N)
)
Check for
updates

Generating Succinct Descriptions of Database Schemata for
Cost-Efficient Prompting of Large Language Models

Immanuel Trummer
Cornell University
Ithaca, New York, USA
itrummer@cornell.edu

ABSTRACT

Using large language models (LLMs) for tasks like text-to-SQL
translation often requires describing the database schema as part of
the model input. LLM providers typically charge as a function of the
number of tokens read. Hence, reducing the length of the schema
description saves money at each model invocation. This paper
introduces Schemonic, a system that automatically finds concise
text descriptions of relational database schemata. By introducing
abbreviations or grouping schema elements with similar properties,
Schemonic typically finds descriptions that use significantly fewer
tokens than naive schema representations.

Internally, Schemonic models schema compression as a combina-
torial optimization problem and uses integer linear programming
solvers to find guaranteed optimal or near-optimal solutions. It
speeds up optimization by starting optimization from heuristic so-
lutions and reducing the search space size via pre-processing. The
experiments on TPC-H, SPIDER, and Public-BI demonstrate that
Schemonic reduces schema description length significantly, along
with fees for reading them, without reducing the accuracy in tasks
such as text-to-SQL translation.

PVLDB Reference Format:

Immanuel Trummer. Generating Succinct Descriptions of Database
Schemata for Cost-Efficient Prompting of Large Language Models. PVLDB,
17(11): 3511 - 3523, 2024.

doi:10.14778/3681954.3682017

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/itrummer/schemacompression.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 have a wide range
of applications in the context of data management, including tasks
like text-to-SQL translation as well as information extraction. Quite
often, solving such tasks requires describing the schema of a rela-
tional database to the LLM as part of the input prompt (describing
the task to solve as natural language text to the model). Language
models like OpenAI’s GPT or Anthropic’s Claude are nowadays
able to process large amounts of input, up to hundreds of pages of
text. In principle, this enables their use even for databases with large

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3682017

3511

schemata. However, doing so is expensive since LLM providers typ-
ically charge processing fees that are proportional to the length
of the input (and output) text, measured as the number of tokens
(the atomic units used by the LLM for text representation)!. This
paper addresses the problem of generating concise descriptions of
database schemata, suitable as input for LLMs. By reducing the size
of the schema description, users save significant amounts of money
in each LLM invocation that refers to the compressed schema.

Example 1.1. Text-to-SQL translation is a classical use case for
large language models. In this scenario, the model input (the prompt)
integrates the text question to translate, as well as a description of
the database schema [12]. A longer schema description increases
the number of tokens in the prompt and, therefore, for providers
such as OpenAl, Anthropic, or Cohere, the cost for each text-to-
SQL translation. A common method [33] is to describe schemata by
their DDL commands, shown for an example schema in Figure 1a.
Using the more concise description of the same schema in Fig-
ure 1b instead decreases costs. It uses multiple levels of nesting to
describe the database schema. The outermost pair of brackets con-
tains columns associated with the Students table. Inner brackets
group columns that share the same type (e.g., varchar (255)) or the
same constraints (NOT NULL). As demonstrated in Section 8.3, large
language models are able to understand such schema descriptions.
Figure 1c reduces costs further by introducing abbreviations. More
precisely, it introduces the asterisk symbol () to abbreviate the
column name prefix UniStu_. Schemonic takes raw schemata as in
Figure 1a as input and produces more concise schema descriptions
like the one in Figure 1c as output, enabling cost savings.

This paper introduces Schemonic (a portmanteau of “schema”
and “laconic”), a system that finds concise text descriptions of data-
base schemata automatically. Schemonic exploits the opportunities
to shorten schema descriptions, illustrated in Figure 1. It mod-
els schema compression as a combinatorial optimization problem
which (as shown in Section 7) is NP-hard. Often, the schema of
a database changes only infrequently. Hence, a concise schema
description, generated once, can be reused often. This makes it
worthwhile to apply even expensive optimization methods to find
solutions with formal optimality or near-optimality guarantees.
Motivated by this insight, Schemonic models schema compression
as an integer linear programming (ILP) problem and applies sophis-
ticated ILP solvers to find solutions.

Given a new schema to compress, Schemonic first analyzes the
schema to identify candidate substrings for abbreviations. Next,

!Per-token pricing is used by major providers such as OpenAl, Anthropic, Cohere,
Al21, as well as by providers such as IBM and Anyscale that offer open-source models
in the Cloud. Schemonic does not directly apply to scenarios with a different cost
model, e.g., when running language models locally.

https://doi.org/10.14778/3681954.3682017
https://github.com/itrummer/schemacompression
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682017
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3681954.3682017&domain=pdf&date_stamp=2024-07-01

CREATE TABLE Students(
UniStu_ID int primary key,
UniStu_Name varchar(120) NOT NULL,
UniStu_Street_Name varchar(255) NOT NULL,
UniStu_Street_Nr int NOT NULL,
UniStu_City varchar(255) NOT NULL

);

(a) SQL commands creating schema: requires 93 tokens with GPT.

Table Students(
UniStu_ID(int primary key)
NOT NULL (varchar(255)(
UniStu_Name UniStu_Street_name UniStu_City)
int(UniStu_Street_Nr)
)

(b) First associated schema text: requires 54 tokens with GPT (after
removing tabs and newlines added for readability).

* means UniStu_
Table Students(
*ID(int primary key)
NOT NULL (varchar(255)(
*Name *Street_name *City)
int(*Street_Nr))
)

(c) Second associated schema text: requires 39 tokens with GPT (after
removing tabs and newlines added for readability).

Figure 1: Example schema and associated representations.

it identifies groups of columns with similar properties, enabling
a reduction in search space size for the following optimization
steps. Then, Schemonic calculates heuristic solutions and associates
search space parts with heuristic priorities. Finally, Schemonic
transforms the schema compression problem into an instance of
ILP which is solved by a corresponding solver. Heuristic solutions,
priority values, and column groups are used to provide the ILP
solver with hints. These steps speed up optimization (as shown in
the experiments) without compromising optimality guarantees. The
ILP solution is then transformed into a concise text description of
the input schema. As compression is based on a structured schema
representation with sound transformations, the resulting schema
description is guaranteed to be equivalent to the input schema.

The experiments compare Schemonic to several baselines on
database schemata from the PublicBI [14], TPC-H, and SPIDER [38]
benchmarks. On average, Schemonic reduces fees for reading schema
descriptions via language models by factor two. At the same time,
compression does not negatively impact the ability of language
models like GPT to translate questions to SQL queries.

This paper’s original scientific contributions are the following:

o The paper introduces the problem of schema compression
for LLM prompting.

e It proposes an approach for schema compression based on
integer linear programming.

o [t formally analyzes the schema compression problem and
the proposed solution.

3512

e It reports experimental results comparing the proposed
approach to baselines.

The remainder of this paper is organized as follows. Section 2
introduces the problem model and associated terminology. Sec-
tion 3 gives a high-level overview of the Schemonic system and
the context in which it is used. Section 4 describes how Schemonic
identifies potentially useful abbreviations. Section 5 describes the
transformation from schema compression to ILP and Section 6
describes several optimizations, enabling Schemonic to find ILP
solutions faster. Section 7 formally proves the correctness of the
ILP transformation and analyzes the complexity of the problem.
Section 8 discusses experimental results and Section 9 prior work.

2 FORMAL MODEL

We introduce schema compression and related terminology.

Definition 2.1 (Schema). A schema s is associated with a set of ta-
bles, denoted as s.tables. Each table ¢ is associated with a name and
a set of columns, referred to as t.name and t.columns respectively.
Each column c is associated with a name (denoted as c.name) and a
set of annotations (c.annotations), describing the column type or
applicable constraints (e.g., column type, uniqueness or not-null
constraints, or single-column primary key constraints). Optionally,
a table t may be associated with constraints (¢.constraints) that
refer to column groups (e.g., multi-column primary key constraints
or multi-column foreign key constraints).

Definition 2.2 (Identifier, Token). Given a schema s, we denote
identifier tokens (short: identifiers) of s as ID(s). Eligible identifiers
are the set of table names, prefixed by the keyword “table ”, the
set of column names for each table (the name alone in case of non-
ambiguous column names, otherwise the column names prefixed
by the associated table name), and the set of annotations used for
columns or tables. General tokens include the identifier tokens as
well as opening and closing brackets.

Tokens according to the prior definition may or may not corre-
spond to tokens used by specific language models.

Example 2.3. Denote by s the schema created in Figure 1a. El-
ements in the set ID(s) include Table Students, as well as all
column names such as UniStu_ID and UniStu_Name. Also, it in-
cludes int, primary key, NOT NULL, varchar(255), and all other
column annotations used.

Definition 2.4 (Description Syntax). The empty string (“”) is a
syntactically valid description. If d; and d; are valid descriptions
then dyd; (i.e., their concatenation) is a valid description. Let ¢ be
an identifier token for the relevant schema and d a valid description.
Then, t(d) is also a valid description.

We expand the scope of the ID function and also denote by ID(d)
the identifier tokens that appear in a schema description d.

Definition 2.5 (Description Semantics). Function Facts(d) denotes
a set of facts about a schema that can be inferred from a schema
description d. If description d is an empty string, it is Facts(d) =
0.1f d = didy (ie., the description concatenates descriptions dq
and dy), it is Facts(d) = Facts(dy) U Facts(dz). If d = t(d’) then
Facts(d) = Facts(d’) U {{t,id}|id € ID(d")}.

Definition 2.6 (Accurate Description). A description d of a schema
s is accurate iff Facts(d) contains all associations between tables
and columns that appear in the schema and connects all tables and
columns to all applicable annotations (e.g., type and key constraints).
At the same time, the description cannot convey incorrect facts
(e.g., incorrect associations between columns and annotations).

Example 2.7. Let d be the schema description illustrated in Fig-
ure 1a. Here, all column names appear within the surrounding con-
text Table Students. This means facts connecting the table with
its columns, e.g., {Table Students,UniStu_ID}, are contained in
Facts(d). For column UniStu_ID, all relevant annotations appear
in the column context, leading to facts {UniStu_ID,Primary Key}
and {UniStu_ID,int}. As yet another example, consider the col-
umn UniStu_Name. As this column appears within two annotation
contexts (NOT NULL and varchar(255)), {UniStu_Name,NOT NULL}
and {UniSti_Name,varchar(255)} appear in Facts(d). At the same
time, note that the description does not introduce any incorrect
facts (e.g., erroneous column-table associations or incorrect column
annotations). Hence, the schema description is accurate.

Definition 2.8 (Token Mapping). A representation function maps
tokens to a text representation, possibly shortening the token name.
Consider a set G of such functions. A token mapping for schema
s is a function p : ID(s) + G that maps each token to a function
used to represent it.

Example 2.9. Figure 1c uses a representation function, g, in the
following, that replaces all occurrences of UniStu_ by the symbol
* (which does not otherwise appear in the schema). The identity
function, g7 in the following, is a special case and represents each
token by its name. Given the text in Figure 1c, we can infer that
p#(UniStu_Name) = g, while p(int) = gy for the token mapping p.

Definition 2.10 (Schema Text). We can map a schema description d
with associated token mapping y to a text description, Text(d, i) as
follows. Let G = U;gep(q)#(id) the set of representation functions
used in p. It is Text(d, pt) = FText(G)SText(d, u) where FText de-
scribes all functions in G as text and SText describes the schema,
using the aforementioned functions. It is SText(d,) = 7 if d is
empty, SText(t,u) = p(t)(t) for any identifier token ¢ (this ex-
pression first maps ¢ to a representation function and then applies
that function to t), SText (d’d"’,) = SText(d’, p)SText(d", y), and
SText(d(d"),) = SText(d, p)”("SText(d’, 1))

Example 2.11. Figure 1c introduces function g, (replacing oc-
currences of UniStu_ by an asterisk symbol) before describing
the schema itself. Note that the identity function does not require
further explanations (i.e., the definition text is empty).

Definition 2.12 (Size). The aforementioned tokens are in general
not equivalent to the tokens used by large language models. Assum-
ing a fixed target model, we use Size(text) to denote the number
of tokens used by the model to represent the given text.

We are now ready to introduce the problem solved by Schemonic.

Definition 2.13 (Schema Compression). Given a schema s and a
set G of eligible representation functions, find an accurate schema
description d and associated token mapping p, mapping tokens to
some subset of G, such that Text(d, ;) has minimal size (i.e., find
argming , Size(Text(d, p))).

3513

Schemonic

DB Schema, LLM ——>| Pre-Processing

¥

Transform to ILP

¥
Solve ILP

¥

Transform to Schema

Before Run Time

At Run Time 4
Generate Prompt
v

LLM

Task ———>

Answer +—

Figure 2: Schema compression and its context.

3 SYSTEM OVERVIEW

Section 3.1 gives a high-level overview of the schema compression
approach and the context in which it is used. Section 3.2 describes
the top-level algorithm in more detail.

3.1 System Context

Figure 2 shows an overview of the “Schemonic” system and its
context. The input is a database schema to compress, as well as a
target LLM. Schemonic aims at finding a text representation of the
schema that minimizes the number of tokens used, according to the
tokenizer used by the target LLM. Internally, Schemonic performs
several pre-processing steps, then transforms the schema compres-
sion problem into an ILP instance. It solves the resulting ILP via a
corresponding solver (currently, it uses the Gurobi solver). In doing
so, it considers user-specified bounds on optimization overheads
(e.g., a time limit). The resulting solution is transformed into a
schema representation in text form. This description is concise and
typically uses fewer tokens than the original.

The resulting schema description is meant to be used as part of
the input prompt for an LLM, informing the LLM about the database
structure without using more tokens than necessary. Reducing the
number of tokens is typically equivalent to reducing monetary
processing fees. Providers of LLMs such as OpenAl calculate their
fees as a function of the number of tokens read and generated. The
schema description can be used for any task to be solved by the LLM
that relates to the input database. Examples include text-to-SQL
translation [23, 38, 40], schema matching [4] and data wrangling
tasks [26], or structured information extraction [7].

Generating optimized schema descriptions can be expensive
(depending on the size of the database schema and the constraints
on optimization overheads). However, assuming that the database
schema changes only rarely, the same compressed descriptions can
be reused many times. The latest generation of language models
is typically used in zero or few-shot scenarios. This means that
all relevant information, including the schema description, have

Algorithm 1 Function generating concise schema descriptions.

Algorithm 2 Generate candidates for shortcuts (prefixes).

1: Input: A schema s to compress, a target model LLM, the num-
ber k of prefixes to consider, and the maximal nesting depth L.

2: Output: Compressed representation.

3: function COMPRESSSCHEMA(s, LLM, k, L)

4 // Generate candidate prefixes

5 P «CANDIDATEPREFIXES(S, k)

6: /] Merge columns with same annotations
7: s «—MERGECOLUMNS(S)

8 /] Generate greedy solution as start

9: g <—GREEDY(s)

10: // Transform to integer linear program
1 ilp «TraNSFORMTOILP(s, LLM, L, P, g)
12: // Optimize using ILP solver

13: o «ILPsoLvER(ilp)

14: // Transform solution to description text
15: text «EXTRACTDESCRIPTION(0)

16: // Return optimized description

17: return fext

18: end function

to be included into the prompt in each invocation. Hence, using a
compressed schema reduces the per-invocation costs.

3.2 Main Algorithm

Algorithm 1 describes the schema compression process in more
detail. The input is a schema s (to be described concisely), a tar-
get model LLM, as well as two configuration parameters k and L.
Those parameters restrict the maximal number of prefixes consid-
ered during optimization (k) as well as the maximal nesting depth
for the generated schema descriptions (L). For schema compres-
sion, Schemonic considers opportunities to abbreviate common
prefixes (e.g., of column or table names) by newly introduced sym-
bols (which do not appear in the schema otherwise). Algorithm 1
generates a set of potentially useful prefixes in Line 5. To reduce
the size of the search space for compression, the algorithm merges
together columns with equivalent annotations into column groups
(Line 7). Finally, it generates a first schema description using a
simple greedy algorithm (Line 9), described in Section 6.2. While
this solution is not guaranteed to be optimal (and, as shown in the
experiments, is typically sub-optimal) it provides a useful starting
point for the ILP solver. In Line 11, Algorithm 1 transforms the
schema compression instance into an ILP instance. It solves this
instance by a corresponding ILP solver (Line 13). Depending on user
constraints, this step ends once an optimal solution is found or once
thresholds on optimization overheads (e.g., time limits) are reached.
Finally, Algorithm 1 extracts an optimized schema description from
the ILP solution.

4 RANKING PREFIXES

To reduce the schema description size, Schemonic considers op-
tions to shorten token names by abbreviating common prefixes.
This section describes the method used by Schemonic to identify
potentially useful prefixes. Considering more prefixes increases the
size of the ILP that needs to be solved later on. Hence, Schemonic

3514

1: Input: A database schema s.
2: Output: Map prefixes to frequency.
3. function PREFIXFREQUENCY(s)

4: // Retrieve list of identifiers

5: I «—IDENTIFIERLIST(S)

6: // Initialize frequency counter
7: F «{id : 0]id € I}

8: // Tterate over identifiers

9: for id € I do

10: // Tterate over prefix length
11: for [« 1..|id| do

12: // Extract prefix ...

13: p—id[: 1]

14: // ... and count it

15: F[p] « Flp] +1

16: end for

17: end for

18: return F

19: end function

20: Input: Map F from prefixes to frequencies.
: Output: Pruned map from prefixes to counts.
22: function PRUNE(F)

23: // Prune out prefixes with a single occurrence
2 Fe{pONpf)eFf>1)

25: // Tterate over prefixes and frequencies
26: for (p, f) € Fdo

27: // Tterate over substring length

28: for [« 1..|p| do

29: // Retrieve substring

30: q<—pl:1]

31 // Is substring not more common?
32: if (q.g) € Flg < f then

33: // Prune dominated substring
34: Fe{{p.Hp. Y €F.q#p}
35: end if

36: end for

37: end for

38: // Return pruned prefixes

39: return F

40: end function

41: Input: A database schema s, number of prefixes k.
42: Output: A set of common prefixes.

43: function CANDIDATEPREFIXES(S, k)

44: // Count prefix frequency

45: F «PREFIXFREQUENCY(S)

46: // Prune prefixes

47: F «PRrUNE(F)

48: // Return most frequent prefixes

49: return k most frequent prefixes in F

50: end function

aims at identifying a limited number of prefixes with high expected
utility.

Algorithm 2 shows how Schemonic identifies potentially useful
prefixes. The input to Function CANDIDATEPREFIXES is the database
schema s, along with the number of prefixes to generate (k). Con-
sidering more prefixes may possibly lead to more optimal solutions
later on. However, considering more prefixes also increases the size
of the associated ILP and therefore optimization time.

Function CANDIDATEPREFIXES in Algorithm 2 first counts the
number of occurrences for each prefix. To that purpose, Func-
tion PREFIXFREQUENCY first retrieves the list of relevant identifiers.
Function IDENTIFIERLIST (we omit pseudo-code due to space re-
strictions) retrieves the list of identifier tokens used in the original
(i.e., SQL) description of the database schema. This list contains
duplicates which is important to identify frequent prefixes. Next,
Function PREFIXFREQUENCY iterates over all identifier prefixes. To
specify prefixes, the function uses a notation inspired by the Python
programming language, i.e., id[: [] are the first [characters from
the start of string id (or the entire string if it has less than [charac-
ters). Each prefix occurrence is counted in a dictionary (F), mapping
prefixes to the associated count.

Next, Function CANDIDATEPREFIXES prunes prefixes by discard-
ing dominated prefixes. Function PRUNE first discards prefixes that
do not appear repeatedly. Introducing shortcuts for prefixes as a part
of the schema description also consumes tokens. Hence, doing so
for prefixes that cannot be reused is wasteful. Next, Function PRUNE
compares prefixes and prunes them out if the following condition
is met. A prefix is dominated if there is another prefix that is longer
and appears at least as often. This avoids situations in which the
system retrieves multiple prefixes of varying length for the same
group of identifiers (here, typically, it is optimal to use the longest
prefix for the associated token group).

The remaining prefixes are ordered by their occurrence fre-
quency. The k most frequent prefixes are returned.

5 ILP TRANSFORMATION

Schemonic transforms the problem of schema compression to ILP
problems. The resulting problems can be solved via ILP solvers such
as Cplex or Gurobi. The optimal solution to the ILP instance can be
transformed back into a schema description of minimal size. This
section shows how to transform an instance of schema compression
into an ILP instance. An ILP instance is characterized by a set of
integer variables, a set of linear constraints on those variables, and a
linear objective function of those variables. Section 5.1 describes the
variables used and their semantics, Sections 5.2 describes different
categories of constraints on those variables, and Section 5.3 de-
scribes the objective function. Section 5.4 discusses how to extract
a schema representation from the optimal ILP solution.

5.1 Variables

Table 1 summarizes the variables used by the ILP instances. All
variables are integer variables with binary domain (i.e., the only
admissible values are one and zero). Table 1 summarizes variables
into groups, covering different aspects of the schema description.
Variables x;; capture the schema description itself (but not yet the
token mapping). They describe the sequence of tokens selected
for the description, including brackets. Tokens are divided into
consecutive slots. Each slot contains up to one identifier token

3515

Table 1: Variables of integer linear program with associated
semantics (all variables are binary).

Variable Semantics

Xit 1 iff token t in slot number i

Titg 1 iff function g used for token t at position i
hg 1 iff we have function g in prompt description
e; 1 iff no tokens are selected at position i

aiy 1 iff token t added to context at position i

Cilt 1 iff token t in context at position i and layer [
Mit, £, 1 iff fact connecting t1, t, mentioned at i

Tt 1 iff fact connecting tokens t1, t; mentioned

(e.g., a column or table name) and up to one (opening or closing)
bracket. As discussed in more detail later, introducing slots (as
opposed to representing single tokens separately) makes it easier
to impose constraints between tokens and brackets (e.g., requiring
that opening brackets are combined with tokens). Each variable x;;
captures whether or not token ¢ is in slot number i (x;; = 1 iff the
token is included).

Tokens can be represented differently, either via the original
token name alone or via a (shortening) transformation. Specifically,
Schemonic considers shortening token names by abbreviating com-
mon prefixes. Variables r;;4 capture the representation of selected
tokens for slots i, tokens ¢, and representation functions g (i.e., using
the original token name or abbreviating a prefix via a symbol). It is
ritg = 1 iff function g is used to represent the selected token. All
functions used to represent tokens must be introduced. Variables
hg indicate whether function g is introduced (if so, the schema text
description contains a corresponding text snippet at the beginning).

Variables e;, aj;, and c;j; are auxiliary variables whose values
are directly derived from the values of variables x;;. Variables e; are
set to one iff slot number i is empty. As discussed in more detail in
Section 2, enclosing a group of tokens (e.g., column names) within
brackets, prefixed by another token (e.g., a data type), implicitly
associates all tokens in the group with the preceding token. In
those cases, we also say that the token group appears within the
context of the initial token. If tokens are enclosed by multiple pairs
of brackets, the context may contain more than one token (one
token for each pair of brackets). Variables c;;; keep track of the
surrounding context for each slot. It divides context tokens into
layers such that the outermost brackets are associated with the
first layer, the innermost brackets are associated with the last used
layer. The maximal number of usable layers L (one of the input
parameters in Algorithm 1) is equivalent to the maximal number
of nested brackets. It is ¢;;; = 1 iff context layer [at slot i contains
token t. Connecting a token with an opening bracket adds that
token to the first unused context layer. Variable a;; is set to one iff
token t is added to the context in slot i (i.e., the token will appear
in the context starting from the next slot).

Variables m;z,z, and f;,1, are used to associate a schema descrip-
tion with semantics. As discussed in Section 2, facts connect token
pairs (e.g., associating a column name with a specific data type).
Variables mj;, +, indicate whether a fact connecting token t; and ¢,
was mentioned at slot i. More precisely, the mention entails token

Table 2: Values of decision variables for first six slots of the schema description from Figure 1c.

Slot Tokens Added Layer 1 Layer 2 Representation Facts

1 Table Students(Table Students Table Students

2 UniStu_ID(UniStu_ID Table Students *ID Table Students-UniStu_ID
3 int Table Students UniStu_ID int UniStu_ID-int

4 primary key Table Students UniStu_ID primary key UniStu_ID-primary key

5) Table Students

6 NOT NULL (NOT NULL Table Students NOT NULL

ty appearing in slot i whereas token t; is contained in one of the
context layers at slot i. A fact is stated if it is mentioned at least
once. Variables f;, ¢, indicate whether there is at least one mention
of the fact connecting tokens t; and t5.

Example 5.1. Table 2 illustrates the use of the aforementioned
variables by an example. The example uses the first part of the
schema description from Figure 1c. The first column represents the
slot ID. The second column represents tokens selected in each slot
(i.e., tokens for which variables x;; are set to one). The third column
represents tokens added to the context in the corresponding slot (i.e.,
tokens for which variables a;; are set to one). The fourth column
represents tokens that appear in the first layer of the context (i.e.,
tokens for which c;i; is set to one). The fifth column represents
tokens that appear in the second layer of the context (i.e., tokens for
which c¢jp; = 1). The next column describes the representation used
for each selected identifier (i.e., “non-bracket”) token. There can be
at most one identifier token per slot. The column contains a token
representation iff 7,44 is set to one for the corresponding function
g). Finally, the last column describes fact mentions associated with
slots. It contains combinations of tokens if the associated variable
mit 1, is set to one). For instance, the first slot contains an opening
bracket in combination with token Table Students. This token
therefore appears in the context of each of the following slots (since
the associated closing bracket is not part of the example anymore).
As the context is initially empty, the first context layer contains
the table name. The second slot also contains an opening bracket,
together with the column name UniStu_ID. This token is added to
the second context layer in the following slot (since this layer is
the first unused layer). In the second slot, as the context contains
the table name, column name UniStu_ID is implicitly associated
with that table (as indicated by the corresponding fact).

5.2 Constraints

Linear constraints ensure that each solution represents a valid
schema description (with associated token mapping). The following
constraints connect different variables of the same variable group
(e.g., different variables x;;). Other constraints connect variables
from different groups. Figure 3 illustrates dependencies between
variables of different groups. Circles in Figure 3 represent vari-
able groups and lines represent constraints connecting variables
of different groups. Variable groups e;, a;j;, and c;j; are auxiliary
variables, set as a function of variables x;j;. This is represented
by corresponding connections in Figure 3. At the same time, vari-
ables a;; (representing the addition of new tokens to the context)
are connected to variables c;;; (representing context). Variables

3516

Figure 3: Constraints between variable groups.

Mmit, +, (representing mentions of facts) depend on tokens selected
in the current slot (variables x;j;) and tokens in the current con-
text (variables c;;;). Variables f;,;, (representing the statement of a
fact anywhere in the description) aggregate the values of variables
mit, 1, (representing a fact mention at a specific slot). Finally, values
of variables rj;4 (capturing the representation of selected tokens)
depend on the variables representing tokens selected in specific
slots (xj;). Admissible values for variables hy (indicating whether
function g is used to represent at least one token) depend only
on variables ;g (representing functions used to represent specific
tokens).

Table 3 contains all constraints needed to guarantee admissible
solutions. Constraint groups are named with IDs from C1 to C28.
Implicitly, whenever i appears in a sum or universal quantifier, it
runs over all available slot positions. Similarly, t, ¢1, and ¢, run
over all tokens, except for the notation ¢t € ID (in which case ¢
is restricted to identifier tokens, excluding brackets). The value
domain of [are all context layers whereas g runs over all represen-
tation functions. Section 7 contains a formal proof, showing that,
together, those constraints imply valid solutions. The remainder of
this subsection describes those constraints and gives an intuitive
explanation for why they are necessary.

Constraint groups C1 to C5 ensure that value assignments for
variables x;; and e; are valid. Specifically, C1 and C5 ensure that each
slot contains at most one identifier token and at most one bracket.
Constraints C2 and C3 imply that variables e; (indicating an empty
slot) are assigned consistently with the values of x;;. C4 ensures
that empty slots appear only at the end (thereby avoiding redundant
representations of the same schema description). Constraints C6 to
C8 ensure correct bracketing. C6 ensures that opening brackets are
combined with an identifier token in the same slot (such that all
tokens appearing within brackets are implicitly associated with that

Table 3: Constraints of integer linear program representing schema compression problem.

ID Constraint Semantics

Cl Viixpe+xp)y+e <1 Only one bracket or empty slot

C2 Vi:eg>1-;xit Slot is empty if no tokens are selected

C3 Vit:e; <1—xj No empty slot if any token is selected

C4 Vi:ej <ejp1 All empty slots at the end of prompt

C5 Vi:Ysep:xir <1 At most one identifier per position

C6 Vi:xpe < Xiep Xit Must connect opening bracket with identifier

C7 (Zixpe) = (Zixyn) =0 Same number of opening and closing brackets

C8 Vi:ci(xpe—xy) 20 Never more closing than opening brackets

C9 Vit:xir+yjciy <1 Do not select tokens already in context

C10 Vil:>Y,c; <1 At most one token per context layer

C11 Vil: Xycinr 2 X Clivn)ir Use context layer consecutively

C12 Yjrcon =0 Initial context is empty

C13 Vi:Xpscir +x7¢ — X7 = X C(iv1)lr Correct number of tokens in context

Cl4 Vit:ajy < xp(No context addition without opening bracket

C15 Vi t:aj < xijt No context addition without selecting token

C16 Vi t:air =2 xpe+xir — 1 Opening bracket and token imply context addition
C17 Vi t: Xcisnyie 2 Git Have token in context after adding it

C18 Vil t:ciynyr 2 Citr — X7y Cannot drop context without closing bracket

C19 Vi, L t:ciyny < Cipp + X Cannot add context without opening bracket

C20 Vi, ty,t2 s miyy, < XjCily Fact mention requires first token in context

C21 Vi, ty,t2 : Migyt, < Xig, Fact mention requires second token selected

C22 Vit ta i miyy, 2 (X citgy) + Xip, — 1 Fact mention if first token in context and second selected
C23 Vt <t2:fus, < Xi(Mire, + Mityt,) Fact is not stated unless it is mentioned

C24 Vi ty <ty:fy1, = Migs, + Minys, Fact is stated if it is mentioned at least once

C25 V{ti,t2} € True: fhs, =1 True facts need to be stated

C26 V{ti,t2} € False : fy1, =0 False facts cannot be stated

C27 Vi telD:xjy =), g Titg Choose one representation for each selected token
C28 Vit,g:ritg < hy Must add explanation of function in prompt to use it

token). C7 ensures that the number of opening and closing brackets
is equal whereas C8 ensures admissible ordering of those brackets
(ensuring that the number of closing brackets never exceeds the
number of opening brackets encountered previously).

Constraints C9 to C19 ensure that variables c;;; accurately rep-
resent context assigned by the sequence of opening (and closing)
brackets and associated tokens, represented by variables x;;. Con-
straint C9 ensures that tokens already in the context cannot be
selected in the associated slot. Constraint C10 ensures that each
context layer only represents a single selected token. Furthermore,
constraint C11 ensures that context layers are used consecutively.
Constraints C12 and C13 ensure that the total number of selected
tokens in the context is accurate. C12 ensures no selected tokens in
the first context whereas C13 bounds the change, compared to the
context of the prior slot, as a function of the number of opening
and closing brackets in the previous slot. Constraints C14 to C16
ensure that variables a;; (representing the addition of token ¢ to
the context after slot i) are set consistently with variables x;;. C17
ensures that tokens added in slot i appear in context of the follow-
ing slot. Constraints C18 and C19 ensure no changes to the context
in the absence of opening and closing brackets.

3517

Constraints C20 to C26 refer to the semantics of the selected
schema description, ensuring that all relevant facts are mentioned
(and no incorrect statements are included). Constraints C20 to C22
ensure that variables m;y, s, (indicating that tokens t; and t; are
connected in slot i) are set consistently with variables x;; and c¢;j;.
C23 and C24 ensure that variables f;,;, (indicating whether the
connection between tokens t; and t» is mentioned at least once) are
set consistently with variables mj;, s,. C25 and C26 make sure that
all true facts are mentioned whereas no incorrect statements are
made. The set True refers to all token pairs that are connected by
the database schema, namely associations between tables and their
columns and between columns and their associations. On the other
hand, False contains all token pairs that should not be connected in
the schema description, namely connections between columns and
tables in which they do not appear as well as connections between
columns and types or constraints that do not apply.

Constraints C27 and C28 focus on the representation of tokens.
Specifically, C27 ensures that each selected token is mapped to
exactly one representation. This representation is either the identity
function (i.e., the token is represented by its name) or a function
that abbreviates a common prefix by a shorter symbol. In principle,

Table 4: Terms that appear in the objective function.

Term Semantics

Yitg(ritg - Size(g(t))

Sum over selected token repre-
sentations, weighted by length
Sum over selected functions,
weighted by description length

g hp - Size(FText(g)))

the constraints are slightly more permissive, compared to token
mappings introduced in Section 2. They allow different occurrences
of the same token to map to different representations. However,
due to the objective function discussed next, an optimal solution
assigns all occurrences to the shortest representation (and uses a
single representation if several of them have the same length since
introducing more functions increases the text length). Constraint
C28 makes sure that all representation functions used at least once
are also introduced (represented by variable hy).

5.3 Objective Function

The goal of optimization is to minimize the length of the schema
description, measuring length as the number of tokens required
on the target LLM. This is equivalent to minimizing monetary
processing fees if using LLMs hosted by providers such as OpenAL
Table 4 summarizes the terms that appear in the objective function
to minimize. The schema description contains two types of text:
text describing representation functions and text describing the
schema itself (and possibly referring to the previously introduced
representation functions). Hence, the objective function sums over
all selected tokens and used functions, weighted by the length of
the associated text description. Note that, in principle, the number
of tokens used by the LLM may be slightly lower than the objective
function above. This could happen if the LLM introduces single
tokens representing multiple tokens used in the schema description.
This could be taken into account by a more complex objective,
detecting consecutive tokens that are merged by the LLM and
reducing the text size accordingly. However, in practice, having
single LLM tokens to represent, e.g., combinations of column names
is unlikely. The experiments show that the objective above leads to
significant cost improvements.

5.4 Extracting Solution

Extracting the schema description from the ILP solution is straight-
forward. We start by iterating over representation functions and
add descriptions at the start of the prompt. Currently, Schemonic
supports functions that abbreviate common prefixes. Their descrip-
tion is of the form “[Symbol] means [Prefix]” where [Symbol] is a
symbol that can be represented by a single LLM token (and is not
otherwise used as part of schema identifiers). [Prefix] represents a
prefix that appears frequently in the schema.

Next, we iterate over slots (in ascending order of slot ID), and add
for each selected token the selected representation. If slots contain
an identifier token and an opening bracket (this is the only permis-
sible case in which a slot contains more than one token), we add the
identifier token first and then the opening bracket. Furthermore,
we add a whitespace after each slot (except for empty slots and

3518

Algorithm 3 Merge columns with the same annotations.

1: Input: Original schema s.
2: Output: Schema with merged columns.
3: function MERGECOLUMNS(s)

4: // Tterate over schema tables

5 for t € s.tables do

6: // Retrieve all columns

7: C « t.columns

8: // Get all annotation sets

9: A « {c.annotations|c € C}

10: // Associate annotations with column groups
11: G «— {(Cq,a)|la € A, Vg € C,4 C C: g.annotations = a}
12: // Create merged columns

13: M0

14: for (Cg,a) € G do

15: // Create group name

16: if |C,| > 1 then

17: n<"["+Cq[0].name+","+...+7]”
18: else

19: n « C4[0].name

20: end if

21: // Add to merged columns

22: M — MU {n}

23 end for

24: // Replace original columns

25: t.columns «— M

26: end for

27 return s

28: end function

the last used slot). Finally, we add table-level annotations from the
input schema (currently, Schemonic only considers annotations on
single columns for optimization). The result is a text containing a
full schema description.

6 OPTIMIZATIONS

This section introduces several optimizations, enabling Schemonic
to find optimal solutions faster.

6.1 Merging Columns

To reduce the size of the search space, Schemonic merges columns
that have the same annotations and are associated with the same
table. Intuitively, whenever one of those columns appears in a given
context, replacing that column with the entire group does not add
any incorrect facts. Also, adding the other columns conveys correct
facts about these columns without requiring additional context.
Algorithm 3 shows how Schemonic merges columns into column
groups. Given a schema s as input, the algorithm iterates over all
schema tables. For each table, it collects the set of annotation sets,
considering all table columns. It groups columns by their annota-
tions (Line 11) and creates a set of merged columns (Variable M).
Column groups may be singletons, in which case the column re-
mains unchanged. If a group contains multiple columns, its name is
derived from the column names in the group, surrounded by square
brackets. The list of merged columns is assigned to the table.

6.2 Greedy Algorithm

ILP solvers such as Gurobi allow users to provide initial solutions
as a starting point. This can speed up optimization significantly.

Schemonic uses a simple greedy algorithm to generate solutions
as a starting point. It iterates over all tables and, for each table,
merges columns with equal annotations into column groups, as
described in the previous subsection. It generates a description ac-
cording to the following grammar (represented in Extended Backus-
Naur Form with * representing an unlimited number of repetitions
of the previous symbol):

<SchemaDef> — <TableDef>*

<TableDef> — Table <TableName>(<ColumnDef>%)

<ColumnDef> — <ColumnGroup>(<Annotation>x*)

This solution associates each table with its column groups and
each column group with the corresponding annotations. The greedy
solution is used to set start values for variables associated with
tokens (xj; and c;;;). No start values are set for representation
variables (ritg).

Example 6.1. For the schema from Figure 1a, the greedy algo-
rithm merges the UniStu_Street_Name and UniStu_City columns
as they have the same annotations. It generates the following de-
scription (tabs added for readability):

Table Students(
[UniStu_Street_Name UniStu_City](
varchar(255) NOT NULL)
UniStu_ID(int primary key)
UniStu_Name(varchar(120) NOT NULL)
UniStu_Street_Nr(int NOT NULL))

6.3 Value Hints

Finally, ILP solvers often enable users to specify hints on likely
variable values. Such values are prioritized during search (while
alternative values are eventually explored as well).

Intuitively, tokens that appear more frequently in the original
schema description tend to be more useful for creating context. E.g.,
creating context for common column annotations (within which
all relevant columns can be enumerated) is preferable over creating
context for each single column (in which its annotations can be
included). Hence, Schemonic sorts tokens by their occurrence fre-
quency. It provides the ILP solver with hints related to infrequent
tokens (i.e., tokens that are not within the top ten in terms of oc-
currence frequency). For those tokens, all related context variables
are assigned to zero as default value.

7 FORMAL ANALYSIS

Section 7.1 proves that the transformation from schema compres-
sion to ILP, described in Section 5, is correct. Section 7.2 analyzes
the complexity of the problem and approach.

7.1 Correctness
The following theorems prove correctness of different aspects of
the ILP transformation (using constraints from Table 3).

THEOREM 7.1. An integer linear program solution represents a
valid (i.e., syntactically correct) schema description.

3519

Proor. The proof uses induction over the number of slots. Triv-
ially, if no slots are used then the description is empty and therefore
valid. Now, assume that any solution using up to N slots is valid.
This implies that solutions with N + 1 slots are valid as well, as
demonstrated next. We distinguish different cases, based on the
value assignment in the first slot. If e; = 1 then no tokens are se-
lected in the first slot (C2, C3) and all the following slots are empty
as well (C4). Hence, the description is empty and therefore valid.
Next, assume e; = 0 and x1; = 1 for some identifier token ¢t while
xi7(= x17y» = 0 (i.e., we have no brackets in the first slot). Due to
C5, no more than one identifier token can be selected in the first
slot. We can therefore decompose the associated description d into
d = td’ where d’ uses N slots. Due to the inductional assumption,
d’ and therefore td’ is valid. Now, assume the first slot contains
a bracket. Due to C1, it can only contain a single bracket. Due to
C8, the first bracket must be an opening bracket (i.e., xXpn(n = 1).
Due to C6, the first slot must select an identifier token t as well
(i.e., x1; = 1). C7 and C8 imply correct bracketing within the de-
scription. Hence, we can find a closing bracket associated with the
opening bracket of the first slot. This means we can decompose the
description d into #(d")d”” where d’ and d”’ use less than N slots.
Also, since we selected matching brackets and since the bracketing
of d is correct, the bracketing in d’ and d”’ is correct, too. m]

THEOREM 7.2. Each selected token is mapped to one representation
and each representation function is introduced.

Proor. Due to C27, exactly one representation is used for each
selected identifier token. Due to C28, all relevant functions for the
selected representations must be introduced. O

THEOREM 7.3. An integer linear program solution assigns context
consistently with selected tokens.

Proor. The proof uses induction over the slot count. For the
first slot, the context is empty (C12). This is trivially consistent since
there are no preceding slots with opening brackets. Now, assume
context variables are consistent until slot number i. We prove that
they are consistent for slot i + 1 as well. We distinguish different
cases, based on the content of slot i. If i contains a single token
without brackets, the context does not change between slots i and
i+1.Since x;7(» = x;7)» = 0, all context variables remain unchanged
due to C18 and C19 (which is consistent). Now, assume that slot
i contains a closing bracket (i.e., x;)» = 1). Furthermore, assume
that the context at slot i uses [layers (i.e., the first [layers contain a
token). Due to C19, no tokens are added in the context (comparing
the context for slot i to the one for slot i + 1). Due to C13, only
one single token is deleted in the context. Due to C11, this token
must be deleted in the last used layer I (which is consistent). Finally,
assume that slot i contains an opening bracket, together with one
token ¢ (this is the only remaining possibility due to C1, C5, C6).
Assume that I context layers are used at slot i. Due to C13, only
one single token is added in context i + 1 (compared to context i).
None of the currently selected tokens in the first [layers can be
removed due to C18. Also, due to C10, no token can be added in
any of the [used layers. Due to C11, a token can only be added in
layer I + 1. Variable aj;, indicating the addition of token ¢ to the
context at position i, must be set to one (due to C14, C15, and C16).

Due to C17, this implies that at least one context layer at position
i+ 1 must contain this token. Due to C9, this token was not selected
in any layer up to layer [. Instead, the only remaining possibility is
that the token is added in layer [+ 1. O

THEOREM 7.4. An integer linear program solution describes the
target schema accurately.

Proor. A fact connects two identifier tokens t; and t2. A fact
is mentioned if the description contains a sub-expression of the
form#1(...t2...) or 2(... ¢ ...). Solutions represent syntactically
valid schema descriptions (Theorem 7.1) and context is assigned
consistently (Theorem 7.3). Hence, there must be a slot i such that
xit, = 1and 3 : ¢;;;, = 1 or, vice versa, a slot with xj;, = 1 and
3l: ¢y, = 1. In that case, my g, = 1 or myyy, = 1 due to C20, C21,
and C22. Due to C23 and C24, having at least one mention of a fact
is equivalent to f;,4, = 1 (for t; < t2). Also, due to C25, all true facts
are stated while, due to C26, no incorrect facts are stated. m]

In summary, the prior theorems show that each ILP solution rep-
resents a syntactically and semantically correct schema description.

7.2 Complexity

We analyze complexity of the schema compression problem.
THEOREM 7.5. Schema compression is NP-hard.

ProoF. The proof uses a polynomial-time reduction from unca-
pacitated facility location (UFL) [16]. An instance of UFL is defined
by cost values f; for opening a facility at location i, as well as cost
factors c;; such that the cost of servicing location j from facil-
ity location i is ¢;;. The goal is to minimize the sum of both cost
terms. We transform such an instance to an instance of schema
compression as follows. First, introduce a single table with one
unannotated column for each client location j. Using an expression
of the form TableName(Columny, Columny, . ..) expresses all rele-
vant facts (i.e., the association between the table and its columns)
as concisely as possible. However, there are choices regarding the
column representation. Introduce one representation function g;
for each eligible facility location i such that size(Text(g;)) = f;.
Also, choose representation functions and column names such that
Size(gi(Column;)) = cjj. The solution to the schema compression
problem introduces a subset of representation functions. Those
functions correspond to the optimal facilities to open. O

The following theorems analyze the size of the ILP as a func-
tion of the dimensions of the schema compression problem. Often,
the ILP size correlates with the time it takes to find optimal solu-
tions. We denote by n; the number of tokens, by n; the number of
slots, by n; the number of context layers, and by ng the number of
representation functions considered.

THEOREM 7.6. The number of integer linear program variables is
inO(n; - ny - (ng +ny +ng)).

ProoOF. Variable group r;z4 has a number of variables in O(n; -
n - ng), dominating the number of decision variables (x;¢), func-
tion selection variables (hg), empty-slot variables (e;), and context
addition variables (a;;). The number of context variables c;j; is
in O(n; - n; - n;) while the number of variables representing fact

3520

mentions (mjz,) is in O(n; - n%) (thereby dominating the group of
variables f,;, representing fact statements). O

THEOREM 7.7. The number of integer linear program constraints
isin O(n; - ny - (ng + ng +ng)).

THEOREM 7.8. Comparing constraint groups C1 to C19, groups C18
and C19 integrate a dominant number of constraints (O(n; - ny - ny)).
Comparing groups C20 to C26, groups C20 to C22 have a dominant
number of constraints (O(n; - n?)) Comparing C27 to C28, group C28
has a dominant number of constraints (O(n; - ny - ng)).

8 EXPERIMENTAL RESULTS

Section 8.1 describes the experimental setup. Section 8.2 compares
Schemonic to different compression baselines. Section 8.3 validates
that LLMs are able to understand compressed schema represen-
tations. Finally, Section 8.4 analyzes the impact of various tuning
parameters on optimization performance.

8.1 Experimental Setup

Schemonic, as well as the baselines, are implemented in Python 3.10.
Schemonic uses Gurobi 10 as ILP solver. All of the following exper-
iments are executed on an EC2 c5.4xlarge instance with 32 GB of
main memory and 16 virtual CPUs, running Ubuntu 22.04. We com-
pare Schemonic to several baseline methods for database schema
representation. First, we compare against the associated SQL DDL
commands, as formatted by the “sqlglot” Python library. This base-
line is referred to as “SQL” in the following plots. Second, we com-
pare against the schema representation used in a prompt template
for text-to-SQL translation, available for sale on a popular prompt
distribution platform?. This baseline is referred to as “PB”. Third,
we compare to the output of the greedy algorithm discussed in
Section 6.2 (“Greedy”).

The experiments use schemata from three different benchmarks.
First, we use schemata of the PublicBI benchmark [14]. This bench-
mark is derived from Tableau workbooks and represents real user
data. Second, we evaluate baselines on the schema of the TPC-
H benchmark. Third, we use the schemata of the SPIDER bench-
mark [38], a popular benchmark for text-to-SQL translation featur-
ing 166 databases. In all cases, we measure the number of tokens
according to the GPT tokenizer. Unless noted otherwise, we config-
ure Schemonic to use all optimizations discussed in Section 6, up
to three context layers, nine prefixes, and a timeout of 20 minutes
per instance.

8.2 Comparing Compression Methods

Figure 4 compares different schema compression methods in terms
of their size and compression overheads. The figure contains box-
plots for each benchmark and baseline. The PublicBI and SPIDER
benchmarks contain multiple database schemata and each data
point is associated with one schema. The TPC-H benchmark only
features a single database (containing eight tables). This is why
the boxplots for TPC-H condense into a single line. For PublicBI
and SPIDER, boxes cover the range between the 25th and 75th
percentile, the line inside of each box represents the median, and
diamond symbols mark the arithmetic average. As usual, lower

Zhttps://promptbase.com/prompt/generate-sql-based-on-your-schema

https://promptbase.com/prompt/generate-sql-based-on-your-schema

PublicBI TPC-H Spider
2.8 T T T T T T T T T T
2.6 [- 4 F 77=]
Y 241 1+ JL i
A 22 1k 1L B
S 1 10 B
2 1.8 b e * |
T 16 H{=* 1 e |
g 14 10 - 10 B
1.2 @ - = . a
1 . i [A . s -+
50 — 17 R — T T T
— 25 e = - . - a
T 1018 ® x| H{E % |
[} B e
o 51 * || — - |
8 10 1 L a
N 0> ?@ L |
0.2 | [N | [N B
= 500 T T = T T T —— T T =
g 100 - - g a
. *
= 10 |- - . |
% 017 — = =]
S .
e R Caan (€1 T
S 0.001 w Lo !
= @2 = .9 =2 @ > L = om > 8
QL g g o~ g Q&P E
2] o =} wn o o 125) 3 o
= = b
5 § & § &5 &
< < <
A A A

Figure 4: Comparing compression ratio, fees per invocation
using GPT-4, and compression time of Schemonic to baselines
(note the logarithmic y-axis for the lower two rows).

whiskers denote the smallest data values larger than the lower box
bound minus 150% of the box height. Upper whiskers are defined
analogously. Single marks represent outliers outside of that range.

The columns in Figure 4 are associated with the three bench-
marks. The first row reports the size of the schema description,
measured in tokens and scaled to the size of the smallest descrip-
tion for each benchmark. On average, Schemonic reduces the size
of schema descriptions by a factor between 1.7 (TPC-H) and 2
(PublicBI). In some cases, Schemonic achieves a compression fac-
tor of close to three (on the SPIDER benchmark). Compared to
the simpler greedy approach, Schemonic reduces the length of the
schema description by at least 20% on average for each of the three
benchmarks. E.g., for the SPIDER benchmark, Schemonic reduces
description length by over 23% on average and up to 76% for some
schemata. For TPC-H, Schemonic reduces the length of the schema
description by 26%, compared to the greedy approach.

The second row reports the fees for reading the schema descrip-
tion via GPT-4. At the time of writing, reading 1,000 tokens with
GPT-4 (gpt-4-32k) costs 6 cents of processing fees®. For instance,
when using GPT-4 for text-to-SQL translation, the cost of reading
the schema description has to be paid for each invocation of the
model, i.e., for each new query. As processing fees are proportional
to the schema size, the tendencies in the second row are similar to

3https://openai.com/pricing

3521

the ones shown in the first row of plots (note, however, that the
y-axis of the second row is logarithmic whereas the y-axis of the
first row is linear). The costs of reading the database schema once
reach up to 28 cents for a traditional schema representation but are
always below 11 cents for the descriptions generated by Schemonic
(those maxima occur for the “baseball_1” database of the SPIDER
benchmark, featuring 26 tables). Clearly, fees for processing schema
descriptions via GPT can be comparable to or can even dominate
the processing costs of typical SQL queries (e.g., costs for reading
schema descriptions are comparable to the costs of querying hun-
dreds of gigabytes of data on BigQuery?). This makes it worthwhile
to optimize this component of total processing fees. While prices
for models such as GPT-4 tend to decrease over time, new models
appear regularly and come with higher costs.

The third row (note the logarithmic y-axis) reports compression
time for the different baselines. All baselines except for Schemonic
achieve compression times of less than 100 milliseconds. Those
baselines exceed compression times of 10 milliseconds only for
benchmarks containing large schemata with a reading cost of 10
cents and more. Schemonic consumes up to five minutes of com-
pression time (i.e., it reaches the timeout). However, ILP solvers
continuously generate solutions. This means that even if Schemonic
reaches the timeout, it produces solutions that come with near-
optimality guarantees (generated by the ILP solver). Investing time
into schema compression pays off in scenarios such as text-to-SQL
translation where schema descriptions are read frequently whereas
schema changes are comparatively rare. In such scenarios, the ad-
ditional time Schemonic spends in compression is quickly offset by
savings when processing schema descriptions via language models.

8.3 Compression versus LLM Accuracy

We analyze whether compression impacts result quality for text-to-
SQL translation [12]. TPC-H and the PublicBI benchmark only fea-
ture SQL queries, no associated natural language questions. Hence,
we cannot evaluate the precision of text-to-SQL translation us-
ing those benchmarks. SPIDER, on the other hand, features SQL
queries with corresponding natural language questions. We use
the first 200 questions from the training set of the original SPIDER
benchmark (“SPIDER” in the following plots), the 508 questions of
SPIDER-Realistic [9] (“SPIDER-Real”), a benchmark variant refer-
ring to the same schemata as SPIDER, as well as the 1034 questions
of SPIDER Synthetic [11] (“SPIDER-Syn”), another variant referring
to the same schemata. We use the following prompt template for
text-to-SQL translation:

Schema:[SD]
Question:[NLQ]
SQL:

[SD] is a placeholder, representing the (original or compressed)
database schema description, while [NLQ] represents the question
to translate into an SQL query. We instantiate the prompt template
by substituting both placeholders and extracting the translated SQL
query from the completion generated by the language model.

Figure 5 shows the number of successfully translated queries (as
prior work on text-to-SQL translation, this number is calculated
automatically by comparing the results of executing generated

“https://cloud.google.com/bigquery/pricing

https://openai.com/pricing
https://cloud.google.com/bigquery/pricing

GPT-3.5 Turbo GPT-4.0
600 — : : 600 : m‘l\
O\ —
- St 3535
S 400 [400 - N
= o< OO
S NN e
* 200 [oxcmimn 200 528
[eNleN@Ne)N O\

spidehider Refer sy 5pidefger Reder-synth

’ OosQLOoPB U0 Greedy I Schemonic ‘

Figure 5: Number of correctly translated queries for different
benchmarks, models, and schema descriptions.

-10° -10°
= I m— 3 [I o]
8 P ° k= °
= - 4 3 B |
g 4l o | 2 °
3 =) 1]
S 19)
H*
0 jeusm ® I 1 * 0 e ® I 1
0 50 100 150 0 50 100 150
Slots # Slots

Figure 6: Size of integer linear program as a function of input
problem size.

SQL queries to the ground truth result) for all three benchmark
variants. The figure reports results for GPT-3.5 Turbo as well as for
the (significantly larger) GPT-4 model, using the default variants of
each model as of June 1, 2024. Results are shown for the schema
descriptions generated by all baselines introduced before. In all
scenarios, the success ratio is similar across all baselines. For both
GPT models, Schemonic solves most test cases for one benchmark
whereas the greedy algorithm solves most test cases in another
one of the three benchmarks. Even for the smaller GPT-3.5 Turbo
model, the results are inconsistent with a significant reduction in
result quality due to compressed schema descriptions.

8.4 Further Analysis

Figure 6 illustrates dependencies between schema dimensions and
the size of the associated ILP. Each point corresponds to one test
case, reporting the schema length on the x-axis and the number of
ILP variables or constraints on the y-axis. According to the formal
analysis in Section 7, the number of variables and constraints grows
linearly in the number of slots and quadratically in the number of
distinct tokens. Assuming that column names are the token subset
with dominant size, the number of tokens is highly correlated with
schema length. The results in Figure 6 show superlinear growth
and are therefore consistent with the predictions from Section 7.
Finally, Figure 7 reports on results of an ablation study, succes-
sively removing the optimizations discussed in Section 6. On the
y-axis, the figure measures the percent of test cases for which a

3522

g 100 =
T s0f :
2
(/o) 0 —/ —/
T T T T
All Optimizations -Start -Hints -Merging

Figure 7: Impact on optimizations on ratio of test cases solved.

valid solution was found during an optimization time of five min-
utes. From left to right, the figure first removes the insertion of a
greedy solution as start values, the addition of hints on variable
values, and finally column merging. While 100% of test cases are
solved with all optimizations, the number reduces to zero with all
optimizations deactivated.

9 RELATED WORK

Prior work has shown that changes to the prompt can significantly
influence the performance of language models in certain scenar-
ios [28, 31, 39], motivating work aimed at maximizing output quality
by automatically tuning prompts [8, 30, 34]. On the other hand, a
recent line of work on prompt compression shows that eliminating
redundant information in the prompt has negligible impact on result
quality in many scenarios[1, 6, 15, 20, 21, 25]. Schemonic belongs
into this category. It differs from prior approaches as the method is
specialized to database schema compression, enabling Schemonic to
guarantee that all generated descriptions are semantically correct.
E.g., using small language models for prompt compression [20] is
a more generic approach but lacks formal guarantees that com-
pression preserves all relevant information. Prompt compression
is complementary to other approaches, aimed at reducing cost for
large language models, such as compressing models themselves [37]
or batching multiple tasks for the same context [24].

The proposed approach connects to prior work on relational
data compression [3, 13, 17-19, 29] as well as workload compres-
sion [5, 22, 35]. However, it differs by its target (schema com-
pression) and its context (prompt compression to reduce LLM
cost). Broadly, this work connects to prior work using ILP to solve
database optimization problems [2, 10, 27]. However, the prob-
lem solved in this work differs from the problems addressed in
prior work. Finally, Schemonic connects to various applications
in the database area that require describing database schemata to
LLMs. Among others, such applications include text-to-SQL trans-
lation [23, 32, 38, 40], an area where prompting is popular [12], data
wrangling tasks [26, 36], or information extraction [7].

10 CONCLUSION

Schemonic optimizes prompts that contain a description of a re-
lational database, minimizing the number of tokens used on an
LLM (and therefore invocation overheads). The experiments show
that this approach reduces costs significantly while compressed
representations can be well understood by LLMs.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Award No. 2239326.

REFERENCES

(1]

[2

=

[10

(1]

[12]

[15]

[16

[17]

[18]

[19]

[20

[21

Md Adnan Arefeen, Biplob Debnath, and Srimat Chakradhar. 2023. LeanCon-
text: Cost-Efficient Domain-Specific Question Answering Using LLMs. CoRR
abs/2309.0 (2023), 1-8. arXiv:2309.00841 http://arxiv.org/abs/2309.00841
Zohreh Asgharzadeh Talebi, Rada Chirkova, and Yahya Fathi. 2013. An integer
programming approach for the view and index selection problem. DKE 83 (2013),
111-125. https://doi.org/10.1016/j.datak.2012.11.001

Shivnath Babu, Minos Garofalakis, and Rajeev Rastogi. 2001. SPARTAN: A
Model-Based Semantic Compression System for Massive Data Tables. SIGMOD
Record 30, 2 (2001), 283-294. https://doi.org/10.1145/376284.375693

Philip a Bernstein, Jayant Madhavan, and Erhard Rahm. 2011. Generic Schema
Matching, Ten Years Later. VLDB 4, 11 (2011), 695-701. https://doi.org/10.1007/
5007780100057

Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek Narasayya. 2002. Com-
pressing SQL workloads. Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2002 (2002), 488-499. https:
//doi.org/10.1145/564691.564747

Lingjiao Chen, Matei Zaharia, and James Zou. 2023. FrugalGPT: How to Use
Large Language Models While Reducing Cost and Improving Performance. (2023).
arXiv:2305.05176 http://arxiv.org/abs/2305.05176

Jim Cowie and Wendy Lehnert. 1996. Information Extraction. Commun. ACM
39, 1 (1996), 80-91

Mingkai Deng, Jianyu Wang, Cheng Ping Hsieh, Yihan Wang, Han Guo, Tianmin
Shu, Meng Song, Eric P. Xing, and Zhiting Hu. 2022. RLPROMPT: Optimizing
Discrete Text Prompts with Reinforcement Learning. In EMNLP. 3369-3391.
https://doi.org/10.18653/v1/2022.emnlp-main.222 arXiv:2205.12548

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov,
Huan Sun, and Matthew Richardson. 2021. Structure-Grounded Pretraining for
Text-to-SQL. In NAACL-HLT. 1337-1350. https://doi.org/10.18653/v1/2021.naacl-
main.105 arXiv:2010.12773

Tansel Dokeroglu, Murat Ali Bayir, and Ahmet Cosar. 2014. Integer linear pro-
gramming solution for the multiple query optimization problem. In Information
Sciences and Systems. 51-60. https://doi.org/10.1007/978-3-319-09465-6

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward,
Jinxia Xie, and Pengsheng Huang. 2021. Towards robustness of text-to-SQL
models against synonym substitution. In ACL-IJCNLP. 2505-2515. https://doi.
org/10.18653/v1/2021.acl-long.195 arXiv:2106.01065

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. PVLDB 17, 5 (2024), 1132-1145. https://doi.org/10.14778/
3641204.3641221 arXiv:2308.15363

Yihan Gao and Aditya Parameswaran. 2016. SQUISH: Near-optimal compression
for archival of relational datasets. In SIGKDD, Vol. 13-17-Augu. 1575-1584. https:
//doi.org/10.1145/2939672.2939867 arXiv:1602.04256

Bogdan Ghit, Cwi Amsterdam, NL Diego Tomé, and Peter Boncz. 2020. White-
box Compression: Learning and Exploiting Compact Table Representations. In
CIDR. 1-7.

Henry Gilbert, Michael Sandborn, Douglas C. Schmidt, Jesse Spencer-Smith, and
Jules White. 2023. Semantic Compression With Large Language Models. (2023).
arXiv:2304.12512 http://arxiv.org/abs/2304.12512

Sudipto Guha. 1999. Greedy strikes back: Improved facility location algorithms.
Journal of Algorithms 31 (1999), 228-248.

Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace Fan, Xiran
Shi, and Ugur Cetintemel. 2020. DeepSqueeze: Deep Semantic Compression for
Tabular Data. In SIGMOD. 1733-1746. https://doi.org/10.1145/3318464.3389734
Balakrishna R Iyer and David Wilhite. 1994. Data Compression Support in
Databases. In VLDB. 695-704.

H. V. Jagadish, Raymond T. Ng, Beng Chin Ooi, and Anthony K.H. Tung. 2004.
ItCompress: An iterative semantic compression algorithm. In ICDE, Vol. 20.
646-657. https://doi.org/10.1109/ICDE.2004.1320034

Huigiang Jiang, Qianhui Wu, Chin Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
LLMLingua: Compressing Prompts for Accelerated Inference of Large Language
Models. In EMNLP. 13358-13376. https://doi.org/10.18653/v1/2023.emnlp-main.
825 arXiv:2310.05736

Hoyoun Jung and Kyung-Joong Kim. 2023. Discrete Prompt Compression with
Reinforcement Learning. CoRR abs/2308.0 (2023), 1-12. arXiv:2308.08758 http:
//arxiv.org/abs/2308.08758

3523

[22

[23

[24

[25]

[26

[27

(28]

[29]

[30

[31

@
&,

[33

(34

[35

[36

[37

(38]

[39

[40

Piotr Kotaczkowski. 2008. Compressing Very Large Database Workloads for
Continuous Online Index Selection. Lecture Notes in Computer Science 5181
LNCS, 3 (2008), 791-799. https://doi.org/10.1007/978-3-540-85654-2_71

Fei Li and HV Jagadish. 2014. NaLIR: an interactive natural language interface
for querying relational databases. In SIGMOD. 709-712.

Jianzhe Lin, Maurice Diesendruck, Liang Du, and Robin Abraham. 2023.
BatchPrompt: Accomplish more with less. CoRR abs/2309.0 (2023), 1-20.
arXiv:2309.00384 http://arxiv.org/abs/2309.00384

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023. Learning to Compress

Prompts with Gist Tokens. CoRR abs/2304.0 (2023), 1-26. arXiv:2304.08467
http://arxiv.org/abs/2304.08467

Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. 2022. Can Founda-
tion Models Wrangle Your Data? PVLDB 16, 4 (2022), 738-746. arXiv:2205.09911
http://arxiv.org/abs/2205.09911

Stratos Papadomanolakis and Anastassia Ailamaki. 2007. An integer linear
programming approach to database design. In ICDEW. 442-449. https://doi.org/
10.1109/ICDEW.2007.4401027

Pouya Pezeshkpour and Estevam Hruschka. 2023. Large Language Models
Sensitivity to The Order of Options in Multiple-Choice Questions. (2023).
arXiv:2308.11483 http://arxiv.org/abs/2308.11483

Meikel Poess and Dmitry Potapov. 2003. Data Compression in Oracle. In VLDB.
937-947. https://doi.org/10.1016/B978-012722442-8/50087-2

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. 2023. GRIPS:
Gradient-free, Edit-based Instruction Search for Prompting Large Language
Models. In EACL. 3827-3846. https://doi.org/10.18653/v1/2023.eacl-main.277
arXiv:2203.07281

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. 2023. Quanti-
fying Language Models’ Sensitivity to Spurious Features in Prompt Design
or: How I learned to start worrying about prompt formatting. CoRR (2023).
arXiv:2310.11324 http://arxiv.org/abs/2310.11324

Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Ozcan, Vasilis Efthymiou, Ayushi
Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-
narayanan. 2020. ATHENA++: natural language querying for complex nested
SQL queries. Proceedings of the VLDB Endowment 13, 12 (2020), 2747-2759.
https://doi.org/10.14778/3407790.3407858

Richard Shin and Benjamin Van Durme. 2021. Evaluating the Text-to-SQL
Capabilities of Large Language Models. CoRR abs/2204.0, 1 (2021), 1-12. https:
//arxiv.org/abs/2204.00498

Taylor Shin, Yasaman Razeghi, Robert L. Logan, Eric Wallace, and Sameer Singh.
2020. AUTOPROMPT: Eliciting Knowledge from Language Models with Auto-
matically Generated Prompts. In EMNLP. 4222-4235. https://doi.org/10.18653/
v1/2020.emnlp-main.346 arXiv:2010.15980

Tarique Siddiqui, Saehan Jo, Wentao Wu, Chi Wang, Vivek Narasayya, and Surajit
Chaudhuri. 2022. ISUM: Efficiently Compressing Large and Complex Workloads
for Scalable Index Tuning. Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (2022), 660-673. https://doi.org/10.1145/3514221.
3526152

Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Sam
Madden, and Mourad Ouzzani. 2021. Rpt: Relational pre-trained transformer is
almost all you need towards democratizing data preparation. PVLDB 14, 8 (2021),
1254-1261. https://doi.org/10.14778/3457390.3457391 arXiv:2012.02469
Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou,
Xia Hu, and Anshumali Shrivastava. 2023. Compress, Then Prompt: Improving
Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt. (2023),
1-21. arXiv:2305.11186 http://arxiv.org/abs/2305.11186

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev.
2020. Spider: A large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-SQL task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2018. 3911-3921.
https://doi.org/10.18653/v1/d18-1425 arXiv:1809.08887

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. 2024.
Large Language Models are not Robust Multiple Choice Selectors. In ICLR. 1-14.
arXiv:2209.15093 http://arxiv.org/abs/2209.15093

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.0, 1 (2017), 1-12. arXiv:1709.00103 http://arxiv.org/abs/1709.00103

https://arxiv.org/abs/2309.00841
http://arxiv.org/abs/2309.00841
https://doi.org/10.1016/j.datak.2012.11.001
https://doi.org/10.1145/376284.375693
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.1145/564691.564747
https://doi.org/10.1145/564691.564747
https://arxiv.org/abs/2305.05176
http://arxiv.org/abs/2305.05176
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://arxiv.org/abs/2205.12548
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://arxiv.org/abs/2010.12773
https://doi.org/10.1007/978-3-319-09465-6
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://arxiv.org/abs/2106.01065
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2308.15363
https://doi.org/10.1145/2939672.2939867
https://doi.org/10.1145/2939672.2939867
https://arxiv.org/abs/1602.04256
https://arxiv.org/abs/2304.12512
http://arxiv.org/abs/2304.12512
https://doi.org/10.1145/3318464.3389734
https://doi.org/10.1109/ICDE.2004.1320034
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://arxiv.org/abs/2310.05736
https://arxiv.org/abs/2308.08758
http://arxiv.org/abs/2308.08758
http://arxiv.org/abs/2308.08758
https://doi.org/10.1007/978-3-540-85654-2_71
https://arxiv.org/abs/2309.00384
http://arxiv.org/abs/2309.00384
https://arxiv.org/abs/2304.08467
http://arxiv.org/abs/2304.08467
https://arxiv.org/abs/2205.09911
http://arxiv.org/abs/2205.09911
https://doi.org/10.1109/ICDEW.2007.4401027
https://doi.org/10.1109/ICDEW.2007.4401027
https://arxiv.org/abs/2308.11483
http://arxiv.org/abs/2308.11483
https://doi.org/10.1016/B978-012722442-8/50087-2
https://doi.org/10.18653/v1/2023.eacl-main.277
https://arxiv.org/abs/2203.07281
https://arxiv.org/abs/2310.11324
http://arxiv.org/abs/2310.11324
https://doi.org/10.14778/3407790.3407858
https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2204.00498
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://arxiv.org/abs/2010.15980
https://doi.org/10.1145/3514221.3526152
https://doi.org/10.1145/3514221.3526152
https://doi.org/10.14778/3457390.3457391
https://arxiv.org/abs/2012.02469
https://arxiv.org/abs/2305.11186
http://arxiv.org/abs/2305.11186
https://doi.org/10.18653/v1/d18-1425
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2209.15093
http://arxiv.org/abs/2209.15093
https://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

	Abstract
	1 Introduction
	2 Formal Model
	3 System Overview
	3.1 System Context
	3.2 Main Algorithm

	4 Ranking Prefixes
	5 ILP Transformation
	5.1 Variables
	5.2 Constraints
	5.3 Objective Function
	5.4 Extracting Solution

	6 Optimizations
	6.1 Merging Columns
	6.2 Greedy Algorithm
	6.3 Value Hints

	7 Formal Analysis
	7.1 Correctness
	7.2 Complexity

	8 Experimental Results
	8.1 Experimental Setup
	8.2 Comparing Compression Methods
	8.3 Compression versus LLM Accuracy
	8.4 Further Analysis

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

