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Abstract—Optimal transport (OT) serves as a natural frame-
work for comparing probability measures, with applications
in statistics, machine learning, and applied mathematics. Alas,
statistical estimation and exact computation of the OT distances
suffer from the curse of dimensionality. To circumvent these
issues, entropic regularization has emerged as a remedy that
enables parametric estimation rates via plug-in and efficient
computation using Sinkhorn iterations. Motivated by further
scaling up entropic OT (EOT) to data dimensions and sample
sizes that appear in modern machine learning applications, we
propose a novel neural estimation approach. Our estimator
parametrizes a semi-dual representation of the EOT distance by
a neural network, approximates expectations by sample means,
and optimizes the resulting empirical objective over parameter
space. We establish non-asymptotic error bounds on the EOT
neural estimator of the cost and optimal plan. Our bounds
characterize the effective error in terms of neural network
size and the number of samples, revealing optimal scaling laws
that guarantee parametric convergence. The bounds hold for
compactly supported distributions, and imply that the proposed
estimator is minimax-rate optimal over that class. Numerical
experiments validating our theory are also provided.

I. INTRODUCTION

Optimal transport (OT) theory [1] provides a natural frame-
work for comparing probability distributions. Specifically,
given two Borel probability measures p,v on R?, the OT
problem between them with cost function c is defined as

/ c(z,y)dm(z,y) (D
Re x R4

where TI(p,v) is the set of couplings between p and v. The
special case is the p-Wasserstein distance for p € [1,00), is
given by Wy, (i, v) = (OT s (1, u))l/p. The Wasserstein
distance has found applications in various fields, encompassing
machine learning [2]-[4], statistics [S]-[7], and applied math-
ematics [8], [9]. This widespread applicability is driven by
an array of desirable properties that the Wasserstein distance
possesses, including its metric structure (W, metrizes weak
convergence plus convergence of p-th moments), a convenient
dual form, robustness to support mismatch, and a rich geom-
etry it induces on a space of probability measures.

Despite the aforementioned empirical progress, the OT
problem suffers from the statistical and computational hard-
ness issues. The estimation rate of the OT cost between
distributions on R? is generally n~'/¢ (without further
assumptions) [10], which deteriorates exponentially with
dimensions—a phenomenon known as the curse of dimension-
ality. Computationally, OT is a linear program (LP), solvable

OT.(u,v):= inf

mell(p,v)

Ziv Goldfeld
School of Electrical and Computer Engineering
Cornell University
Email: goldfeld@cornell.edu

in O(n?log(n)) time for distribution on n points using interior
point methods or min cost flow algorithms [11]. However, as
statistical considerations mandate n to scale exponentially with
d to get accurate estimates, the LP computational paradigm
becomes infeasible when dimension is large. To circumvent
these issues, entropic regularization has emerged as a popular
alternative [12]

OT:(p,v) := inf

/cdw +eDrL(m|lp@v), (2)
mell(p,v)

where Dk is the Kullback-Leibler divergence and ¢ > 0
is a regularization parameter. Empirical estimation of EOT
enjoys the parametric n~'/2 convergence rate in arbitrary
dimension, under several settings [13], [14]. Computationally,
EOT between discrete distributions can be efficiently solved
via the Sinkhorn algorithm [12] in O(n?) time. However, even
this quadratic time complexity is prohibitive when dealing
with large and high-dimensional datasets that appear in mod-
ern machine learning tasks. Motivated to scale up EOT to
such regimes, this work develops a novel neural estimation
approach that is end-to-end trainable via backpropagation,
compatible with minibatch-based optimization, and adheres to
strong performance guarantees.

A. Contributions

We focus on the nominal case of the quadratic EOT dis-
tance, i.e., c(x,y) = %HCC—Z/H2 Thanks to the EOT semi-dual
form, we have

OTo(u,v) = sup / sodu+/ e“fdv,  (3)
pEL(p) JRY R¢
where ¢ is (c,¢e)-transform of ¢ with respect to (w.r.t.)
the cost function. We study regularity of optimal dual po-
tentials ¢ and show that they belong to a Holder class of
arbitrary smoothness. Leveraging this, we define our neural
estimator (NE) by parametrizing the dual potential using a
neural network (NN), approximating expectations by sample
means, and optimizing the resulting empirical objective over
the NN parameters. Our approach yields not only an estimate
of the EOT distance, but also a neural EOT plan that is
induced by the learned NN. As the estimator is trainable via
gradient methods using backpropagation and minibatches, it
can seamlessly integrated into downstream tasks as a loss, a
regularizer, or a discrepancy quantification module.

We provide formal guarantees on the quality of the NE
of the EOT cost and the corresponding transportation plan.
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Our analysis relies on non-asymptotic function approximation
theorems and tools from empirical process theory to bound
the two sources of error involved: function approximation and
empirical estimation. Given n samples from the population
distributions, we show that the effective error of a NE realized
by a shallow NN of k neurons scales as

0 (poly(l/s) (k_1/2 + n_l/Q)) )

with the polynomial dependence on 1/e explicitly charac-
terized. This bound on the EOT cost estimation error holds
for arbitrary, compactly supported distributions. This stands
in struck contrast to existing neural estimation error bounds
for other divergences [15]-[18], which typically require strong
regularity assumptions on the population distributions (e.g.,
Holder smoothness of densities). This is unnecessary in our
setting thanks to the inherit regularity of dual EOT potentials
for smooth cost functions, such as our quadratic cost.

The above bound reveals the optimal scaling of the NN and
dataset sizes, namely k& =< n, which achieves the parametric
convergence rate of n~'/2 and guarantees minimax-rate op-
timality of our NE. The explicitly characterized polynomial
dependence on ¢ in our bound matches the bounds for EOT
estimation via empirical plug-in [14], [19]. We also note
that our neural estimation results readily extend to the EOT
problem with general smooth cost functions. The developed
NE is empirically tested on synthetic data, demonstrating its
scalability to high dimensions and validating our theory.

B. Related Literature

Neural estimation is a popular approach for enhancing
scalability. Prior research explored the tradeoffs between
approximation and estimation errors in non-parametric re-
gression [20]-[22] and density estimation [23], [24] tasks.
More recently, neural estimation of statistical divergences
and information measures has been gaining attention. The
mutual information NE (MINE) was proposed in [25], and
has seen various improvements since [26]—-[29]. Extensions of
the neural estimation approach to directed information were
studied in [30]-[32]. Theoretical guarantees for f-divergence
NEs, accounting for approximation and estimation errors, as
we do here, were developed in [16], [17] (see also [15] for
a related approach based on reproducing kernel Hilbert space
parameterization). Neural estimation of the Stein discrepancy
and the minimum mean squared error were considered in
[33] and [34], respectively. Neural methods for approximate
computation of the Wasserstein distances have been considered
under the Wasserstein generative adversarial network (GAN)
framework [2], [35], although these approaches are heuristic
and lack formal guarantees. Utilizing entropic regularization,
[36] studied a score-based generative neural EOT model, while
an energy-based model was considered in [37].

II. BACKGROUND AND PRELIMINARIES
A. Notation

Let || - || and (-, -) designate Euclidean norm and the inner
product in R?, respectively. For 1 < p < oo, the LP space

over X C R? with respect to (w.r.t.) the measure y is denoted
by LP(u), with [|f]lp. = ( [y |f\pd,u)1/p representing the

norm. We use || - ||co,x for standard sup-norm on X C R?
(i.e., when p = o00). Slightly abusing notation, we also
set ||X|| == sup,cx ||*[cc. The class of Borel probability

measures on X C RY is denoted by P(X). For p,v € P(X)
with p < v, i.e., p is absolutely continuous w.r.t. v, we use
Z—Z for the Radon-Nikodym derivative of 1 w.r.t. v. The subset
of probability measures that are absolutely continuous w.r.t.
the Lebesgue measure is denoted by Pac(X). We use <, to
denote inequalities up to constants that only depend on x;
the subscript is dropped when the constant is universal. For
a,b € R, we write @ Vb = max{a,b} and a A b = min{a, b}.

Some additional notation used for our derivations are as
follows. For any multi-index o = (a1, ...,a4) € N¢ with
la] = Z?:l a; (Ng = NU{0}), define the differential opera-
tor D* = ——2" - with D°f = f. We write N(6, F,d)
for the (5—covlering ‘number of a function class F wurt. a
metric d, and Npj(d,F,d) for the bracketing number. For
an open set U C RZ b > 0, and an integer m > 0, let
an(u) = {f € C"L(u) P MaAXa:jal<m ||Daf||oo7l,{ < b}
denote the Holder space of smoothness index m and radius
b. The restriction of f : R?Y — R to a subset X C RY is
denoted by f’ o

B. Entropic Optimal Transport

We briefly review basic definitions and results concerning
EOT problems. Let X C RY, given distributions (p,v) €
P(X) x P(Y) and a cost function ¢ : X x ) — R, the primal
EOT formulation is obtained by regularizing the OT cost by
the KL divergence,

OT:(p,v) == inf

/ cdr + eDyL(m|lp@v), (5)
mell(p,v) XXy

where € > 0 is a regularization parameter and Dy (p||v) =
[ log (Z—’;) dp if p < v and +oo otherwise. Classical OT [1]
is obtained from (5) by setting ¢ = 0. When ¢ € L'(u ® v),
EOT admits the dual and semi-dual formulations, which are,
respectively, given by

OT(v)= s

/godu+/wdu
(p)eL (u)x L1 (v) J X y

- 5/ e¢®5)7cdu QU +e, (6)
X XY

= sup / wdp + / P“ed, @)
peLM(p) JX hY

where we have defined (p @ ¥)(z,y) = p(z) + ¥(y) and the
(¢, €)-transform of ¢ is given by

¢ = —¢clog (/X exp (M) d#(iL’)) :

There exist functions ((, 1) that achieve the supremum in (6),
which we call EOT potentials. These potentials are almost
surely (a.s.) unique up to additive constants, i.e., if (@,) is
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another pair of EOT potentials, then there exists a constant
a € R such that ¢ = ¢ + a p-a.s. and ’lZJ =1 —a v-as.

A pair (p,9) € L*(u) x L'(v) are EOT potentials if and
only if they satisfy the Schrodinger system

e(@)+ () —e(e.)
/ e < du(x) =1 v-as.
X

eO+Y(y)—c(,y) (8)
/ e < dv(y)=1 p-as.
y

Furthermore, ¢ solves the semi-dual from (7) if an only if
(p, ™) is a solution to the full dual in (6). Given EOT
potentials (, 1)), the unique EOT plan can be expressed in
their terms as

PeBY—c

dni =€ = du®u.

Subject to smoothness assumptions on the cost function and
the population distributions, various regularity properties of
EOT potentials can be derived; cf., e.g., [38, Lemma 1].

III. NEURAL ESTIMATION OF EOT COST AND PLAN

We consider compactly supported distributions (u,v) €
P(X) xP(Y) and the quadratic cost function ¢(z, y) = ||z —
y||> (henceforth dropping the subscript c). For simplicity,
further assume that X',) C [~1,1]%, although our results
readily extend to arbitrary compact supports. We next describe
the NE for the EOT distance and plan, followed by non-
asymptotic performance guarantees for both objects. All proofs
are deferred to the supplement [39].

A. EOT Neural Estimator

For (pu,v) € P(X) x P(Y), let X" = (X1, --,Xp)
and Y™ := (Y7,---,Y;,) be n independently and identically
distributed (i.i.d.) samples from p and v, respectively. Further
suppose that the sample sets are independent of each other.
Denote the empirical measures induced by these samples as
firn =n"1 370, 0x, and D ="t 300 Oy,

Our NE is realized by a shallow ReLU NN (i.e., a single
hidden layer) with k& neurons, which defines the function class

f:R¥SR:

k
f@)=" Big ((wi, ) +b;) + (wo, z) + bo,
-Fk,d(a) = =1 P

1255k 18| < 20k, JJwolly <a

[bol < @, max flwifl, V [bi] <1

©))
where a € R>q specifies the parameter bounds and ¢ : R —
R>o : 2 = 2V 0 is the ReLU activation function, which acts
on vectors component-wise.

We parametrize the semi-dual form of OT®(u,v) (see (7))
using a NN from the class Fj, q(a) and replace expectations
with sample means. Specifically, the EOT distance NE is

¢ 1 <
OT, ,(X™Y") = ax — X;
hal )= e o ;f( )
o1 X:) = 31X = Y2
—SZIOg<Zexp(f( ) =5l fll ) )
ni n = €

(10)
For any NN f € Fj q(a), we define the induced neural plan

exp (f(z)f%g\lmfyl\z)

2)—Ll|lz—yll2
v exp (LY g (a)
(11)
Upon computing the NE in (10), the neural plan dr§ induced

by an optimal NN f, € F, 4(a) serves as an estimate of the
true optimal plan 7§ that achieves the infimum in (5).

dn(z,y) = dp @ v(z,y).

B. Performance Guarantees

We provide formal guarantees for the neural estimator of
the EGW cost and the neural transportation plan defined
above. Starting from the cost estimation setting, we establish
two separate bounds on the effective (approximation plus
estimation) error. The first is non-asymptotic and presents
optimal convergence rates, but calibrates the NN parameters to
a cumbersome dimension-dependent constant. Following that,
we present an alternative bound that avoids the dependence
on the implicit constant, at the expense of a polylogarithmic
slow-down in the rate and a requirement that the NN size k
is large enough.

Theorem 1 (EOT cost neural estimation; bound 1). There
exists a constant C' > 0 depending only on d, such that setting
a=C(1+¢e'=*) with s = |d/2] + 3, we have

sup E Hérl';a(X”,Y") — 0T (p, V)H
() EP(X)XP(Y)

1
s (14 )
gL2
ind1d (16— ) VELad
T e Ut )
(12

(NI

The proof of Theorem 1 is given in Appendix A-A. We
establish regularity of semi-dual EOT potentials (namely,
(p, p>%) in (7)), showing that they belong to a Holder class of
arbitrary smoothness. This, in turn, allows accurately approx-
imating these dual potentials by NNs from the class Fy, q(a)
with error O(k~'/2), yielding the first term in the bound.
To control the estimation error, we employ standard maximal
inequalities from empirical process theory along with a bound
on the covering or bracketing number of (c, ¢)-transform of
the NN class. The resulting empirical estimation error bound
comprises the second term on the RHS above.

Remark 1 (Almost explicit expression for C'). The expression
of the constant C in Theorem 1 is cumbersome, but can
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nonetheless be evaluated. Indeed, one may express C =
CsCycq, with explicit expressions for Cy and ¢q given in (19)
and (22), respectively, while Cs is a combinatorial constant
that arises from the multivariate Faa di Bruno formula (cf.
(36)-(37)). The latter constant is quite convoluted and is the
main reason we view C as implicit.

Our next bound circumvents the dependence on C' by letting
the NN parameters grow with its size k. This bound, however,
requires k to be large enough and entails additional polylog
factors in the rate. The proof is similar to that of Theorem 1
and given in Appendix A-B.

Theorem 2 (EOT cost neural estimation; bound 2). Let € > 0
and set my, = logk V 1. Assuming k is sufficiently large, we
have

sup HOTkmk(X" Y"™)— 0T (s, )H
(k,v)EP(X)XP(Y)

1 1
< (ie )
cl$]+2

+min{(1+€[;)(logk) \ﬂogk} —3,
(13)

Remark 2 (NN size). We can provide a partial account of the
requirement that k is large enough. Specifically, for the bound
to hold we need k to satisfy logk > C(1 + '=%), where C
is the constant from Theorem 1. It is, however, challenging to
quantify the exact threshold on k required for the theorem to
hold due to the implicit nature of C.

Lastly, we move to account for the quality of the neural
plan that is induced by the EOT NE (see (11)) by comparing
it, in KL divergence, to the true EOT plan 7.

Theorem 3 (EOT ahgnmcnt plan neural cstrmatl(gn) Suppose
that ;i € Pac(X). Let f, be a maximizer of OT, (X", Y™)
from (10), with a as defined in Theorem 1. Then, the induced
neural plan w}* from (11) satisfies

E [DKL (Wi T

+min{1+ (331%,(1—# Ld1J+3>\/g}n_ .
el elz
(14)

[N

g

where ¢

is optimal coupling of EOT problem (5).

Theorem 3 is proved in Appendix A-C. The key step in
the derivation shows that the KL divergence between the
alignment plans, in fact, equals the gap between the EOT cost
OTF and its neural estimate from (10), up to a multiplicative €
factor. Having that, the result follows by invoking Theorem 1.

Remark 3 (Extension to Sigmoidal NNs). The results of
this section readily extend to cover sigmoidal NNs, with a
slight modification of some parameters. Specifically, one has
to replace s from Theorem I with § = |d/2]|+ 2 and consider

the sigmoidal NN class, with nonlinearity ¢ (z) = !

(instead of ReLU) and parameters satisfying

(14e)

1
, | < k2 | < 2ak~!
1r;r;‘igxk||wl||1 Vbl < k2 logk, 1r£iagxk|ﬁl| < 2ak™",

lbol < a, [Jwoll, = 0.

The proofs of Theorems 1-3 then go through using the second
part of Proposition 10 from [17], which relies on controlling
the so-called Barron coefficient (cf. [40]-[42]).

Remark 4 (Convergence rates of Sinkhorn’s algorithm). Neu-
ral estimation is proposed as a more scalable alternative
to Sinkhorn’s algorithm for computing the EOT cost/plan,
e.g., by enabling the usage of mini-batches. We comment
here on the rate of convergence that the Sinkhorn-based ap-
proach achieves. Denote the output of the Sinkhorn algorithm
runmng on empirical measures, each over m samples, by
o1 (X™,Y™). The effective error can be decomposed as:

OT(p, )| < [OT (1, v) — OT (pt, vn)|
+ |OT(M7M Vn) - OTE(,Una Vn)|7

where first term decays as O(n~2) [14], while the
second exhibits a convergence rate of op(n~') within
op(log(nlog(n))) iterations [43].

|6f|— (X", Yn)

IV. NUMERICAL EXPERIMENTS

This section illustrates the performance of the EOT distance
neural estimator via experiments with synthetic data. Specif-
ically, we compute the estimate from (10) under various set-
tings, allowing a to be unrestricted so as to enable optimization
over the whole parameter space. We train the parameters of
the ReLU network using the Adam algorithm [44]. We use
an epoch number of 20, learning rate 10~ and choose a best
batch size from {2, 4, 8,16, 32,64, 128}. We test our EOT dis-
tance neural estimator by estimating the EOT cost and optimal
plan between uniform and Gaussian distribution in different
dimensions. We consider dimensions d € {1,16, 64,128},
and for each d, employ a ReLU network of size k& €
{16, 64,128,256}, respcctrvcly Accuracy is measured using
the relatrve error {OTk o (XM Y™ — OT ’/OT V),

where OT (1, v) is regarded as the ground truth, which we
obtain by running Sinkhorn algorithm [12] with n = 10,000
samples (which we treat as n — oo as it is x5 more than the
largest sample set we use for our neural estimator). Each of
the presented plots is averaged over 20 runs.

We first consider the EOT distance with ¢ = 0.5 be-
tween two uniform distribution over a hypercube, namely,
p = v = Unif([-1/vd,1/v/d]?). Figure la plots the
EOT neural estimation error versus the sample size n €
{8,16,32,64,128,256,512,1024,2048} in a log-log scale.
The curves exhibit a slope of approximately —1/2 for all
dimensions, which validates our theory. Notably, this rate is
uniform across dimensions, like the bounds from Theorems 1
and 2 suggest.

Next, we test the EOT NE on unbounded measures. To that
end, we set ¢ = (0.5 and take u, v as d-dimensional Gaussian
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Fig. 1: Neural Estimation of EOT distance: (a) Relative error for the case where y = v = Unif ([-1/ Vd,1/V/d)?); (b) Relative
error for p,v as Gaussian distributions with randomly generated mean vectors and covariance matrices; (c¢) Learned neural
plan (in red) versus the true optimal EOT optimal plan (whose density is represented by the back contour lines).

distributions with randomly generated mean vectors and co-
variance matrices. Specifically, the mean vectors are randomly
sampled from d-dimensional standard Gaussian, while the two
covariance matrices are of the form BTB+1/(3d)I,, where 1,
is a d x d identity and B is a matrix whose entries are randomly
sampled from Unif([-1/d,1/d]). Note that the generated
covariance matrix is positive semi-definite with eigenvalues
set to lie in [55, 2]. Figure 1b plots the relative EOT neural
estimation error for this Gaussian setting, again showing a
parametric convergence rate for all considered dimensions.

Lastly, we assess the quality of the neural plan learned
from our NE. Since doing so requires knowledge of the true
(population) optimal plan 75, we consider the EOT distance
between Gaussians, for which a closed form expression for
the optimal plan was derived in [45]. We take ¢ = 0.5,
uw = N(0.5,1), and v = N(0.25,0.25). By Theorem 3.1
of [46], the optimal EOT plan is given by

o (05 1 Bl
* 0.25 )’ \/54—1 0.25

Figure 1c compares the neural coupling learned from our
algorithm, shown in red, to the optimal 75 given above, whose
density is represented by the black contour lines. The neural
coupling is learned using n = 10* samples and is realized by
a NN with k£ = 32 neurons. There is a clear correspondence
between the two, which supports the result of Theorem 3.

V. CONCLUSION

This work proposed a novel neural estimation technique for
the EOT distance with quadratic costs between Euclidean mm
spaces. The estimator leveraged the semi-dual formulation of
EOT. Our approach yielded estimates not only for the EOT
distance value but also for the optimal plan. Non-asymptotic
formal guarantees on the quality of the NE were provided,
under the sole assumption of compactly supported population
distributions, with no further regularity conditions imposed.
Our bounds revealed optimal scaling laws for the NN and

the dataset sizes that ensure parametric (and hence minimax-
rate optimal) convergence. The proposed estimator was tested
via numerical experiments on synthetic data, demonstrating its
accuracy, scalability, and fast convergence rates that match the
derived theory.

Future research directions stemming from this work are
abundant. First, our theory currently accounts for NEs realized
by shallow NNs, but deep nets are oftentimes preferable in
practice. Extending our results to deep NNs should be possible
by utilizing existing function approximation error bounds [47],
although these bounds may not be sharp enough to yield
the parametric rate of convergence. Another limitation of
our analysis is that it requires compactly supported distri-
butions. It is possible to extend our results to distributions
with unbounded supports using the technique from [17] that
considers a sequence of restrictions to balls of increasing
radii. Unfortunately, as in [17], rate bounds obtained from
this technique would be sub-optimal. Obtaining sharp rates
for the unboundedly supported case would require new ideas
and forms an interesting research direction. Lastly, while EOT
serves as an important approximation of OT, neural estimation
of the OT distance itself is a challenging and appealing
research avenue. One may attempt to directly approximate this
objective by NNs, but dual OT potential generally lack suffi-
cient regularity to allow quantitative approximation bounds.
Assuming smoothness of the population distributions, and
employing estimators that adapt to this smoothness, e.g., based
on kernel density estimators or wavelets [48], [49], may enable
deriving sharp rates of convergence.
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