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ABSTRACT

We demonstrate A-Tune, a tool that leverages Large Language
Models (LLMs) for automated, workload-adaptive database sys-
tem tuning. A-Tune harnesses the ability of LLMs to process and
comprehend arbitrary textual data in a zero-shot manner, employ-
ing a workload-adaptive optimization approach. Given a database
system, the hardware specifications, and a set of queries, A-Tune
generates prompts to retrieve configuration recommendations for
the tuning knobs and the physical design, tailored to the specific
system and workload. Our framework utilizes a workload com-
pression approach that extracts and includes in the prompt only
the most insightful workload characteristics, while the prompt
size can be adjusted by a user-defined token budget. Utilizing the
zero-shot capabilities of LLMs, A-Tune outperforms other LLM and
machine learning-enhanced database tuning baselines, which rely
on time-consuming tuning and training phases, as well as expensive
hardware, such as GPUs. During demonstration, users will be able
to experiment with A-Tune to tune Postgres and MySQL, as well as
explore and modify the configurations retrieved by the LLM in an
interactive way through A-Tune’s user interface.
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1 INTRODUCTION

The database system research community has invested significant
effort into developing automated configuration tuning solutions.
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Tuning a database system is hard; it demands extensive expertise
and a profound understanding of the system’s internals, and the
workload. A DBA must determine which tuning knobs to adjust and
the manner of their modification, as well as the physical design deci-
sions. This complexity amplifies when managing multiple systems
within a vast software stack, as even similar database systems can
differ in their internals, tuning knobs, and APIs. Machine learning
has been proven a useful tool to automate database systems tuning.
Through the last years, numerous attempts have been made to uti-
lize machine learning in query optimization [1, 3, 6], configuration
tuning [7, 9], learned indexes [4], and index recommendations [2].
While these solutions have demonstrated promising results, many
lack generality and automation. Most machine-learning-enhanced
solutions require substantial integration effort and the development
of different connectors for integration with the target database sys-
tem. Even though some solutions offer a more generic API, they
still demand time-consuming training periods, excessive training
data, and expensive hardware (like GPUs) for training their models.

Since ChatGPT’s first public release in late 2022, Large Language
Models (LLMs) have gained immense attention from both industry
and academia. Their capability to analyze arbitrary, unstructured
text, extract insights, and produce meaningful responses to user
queries has been a crucial factor in their fast-paced popularity.
Consequently, LLMs have emerged as handy tools in addressing
numerous challenges. Recent research highlights their utility across
diverse domains in database systems, ranging from tuning [5] to
code generation [8].

In this demo, we present A-Tune, a framework that explores the
ability of LLMs to automatically tune a database system. A-Tune,
harnesses LLMs’ abilities in analyzing a wide spectrum of text in
order to tune the target database system, in a workload-adaptive
manner. A-Tune composes prompts incorporating system-specific
details, like hardware specifications, along with query-specific in-
formation. Impressively, the LLM can distill valuable insights from
the incorporated plans and suggest configuration modifications
to investigate potential enhancements in query execution, such
as tuning knob configurations and physical design decisions. Our
experimental evaluation illustrates A-Tune’s ability to significantly
enhance query execution speeds, and outperform prior tools that
use machine learning and language models for database system
tuning, like GPTuner [5], DB-Bert [8] and UDO [9] in both opti-
mization duration and overall workload execution across several
use-cases.

2 SYSTEM OVERVIEW

As depicted in Figure 1, A-Tune consists of three components: the
Renderer (prompt generator), the Workload Compressor and the
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Configuration Executor. We discuss the details of each individual
component below.

Tuning Pipeline. A-Tune takes as input three parameters: a work-
load ‘W, a hardware specification H and a database system D. First,
it passes these parameters to the Renderer, which transforms and
embeds them into a prompt that describes the workload, the system
and the hardware to the LLM. Next, it issues a query to the LLM
n times, in order to retrieve n responses, each one including one
configuration set ¢ € C. These configurations are usually almost
identical, with some slight differences depending on the degree
of randomization of the LLM. Each configuration set ¢ contains
a set of SQL commands, compliant with the target database D.
For instance, if the target system is Postgres, ¢ will consist of a
list of "CREATE INDEX" and "ALTER SYSTEM SET $param_name =
$value" commands. Finally, the configuration superset C is passed
to the Configuration Executor, which will incrementally try out all
configurations and find the optimal one.

Workload Compressor. The motivation of developing a compres-
sion method is the desired API cost savings by reducing the prompt
size. The key idea behind the compressor, is the intuition that LLMs
can reason and understand the same input in multiple different
formats, if they are provided with the right explanation about the
given format. For instance, to describe two SQL queries that both
include the join A = B, it is sufficient for the LLM to provide it with
the information that A = B appears in two queries. Then, we can
safely discard the rest of the query text, like SELECT, FROM, JOIN and
other clauses, and reduce the final prompt size. Using this approach,
we can compress redundant information that appears in multiple
queries into a much smaller text snippet. By describing the seman-
tics of the compressed format comprehensively in our prompt, we
provide the LLM with the same information, by minimizing the cost
of the API call. The workload compressor takes as input a work-
load ‘W, consisting of a set of queries. It analyzes the queries by
decomposing them into individual structural components, like join
or filter conditions. As a condition might appear in multiple queries,
the first step is to keep track of the condition frequencies using a
frequency table. Next, using that frequency table, we can pick the
most informative conditions to include in the prompt, according
to a user-defined token budget B. To achieve that, we model this
process as a Knapsack problem, which we solve by using Integer
Linear Programming (ILP). The cost of each condition to be added in
the prompt, is modeled as its number of tokens, and the value as the
estimated cost retrieved by the query optimizer of the target system.
The cost is obtained by the output of the EXPLAIN clause, which
contains the estimated cost of each operation (e.g. join or filter).
We use the optimizer cost estimates because we want to prioritize
and optimize for the most computationally expensive conditions,
when the token budget is limited. If a condition appears in multiple
queries with different costs in each query, we use the average cost
retrieved as the value. The final output of the compressor is a set
of selected conditions, which is passed to the Renderer for the final
prompt generation.

Renderer. After compressing the workload, the Renderer takes
the selected condition subset and embeds it to a prompt template,
which also includes the target database system O and the hardware
specifications H. Finally, it outputs a prompt #, which will be sent
to the LLM API to retrieve the configurations. The prompt template
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instructs the LLM to return the configuration set using the SQL
syntax of the target system, consisting of tuning knob changes and
index creation commands.

Configuration Executor. A-Tune can obtain multiple configura-
tion sets, and try out all of them in order to find the optimal one.
The naive approach would be to evaluate all configurations, keep-
ing the one that achieves the minimum execution time. However,
there might be configurations that run disproportionately slower
than the more efficient ones. For instance, in the case of TPC-H on
Postgres, an effective configuration will lead to a total execution
time of ~16 seconds. On the other hand, there are some less efficient
configurations that might lead to more than an hour of execution,
for instance, if they miss one or more indexes. In such a case, the
system will suffer from excessive execution overheads, trying out
configurations that are far from optimal. A-Tune’s Configuration
Executor component ensures that good configurations are found
faster, without spending time in evaluating the whole workload
using an inefficient one. To achieve that, we employ a configuration
evaluation approach, which tries out different configurations in a
round-robin fashion. Given an initial timeout ¢, A-Tune will start
evaluating each configuration for ¢ seconds. After ¢ seconds, the
execution gets interrupted, and the next configuration will be eval-
uated. Once all configurations have been tested for t seconds, the
second round will start, and ¢ will become 2t in round 2, 4t in round
3, and so on, following a geometric progression. The last round
of the pipeline will be the one in which at least one configuration
completes. For all completed configurations in the final round, we
keep the one that achieves the minimum execution time.

As mentioned before, the retrieved configurations might include
recommended indexes, which need to be materialized in each con-
figuration evaluation phase. In order to minimize index creation
time in each round, we interleave index creation with query exe-
cution in each configuration evaluation stage. Before starting the
evaluation, A-Tune will analyze the workload and extract query/in-
dex associations by analyzing the join and filter conditions from
the logical query plans. Thus, each index is created lazily, only
before the execution of a query that might use that index. Using
this approach, we make sure that when the timeout ¢ is exceeded
during some round, the time spent on index creation is minimized,
creating only the indexes required by the queries we have executed
in the current round.

3 EXTRACT OF EXPERIMENTAL EVALUATION

Due to space limitations, we present a small extract of our experi-
mental evaluation.

Setup. All the experiments were ran on a EC2 p3.2xlarge instance,
using the Deep Learning Base GPU AMI on Ubuntu 20.04. We use
the TPC-H benchmark of the 1GB scale, and the Join Order Bench-
mark (JOB). We use A-Tune to tune Postgres 12.0 and MySQL 8.0.
In all experiments, we compare A-Tune with DB-Bert, GPTuner,
and UDO. We compare the optimization time needed by all three
approaches, as well as the workload execution time. UDO is the
only system among A-Tune’s competitors that supports index cre-
ation. Thus, we include it in both scenarios investigate whether
additional index creation would lead to further performance gains.
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Workload Compression

Workload Compressor (ILP) Conditions

mc.company_type_id = ct.id
mc.movie_id = t.id

> —> o T
t.id = mc.movie_id
mi_idx.info_type_id = it.id

Rendering

Recommend configuration parameters for Postgres to optimize the
system's performance. Include parameters of the following
categories: 1. system-level configurations 2. memory 3. query
optimization and 4. index recommendations. Provide a response
that consists only from a comma-separated list of SQL commands.

The join conditions are the following:
movie_info_idx.info_ type_id = info_type.id
movie_companies.company_ type_id = company type.id
movie_companies.movie_id = title.id

title.id = movie_companies.movie_id

The workload runs on a system with the following specs: memory:
61GiB cores: 8

Configuration Evaluator

Recommended Knobs

"ALTER SYSTEM SET shared_buffers = '15GB'; ",

"ALTER SYSTEM SET work_mem = '1GB'; ",

"ALTER SYSTEM SET random page_cost = 1.1; ",

"ALTER SYSTEM SET seq_page_cost = 1.0; ",

"ALTER SYSTEM SET cpu_tuple_cost = 0.01; ",

"CREATE INDEX idx_cast_info_role_id ON cast_info(role_id); ",

"CREATE INDEX idx_char_name_id ON char name(id); ",
"CREATE INDEX idx_aka_title_movie_ id ON aka_title(movie_ id); ",
"CREATE INDEX idx_complete_cast_movie_id ON

complete_cast(movie_id);"

Figure 1: A-Tune Architecture

Experiments. Figure 2 depicts the results of our experimental eval-
uation. The X-axis depicts the optimization time, while the Y-axis
the execution time of the best configuration found at each point
of the plot. GPTuner and UDO take as input a timeout per trial
(workload execution). For each experiment, we set this timeout to
three times the worst execution time found by A-Tune. The dashed
lines in the plot indicate failed execution attempts because of the
timeout.

We ran DB-Bert, GPTuner, and UDO for one hour in the first
two experiments (original indexes) and for two hours in the third
experiment (no initial indexes).

In the first experiment (Figures 2a and 2b), we tune Postgres
and MySQL using the default TPC-H indexes. Thus, we do not
perform any additional index creation. Next (Figure 2c), we tune
Postgres for the Join Order Benchmark, without any indexes in the
beginning. In the first two cases, we can see that A-Tune is able
to find an effective configuration within the same tuning time as
its competitors, while substantial improvements are shown in the
second scenario, in which A-Tune recommends indexes. As we can
see in both plots, A-Tune’s main advantage is the fact that it does
not have any initial overhead due to training, in contrast to the
baselines. Instead, it retrieves the configurations directly from the
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Figure 2: Comparison of A-Tune to its Baselines

LLM and evaluates them immediately. By describing the configura-
tions comprehensively to the LLM using our workload compression
approach presented in Section 2, A-Tune retrieves the most efficient
configuration fast in the majority of our experiments. However, as
shown in Figures 2a and 2b, A-Tune achieves an almost identical
performance with GPTuner and DB-Bert, both in optimization and
workload execution time. In the scenarios in which there are no ini-
tial indexes, A-Tune achieves significantly better performance than
GPTuner and DB-Bert which do not create indexes, and similarly
for UDO.

4 DEMONSTRATION

Our demonstration consists of two parts. First, visitors will be able
to experiment with the prompt generator. Second, after generating
one or more prompts, users will be able to tune the target database
system using the configurations obtained from the previous step.

Prompt Generation. During this phase of the demonstration,
users will be asked to experiment with the configuration gener-
ation component of A-Tune. Using this component, users will be
able to interact with A-Tune, and generate different configuration
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A-Tune Configuration
Generator

Configuration Generator

Generate configurations for a given

LLM Settil
erines benchmark and database system.

Choose a GPT Version €]
Choose a database system, benchmark and the number of

4 .
8Pt tokens from the left

APl Key Generating configurations...
“q
"condition" :

Test APl Key "partsupp.ps_partkey = part.p_partkey"

"frequency” : 3

Database Systems "value" : 1871290733.43

Choose a Database System

(B
Postgres v {
"condition" :

"orders.o_custkey = customer.c_custkey"
Benchmark
"frequency" : 8

Choose a Benchmark "value" : 19482993.74

TPCH v )

Number of Tokens (€] "condition" :

40 R "lineitem.1_orderkey = orders.o_orderkey"

"frequency" : 7

Extract Conditions "value" : 286462.03

Generate Prompt -t

Figure 3: A-Tune’s Configuration Generator UI

recommendations by modifying multiple parameters, including the
target DBMS, the benchmark, and the number of tokens. By se-
lecting different parameter combinations, users will be exploring
the extracted conditions from the selected workload, and the gen-
erated prompts, as well as obtaining configurations for the target
system from the LLM. Figure 3 depicts an instance of the condition
extraction phase of the configuration generator, where users can
explore each extracted condition, the frequency of the condition
among the queries, as well as the average cost estimation of the
query optimizer (which serves as the value for the ILP solver).
Tuning,. In this phase, users will be allowed to tune the target
system using the configurations created in the previous step. As
depicted in Figure 4, users can interact with the Ul by modifying
multiple options. For instance, they can enable or disable physi-
cal design tuning (Create Indexes), and they can switch between
creating all the indexes at the beginning of each configuration
evaluation (Create All Indexes First), or, enabling the query sched-
uler which interleaves query execution and index creation (Enable
Query Scheduler). Furthermore, during configuration evaluation,
users will be able to see the current best configuration and its exe-
cution time through a live plot that is being updated online, during
the evaluation phase.

5 CONCLUSIONS & RELATED WORK

The proposed demonstration presents A-Tune, a tool that utilizes
LLMs to provide universal, workload adaptive database system tun-
ing. A-Tune is not the first approach that utilizes NLP and LLMs to
auto-tune a database system. DB-Bert [8] is a promising approach
that tunes a database system by extracting information from its
manual. On the other hand, GPTuner [5], provides an LLM-based
tuning approach using Bayesian Optimization. Unfortunately, none
of these systems support index recommendations, making it impos-
sible to optimize a workload further, especially in the absence of
initial indexes. UDO [9] is a universal tuning approach that sup-
ports index creation but requires excessive tuning and training time,
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1

L]
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Duration (s)

Start Tuning

Tuning Completed

Figure 4: A-Tune’s Tuning UI

making it particularly slow. A-Tune tunes simultaneously system
configurations, as well as index recommendations. Our experimen-
tal evaluation showcases, A-Tune tunes the target database system
fast using a few-shots approach, while it matches the performance
of all of its competitors in the presence of indexes, and outperforms
all of them when there are no indexes both in optimization and
execution time.
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