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Abstract—Optimal transport (OT) theory play a central
role in the design and analysis of various machine learning
algorithms. As such, approximate computation of the OT
cost between large-scale dataset via the popular Sinkhorn
algorithms forms a basic primitive. However, this approach
may lead to privacy violations when dealing with datasets that
contain sensitive information. To address this predicament,
we propose a differentially private variant of the Sinkhorn
algorithm and couple it with formal guarantees by deriving
its privacy utility tradeoff (PUT). To that end, the Sinkhorn
algorithm is treated as a block coordinate descent algorithm
scheme, which we privatize by injecting Gaussian noise to
the iterates. We establish a linear convergence rate for our
private Sinkhorn algorithm and analyze its privacy by con-
trolling the Rényi divergence between outputs corresponding
to neighboring input dataset. Combining these results we
obtain the desired PUT. In doing so, this work also closes
an existing gap in formal guarantees for private constrained
nonlinear optimization. As an application, we employ the noisy
Sinkhorn algorithm for differentially private (approximate)
computation of OT cost and derive insights from its PUT.

I. Introduction

Optimal transport (OT) theory [1] provides a natural
framework for comparing probability distributions. Specif-
ically, the OT problem with cost function c between two
probability measures µ, ν on Rd is

OTc(µ, ν) := inf
π∈Π(µ,ν)

Eπ[c(X,Y )],

where Π(µ, ν) is the set of couplings between µ and ν. The
special case is the p-Wasserstein distance for p ∈ [1,∞), is
given by Wp(µ, ν) :=

(
OT∥·∥p(µ, ν)

)1/p. The Wasserstein
distance has found applications in various fields, encompass-
ing machine learning [2, 3], statistics [4, 5], and applied
mathematics [6]. This widespread applicability is driven by
an array of desirable properties that the Wasserstein distance
possesses, including its convenient dual form, robustness to
support mismatch, and a rich geometry it induces on a space
of probability measures.

Despite the aforementioned empirical progress, the OT
problem suffers from the statistical and computational hard-
ness issues. The estimation rate of the OT cost between dis-
tributions on Rd is generally n−1/d [7], which deteriorates
exponentially with dimensions—a phenomenon known as
the curse of dimensionality. Computationally, OT is a linear
program (LP), solvable in O(n3 log n) time for distribution
on n points [8], but this complexity becomes prohibitive
when n is large (as the statistical considerations mandate it

to be). To circumvent these issues, entropic regularization
has emerged as a popular alternative [9]

OTηc (µ, ν) := inf
π∈Π(µ,ν)

Eπ[c(X,Y )]+ηDKL(π∥µ⊗ν), (1)

where DKL is the Kullback-Leibler (KL) divergence and
η > 0 is a regularization parameter. Empirical estimation
of EOT enjoys the parametric n−1/2 convergence rate in
arbitrary dimension, under several settings [10, 11]. Compu-
tationally, entropic OT (EOT) between discrete distributions
can be efficiently solved via the Sinkhorn algorithm in
O(n2 log n) time [9].

Motivated by pressing privacy concerns, which arise due
to the increase in personal data shared online and advance-
ments in data mining techniques, the goal of this work is to
devise a method for private computation of EOT/OT subject
to formal guarantees. We adopt the differential privacy
(DP) paradigm [12]—a gold standard in statistical privacy—
which preserves the privacy of individual records while
enabling aggregate queries about a database.

A. Contributions
We propose a differentially private Sinkhorn algorithm,

which casts the optimization as block coordinate descent
(BCD) and injects adaptive noise to the iterates. To couple
the approach with formal guarantees, we derive the privacy
utility tradeoff (PUT) by studying the convergence rate and
the resulting privacy of our method. We prove a linear
convergence rate up to a noisy neighborhood of the global
solution, which matches the optimal convergence rate of
stochastic gradient descent (SGD) of a strongly convex func-
tion [13]. The privacy analysis accounts for adaptive noise
proportional to the progress of the algorithm. Combining
these results we obtain the PUT for noisy Sinkhorn. Re-
markably, while noisy Sinkhorn solves a constrained convex
optimization problem, the obtained PUT coincides with that
of unconstrained convex optimization under DP, up to a
logarithmic factor [14].

As an application of our private algorithm, we consider
DP computation of classical OT. We propose a mechanism
that combines the noisy Sinkhorn algorithm with the Laplace
noise injection. Specifically, after computing the private
EOT coupling, the mechanism outputs the transportation
cost, perturbed by Laplace noise to further boost privacy.
Compared to exactly solving DP OT as an LP, entropic reg-
ularization enables an approximate solution with improved
computational efficiency. Using PUT, we characterize this20
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accuracy - effiency trade-off and derive the optimal entropic
regularization parameter.

Our analysis employs several key technical tools. The util-
ity analysis draws upon EOT structure [15] and convergence
rate derivations for SGD algorithms [13]. The privacy anal-
ysis results from tracking the α-Rényi divergence [16] along
the noisy iterations and then converting the accumulated α-
Rényi DP (RDP) bound into an (ε, δ)-DP guarantee. For
the application to differentially private OT computation, our
analysis employs the asymptotic expansion of EOT around
OT [17] and sensitivity analysis of the linear component of
EOT [18] to derive the combined PUT.

B. Related work
Several works explore differentially private optimization.

For linear programming (LP) under DP requirements, [19,
20] address private optimization by perturbing the objective
function, establishing PUT under exact minimization. In
[21, 22, 23], efficient algorithms via SGD or the expo-
nential mechanism are presented and the resulting PUT is
characterized. However, these works focus on unconstrained
problems, rendering them inapplicable to the EOT setting.

Although differentially private OT and EOT have also
been explored before, its application in large-scale machine
learning is hindered by the absence of PUT analyses and
efficient algorithms [24]. In [25, 26], privacy guarantees
for input perturbation were derived under the assumption
of exact minimization, without studying algorithms. EOT
computation via private SGD algorithms was considered in
[27, 28, 29] and privacy guarantees were derived, but no
account of the convergence rate was provided. In sum, none
of these existing works present both efficient algorithm and
PUT analysis for OT/EOT computation, which is essential
from theoretical and practical considerations alike.

II. Background and Preliminaries
A. Entropic Optimal Transport

EOT is a convexification of the (originally linear) OT
problem by means of an entropic penalty, which lends itself
well for efficient computation via Sinkhorn’s fixed point
iteration algorithm [30]. Given a lower semi continuous
cost function c : X × Y → R≥0 and a regularization
parameter η ≥ 0, the EOT problem between two proba-
bility distributions (µ, ν) ∈ P(X ) × P(Y) is1 given by
OTηc (µ, ν) in (1), where the KL divergence is defined as
DKL(α∥β) =

∫
log
(
dα
dβ

)
dα if α ≪ β and +∞ otherwise.

Note that the regularizer can be equivalently written as the
mutual information Iπ(X;Y ), which is therefore understood
as encouraging weakly dependent couplings. OT is obtained
from EOT by setting η = 0.

When c ∈ L1(µ ⊗ ν), EOT admits the following dual
formulation,

OTηc (µ,ν) = sup
φ,ψ

Eµ[φ] + Eν [ψ]− η
(
Eµ⊗ν

[
e
φ⊕ψ−c

η
]
+1
)
,

(2)

1P(X ) denotes the class of Borel probability measures on X ⊆ Rd.

where the supremum is over (φ,ψ) ∈ L1(µ)⊗L1(ν) and
φ⊕ ψ(x, y) = φ(x) + ψ(y). Dual potentials are unique up
to additive constants, in the sense that any other solution
(φ̄, ψ̄) satisfies φ̄ = φ+ a µ-a.s. and ψ̄ = ψ − a ν-a.s., for
some a ∈ R. This dual form is central for computing EOT
via the Sinkhorn algorithm and deriving its differentially
private version herein.

The standard Sinkhorn algorithm for EOT can equiv-
alently be viewed as a block coordinate descent algo-
rithm [15]. When µ, ν are discrete distributions supported on
{x1, · · · , xn}×{y1, · · · , yn}, respectively, the EOT problem
becomes

OTηc (µ, ν) = min
π∈Π(µ,ν)

⟨c, π⟩ − η(H(π)− 1), (3)

where cij = c(xi, yj), ⟨c, π⟩ :=
∑n
i,j=1 cijπij , and H(π) :=∑n

i,j=1 πij log(πij), Setting Kij = e−cij/η , the first-order
optimality condition dictates that the optimal coupling
π⋆ ∈ [0, 1]n×n is given in terms of optimal dual potentials
(φ⋆, ψ⋆) ∈ Rn × Rn by π⋆ij = eφ

⋆
i /ηKije

ψ⋆j /η, i, j =
1, . . . , n, subject to the marginal constraints{

exp(φ⋆/η)⊙ (K exp(ψ⋆/η)) = µ

exp(ψ⋆/η)⊙K⊺(exp(φ⋆/η)) = ν
(4)

where ⊙ denotes to entrywise multiplication. Thus, find-
ing π⋆ boils down to solving the latter fixed point equations,
which can be done via Sinkhorn’s algorithm [30].

B. Differential Privacy

DP allows answering queries about aggregate quantities,
while protecting the individual data entries [12]. To that
end, the output of differentially private mechanism should
be indistinguishable for neighboring datasets—those that
differ only in a single sample. Formally, two datasets Dn =
{xi}ni=1 and D′

n = {x′i}ni=1 are called neighbors, denoted
Dn ∼ D′

n, if there exists j ∈ {1, . . . , n} such that xj ̸= x′j
and xi = x′i for all i ̸= j.

Definition 1 (Differential privacy). Fix ε, δ > 0. A ran-
domized mechanism2 M : Xn → Y is (ε, δ)-differentially
private (DP) if for all Dn ∼ D′

n and A ⊆ Y measurable,
we have

P
(
M(Dn) ∈ A

)
≤ eε P

(
M(D′

n) ∈ A
)
+ δ. (5)

Definition 2 (Function sensitivity). We define the ℓp-
sensitivity of f : Xn → Rd as

∆p[f ] := max
Dn∼D′

n

∥f(Dn)− f(D′
n)∥p

III. Differentially Private Entropic OT

We consider differentially private computation of an EOT
cost between two distribution, both of them contain sensitive
data. We start by formulating the problem and then propose
a noisy BCD scheme to solve it.

2A randomized mechanism is described by a (regular) conditional
probability distribution given the data, i.e., PM|X .
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A. Problem Formulation
Consider a dataset Dn = {x1, · · · , xn, y1, · · · , yn},

where (xi, yi) ∈ X × Y for i = 1, . . . , n, and let µn =
1
n

∑n
i=1 δxi and νn = 1

n

∑n
i=1 δyi be discrete, uniform

distributions on the corresponding n points; in a statistical
setting, these are empirical measures over sampled data from
two populations. We assumes that Dn contains sensitive
data, and is subject to (ε, δ)-DP requirement.

Our goal is design an (ε, δ)-DP mechanism for evaluating
the EOT cost OTηc (µn, νn), for a given cost function c
with ∥c∥∞ := maxx,y |c(x, y)| < ∞, and regularization
parameter η ≥ 0. The quality of a mechanism is measured by
PUT: the maximum utility for a fixed privacy constraint. We
use DP as the privacy metric while approximation error of
EOT/OT for the utility metric. We define the PUT function
as follows.

Definition 3 (PUT for EOT/OT computation). The PUT
function uη : R2

≥0 → R≥0 for differentially private com-
putation of OTηc (µn, νn), with η ≥ 0, is given by

uη(ε, δ) = inf
M∈Mε,δ

∣∣E[M(Dn)]− OTηc (µn, νn)
∣∣,

where Mε,δ is the set of all (ε, δ)-DP mechanisms M :
Xn × Yn → R acting on the dataset Dn = {x,y}, i.e.,
satisfying (5) with D′

n, where D′
n ∼ Dn are neighbours.

Different from the existing literature, we will propose
an efficient algorithm with both convergence rate and PUT
guarantees.

IV. Differentially Privacy Sinkhorn Algorithm
We propose a noisy Sinkhorn algorithm to solve the DP

EOT problem and analyze its performance (convergence rate
and the PUT). We then consider an application of our algo-
rithm to approximate the unregularized OT cost between µn
and νn in a differentially private manner. Lastly, motivated
by practical considerations, we formulate an optimization
problem to determine the entropic regularization parameter
that achieves the best PUT.

A. The Algorithm
We present a differentially private variant of the popular

Sinkhorn algorithm for EOT [9]. The key idea is to view it
as a BCD scheme and inject noise at an appropriate scale
to the iterates.

To describe the approach, we first express EOT through
its dual form

OTηc (µn, νn) = max
φ,ψ∈Rn

Dη(φ,ψ),

where Dη is the functional on the right-hand side (RHS) of
(2); note that the dual potentials reduce to vectors in Rn in
this finitely-supported case. For notational convenience, we
also define the alternative objective function Fη(φ,ψ) :=
−Dη(φ,ψ)+η, and equivalently, consider the minimization
problem

min
φ,ψ∈Rn

Fη(φ,ψ).

With that, we treat Sinkhorn’s algorithm as a BCD
scheme and employ stochastic programming techniques, as
summarized below.

Algorithm 1 Noisy Sinkhorn algorithm
1: Initialize φ0, ψ0 to be two arbitrary vectors in Rn. Let

iteration K, noise σ,M be given.
2: for k = 1, · · ·K do

————— Sinkhorn + centering —————
3: φ̃k+1 = argminφ Fη(φ,ψk)
4: φ′

k+1 = φ̃k+1 − Eµn [φ̃k+1]
5: ψ′

k+1 = argminψ Fη(φk+1, ψ)
——————- Noise injection ——————

6: s2k = σ2(∥φ′
k+1 − φk∥2 + ∥ψ′

k+1 − ψk∥2) +M
7: Zk+1 = (Z1

k+1, Z
2
k+1) ∼ N(0, s2kI2n)

8: φk+1 = φ′
k+1 + Z1

k+1

9: ψk+1 = ψ′
k+1 + Z2

k+1

10: end for
11: Output (φK , ψK)

Evidently, the algorithm first computes the Sinkhorn it-
erates, and upon centering them, injects zero-mean Gaus-
sian noise. The noise variance s2k, as given in Line 6 of
Algorithm 1, is adapted to the step size: as the step size
gets smaller, the noise level decreases. Such adaptive noise
allocations achieve better utility under a fixed privacy con-
straint. However, at optimality the adaptive noise nullifies,
which can violate DP. To correct for that, we add a noise
floor level of M > 0 to all iterations. We will determine
the choice of K,M, σ that optimizes PUT in the following
content. We also note that the minimizers in Lines 3 and
5 can be obtained in closed-form as the (c, η)-transform of
the original function [31], namely

φc,η(y) = −η log
(
Eµn

[
exp

(
φ(X)− c(X, y)

η

)])
.

B. Convergence Analysis and the PUT

Let τη = 1
2η exp(−

6∥c∥∞
η ) be the strong convexity pa-

rameter, where ∥c∥∞ = maxx,y c(x, y) < ∞ is assumed
throughout. For simplicity, we denote the exact iterates (after
centering) as θ′k = (φ′

k, ψ
′
k), and their noisy version by θk =

(φk, ψk) = θ′k + Zk, where Zk = (Z1
k , Z

2
k) ∼ N(0, s2kI2n)

with s2k = σ2∥θ′k − θk−1∥22 + M . Let θ∗ = (φ∗, ψ∗) =
argminθ Fη(θ) be minimizer, which is unique due to the
strong convexity of Fη, ∀η > 0. We first analyze the utility
of noisy Sinkhorn in terms of the accuracy with which it
approximates the EOT cost.

Theorem 1 (Utility of noisy Sinkhorn). For any 0 ≤ σ2 <
1, M ≥ 0, θ0 ∈ Rn × Rn and k ∈ N, Algorithm 1 satisfies

|OTηc (µn, νn) + E[Fη(θk)]− η|

≤ (1− ρ)k
(
Fη(θ0)− Fη(θ

∗)− τηM

2ρ

)
+
τηM

2ρ
, (6)

where ρ = (1−σ2)
8 e−24∥c∥∞/η .
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Theorem 1 is proven in the Section V via several key
lemmas. The argument first shows that Fη is component-
wise Lipschitz continuous and jointly convex. From that we
can lower bound the progress per iteration and upper bound
the progress to achieve optimality. Combining the upper and
lower bound, we find the convergence rate.

Remark 1 (Rate and dependence on ρ). This results matches
the optimal convergence rate of stochastic programming
of a strongly convex function. The gap to EOT converges
at a linear rate (1 − ρ)k up to a noisy neighborhood
τηM
2ρ . The noisy perturbation of the iterates results in an

interesting pattern that differs from traditional stochastic
gradient optimization [13]. Namely, increasing ρ favors both
a faster convergence rate and a smaller noisy neighborhood.

Theorem 2 (Privacy of noisy Sinkhorn). For any δ > 0,
and K ∈ N, the output (φK , ψK) of Algorithm 1 sat-
isfies

(
KC/M +

√
KC log(1/δ)/M, δ

)
-DP, where C =

η
2 log

(
1 + 4η∥c∥∞

n e
6
η ∥c∥∞

)
.

The proof is given in Section V, where we first bound the
sensitivity of the iteration function

(φ′
k+1, ψ

′
k+1) = argminφ,ψ

(
Fη(φ,ψk),Fη(φk+1, ψ)

)
,

and then leverage the Gaussian mechanism and the compo-
sition rule to establish the privacy guarantee.

Remark 2 (Improved privacy analysis). The worst-case
complexity of strongly convex optimization [32] implies
|θk − θ′k+1| ≥ pk for some 0 < p < 1. This leads to
tighter privacy bound by replacing M with σ2pK + M .
Given that this substitution doesn’t affect the PUT where
σ = 0 is optimal, we narrow our attention to the previous
result and skip the explicit statement.

Combining Theorems 1 and 2, we arrive at the PUT for
the noisy Sinkhorn algorithm.

Corollary 1 (PUT of noisy Sinkhorn). Fix ε, δ, η > 0
and let α > 1 be such that (α − 1)2 = log(1/δ)α

ε .
The PUT function for differentialy private computation of
OTηc (µn, νn) is given by

uη(ε, δ) =
Cη
ε− ε

[
a0 − log

(
Cη
ε− ε

)]
, (7)

where ε = log(1/δ)
α−1 , a0 = Fη(θ0)−F∗

η , Cη = 32ην
8
η ln ν

3n , and
ν = e6∥c∥∞ .

This result follows by jointly optimizing the noise levels
σ,M , and the number of iterationK from Theorems 1 and 2.
The optimal values are σ = 0, M = O(log( 1

ϵ−ε )), and K =
(ε−ε)M
αC . The constant Cη is a simplified upper bound, whose

exact expression can be found in Section V-C Eq. (17).

Remark 3 (Nullifying adaptive noise). Choosing σ = 0 isn’t
just about loose privacy bounds but also about algorithm
behavior. As the step size in Algorithm 1 diminishes expo-

nentially, adaptive noise’s privacy gains can’t offset utility
loss. Even with the improved bound in Remark 2, σ = 0
remains optimal. A promising avenue for future research is
slowing down convergence to achieve more privacy gains by
adding adaptive noise.

Remark 4 (Comparison to unconstrained optimization). To
the best of our knowledge, our PUT analysis for the noisy
Sinkhorn algorithm is the first to treat differentially private
convex optimization with constraints. The PUT we achieve
in Corollary 1 coincides with that of unconstrainted convex
optimization O( 1ϵ ) [14], up to a log factor, and is worse
than that of unconstrained strongly convex optimization
O( 1

ε2 ) [22]. As we only present an upper bound on the
PUT attained by noisy Sinkhorn, generic lower bounds
for differentially private, constrained convex optimization
remain an interesting question for future work.

C. Application to Differentially Private Optimal Transport
OT is widely used in large-scale machine learning prob-

lems, requiring algorithms with low computation complex-
ity. Differentially private OT can be computed via an LP
mechanism [20], with time complexity O(n3 log n) for dis-
tribution on n points. This cubic complexity, however, can be
prohibitively slow when n is large. To accelerate this time,
we propose computing the differentially private entropic
approximation of OT using the noisy Sinkhorn algorithm.
Entropic regularization makes the problem strongly convex,
allowing faster computation, at the cost of some accuracy
loss due to EOT approximation. We study this trade-off via
a PUT analysis, leaving time complexity quantification for
future work. Given the same dataset Dn, privacy parameters
(ϵ, δ), and a cost function c, we design an (ϵ, δ)-DP mech-
anism for evaluating the OT cost OT0

c(µn, νn) as follows.
• Stage 1: Noisy Sinkhorn. Run Algorithm 1 to compute

the optimal coupling for OTηc (µn, νn). Let θ̂ = (φ̂, ψ̂) be
the output of the algorithm and define π̂η via (π̂η)ij =

exp
(

(φ̂)i+(ψ̂)j−cij
η

)
as the algorithmic proxy of the true

EOT coupling πη .
• Stage 2: Noise injection. Let Z follow a Laplace dis-

tribution with parameter b. The output of the overall
mechanism is the transportation cost associated with π̂η
perturbed by the Laplace noise:

M̂ b
η(Dn) = ⟨c, π̂η⟩+ Z, Z ∼ Lap(b). (8)

For analysis, we introduce the following notation. Let
M1 = ⟨c, πη⟩ + Z, g1 = OT0

c(µn, νn), M2 = ⟨c, π̂η⟩, and
g2 = ⟨c, πη⟩. Then

M̂ b
η(Dn)− OT0

c(µn, νn) = M1 − g1︸ ︷︷ ︸
EOT approx.

+ M2 − g2︸ ︷︷ ︸
Noisy Sinkrhon

(9)

Note that the subscript π̂η indicates that it is the algorith-
mic solution to EOT rather than the exact optimal optimal
coupling πη .

The PUT function is defined as

u(i)η = inf
Mi∈Mε,δ

∣∣E[Mi(Dn)
]
− gi

∣∣, i = 1, 2
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where Mε,δ is the set of all (ε, δ)-DP mechanisms M :
Xn × Yn → R. First we characterize the PUT for EOT
approximation and Noisy Sinkhorn respectively.

Theorem 3 (PUT of two-stage DP OT). For any ε, δ ≥ 0,
initial Sinkhorn variable θ0, and η ≤ min{ ∆

1+log n ,
2∥c∥∞
n logn},

u(1)η (ϵ, δ) = u +
4
√
2∥c∥∞
nϵ

(10)

Where u = ∆exp(−∆
η + 1 + log n), with ∆ being the

suboptimality gap of OT0
c(µn, νn) defined in (18).

u(2)η (ε, δ) = C ′
η

√
Cη
ε− ε

[
a0 − log

(
Cη
ε− ε

)]
, (11)

Where ε = log(1/δ)
α−1 , a0 = Fη(θ0)− F∗

η , Cη = 32ην
8
η ln ν

3n ,
C ′
η = n∥c∥∞

√
8
η v

3
2η , and ν = e6∥c∥∞ .

The PUT function u(1)η comprises two elements: a lower
bound on utility stemming from the approximation error
of EOT to OT, and another term from the Laplace mech-
anism’s noise. We present a simplified case for small η,
postponing a comprehensive depiction of the PUT function
to Section V-D. Meanwhile, u(2)η derives from converting
EOT to its linear component.

Using Eq. (9) and triangle inequality to combine the above
two PUT functions, we obtain the overall PUT function.

Corollary 2 (Overall PUT function). The PUT function of
DP OT mechanism M = {M̂ b

η(Dn)} (defined in Defini-
tion 3 with η = 0) satisfies

u0(ε, δ) = min
ε1,ε2,η

u(1)η (ε1, δ) + u(2)η (ε2, δ)

s.t. ε1 + ε2 = ε
(12)

Given the data set and privacy budgets, the key question
is how to tune the entropic regularization parameter η to
achieve the best PUT. The following optimization problem,
derived by highlighting η in Eq. (12), provides guidelines
for selecting the optimal η.

min
η,ε2

C1 exp

(
−∆

η

)
+ 8C2

√
ν

11
η

C3η

(
a0 +

8

η
log

(
ην

C3

))
,

(13)
where C1 = n∆e, C2 = n∥c∥∞, C3 = 1

ϵ2−ϵ
We now interpret Eq. (13) intuitively. The first term,

resulting from the EOT approximation of OT, increases with
η, indicating accuracy loss due to larger regularization. The
second term, representing noisy Sinkhorn, decreases with
η, as larger regularization accelerates the convergence of
the Sinkhorn algorithm. This leads to fewer iterations and,
consequently, less privacy loss for the same utility.

V. Proofs
A. Proof of Theorem 1

The argument relies on the following technical lemmas.
Throughout, we assume that ∥c∥∞ <∞.

Lemma 1 (Bounded dual variables [31]). For all k >
0, the iterates from Algorithm 1 satisfies ∥φ′

k∥∞ ≤
2∥c∥∞, ∥ψ′

k∥∞ ≤ 3∥c∥∞
Bounded dual variables leads to the Lipschitz smoothness

and strong convexity of the objective Fη . To state the result,
set Lη = 1

2η e
6∥c∥∞
η and τη = 1

2η e
− 6∥c∥∞

η .

Lemma 2 (Lipschitz smoothness and joint convexity). The
objective Fη : Rn × Rn → R satisfies:
(i) blockwise Lη-Lipschitz smoothness, i.e., fixing φ ∈ Rn,

we have that Fη(φ, ·) has Lη-Lipschitz gradients and
similarly for the other variable;

(ii) if further φ,φ′ ∈ Rn are such that Eµn [φ] = Eµn [φ′] =
0, then Fη is jointly strongly convex, i.e.,

Fη(φ
′, ψ′)− Fη(φ,ψ) ≥

τη
2
∥(φ′, ψ′)− (φ,ψ)∥2

+∇Fη(φ,ψ)
⊺
(
(φ′, ψ′)− (φ,ψ)

)
(14)

Using the above properties, we devise the following two
key conditions for convergence rate. Recall that θk =
(φk, ψk) denotes the k-th iterate of Algorithm 1.

Lemma 3 (Optimality gap bound and sufficient descent).
Algorithm 1 with σ =M = 0, which reduces to the standard
Sinkhorn algorithm, satisfies:
(i) upper bound on optimality gap:

Fη(θk)− Fη(θ
∗) ≤

4L2
η

τη
∥θk − θk+1∥2

(ii) sufficient descent:

Fη(θk)− Fη(θk+1) ≥
τη
2
∥θk − θk+1∥2

Proof. The following argument is inspired by Lemma 3.2,
Theorem 3.3 in [15]. We reformulate here in a systematic
way and include the dependence on η. Let θ̃k = (φk+1, ψk)
be the partial update. The fact that each iterate is an exact
minimization implies

∇φFη(θ̃k) = ∇ψFη(θk+1) = 0 (15)

For each fixed k, by combining the strong convexity from
(14) and the optimality condition from (15), we obtain

Fη(θ
∗)− Fη(θk)

≥ ∇Fη(xk)
⊺(θ∗ − θk) +

τη
2
∥θ∗ − θk∥2

=
(
∇φFη(θk)−∇φFη(θ̃k)

)⊺
(φ∗ − φk)

+
(
∇ψFη(θk)−∇ψFη(θk+1)

)⊺
(ψ∗ − ψk)

+
τη
2

(
∥φ∗ − φk∥2 + ∥ψ∗ − ψk∥2

)
≥ − 2

τη

(
∥∇φFη(θk)−∇φFη(θ̃k))∥2
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+ ∥∇ψFη(θk)−∇ψFη(θk+1)∥2
)

By blockwise Lη-Lipschitz smoothness of Fη , we have
∥∇φFη(φ,ψ) − ∇φFη(φ

′, ψ)∥ ≤ Lη∥φ − φ′∥. Combining
this and above we get the Claim (i).

We move to derive the sufficient descent condition. Again,
employing (14) and (15), consider

Fη(θk)− Fη(θk+1)

= Fη(θk)− Fη(θ̃k) + Fη(θ̃k)− Fη(θk+1)

≥ ∇φFη(θ̃k)
⊺(φk − φk+1) +

τη
2
∥φk − φk+1∥2

+∇ψFη(θk+1)
⊺(ψk −ψk+1)+

τη
2
∥ψk −ψk+1∥2

=
τη
2

(
∥φk − φk+1∥2 + ∥ψk − ψk+1∥2

)
=
τη
2
∥θk − θk+1∥2

We now extend the result to the noisy Sinkhorn algorithm.
Recall that θ′k = (φ′

k, ψ
′
k), and θk = θ′k + Zk, where Zk ∼

N(0, σ2∥θk−1 − θ′k∥2 +M).

Lemma 4 (Extension to noisy Sinkhorn). The noisy
Sinkhorn algorithm satisfies the following optimality gap
bound and sufficient descent condition:

E[Fη(θk)]− Fη(θ
∗) ≤

4L2
η

τη
∥θk − θ′k+1∥2

E[Fη(θk)−Fη(θk+1)] ≥
τη
2
(1−σ2)∥θk−θ′k+1∥2−

τηMk

2
.

Proof. Upper bounding the optimality gap by adjacent iter-
ate directly follows from Claim (i) of Lemma 3

By the strong convexity of Fη from (14), expanding it
around θ′k+1 yields

Fη(θk+1)− Fη(θ
′
k+1)

≤ τη
2
∥θk+1 − θ′k+1∥2 +∇Fη(θ

′
k+1)

⊺(θk+1 − θ′k+1)

Since E[θk+1] = θ′k+1, the linear term vanishes after
taking the expectation of both sides. Combining this with
Claim (ii) from Lemma 3, we get

E[Fη(θk)− Fη(θk+1)]

= E[Fη(θk)− Fη(θ
′
k+1) + Fη(θ

′
k+1)− Fη(θk+1)]

≥ τ

2
(1− σ2)∥θk − θ′k+1∥2 −

τMk

2

Putting the lemmas together, we are ready to prove
Theorem 1. Similar to [13], let ak = E[Fη(yk)]−Fη(y

∗) be
the optiamlity gap at iteration k. Canceling ∥θk − θ′k+1∥ in
Lemma 4, we have

ak+1 ≤ (1− ρ)ak +
τηM

2
(16)

This implies ak ≤ (1− ρ)k(a0 − τηM
2ρ ) +

τηM
2ρ , Where ρ =

1−σ2

8 e(−24∥c∥∞/η).

B. Proof of Theorem 2
First, employing Lemma 1 and the inequality |ea− eb| ≤

eM |a− b|, ∀|a|, |b| ≤M , we argue that the ℓ2 sensitivity of
the iteration function, denoted as

T

[
φ
ψ

]
=

[
T1(ψ)(x)

T2(φ,ψ)(y)

]
=

[
argminφ Fη(φ,ψ)

argminψ Fη(T1(ψ), ψ)

]
=

[
−η logEνn [exp(

ψ(Y )−c(x,Y )
η )]

−η logEµn [exp(
T1(ψ)(X)−c(X,y)

η )]

]
is ∆2[T] = η log

(
1 + 4η

n ∥c∥∞ exp( 6η∥c∥∞)
)
.

Next, leveraging the Gaussian mechanism and the com-
position theorem from [33], we establish that the algo-
rithm, after K iterations, satisfies (α, αKCM )-RDP, which is
(αKCM + log(1/δ)

α−1 , δ)-DP[33], where C = 1
2∆2[T]. Finally,

substituting the optimal α∗ = 1 +
√

log(1/δ)M
KC , we derive

the desired result.

C. Proof of Corollary 1
Let ϵ = log(1/δ)

α−1 , a0 = Fη(θ0) − F∗
η and ν = e6∥c∥∞ . To

ensure privacy constraint, we need αKC
M +ϵ = ϵ. Solving for

K and substituting it into the utility function in Theorem 1,
we obtain u(ϵ, δ,M) = a0(1−ρ)

(ϵ−ϵ)M
αC +

τηM
2ρ . Minimizing

this with respect to M , we find the optimal M∗ such that
(1 − ρ)

(ϵ−ϵ)M∗
αC = − τη

2ρ log(1−ρ)
αC
ϵ−ϵ . Substituting M∗ back

into the utility function, and optimize ρ, we get σ = 0, and

uη(ε, δ) = u(ϵ, δ,M∗) =
C̃η
ε− ε

[
a0 − log

(
C̃η
ε− ε

)]
,

(17)

where C̃η = −2αν
3
η log

(
1 + 2ην

1
η ln ν
3n

)
/ log

(
1− 1

8ν
− 4
η

)
,

with ν = e6∥c∥∞ . Further simplification using 1− 1
x ≤ log x

≤ x, ∀x > 0 yields the bound in Cη . We omit the
computations due to space constraint.

D. Proof of Theorem 3
1) Notations and preparation lemmas: We first introduce

related notations.

Definition 4. We define the linear component of EOT
as fηc (Dn) = ⟨c, πη(Dn)⟩, where πη(Dn) is the optimal
coupling to OTηc (µn, νn).

Let P = {π : π1 = µn, π
T1 = νn}, and V be the

vertex set of P . Entropy radius is RH := supπ,π′∈P H(π)−
H(π′). The suboptimal vertices are S = {v ∈ V | ⟨c, π⟩ >
minπ∈V ⟨c, π⟩} The suboptimality gap ∆ of OT0

c(µn, νn) is

∆ = min
π∈S

⟨c, π⟩ −min
π∈V

⟨c, π⟩ (18)

2) Proof of u(1)η (ε, δ): First, we compute the utility and
privacy of M1 = ⟨c, πη⟩+ Z,Z ∼ Lap(b), respectively for
fixed b, η.

Theorem 4 (Utility of EOT approximation). For all b and
η ≤ ∆

1+log n , the following holds:
∣∣E[M1]− g1

∣∣ ≤ u +
√
2b,

where u = ∆exp
(
−∆
η + 1 + log n

)

Authorized licensed use limited to: Cornell University Library. Downloaded on March 17,2025 at 21:56:25 UTC from IEEE Xplore.  Restrictions apply. 



Theorem 4. First, we use asymptotic expansion of EOT
around OT [17] and specify some constants. Since∑
ij πij = 1, R1 := supπ∈P ∥π∥1 = 1. Using the fact

that the uniform distribution maximizes entropy for the
finite support Z = {(xi, yj), i, j = 1, . . . , n}, we have
H(π) ≤ log |Z| = 2 log n. Since P is a scaled Birkhoff
polytope, ∀π ∈ P , ∃αi ≥ 0 with

∑n!
i=1 αi = 1 such

that π =
∑
i αiπi for permutation matrices πi where each

entry is either 0 or 1
n . The concavity of H(·) implies

H(π) = H(
∑
i αiπi) ≥

∑
i αiH(πi) = log n. Combining

the upper and lower bounds, we get RH ≤ log n. Plugging
R1, RH in Theorem 5 of [17], we have∣∣fηc (Dn)− g1

∣∣ ≤ ∆exp

(
−∆

η
+ 1 + log n

)
:= u

Lastly, triangle inequality implies
∣∣E[M1(Dn)] − g1

∣∣ ≤∣∣fηc (Dn)− g1
∣∣+√E[Z2] ≤ u +

√
2b.

The following privacy guarantee is a direct consequence
of Laplace mechanism [12].

Theorem 5 (Privacy of EOT approximation). For all η, b >
0, M1 satisfies (

∆1[f
η
c ]

b , 0)-DP.

Substituting b in the utility function in Theorem 4 using
privacy constraint in Theorem 5 b =

∆1[f
η
c ]

ε , we have
u
(1)
η (ϵ, δ) = u +

√
2∆1[f

η
c ]

ϵ . In the remaining, we specify
the function sensitivity ∆1[f

η
c ].

Lemma 5 (Sensitivity of the fηc ). For all η > 0, fηc in
Definition 4 satisfies

∆1[f
η
c ] ≤

2∥c∥∞
n

+min{η log n, ∥c∥∞,
1√
2nη

∥c∥
3
2∞e

∥c∥∞
η }

Lemma 5. Assume without loss of generality that in D′
n(∼

Dn), x1 changes to x′1. Let c = [cij ] and c̃ = [c′ij ]
where c1j is replaced by c′1j = c(x′1, yj) for all j, with all
other entries unchanged. Then ∥c− c̃∥L1

:= 1
n2

∑
i,j |cij −

c′ij | ≤ 1
n∥c∥∞. Let πη, π̃η be the optimal coupling to

OTηc (µn, νn),OT
η
c̃ (µn, νn). Using Proposition 3.12 from

[18] with p = 1, c = c
η , µ1 = µ2 =

[
1
n , · · · , 1

n

]
. we

have ∥πη − π̃η∥1 ≤ 1√
2η
∥c− c̃∥

1
2

L1
e

∥c∥∞
η . Hence

∆1[f
η
c ] = sup

c̃
|⟨c, πη⟩ − ⟨c̃, π̃η⟩|

≤ sup
c̃

|⟨c, πη − π̃η⟩|+ |⟨c− c̃, π̃η⟩|

≤∥c∥∞∥πη − π̃η∥1 +
1

n
∥c∥∞

≤ 1√
2nη

∥c∥
3
2∞e

∥c∥∞
η +

1

n
∥c∥∞

To enhance the result, we argue as follows. Let h(Dn) =
ηH(πη). Then ∆1[h] ≤ min{ηRH ,OT0

c(µn, νn)} ≤
min{η log n, ∥c∥∞}. Using similar ideas in theorem 3.7 of
[18], we can prove ∆1[OT

η
c ] ≤ 2∥c∥∞

n through shadow

coupling. Since fηc (Dn) = OTηc (µn, νn) − h(Dn), triangle
inequality implies

∆1[f
η
c ] ≤ ∆1h+∆1OT

η
c ≤ 2∥c∥∞

n
+min{η log n, ∥c∥∞}

Combining the above yields the desired result.

Remark 5. When η is large, the sensitivity of linear com-
ponent of EOT is upper bounded by O

(
1√
n

)
. When η is

small, the sensitivity remains bounded at O
(
1
n

)
.

3) Proof of u(2)η (ε, δ): With the same privacy guarantee
and a different utility function, the analysis is similar to
PUT of noisy Sinkhorn in Corollary 1. Due to space limit,
we only presents the new utility function.

Let θk = (φk, ψk) ∈ Rn × Rn be the kth iterate
of Algorithm 1, (πk)ij = exp

(
(φk)i+(ψk)j−cij

η

)
. Let

Kij = e−cij/η , then πk = diag(eφk/η)Kdiag(eψk/η). The
following theorem states the utility of computing the linear
component of EOT via noisy Sinkhorn.

Theorem 6 (Utility of noisy Sinkhorn). For any 0 ≤ σ2 <
1, M ≥ 0, θ0 ∈ Rn × Rn and k ∈ N, the following holds

E[⟨c, πk − πη⟩] ≤ C̃η

√
2

τη
a0(1− ρ)k +

M

ρ

With ρ = (1−σ2)
8 e(−24∥c∥∞), a0 = Fη(θ0)−Fη(θ

∗), C̃η =√
2n∥c∥∞
η · e

6∥c∥∞
η

Theorem 6. First, we upper bound the optimality gap by the
l2 distance between the couplings.

⟨c, πk − πη⟩ ≤ ∥c∥2∥πk − πη∥2 ≤ n∥c∥∞∥πk − πη∥2

Then we upper bound coupling distance via θk. Note that
∥Kdiag

(
e(
ψk
η )
)
∥∞ ≤ e(

∥ψk∥∞+∥c∥∞
η ), and that ∥e(

φk
η ) −

e(
φ∗
η )∥2 ≤ 1

η e
(
∥φk∥∞

η )∥φk − φ∗∥2, we have

∥πk − πη∥2 ≤ ∥Ke
ψk
η ∥∞∥e

φk
η − e

φ∗
η ∥2

+∥Ke
φ∗
η ∥∞∥e

ψk
η − e

ψ∗
η ∥2

≤1

η
e

6∥c∥∞
η (∥φk − φ∗∥2 + ∥ψk − ψ∗∥2)

≤
√
2

η
e

6∥c∥∞
η (∥φk − φ∗∥22 + ∥ψk − ψ∗∥22)

1
2

(19)

where the last step follows from a+ b ≤
√
2(a2 + b2)

Using strong convexity in Lemma 2 around θ∗ and
∇Fη(θ

∗) = 0,

E[∥φk − φ∗∥22 + ∥ψk − ψ∗∥22]

=E[
τη
2
∥θk − θ∗∥22] ≤ E[Fη(θk)]− Fη(θ

∗)

=E[Fη(θk)] + OTηc (µn, νn)− η

Combining the above with Theorem 1, we obtain the desired
result.
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