simulation method is designed by leveraging subgroup
cancer counts at the county level and subgroup population data for all
ZCTA units. This concept is similar to estimating suppressed cancer
counts in some county-level subgroups, but we adopt Python’s robust
capabilities for data manipulation and statistical analysis to ensure high
computational efficiency and accuracy.

The method is implemented in four steps.

(1) Random matrix generation. For each subgroup, a matrix of random
numbers ranging from 0 to 1 is generated to represent potential
subgroup distributions across different simulations. This matrix
size is m ↔ n, where m represents the number of cases (subgroup
counts at the county level) and n is the number of desired simu-
lations (e.g., n ↑ 1000). Random numbers are drawn from a
uniform distribution U(0,1) to ensure equal likelihood for all
initial allocations before applying demographic constraints.

(2) Population-based cumulative share binning. The population data for
each subgroup is processed to calculate cumulative shares, which
define the range of values (bins) for assigning random numbers to
specific ZCTAs. For each ZCTA i, the cumulative share is calcu-
lated as:

Ci ↑
)i

j↑1

Pj
PTotal

where Pj is the population of the subgroup in ZCTA j, and PTotal is the
total population of the subgroup in all ZCTAs. The resulting cumulative
share for each ZCTA defines a range: ZCTA i corresponds to the interval
[Ci-1, Ci), where C0 ↑ 0. These intervals are subsequently used to create
bins for categorizing the random numbers. These bins effectively map
the random numbers to specific population segments so that the
generated distributions are proportional to actual demographic profiles.
Any subgroup with zero population is excluded.

(3) Aggregating counts in bins at the ZCTA level. Utilizing the Pandas
package function pandas.cut to rapidly categorize and aggregate
the simulated data into defined bins based on the cumulative
share ranges calculated in step 2.

(4) Result selection. Similar to the county-level approach, the optimal
simulation scenario is chosen, based on criteria that minimize the
variance between the simulated and observed county-level
counts. The simulation iteration that most closely matches the
observed distribution is selected as the result. Details on the se-
lection process are provided in the next sub-section.

Fig. 6 uses an illustrative example to explain the process. In a county
withm (↑4) cases in a subgroup, a randommatrix is generated with each
column representing one scenario out of n (↑1000) simulations. A series
of 4 numbers (0–1) are generated in scenario 1 (1st column highlighted
in Fig. 6a). Based on the subgroup population across k (↑5) ZCTAs, a
cumulative share bin is constructed with each segment length repre-
senting its proportion (probability) out of the total subgroup, and a
match is made by assigning each random number in column 1 to their
corresponding segment (Fig. 6b). As a result, the four random numbers
(0.3, 0.1, 0.9 and 0.7) are assigned to segments corresponding to four
ZCTAs (C, A, E and D).1 Therefore, these four ZCTAs receive 1 case each
and B receives none, and the allocation of 4 cases is completed. The
process repeats 1000 times.

3.2.3. Selecting optimal scenario
A large number (here 1000) of independent Monte Carlo simulations

are executed for each disaggregation. Various criteria may be used to
assist the selection of an optimal simulation scenario (Zhao et al., 2024).
For each area, the mean value across all simulation scenarios approxi-
mates the most likely choice. However, such a choice does not satisfy the
constraints of cancer counts at a higher geographic level or for given
demographic groups. Therefore, the minimum variance as a common
and robust measure of data dispersion is chosen as the selection criterion
(Buzaianu et al., 2017; Gupta et al., 1962). The simulation with the
minimum standard deviation from the means indicates the closest
alignment to the average pattern and is thus the best representation of
the possible subgroup distribution.

Here the formulation uses the disaggregation of a subgroup from
counties to ZCTAs as an example. Let Xki represent the simulated value
list obtained from the k-th simulation for an estimated ZCTA (i), calcu-
late the average estimated count across the n simulations, such as Xi ↑
1
n
[n
k↑1Xki , where Xki is the value at row i and column k of simulation

matrix.
For each simulation k, compute the deviation of its standard devia-

tion σk from the mean simulation Xi, such as σk ↑
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
1
m
[m
i↑1

⌊
Xki ↗ Xi

⌋2⌈
,

where m is the total number of ZCTAs, or the row number in the matrix
X. The simulation with the smallest σk is selected as the result.

Fig. 7 illustrates a county of six ZCTAs. Its top highlights how close
the chosen (optimal) scenario is from the means across the six ZCTAs,
and the bottom shows the frequency histograms for estimated sup-
pressed values at 1000 times.

3.2.4. Machine learning methods for comparison
To evaluate the performance of the proposed Monte Carlo simulation

method, we conducted a comparative analysis using four popular ma-
chine learning models—Generalized Linear Model (GLM), Random
Forest (RF), Gradient Boosting Machine (GBM), and Extreme Gradient
Boosting (XGB)—along with the traditional Ordinary Least Squares
(OLS) regression model. These models are utilized to estimate sup-
pressed cancer counts at the ZIP code level for subgroup populations.
GLM extends traditional linear regression by allowing the response
variable to follow non-normal distributions through link functions, of-
fering flexibility for various types of outcomes (e.g., binary, count). Its

1 It is possible for multiple random numbers to fall in one segment along the
cumulative share bin. In that case, the corresponding ZCTA is assigned multiple
cancer cases.
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interpretability makes it a robust baseline, though it may struggle with
non-linear relationships. OLS regression serves as a classic linear
modeling approach, assuming a linear relationship between predictors
and the response variable. While straightforward and interpretable, it
shares GLM’s limitation in handling non-linear patterns. Random Forest
(RF), GBM, and XGB are ensemble learning methods that are well-suited
for modeling complex, non-linear relationships. RF aggregates pre-
dictions from multiple decision trees, while GBM and XGB use boosting
techniques to sequentially refine model accuracy. XGB, as an advanced
implementation of GBM, is optimized for computational efficiency and
regularization to reduce overfitting.

To supplement the primary population and cancer data, we incor-
porate additional demographic and socioeconomic variables from the
American Community Survey (ACS). These variables include total
population estimates for educational attainment, income levels, and
health insurance coverage, as well as detailed subsets such as the pop-
ulation with a bachelor’s degree (B15003), individuals with income
below the poverty level in the past 12 months (B17017), and those 65
years and over with one type of health insurance coverage (B27010).
The county-level ACS data are utilized for machine learning model
training, leveraging a broader dataset to enhance model robustness and
capture regional variations. In contrast, ZCTA-level data for Utah are
reserved exclusively for model testing, ensuring an independent evalu-
ation of the model’s ability to estimate suppressed cancer counts in
smaller geographic units.

This study focuses on accurately predicting actual case counts, using
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) as the
key evaluation metrics for model comparison. MAE measures the
average deviation between predicted and observed values, offering a
straightforward assessment of absolute prediction accuracy. RMSE,
which emphasizes larger errors due to squaring deviations, is particu-
larly important for addressing significant errors, such as those with
major influences on cancer case predictions. Mean Absolute Percentage
Error (MAPE), which expresses errors as a percentage of actual values, is
useful for small populations. However, MAPE is not applied in this study
due to the use of primarily non-suppressed validation data.

4. Results

4.1. Simulation results

The NCI county-level cancer data for the 29 counties in Utah are used
in the simulations.2 The suppressed county-level subgroup cancer counts
are estimated by choosing the optimal scenarios among the large num-
ber of simulation rounds. Such data in combination with reported cancer
counts at the county level are subsequently used in interpolating ZCTA
cancer counts. The ZCTA cancer data are not available from the NCI but
are provided from the Utah Cancer Registry (UCR) after the data sup-
pression rule is enforced. Therefore, the UCR data at the ZCTA level are
used for validating the interpolated ZCTA data.

Our comparison of the county-level data from the two sources reveals
a high consistency between the two. However, there are some differ-
ences between the two in terms of availability of values. While covering
the same five years 2016–2020, the NCI county-level data are the annual
average cancer incidences over the five years by suppressing values ω 3
(i.e., ω15 for the five-year totals), whereas the UCR county-level data
are the five-year total cancer incidences by suppressing values ω 11.
Therefore, a small number of suppressed counts in the NCI data are
available in the UCR. The NCI county-level data include cancer in-
cidences by 84 demographic groups/subgroups in 29 counties, thus 29

↔ 84 ↑ 2436 units, of which 783 are valid. As shown in Fig. 8a, by
columns, data on ‘All races’ and ‘White’ exhibit fewer suppressed values
than other subgroups; and by rows, counties with larger numbers of
population have fewer missing values. As shown in Fig. 8b, the
2016–2020 UCR data only contain 12 major demographic groups,
therefore 29 ↔ 12 ↑ 348 units, with 258 valid.

For consistency with the NCI data, we convert the 2016–2020 UCR
data to annual average cancer incidences (and thus with decimal
points). Table 1 provides basic statistics for the ZCTAs based on the UCR
data. Note that only reported (unsuppressed) units are included, and
thus the minimum values for several population groups are 2.2 (i.e., 11/
5 or the threshold for data suppression divided by the number of years).
The cancer incidences for males, individuals over 65, and Whites are
notably higher. In addition to all population (“Total”), cancer data for
population subgroups includes six racial-ethnic subgroups (W, B, I, A, H,
O), two sexes (Male and Female), and three age groups (50, 50–65,
65→). As stated previously, the 2020 Census Demographic Profile covers
299 ZIP code areas, and the UCR data includes 323 ZCTAs. After
merging the two and eliminating ZCTAs with no valid data, 289 ZCTA
are retained. For 12 major population groups, there are a total of 289 ↔
12 ↑ 3468 units, 1156 of which have valid values that can be used for
data verification.

As explained in subsection 3.1, the study begins with implementing
constrained simulations for imputation of missing values at the county
level. After completing the data fill for the “Total” and “White” cate-
gories, we simulated other racial-ethnic groups such as “Black,” “In-
dian,” “Asian,” “Hispanic,” and “Others.”We then simulated data for the
three age groups and the two sex groups to fill in more data gaps. The
process continued until the simulations for the 42 intersected subgroups
of race-ethnicity (7), age (3) and sex (2) were completed.

For illustration, the simulation results for one subgroup (white male
age 65→) in two counties for a combination of 16 ZCTAs are summarized
in Fig. 9. Generally, most values follow a normal distribution pattern.
When values are comparatively low, there is a noticeable biased distri-
bution. Overall, the optimal values, chosen based on the minimum
standard deviation, demonstrate good consistency with the mean values.

4.2. Sensitivity analysis of Monte Carlo Simulations

To evaluate the stability and convergence of the Monte Carlo simu-
lation results, we conduct a sensitivity analysis based on the variance
difference between the cumulative mean and the overall mean of all
simulations. This analysis assesses how the simulation output stabilizes
as the number of iterations increases. The sensitivity analysis involves N
↑ 1000 Monte Carlo simulation iterations by repeating 1000 times with
random shuffling of the simulated data in each repetition. For each
iteration n, the cumulative mean of the simulated values up to iteration n
is calculated and compared to the overall mean across all iterations. The
variance of these differences is computed at each step, resulting in a
metric that reflects the stability of the simulations.

Fig. 10 shows the variance difference between the cumulative mean
and the overall mean as a function of the number of iterations (n). Each
blue line represents a single repetition, while the red line depicts the
average variance difference across all repetitions. The variance differ-
ence decreases rapidly within the first 50 iterations and plateaus as n
approached 200. This rapid convergence demonstrates that the Monte
Carlo method achieves stability early in the simulation process, with
diminishing returns for additional iterations beyond this point. Despite
minor variability among the 1000 repetitions, as illustrated by the blue
lines, the overall trend remains consistent. The red line, representing the
average variance difference, confirms that the variance difference sta-
bilizes quickly and uniformly across repetitions. The results highlight
the robustness of the Monte Carlo approach, showing that a relatively
small number of iterations (approximately 50) is sufficient to achieve
stable and reliable results. Beyond this threshold, additional iterations
have a minimal impact on reducing variance differences, underscoring

2 Visit the website: https://www.statecancerprofiles.cancer.
gov/incidencerates/index.php?stateFIPS↑49&
areatype↑county&cancer↑001&race↑00&sex↑0&age↑001&
type↑incd&sortVariableName↑rate&sortOrder↑default&output↑0#results.
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the computational efficiency of the method.
The sensitivity analysis provides critical insights into the conver-

gence behavior of the Monte Carlo simulations, ensuring that the esti-
mates are stable and reliable. This rapid convergence is particularly
advantageous for large-scale applications, where computational effi-
ciency is essential. These findings confirm the suitability of the Monte
Carlo framework for estimating suppressed cancer counts under the
constraints of spatial and demographic data.

4.3. Validation and comparison with machine learning models

As stated in section 4, the validation is assessed at the ZCTA level.
Specifically, the interpolated cancer incidences by the Monte Carlo
simulation method are compared to the corresponding incidences as
reported in the UCR data. For the 12 major population groups across 289
ZCTAs, among a total of 289 ↔ 12 ↑ 3468 possible units, 1156 reported
values can be used for data verification and 2312 are suppressed.

Fig. 11 shows the distribution of two series of data (interpolated vs.
reported) across 1156 observations. The regression model has a slope
(0.992) close to 1 with R2 ↑ 0.992 and correlation coefficient r ↑ 0.996,
reflecting very high predictive accuracy. Another important measure of
performance is Mean Absolute Error (MAE) ↑ 3.407.

Another validation is assessed on the complete set of 3468 entries
across ZCTAs including 1156 reported values and 2312 suppressed
values. The assessment examines whether the interpolated values fall in
the right category of suppression decision. If an interpolated value x for
a suppressed unit is below the suppression threshold set at 2.2, i.e., x ω
2.2, it is considered a valid interpolation and thus coded “True Positive”.
If an interpolated value x for a suppressed unit is equal to or larger than
2.2, i.e., x ↓ 2.2, it is considered an invalid interpolation and thus coded
“False Positive”. Similarly, for reported values, if an interpolated value x
ω 2.2, it is considered an invalid interpolation and coded “False Nega-
tive”; if x ↓ 2.2, it is a valid interpolation and coded “True Negative”.
The result is summarized in Table 2, among the 2312 suppressed entries,
215 are interpolated above the suppression threshold, resulting in a
precision rate of 91.3%; among the 1156 reported values, only 52 are
below the suppression threshold, and thus a precision rate of 95.8%. So
the overall precision rate is 92.8%, i.e., (2110 → 1108)/(2312 → 1156).

Note that some values above the suppression threshold are sup-
pressed in order to prevent the mathematical derivation of other below-
threshold values. For example, if the cancer incidences in a ZCTA across
three age groups (ω50, 50–64, 65→) are 3, 12 and 28 for a total of 43, the
count for the age group of 50–64 needs to be suppressed in order to
prevent one from deriving the count for the age group ω50 as 43-28-12
↑ 3. Such an “over-suppression” practice inflates the number of False
Positive and artificially brings down the precision rate. That helps
explain the relatively low precision rate of 91.3% on the suppressed
samples. That is to say, the overall precision rate of the Monte Carlo
method is higher than 92.8% as reported here.

One concern raised in the literature review is that population
weighting interpolation methods could underestimate case numbers in
rural areas (Curriero et al., 2010). Here we replicate the validation study
across ZCTAs across three levels of urbanicities according to the Census
(Federal Register). The correlation coefficients r ↑ 0.995, 0.996, and
0.992 are highly consistent across urban (n↑ 54), low-density (n↑ 121),
and rural areas (n ↑ 981), respectively. A similar analysis on confusion
matrices reveals that the precision ratios are 90.5%, 93.2%, and 92.9%
across urban, low-density, and rural areas, respectively. That is to say,
low-density and rural ZCTAs enjoy slightly higher precisions than urban
ZCTAs in terms of whether the interpolated cancer incidences fall on the
right sides of suppression threshold. In conclusion, our method gener-
ates the results that are largely consistent across the urban-rural spec-
trum and does not suffer from the vulnerability in rural areas.

To further validate our method, we compare the result to several
methods commonly used for data interpolation. These methods include
Ordinary Least Squares (OLS) regression, Generalized Linear Model

(GLM), Random Forest (RF), Gradient Boosting Machine (GBM), and
Extreme Gradient Boosting (XGBoost). The predictors (explanatory
variables) are the population counts for subgroups and the response
variable is the cancer incidences with n ↑ 1156 at the ZCTA level. They
are the same as those used in the Monte Carlo simulation method.

Fig. 12 plots the results for the five methods and suggest that OLS and
GLM do not yield as good results as the other three methods. Table 3
reports the two common measures of performance, MAE and r, which
are used in assessing our Monte Carlo simulation method. Our method
outperforms all five methods. For interpolation of suppressed cancer
data, XGBoost may represent the best choice next to ours but still
underperforms significantly. Similarly, we also compile the confusion
matrix to assess the precision level for each method similar to the result
on the Monte Carlo simulation method as reported in Table 2. The
precision rate of our method is much higher than the other five methods.

For ML models,we also tested the inclusion of ancillary variables,
such as poverty, health insurance, and education levels, in the models.
However, these variables introduced noise and redundancy, leading to
decreased model performance, as evidenced by increased MAE and
RMSE values. Consequently, we focus on robust population and de-
mographic data to optimize predictive accuracy. As shown in Supple-
mentary Tables S1 and S2, XGB achieves the best performance when
using population data alone demonstrating its superior accuracy in
predicting case counts. GBM shows greater robustness after incorpo-
rating ancillary variables, but still underperforms when compared to
XGB using only population data. Conversely, Random Forest and other
models experience substantial increases in MAE and RMSE upon the
inclusion of ancillary data, implying that such variables introduce more
noise than signal, thereby degrades model performance. Moreover,
when using only population data, most predictions remain positive.
However, the inclusion of ancillary variables leads to an increased
number of predictions below zero, indicating potential overfitting or
instability introduced by these variables (Supplementary Fig. S1). This
further supports the conclusion that ancillary data may not contribute
meaningful predictive power in this specific context and, instead, could
undermine model reliability.

5. Discussion

This paper aims to interpolate suppressed cancer data at fine spatial
scales to maintain hierarchical total volume consistency and robust
performance across rural and urban areas. The innovative multi-
constraint Monte Carlo simulation method is effective in estimating
suppressed county-level cancer counts and further disaggregating these
counts to the ZIP Code Tabulation Area (ZCTA) level. The methodology
leverages existing demographic structure as risk factors and reported
cancer counts at higher geographic levels or in larger demographic
groups as constraints and ensures a consistent and accurate imputation
of cancer data across different geographic levels. The model comparison
shows its advantages over traditional machine learning and regression
methods for suppressed cancer data estimation.

The case study in Utah largely validates the effectiveness of the
method. Our findings substantiate the robustness of population-
weighted approaches (Curriero et al., 2010), especially for health data
as reported in recent literature (Behal et al., 2023; Jones et al., 2020). By
applying Monte Carlo simulations with simple constraints to improve
dynamic proportion constraints during the case generation process, our
study extends the capabilities of restricted and controlled Monte Carlo
methods (RCMC) in the context of cancer data (Shi et al., 2013). Our
method’s high accuracy across areas of various urbanicities alleviates
the concern of less accuracy for rural cases by population-based inter-
polation methods (Dilekli et al., 2018). Our results also suggest that
geo-imputation methods can achieve high effectiveness even without
considering spatial correlation. The method provides a reliable frame-
work for accurately estimating suppressed cancer cases in small popu-
lation subgroups or geographic areas with small population and

L. Liu et al. Health�and�Place�91��������103411�

11�



demonstrates its ability to manage uncertainty and improve prediction
(Georgati et al., 2024; Scheiter et al., 2022). Among the machine
learning models tested, XGB shows the best potential in handling com-
plex spatial data imputation tasks (Wilson et al., 2022), but still
underperforms the multi-constraint Monte Carlo simulation method.

The performance decline observed with ancillary data highlights the
importance of careful variable selection in health data modeling. Vari-
ables that are weakly correlated with cancer incidence or are prone to
data quality issues may add complexity without improving model ac-
curacy. This finding aligns with existing studies (Amitha et al., 2021;
Doshi et al., 2023), which emphasize that introducing redundant or
noisy variables can negatively impact machine learning models. This
confirms the applicability and accuracy of the Monte Carlo approach in
scenarios with data suppression, particularly in complex contexts
involving multidimensional population constraints (Hu et al., 2015;
Huang et al., 2022).

6. Conclusion

This study demonstrates the effectiveness of the multi-constraint
Monte Carlo method in estimating suppressed cancer data and down-
scaling to fine spatial scales. The proposed method achieves robust
performance by maintaining hierarchical consistency and accurately
addressing data suppression issues. However, while our results validate
the method’s utility in Utah, its generalizability to other regions and
health conditions remains an avenue for future exploration.

First, extending the method to other geographic regions or disease
types—such as chronic or infectious diseases—would allow for valida-
tion under diverse population structures and data suppression rules.
Secondly, while this study does not explicitly account for spatial auto-
correlation, incorporating spatial statistical techniques, such as
geographically weighted regression or spatial Bayesian models, could
enhance the accuracy of the estimates by addressing potential
geographic clustering of cancer incidence. Thirdly, privacy concerns in
health data remain a critical challenge. Future studies could integrate
differential privacy or advanced anonymization techniques into the
Monte Carlo framework to improve both data security and precision.
Fourthly, moving beyond static five-year averages to incorporate dy-
namic time-series data would enable the capture of temporal trends,
providing deeper insights into changing cancer incidence patterns.
Finally, integrating Monte Carlo simulations with machine learning
models offers significant potential for developing hybrid approaches
that leverage the strengths of both paradigms to enhance prediction
accuracy and applicability.

By addressing these areas, the proposed method will not only
advance the state-of-the-art in suppressed health data imputation but
also lay a foundation for broader applications in privacy-preserving
public health data analysis. These directions underscore the flexibility
and scalability of the Monte Carlo approach, reinforcing its potential for
addressing critical challenges in health data analysis across varying
contexts and constraints.
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