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Implementation details of recursive data structures are not necessarily known to application

programmers, who can only hope that the library authors and the compiler achieve good

performance. Sadly, recursive data structures are a hard optimization target.

High-level languages represent recursive structures with pointers to small objects allocated

sparsely on the heap. An algorithm traversing such a boxed representation spends much time

in pointer chasing, which is a painful operation for modern hardware architectures. Optimizing

compilers for these languages and architectures have many strengths but optimizing memory

representation of user-defined data structures is not among them. One alternative is resorting

to manual memory management to achieve maximum performance, but it has the obvious

drawback of leaving convenience and safety behind.

A radically different approach is representing recursive datatypes as dense structures

(basically, arrays) with the help of a library or compiler. The Gibbon compiler tries to

improve the performance of recursive data structures by embracing dense representations by

default [25]. This choice has practical benefits for programmers: they no longer need to take

control of low-level data representation and allocation to serialize linked structures; and rather

than employing error-prone index arithmetic to access data, they let Gibbon automatically

translate idiomatic data structure accesses into operations on the dense representation.

Dense representations are not a panacea, though. They can suffer a complementary

problem due to their inflexibility. A particular serialization decision for a data structure made

by the compiler can misalign with the behavior of functions accessing that data. Consider a

tree laid out in left-to-right pre-order with a program that accesses that tree right-to-left.

Rather than scanning straightforwardly through the structure, the program would have to

jump back and forth through the buffer to access the necessary data.

One way to counter the inflexibility of dense representations is to introduce some pointers.

For instance, Gibbon inserts shortcut pointers to allow random access to recursive struc-

tures [24]. But this defeats the purpose of a dense representation: not only are accesses no

longer nicely strided through memory, but the pointers and pointer chasing of boxed data

are back. Indeed, when Gibbon is presented with a program whose access patterns do not

match the chosen data layout, the generated code can be significantly slower than a program

with favorable access patterns.

Are we stuck with pointer chasing when processing recursive data structures? We present

Marmoset as a counter example. Marmoset is our program analysis and transformation

approach that spots misalignments of algorithms and data layouts and fixes them where

possible. Thus, our slogan is:

Algorithms + Data Layouts = Efficient Programs

Marmoset analyzes the data access patterns of a program and synthesizes a data layout

that corresponds to that behavior. It then rewrites the datatype and code to produce more

efficient code that operates on a dense data representation in a way that matches access

patterns. This co-optimization of datatype and code results in improved locality and, in the

context of Gibbon, avoidance of shortcut pointers as much as possible.

We implement Marmoset as an extension to Gibbon– a compiler based on dense

representations of datatypes. That way, Marmoset can be either a transparent compiler

optimization, or semi-automated tool for exploring different layouts during the programmer’s

optimization work. Our approach has general applicability because of the minimal and

common nature of the core language: the core language of Marmoset is a simple first-order,

monomorphic, strict, purely functional language. Thanks to the succinct core language, we

manage to isolate Marmoset from Gibbon-specific, complicated (backend) mechanics of

converting a program to operate on dense rather than boxed data.
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Overall, in this paper:

We provide a static analysis capturing the temporal access patterns of a function towards

a datatype it processes. As a result of the analysis, we generate a field access graph that

summarizes these patterns.

We define a cost model that, together with the field access graph, enables formulating

the field-ordering optimization problem as an integer linear program. We apply a linear

solver to the problem and obtain optimal positions of fields in the datatype definition

relative to the cost model.

We extend the Gibbon compiler to synthesize new datatypes based on the solution to

the optimization problem, and transform the program to use these new, optimized types,

adjusting the code where necessary.

Using a series of benchmarks, we show that our implementation, Marmoset, can provide

speedups of 1.14 to 54 times over the best prior work on dense representations, Gibbon.

Marmoset outperforms MLton on these same benchmarks by a factor of 1.6 to 38.

2 Dense Representation: The Good, The Bad, and The Pointers

This section gives a refresher on dense representations of algebraic datatypes (Section 2.1)

and, using an example, illustrates the performance challenges of picking a layout for a

datatype’s dense representation (Section 2.2).

2.1 Overview

Algebraic datatypes (ADTs) are a powerful language-based technology. ADTs can express

many complex data structures while, nevertheless, providing a pleasantly high level of

abstraction for application programmers. The high-level specification of ADTs leaves space

to experiment with low-level implementation strategies. Hence, we use ADTs and a purely

functional setting for our exploration of performance implications of data layout.

In a conventional implementation of algebraic datatypes, accessing a value of a given

ADT requires dereferencing a pointer to a heap object, then reading the header word, to get

to the payload. Accessing the desired data may require multiple further pointer dereferences,

as objects may contain pointers to other objects, requiring the unraveling of multiple layers

of nesting. The whole process is often described as pointer chasing, a fitting name, especially

when the work per payload element is low.

In a dense representation of ADTs, as implemented in Gibbon, the data constructor

stores one byte for the constructor’s tag, followed immediately by its fields, in the hope of

avoiding pointer chasing. Wherever possible, the tag value occurs inline in a bytestream

that hosts multiple values. As a result, values tend to reside compactly in the heap using

contiguous blocks of memory. This representation avoids or reduces pointer chasing and

admits efficient linear traversals favored by modern hardware via prefetching and caching.

2.2 Running Example

The efficiency of traversals on dense representations of data structures largely depends

on how well access patterns and layout match each other. Consider a datatype (already

monomorphized) describing a sequence of posts in a blog1:

1 Throughout the paper we use a subset of Haskell syntax, which corresponds to the input language of
the Gibbon compiler.
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emphKeyword :: String → BlogList → BlogList
emphKeyword keyword blogs = case blogs of

Nil → Nil
Blog content hashTags blogs ' →

case search keyword hashTags of
True → let content ' = emphContent content keyword

blogs '' = emphKeyword keyword blogs '

in Blog content ' hashTags blogs ''

False → let blogs '' = emphKeyword keyword blogs '

in Blog content hashTags blogs ''

Figure 1 Blog traversal motivating example.

data BlogList = Nil | Blog Content HashTags BlogList

A non-empty blog value stores a content field (a string representing the body of the blog

post), a list of hash tags summarizing keywords of the blog post, and a pointer to the rest

of the list.2 The datatype has one point of recursion and several variable-length fields in

the definition. To extend on this, Section 5.3 contains an example of tree-shaped data (two

points of recursion, in particular) with a fixed-length field. The most general case of multiple

points of recursion and variable-length fields is also handled by Marmoset.

The most favorable traversal for the Blog datatype is the same as the order in which

the fields appear in the datatype definition. In this case, Gibbon can assign the dense

and pointer-free layout as shown in Figure 2a. Solid blue arrows connecting adjacent fields

represent unconditional sequential accesses – i.e., reading a range of bytes in a buffer, and

then reading the next consecutive range. Such a traversal will reap the benefits of locality.

On the other hand, consider a traversal with less efficient access patterns (Figure 1). The

algorithm scans blog entries for a given keyword in HashTags. If the hash tags of a particular

blog entry contain the keyword, the algorithm puts an emphasis on every occurrence of

the keyword in the content field. In terms of access patterns, if we found a match in the

hash tags field, subsequent accesses to the fields happen in order, as depicted in Figure 2b.

Otherwise, the traversal skips over the content field, as depicted in Figure 2c.

Here we use red lines to represent accesses that must skip over some data between the

current position in the buffer and the target data. Data may be constructed recursively and

will not necessarily have a statically-known size, so finding the end of a piece of unneeded

data requires scanning through that data in order to reach the target data. This extra

traversal (parsing data just to find the end of it) requires an arbitrarily large amount of work

because the content field has a variable, dynamically-allocated size.

Extra traversals that perform useful no work, like skipping over the content field above,

can degrade the asymptotic efficiency of programs. One way to avoid such traversals is to

use pointers. For instance, when Gibbon detects that it has to skip over intervening data,

it changes the definition of the constructor by inserting shortcut pointers, which provide

an exact memory address to skip to in constant time. For our example program, Gibbon

introduces one shortcut pointer for the HashTags field, and another one for the tail of the list.

2 In practice, you may want to reuse a standard list type, e.g.:

type BlogList = [Blog]
data Blog = Blog Content HashTags

but a typical compiler (including Gibbon) would specialize the parametric list type with the Blog type to
arrive at an equivalent of the definition shown in the main text above.
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(a) Ideal access patterns.

(b) True case extra traversals. (c) False case extra traversals.

Figure 2 Showing a dense pointer-free layout with ideal accesses on top. Numbers represent the

access order. Out of order accesses (red), incur costly extra traversals over fields in the middle.

The pointers provide direct accesses to the respective fields when needed and restore

the constant-time asymptotic complexity for certain operations. This results in the access

patterns shown in Figure 3a and 3c. Red dashed lines represent pointer-based constant-time

field accesses. Otherwise, the access patterns are similar to what we had before.

The pointer-based approach in our example has two weaknesses. First, this approach

is susceptible to the usual problems with pointer chasing. Second, just like with the initial

solution, we access fields in an order that does not match the layout: the hash tags field is

always accessed first but lives next to the content field.

Marmoset, described in the following section, automates finding the weaknesses of

the pointer-based approach and improving data layout and code accordingly. For instance,

performance in our example can be improved by swapping the ordering between the Content

and HashTags fields. Given this reordering, the hash tags are available directly at the start of

the value, which lines up with the algorithm better, as the algorithm always accesses this

field first. Additionally, our program’s True case (the keyword gets a hit within the hash

tags) is more efficient because after traversing the content to highlight the keyword it stops

at the next blog entry ready for the algorithm to make the recursive call. This improved

data layout results in the more-streamlined access patterns shown in Figures 3b and 3d.

3 Design

Marmoset infers efficient layouts for dense representations of recursive datatypes. Mar-

moset’s key idea is that the best data layout should match the way a program accesses

these data. Section 2 shows how this idea reduces to finding an ordering of fields in data

constructors. The ordering must align with the order a function accesses those fields, in

which case the optimization improves performance of the function.

To find a better layout for a datatype in the single-function case, Marmoset first analyzes

possible executions of the function and their potential for field accesses. In particular,

Marmoset takes into account (a) the various paths through a function, each of which may

access fields in a different order, and (b) dependencies between operations in the function,

as in the absence of dependencies, the function can be rewritten to access fields in the
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(a) True case unoptimized. (b) True case optimized.

(c) False case unoptimized. (d) False case optimized.

Figure 3 Showing the unoptimized representation with pointers to allow random access and the

optimized layout with favorable access patterns.

original order, and that order will work best. Marmoset thus constructs a control-flow

graph (Section 3.2) and collects data-flow information (Section 3.3) to build a field access

graph, a representation of the various possible orders in which a function might access fields

(Section 3.4 and Section 3.5).

Once data accesses in a function are summarized in the field access graph, Marmoset

proceeds with synthesizing a data layout. Marmoset incorporates knowledge about the

benefits of sequential, strided access and the drawbacks of pointer chasing and backtracking

to define an abstract cost model. The cost model allows to formulate an integer linear

program whose optimal solution corresponds to a layout that minimizes the cost according

to that model (Section 3.6).

The remainder of this section walks through this design in detail, and discusses how to

extend the system to handle multiple functions that use a datatype (Section 3.7).

3.1 MARMOSET’s Language

Marmoset operates on the language λM shown in our extended version [22]. λM is a

first-order, monomorphic, call-by-value functional language with algebraic datatypes and

pattern matching. Programs consist of a series of datatype definitions, function definitions,

and a main expression. λM ’s expressions use A-normal form [12]. The notation x denotes a

vector [x1, . . . , xn] and xi the item at position i. λM is an intermediate representation (IR)

used towards the front end in the Gibbon compiler. The monomorphizer and specializer

lower a program written in a polymorphic, higher-order subset of Haskell3 to λM , and then

location inference is used to convert it to the location calculus (LoCal) code next [24]. It

is easier to update the layout of types in λM compared to LoCal, as in λM the layout is

implicitly determined by the ordering of fields, whereas the later LoCal IR makes the layout

explicit using locations and regions (essentially, buffers and pointer arithmetic).

3 With strict evaluation semantics using -XStrict.
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3.2 Control-Flow Analysis

Algorithm 1 Control-Flow Graph Psuedocode.

1: Input

2: exp: An expression in subset of λM

3: weight: The likelyhood of exp executing (i.e., exp’s inbound edge)

4: Output

5: A tuple of list of cfg nodes and the node id.

6: function ControlFlowGraph(exp, weight)

7: let nodeId = genFreshId()

8: switch exp do

9: case LetE (v, ty, rhs) bod

10: let (nodes, succId) = ControlFlowGraph(bod, weight)

11: let newNode = (nodeId, (LetRHS (v, ty, rhs), weight), [succId])

12: return (nodes ++ newNode, nodeId)

13: end case

14: case CaseE scrt cases

15: let (nodes, successors) = CfgCase(weight/length(cases), cases)

16: let newNode = (nodeId, (scrt, weight), successors)

17: return (nodes ++ [newNode], nodeId)

18: end case

19: case VarE v

20: let newNode = (nodeId, (v, weight), [])

21: return ([newNode], nodeId)

22: end case

23: end switch

24: end function

We construct a control-flow graph with sub-expressions, and let-bound RHS’s (right hand

sides) of λM as the nodes. Algorithm 1 shows the psuedocode for generating the control-flow

graph. Because the syntax is flattened into A-normal form, there is no need to traverse within

the RHS of a let expression. Edges between the nodes represent paths between expressions.

The edges consist of weights (Line 11) that represent the likelihood of a particular path being

taken. An edge between two nodes indicates the order of the evaluation of the program. A

node corresponding to a let-binding (Line 9) contains the bound expression and has one

outgoing edge to a node corresponding to the body expression. A case expression (Line 14)

splits the control flow n-ways, where n is the number of pattern matches. Outgoing edges

of a node for a case expression have weights associated with them that correspond to the

likelihood of taking a particular branch in the program. Control flow terminates on a leaf

λM expression: a variable reference, a data constructor or a function application.

Figure 4a shows the control-flow graph for the running example (Figure 1). Each node

corresponds to a sub-expression of the function emphKeyword. The first case expression splits

the control flow into two branches, corresponding to whether the input list of blogs is empty

or not. The branch corresponding to the empty input list is assigned a probability α, and the

other branch is assigned a probability 1−α. The next node corresponds to the pattern match

Blog content hashTags blogs'. Another two-way branch follows, corresponding to whether

keyword occurs in the content of this blog or not. We assign the probabilities σ and 1 − σ

to these branches respectively. Note that as a result, the corresponding edges in the CFG

have weights (1 − α) ∗ σ and (1 − α) ∗ (1 − σ), as the likelihood of reaching that condition

is (1 − α). Each of these branches terminate by creating a new blog entry with its content

potentially updated. In the current model, α and σ are 0.5: they are uniformly distributed.
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let present =

search keyword hashTags

let content ’ =

emphContent content keyword

Blog content hashTags blogs ’
Nil

Nil

Blog content ’ hashTags blogs ’’

Blog content hashTags blogs ’’

α1− α

(1− α) ∗ σ (1− α) ∗ (1− σ)

σ 1− σ
case present

let blogs ’’ =

emphKeyword keyword blogs ’

let blogs ’’ =

emphKeyword keyword blogs ’

case blogs

(a) CFG with probability of executing along each path.

(1− α) ∗ σ
(1− α) ∗ (1− σ)

(1− α) ∗ σ

(b) Field-access graph G gener-
ated from control-flow graph.
Here we use field types to
uniquely name them, since
Haskell record syntax was not
used in this example to give
each field a name.

Figure 4 Control-flow and corresponding field access graphs generated for the running example.

One intuition for why realistic branch weights are not essential to Marmoset’s opti-

mization is that accurate weights only matter if there is a trade off between control-flow

paths that are best served by different layouts. The base cases (e.g. empty list) typically

contribute no ordering constraints, and in our experience, traversals tend to have a preferred

order per function, rather than tradeoffs intra-function, which would reward having accurate,

profile-driven branch probabilities. Hence, for now, we use uniform weights even when looking

at the intra-function optimization.

3.3 Data Flow Analysis

We implement a straightforward analysis (use-def chain, and def-use chain) for let expressions

to capture dependencies between let expressions. We use this dependence information to

form dataflow edges in the field access graph (Section 3.5) and to subsequently optimize the

layout and code of the traversal for performance. For independent let expressions in the

function we are optimizing, we can transform the function body to have these let expressions

in a different order. (Independent implies that there are no data dependencies between

such let expressions. Changing the order of independent let expressions will not affect the
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foo :: List → List
foo lst = case lst of

Nil → Nil
Cons x rst →

let x' = x ^ 100
rst ' = foo rst

in Cons x' rst '

(a) Function foo with List.

foo ' :: List ' → List '

foo ' lst = case lst of
Nil ' → Nil '

Cons ' rst x →
let rst ' = foo ' rst

x' = x ^ 100
in Cons ' rst ' x'

(b) Function foo' with List'.

Figure 5 Two different traversals on a list.

correctness of code, modulo exceptions.) However, we do such a transformation only when

we deem it to be more cost efficient. In order to determine when re-ordering let expressions

is more cost efficient, we classify fields based on specific attributes next.

3.4 Field Attributes For Code Motion

When trying to find the best layout, we may treat the code as immutable, but allowing

ourselves to move the code around (i.e. change the order of accesses to the fields) unlocks more

possibilities for optimizing layout. Not all code motions are valid due to data dependencies

in the traversal. For instance, in a sequence of two let binders, the second one may reference

the binding introduced in the first one: in this case, the two binders cannot be reordered.

To decide which code motions are allowed, we classify each field with one or more of the

attributes: recursive, scalar, self-recursive, or inlineable. Some of these attributes are derived

from the ADT definition and some from the code using the ADT. A scalar field refers to a

datatype only made up of either other primitive types, such as Int. A recursive field refers

to a datatype defined recursively. A self-recursive field is a recursive field that directly refers

back to the datatype being defined (such as a List directly referencing itself). Finally, we

call a field inlineable if the function being optimized makes a recursive call into this field (i.e.

taking the field value as an argument). Hence, an inlineable field is necessarily a recursive

field. As we show in the example below, the inlineable attribute is especially important when

choosing whether or not to do code motion.

A single field can have multiple attributes. For instance, a function traverse doing a

pre-order traversal on a Tree makes recursive calls on both the left and right children. The left

and right children are recursive and self-recursive. Therefore, when looking at the scope of

traverse, the left and right children have the attributes recursive, self-recursive and inlineable.

Example. Consider the example of a list traversal shown in Figure 5a. Here the function foo

does some work on the Int field (it raises the Int to the power of 100) and then recurs on the

tail of the list. Since Marmoset compiles to dense representations, a List’s representation

in memory stores the Cons tag (one byte) followed by the Int (8 bytes) followed by the next

Cons tag and so on. Hence, the Cons tag and the Int field are interleaved together in memory.

The function foo becomes a stream processor that consumes one stream in memory and

produces a dense output buffer of the same type.

Alternatively, another layout of a list follows from the following definition:
data List ' = Nil ' | Cons ' List ' Int

In memory, the list has all Cons' tags next to each other (a unary encoding of array length!)

and the Int elements all next to each other. In such a scenario, the performance of our

traversal foo on the List' can improve traversal performance due to locality when accessing
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elements stored side-by-side4. However, this only works if we can subsequently change

the function that traverses the list to do recursion on the tail of the list first and then

call the exponentiation function on the Int field after the recursive call. If there are no

data dependencies between the recursive call and the exponentiation function, then this is

straightforward. We show foo' with the required code motion transformation to function

foo accompanied with the change in the data representation from List to List' as shown in

Figure 5b.

To optimize the layout, the tail of the list is assigned the attribute of inlineable. This

attribute is used by the solver to determine a least-cost ordering to the List datatype in

the scope of function foo. Whenever such code motion is possible, Marmoset will place

the inlineable field first and use code-motion to change the body of the function to perform

recursion first if data flow dependencies allow such a transformation.

Structure of arrays. The transformation of List/foo to List'/foo' is similar to changing

the representation of the List datatype to a structure of arrays, which causes the same types

of values to be next to each other in memory. In particular, we switch from alternating

constructor tags and integer values in memory to an array of constructor tags followed by an

array of integers.

Note that the traversals foo and foo' have access patterns that are completely aligned with

the data layout of List and List' respectively. The resulting speedup is solely a consequence

of the structure of arrays effect. This is an added benefit to the runtime in addition to

ensuring that the access patterns of a traversal are aligned with the data layout of the

datatype it traverses.

3.5 Field Access Pattern Analysis

After constructing the CFG and DFG for a function definition, we utilize them to inspect

the type of each of the function’s input parameters – one data constructor at a time – and

construct a field-access graph for it. Algorithm 2 shows the psuedocode for generating the

field-access graph. This graph represents the temporal ordering of accesses among its fields.

The fields of the data constructor form the nodes of this graph. A directed edge from field

fi to field fj is added if fi is accessed immediately before fj . Lines 13 to 24 in Algorithm 2

show how we keep track of the last accessed field and form an edge if possible. A directed

edge can be of two different types. In addition, each edge has a associated weight which

indicates the likelihood of accessing fi before fj , which is computed using the CFG. An edge

can either be a data-flow edge or a control-flow edge (Lines 18 and 20). In Figure 4b, the

red edge is a data flow edge and the blue edge is a control flow edge.

Data-Flow Edge indicates an access resulting from a data flow dependence between the

fields fi and fj . In our source language, a data flow edge is induced by a case expression.

A data flow edge implies that the code that represents the access is rigid in structure and

changing it can make our transformation invalid.

Control-Flow Edge indicates an access that is not data-flow dependent. It is caused by

the control flow of the program. Such an edge does not induce strict constraints on the code

that induces the edge. The code is malleable in case of such accesses. This gives way to an

4 However, this effect can disappear if the elements are very large or the amount of work done per element
becomes high, such that the percent of time loading the data is amortized.
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Algorithm 2 Recursive function for generating the field access graph.

1: Input

2: cur: current CFG node from which to start processing

3: dcon: data constructor for which we are searching the best layout

4: edges: field-access graph built so far

5: lastAccessedVar: last accessed variable name, initially None

6: dfgMap: set of data-flow edges between variables

7: Output

8: Field access graph represented as a list of edges

9: function FieldAccessGraph(cur, dcon, edges, lastAccessedVar, dfgMap)

10: let ((expr, weight), successors) = cur

11: let mutable lastAccessedVarMut = lastAccessedVar

12: let mutable edges'= edges

13: for var : OrderedFreeVariables(expr) do

14: if !BoundInPatternMatchOnDcon(var, dcon) then

15: continue

16: end if

17: if lastAccessedVarMut != None then

18: mutate edges'= addEdge(edges', ((lastAccessedVar, var), weight), ControlFlowTag)

19: if lookup((lastAccessedVar, var), dfgMap) then

20: mutate edges'= addEdge(edges', ((lastAccessedVar, var), weight), DataFlowTag)

21: end if

22: end if

23: mutate lastAccessedVarMut = var

24: end for

25: for succ : successors do

26: let edges''= FieldAccessGraph(succ, dcon, edges', lastAccessedVarMut, dfgMap)

27: mutate edges'= merge(edges', edges'')

28: end for

29: return edges'

30: end function

optimization search space via code motion of let expressions. The optimization search space

involves transformation of the source code, i.e, changing the access patterns at the source

code level.

The field-access graph G is a directed graph, which consists of edges of the two types

between fields of a datatype and can have cycles. The directed nature of the edges enforces

a temporal relation between the corresponding fields. More concretely, assume that an edge

e that connects two vertices representing fields fea (source of e) and feb (target of e). We

interpret e as an evidence that field fea is accessed before field feb. The weight w for the edge

e is the probability that this access will happen based on statically analyzing a function.

In our analysis, for a unique path through the traversal, we only account for the first

access to any two fields. If two fields are accessed in a different order later on, the assumption

is that the start address of the fields is likely to be in cache and hence it does not incur

an expensive fetch call to memory. In fact, we tested our hypothesis by artificially making

an example where say field fa is accessed first, field fb is accessed after fa after which we

constructed multiple artificial access edges from fb to fa, which might seem to suggest placing

fb before fa. However, once the cache got warmed up and the start addresses of fa and

fb are already in cache, the layout did not matter as much. This suggests that prioritizing

for the first access edge between two unique fields along a unique path is sufficient for our

analysis.
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Two fields can be accessed in a different order along different paths through a traversal.

This results in two edges between the fields. (The edges are in reversed order.) We allow at

most two edges between any two vertices with the constraint that they have to be in the

opposite direction and come from different paths in the traversal. If two fields are accessed

in the same order along different paths in the traversal, we simply add the probabilities and

merge the edges since they are in the same direction.

In order to construct G, we topologically sort the control-flow graph of a function and

traverse it in the depth-first fashion via recursion on the successors of the current cfg node

(Lines 25 to 28). As shown in line 14, we check if a variable is an alias to a field in the data

constructor for which we are constructing the field-access graph G. As we process each node

(i.e. a primitive expression such as a single function call), we update the graph for any direct

or indirect references to input fields that we can detect. We ignore new variable bindings that

refer to newly allocated rather than input data – they are not tracked in the access graph.

We traverse the control-flow graph once, but we maintain the last-accessed information at

each CFG node, so when we process a field access at an expression, we consult what was

previously-accessed at the unique precedecessor of the current CFG node. Figure 4b shows

the generated access graph from the control-flow graph in Figure 4a. It also shows the

probability along each edge obtained from the control-flow graph.

As we are traversing the nodes of the control-flow graph and generating directed edges in

G, we use the likelihood of accessing that cfg node as the weight parameter (Line 10).

3.6 Finding a Layout

We use the field-access graph G to encode the problem of finding a better layout as an Integer

Linear Program (ILP). Solving the problem yields a cost-optimal field order for the given

pair of a data constructor and a function.

3.6.1 ILP Constraints

In our encoding, each field in the data constructor is represented by a variable, f0, f1, . . . As

a part of the result, each variable will be assigned a unique integer in the interval [0, n − 1],

where n is the number of fields. Intuitively, each variable represents an index in the sequence

of fields.

The ILP uses several forms of constraints, including two forms of hard constraints:

∀0≤i<n 0 ⩽ fi < n (1)

∀0≤i<j<n fi ̸= fj (2)

The constraints of form 1 ensure that each field is mapped to a valid index, while the

constraints of form 2 ensure that each field has a unique index. Constraints of either form

must hold because each field must be in a valid location.

Hard constraints define valid field orderings but not all such reorderings improve efficiency,

Marmoset’s main goal. To fulfil the goal, beside the hard constraints we introduce soft ones.

Soft constraints come from the field access analysis. For example, assume that based on the

access pattern of a function, we would prefer that field a goes before field b. We turn such a

wish into a constraint. If the constraint cannot be satisfied, it will not break the correctness.

In other words, such constraints can be broken, and that is why we call them soft.
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3.6.2 Cost Model

Marmoset encodes these soft constraints in the form of an abstract cost model that assigns

a cost to a given layout (assignment of fields to positions) based on how efficient it is expected

to be given the field-access graph.

To understand the intuition behind the cost model, note that the existence of an edge

from field fi to field fj in the field-access graph means that there exists at least one path in

the control-flow graph where fi is accessed and fj is the next field of the data constructor

that is accessed. In other words, the existence of such an edge implies a preference for

that control-flow path for field fi to be immediately before field fj in the layout so that the

program can continue a linear scan through the packed buffer. Failing that, it would be

preferable for fj to be “ahead” of fi in the layout so the program does not have to backtrack

in the buffer. We can thus consider the costs of the different layout possibilities of fi and fj :

Csucc (fj immediately after fi): This is the best case scenario: the program traverses fi and

then uses fj .

Cafter (fj after fi in the buffer): If fj is after fi, but not immediately after, then the code can

proceed without backtracking through the buffer, but the intervening data means that

either a shortcut pointer or a extra traversal must be used to reach fj , adding overhead.

Cpred (fj immediately before fi): Here, fj is earlier than fi in the buffer. Thus, the program

will have already skipped past fj , and some backtracking will be necessary to reach

it. This incurs two sources of overhead: skipping past fj in the first place, and then

backtracking to reach it again.

Cbefore (fj before fi in the buffer): If, instead, fj is farther back in the buffer than fi,

then the cost of skipping back and forth is greater: in addition to the costs of pointer

dereferencing, because the fields are far apart in the buffer, it is less likely fj will have

remained in cache (due to poorer spatial locality).

We note a few things. First, the exact values of each of these costs are hard to predict.

The exact penalty a program would pay for jumping ahead or backtracking depends on a

variety of factors such as cache sizes, number of registers, cache line sizes, etc.

However, we use our best intuition to statically predict these costs based on the previously

generated access graph. Note the existence of two types of edges in our access graph. An

edge can either be a data-flow edge or a control-flow edge. For a data flow edge, the code is

rigid. Hence the only axis we have available for transformation is the datatype itself. For a

data flow edge, the costs are showed in Eq 3. Here, we must respect the access patterns in

the original code which lead to the costs in Eq 3.

Csucc < Cafter < Cpred < Cbefore (3)

Note that a control-flow edge signifies that the direction of access for an edge is trans-

formable. We could reverse the access in the code without breaking the correctness of the

code. We need to make a more fine-grained choice. This choice involves looking at the

attributes of the fields and making a judgement about the costs given we know the attributes

of the fields. As shown in Sec 3.4 we would like to have the field with an inlineable attribute

placed first. Hence, in our cost model, if fi is inlineable, then we follow the same costs in

Eq 3. However, if fj is inlineable and fi is not, we would like fj to be placed before fi. For

such a layout to endure, the costs should change to Eq 4. For other permutations of the

attributes, we use costs that prioritize placing the inlineable field/s first.

Cpred < Cbefore < Csucc < Cafter (4)
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3.6.3 Assigning Costs to Edges

Marmoset uses the field-access graph and the cost model to construct an objective function

for the ILP problem. Each edge in the access graph represents one pair of field accesses with

a preferred order. Thus, for each edge e = (i, j), Marmoset can use the indices of the fields

fi and fj to assign a cost, ce, to that pair of accesses following the rules below.

If fj is right after fi, then assign cost Csucc, i.e.: (fj − fi) = 1 =⇒ ce = Csucc.

If fj is farther ahead of fi, then assign cost Cafter , i.e.: (fj − fi) > 1 =⇒ ce = Cafter .

If fj is immediately before fi, then assign cost Cpred , i.e.: (fj − fi) = −1 =⇒ ce = Cpred .

And if fj is farther before fi, then assign cost Cbefore, i.e.: (fj − fi) < −1 =⇒ ce = Cbefore.

The cost of each edge, ce must be multiplied by the likelihood of that edge being exercised,

pe, which is also captured by edge weights in the field-access graph. Combining these gives

us a total estimated cost for any particular field layout:

C =
∑

e∈E

ce · pe (5)

This is the cost that our ILP attempts to minimize, subject to the hard constraints 1 and 2.

3.6.4 Greedy layout ordering

Finding an optimal layout using an external solver hurts compile times. To solve this tradeoff,

we propose a simple algorithm that traverses the field access graph in a greedy fashion. The

algorithm starts from the root node of the graph, which corresponds to the field accessed

first in the function, and greedily visits the child nodes based on the edge weights. We fix

the edge order for a control-flow edge as the original order and do not look at field attributes.

However, after the greedy algorithm picks a layout we match the let expressions to the layout

order to make sure the code matches the layout order. The greedy algorithm is potentially

sub-optimal when it comes to finding the best performing layout; however, the compile time

is fast.

3.7 Finding a global layout

A data constructor can be used across multiple functions, therefore, we need to find a layout

order that is optimal globally. To do so, we take constraints for each function and data

constructor pair and combine them uniformly, that is, a uniform weight for each function.

We then feed the combined constraints to the solver to get a globally optimal layout for

that data constructor. The global optimization finds a globally optimal layout for all data

constructors in the program. Once the new global layout is chosen for a data constructor,

we re-write the entire program such that each data constructor uses the optimized order of

fields. In the evaluation, we use the global optimization. However, we only show the data

constructor that constitutes the major part of the program.

3.8 Finding a layout for functions with conflicting access patterns

Consider the datatype definition D with two fields A, B:
data D = D A B

If two functions, f1 and f2, access the fields of D in the opposite orders, we get conflicting

access patterns for D. For instance, assume f1 accesses A first and then B, while f2 accesses
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5 Evaluation

We evaluate Marmoset on three applications. First is a pair of microbenchmarks (Section 5.2)

– a list length function and a logical expression evaluator – that help us explore performance

penalties imposed by a sub-optimal data layout. Second is a small library of operations

with binary trees (Section 5.3). Third is a blog management software based on the BlogList

example from the Sections 2–3 (Section 5.4). Besides the run times, we take a closer look

at how Marmoset affects cache behavior (Section 5.5) and compile times (Section 5.6).

Finally, we discuss evaluation and its scale (Section 5.7).

We detail the impact of various datatype layouts on the performance. As the baseline,

we use Gibbon, the most closely related prior work. We also compare Marmoset with

MLton (Section 5.4.2). For each benchmark, we run 99 iterations and report the run-time

mean and the 95% confidence interval.

5.1 Experimental Setup

We run our benchmarks on a server-class machine with 64 CPUs, each with two threads.

The CPU model is AMD Ryzen Threadripper 3990X with 2.2 GHz clock speed. The L1

cache size is 32 KB, L2 cache size is 512 KB and L3 cache size is 16 MB. We use Gibbon’s

default C backend and call GCC 10.2.0 with -O3 to generate binaries.

5.2 Micro Benchmarks

ListLength. This benchmark computes the length of a linked-list and demonstrates the cost

of de-referencing memory addresses that are not present in the cache. It uses the linked

list datatype:
data List = Nil | Cons Content List

If each element of the list is constructed using Cons, the traversal has to de-reference a

pointer – to jump over the content – each time to access the tail of the list. This is an

expensive operation, especially if the target memory address is not present in the cache.

In contrast, if the Content and List fields were swapped, then to compute the length, the

program only has to traverse n bytes for a list of length n – one byte per Cons tag – which

is extremely efficient. Essentially, Marmoset transforms program to use the following

datatype, while preserving its behavior:
data List ' = Nil ' | Cons ' List ' Content

In our experiment, the linked list is made of 3M elements and each element contains an

instance of the Pandoc Inline datatype that occupies roughly 5KB. As seen in table 17,

the performance of the list constructed using the original List is ∼42× worse than the

performance with the Marmoset-optimized, flipped layout. Not only does List have

poor data locality and cache behavior, but it also has to execute more instructions to

de-reference the pointer. Both Mgreedy and Msolver choose the flipped layout List'.

LogicEval. This microbenchmark implements a short-circuiting logical expressions evaluator

and runts it over synthetically generated, balanced syntax-trees with the height of 30.

The intermediate nodes can be one of Not, Or, or And, selected at random, and the leaves

hold boolean values. The syntax-tree datatype is defined as follows:
data Exp = Val Bool | Not Exp | Or Exp Exp | And Exp Exp

7 The performance of List' layout compiled with Gibbon differs from Marmoset as code motion to
reorder let expressions results in different code. In addition to a noisy server.
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Table 1 Run-time mean and 95% confidence interval (ub, lb) for different layouts (seconds). The

last two columns show the run time for the layouts chosen by Mgreedy and Msolver . The numbers

in blue correspond to the lowest running time and the numbers in red correspond to the highest

running time. Legend: l – left subtree, r – right subtree of the tree.

Benchmark
name

Gibbon Marmoset

List List’ Mgreedy Msolver

ListLength
62.34

(62.26, 62.41)

1.51
(1.44, 1.59)

1.49
(1.41, 1.56)

1.50
(1.42, 1.58)

lr rl Mgreedy Msolver

LogicEval
4.45

(4.42, 4.48)

6.60
(6.59, 6.61)

3.56
(3.53, 3.58)

3.55
(3.55, 3.55)

Rightmost
384.4

(368.4, 400.3)

314.5
(303.7, 325.3)

306.9
(295.6, 318.2)

303.1
(292.6, 313.6)

Figure 7 Rightmost: access patterns for, left-to-right (top) and right-to-left (bottom) serializa-

tions.

We measure the performance of the evaluator for differeent orders of the left and right

subtrees. Since the short circuiting evaluates from left to right order of the Exp, changing

the order of the left and right subtrees would affect the performance of the traversal. As

can be seen in Table 1, the layout where the left subtree is serialized before the right

subtree results in better performance compared to the tree where the right subtree is

serialized before the left one. This is as expected since in the latter case, the traversal

has to jump over the right subtree serialized before the left one in order to evaluate it

first and then depending on the result of the left subtree possibly jump back to evaluate

the right subtree. This results in poor spatial locality and hence worse performance.

Mgreedy and Msolver are able to identify the layout transformations that would give the

best performance, which matches the case where the left subtree is serialized before the

right subtree (Table 18).

5.3 Binary Tree Benchmarks

We evaluate Marmoset on a few binary tree benchmarks: adding one to all values in a tree,

exponentiation on integers stored in internal nodes, copying a tree and getting the right-most

leaf value in the tree. For the first three benchmarks, the tree representation we use is:
data Tree = Leaf | Node Int Tree Tree

8 The layout chosen by Mgreedy and Msolver is same as lr, the performance differs from the lr layout
compiled with Gibbon as Marmoset does code motion which results in different code.
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Table 2 Run-time mean and 95% confidence interval (ub, lb) for different layouts and traversal

orders in the binary tree benchmarks (seconds). Misalgnpre – post-order traversal on the pre-order

layout of the tree. Misalgnpost – pre-order traversal on the post-order layout of the tree. Algnpre –

pre-order traversal on the pre-order layout of the tree. Algnin – in-order traversal on an in-order

layout of the tree. Algnpost – post-order traversal on the post-order layout of the tree.

Benchmark
name

Gibbon Marmoset

Misalgnpre Misalgnpost Algnpre Algnin Algnpost Mgreedy Msolver

AddOneTree
45.51

(45.35, 45.66)

memory
error

1.29
(1.29, 1.29)

1.30
(1.30, 1.30)

1.29
(1.29, 1.29)

1.29
(1.29, 1.29)

1.28
(1.28, 1.28)

ExpTree
45.52

(45.34, 45.70)

memory
error

1.31
(1.31, 1.31)

1.31
(1.31, 1.31)

1.29
(1.29, 1.29)

1.31
(1.31, 1.31)

1.29
(1.29, 1.29)

CopyTree
45.52

(45.37, 45.67)

memory
error

1.29
(1.29, 1.29)

1.30
(1.30, 1.30)

1.28
(1.28, 1.28)

1.29
(1.29, 1.29)

1.28
(1.28, 1.28)

For right-most, the tree representation we use is:
data Tree = Leaf Int | Node Tree Tree

AddOneTree. This benchmark takes a full binary tree and increments the values stored in

the internal nodes of the tree. We show the performance of an aligned preorder, inorder

and postorder traversal in addition to a misaligned preorder and postorder traversal of

the tree. Aligned traversals are ones where the data representation exactly matches the

traversal order, for instance, a preorder traversal on a preorder representation of the tree.

A misaligned traversal order is where the access patterns of the traversal don’t match the

data layout of the tree. For instance, a postorder traversal on a tree serialized in preorder.

Table 2 shows the performance numbers. Msolver picks the aligned postorder traversal

order which is best performing. It makes the recursive calls to the left and right children

of the tree first and increments the values stored in the internal nodes once the recursive

calls return. The tree representation is also changed to a postorder representation with

the Int placed after the left and right children of the tree. This is in part due to the

structure of arrays effect, as the Int are placed closer to each other. Mgreedy on the other

hand picks the aligned preorder traversal because of its greedy strategy which prioritizes

placing the Int before the left and right subtree. The tree depth is set to 27. At this

input size, the Misalgnpost traversal failed due to memory errors, and Misalgnpre runs

∼35× slower than aligned versions because of the skewed access patterns of the traversal.

ExpTree. This traversal does exponentiation on the values stored in the internal nodes of

the tree. It is more computationally intensive than incrementing the value. We raise the

Int to a power of 10 on a tree of depth 27. Table 2 shows the performance of the different

layout and traversal orders. Msolver picks the Algnpost representation which is the best

performing, whereas Mgreedy picks the Algnpre representation.

CopyTree. Copy-tree takes a full binary tree and makes a fresh copy of the tree in a new

memory location. We use a tree of depth 27 in our evaluation. Table 2 shows the

performance of different layout and traversal orders. We see that Algnpost traversal

performs the best. Indeed, Msolver picks the Algnpost representation, whereas, Mgreedy

chooses the Algnpre representation.

Rightmost. This traversal does recursion on the right child of the tree and returns the Int

value stored in the right-most leaf of the tree. Figure 7 shows an example of a tree

with two different serializations of the tree: left-to-right (top) and right-to-left (bottom).
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Table 3 Run-time mean and 95% confidence interval (ub, lb) for different layouts in the blog

software benchmarks (seconds). Several possible permutations of layout are shown. Layout names

abbreviations: h – Header, t – HashTags, b – Blogs, i – TagID, c – Content, a – Author, d – Date.

Bench.

name

Gibbon Marmoset

hiadctb ctbhiad tbchiad tcbhiad btchiad bchiadt cbiadht Mgreedy Msolver

FilterBlogs

0.22
(0.22, 0.22)

0.22
(0.22, 0.22)

0.08
(0.08, 0.08)

0.27
(0.26, 0.27)

0.28
(0.28, 0.28)

0.29
(0.29, 0.30)

0.21
(0.21, 0.21)

0.07
(0.07, 0.07)

0.06
(0.06, 0.06)

EmphContent

0.67
(0.67, 0.67)

0.65
(0.65, 0.65)

1.60
(1.60, 1.60)

0.66
(0.66, 0.66)

1.63
(1.63, 1.63)

1.61
(1.61, 1.61)

0.47
(0.47, 0.47)

0.47
(0.47, 0.47)

0.64
(0.64, 0.64)

TagSearch

1.99
(1.99, 1.99)

1.98
(1.98, 1.98)

3.29
(3.29, 3.30)

1.68
(1.68, 1.68)

3.31
(3.31, 3.31)

3.30
(3.30, 3.30)

1.82
(1.82, 1.82)

1.76
(1.76, 1.76)

1.74
(1.74, 1.74)

The right-to-left serialization is more efficient because the constant-step movements

(blue arrows) are usually more favorable than variable-step ones (red arrows) on modern

hardware. Both Msolver and Mgreedy pick the right-to-left serialization, and Table 1 shows

that this choice performs better in the benchmark.

5.4 Blog Software Case Study

The Blog software case study serves as an example of a realistic benchmark, representing a

sample of components from a blog management web service. The main data structure is a

linked list of blogs where each blog contains fields such as header, ID, author information,

content, hashtags and date. The fields are a mix of recursive and non-recursive datatypes.

For instance, Content is a recursive type (the Pandoc Block type), but Author is a single string

wrapped in a data constructor.9 One possible permutation of fields in the blog is:
data Blogs = Empty | HIADCTB Header Id Author Date Content HashTags Blogs

We evaluate Marmoset’s performance using three different traversals over a list of blogs.

Overall, the traversals accept a keyword and a list of blogs; in the blogs, the traversals inspect

either of the three fields: Content, HashTags, and the tail of the linked-list, Blogs. (Since Blogs,

Content, and HashTags are recursive fields, changing their layout should represent greater

differences in performance.) The fields used by an individual traversal are referred as active

fields and the rest are referred as passive fields, and we specify these per-traversal below.

In Table 3, we report the performance of the six possible layouts obtained by permuting

the order of the three recursive fields, and two additional layouts (Columns 1 and 2). The

column names indicate the order of fields used; for example, the column hiadctb reports

numbers for the layout with fields ordered as: Header, Id, Author, Date, Content, HashTags, and

Blogs. All run times are gathered with Gibbon, and last two columns show the run times

for code compiled using Marmoset’s greedy and solver-based optimization, respectively.

9 At times, we have to wrap scalars in data constructors to make them packed fields. Gibbon does not
always support mixing scalar and packed fields due to compiler bugs.
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FilterBlogs filters the list of blogs and only retains those which contain the given keyword in

the HashTags field. The active fields for this traveral are HashTags and Blogs. Theoretically,

the performance of this traversal is optimized when the HashTags field is serialized before

Blogs on account of the first access to HashTags in the traversal. This is confirmed in

practice with the layout tbchiad being the fastest. Marmoset chooses the layout with

HashTags serialized first and followed by Blogs; the order of other fields remains unchanged

compared to the source program, but this has no effect on performance since they are

passive fields. Table 3 also shows that layout chosen by Marmoset performs similar to

the layout tbchiad. Both Msolver and Mgreedy pick the layout tbhiadc when compiled

from the initial layout hiadctb.

EmphContent searches the content of each blog for the keyword and emphasizes all its

occurrences there (if any). The active fields in this traversal are Content and Blogs.

Based on the access pattern (Content accessed before Blogs), the layout with the best

performance should place Content first followed by Blogs. In practice, the layout with

the best performance is cbiadht. In contrast, Msolver prioritizes the placement of Blogs

before Content, but it also changes the traversal to recurse on the blogs first and then

emphasize content. The passive fields are placed afterwards. The layout chosen by Msolver

is bchiadt, whereas the layout chosen by Mgreedy is cbhiadt when compiled from the

initial layout hiadctb. The performance of Mgreedy and Msolver differ because datatypes

other than Blogs differ in their layout choices.

TagSearch looks for the presence of the keyword in the HashTags field, and if the keyword is

present, the traversal emphasizes the keyword in the Content. The layout with the best

performance is tcbhiad because of the access pattern, which inspects HashTags followed

by Content followed by Blogs. Msolver chooses the layout tbchiad – which places HashTags

followed by Blogs followed by Content – and changes the traversal to recurse on Blogs

first and later emphasize Content in the then branch. On the other hand, Mgreedy chooses

tcbhiad when compiled from the initial layout hiadctb.

5.4.1 Globally optimizing multiple functions

We use Marmoset to globally optimize the three blog traversals we discussed above such

that we pick one layout for all traversals that minimizes the overall runtime. Table 4 shows

the runtime for a layout we compiled using Gibbon (hiadctb), Msolver (tbchiad) and

Mgreedy (tbchiad). We see that Mgreedy and Msolver do a good job in reducing the traversal

time globally. All the three traversals are run in a pipelined fashion sequentially. Although,

Msolver does worse with TagSearch when run in a pipelined manner, it is actually better

performing with Msolver when run alone as seen in table 3. Note that Msolver changes

more that one data constructor based on the inlineable attribute that Mgreedy does not.

For instance, Msolver uses a packed Inline list in the Content with the tail serialized before

Inline. Whereas, Mgreedy uses a conventional packed list. In a pipelined execution of the

traversals, although this helps reduce the runtime in the case of the content search traversal,

it inadvertently increases the runtime in case of the tag search traversal due to a cache effect

that can benefit from runtime information.

5.4.2 Comparison of MARMOSET against MLTON

We compare Marmoset’s performance to MLton, which compiles programs written in

Standard ML, a strict language, to executables that are small with fast runtime performance.
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Table 4 Run-time mean and 95% confidence interval (ub, lb) for the blog software benchmarks

when Marmoset optimizes the data layout globally (seconds). The input parameters are different

from the single-function optimization case.

Benchmark
name

Gibbon Marmoset

hiadctb Mgreedy Msolver

FilterBlogs
2.23

(2.23, 2.23)

0.11
(0.11, 0.11)

0.10
(0.09, 0.10)

EmphContent
1.57

(1.57, 1.58)

1.38
(1.38, 1.38)

1.32
(1.32, 1.32)

TagSearch
2.20

(2.20, 2.20)

1.83
(1.83, 1.83)

2.35
(2.35, 2.35)

Table 5 PAPI performance counter statistics (average of 99 runs) for different blog traversals.

Benchmark
name or metric

Gibbon Marmoset

hiadctb ctbhiad tbchiad tcbhiad btchiad bchiadt cbiadht Mgreedy Msolver

FilterBlogs

Ins 5.83e8 5.82e8 5.83e8 5.81e8 5.79e8 5.78e8 5.86e8 5.83e8 5.83e8

Cycles 9.89e8 9.60e8 2.85e8 1.05e9 1.20e9 1.25e9 8.78e8 2.79e8 2.89e8

L2 DCM 1.12e7 1.15e7 9.38e5 1.33e7 1.29e7 1.31e7 7.79e6 8.90e5 8.75e5

EmphContent

Ins 5.85e9 5.83e9 6.78e9 5.84e9 6.78e9 6.78e9 5.84e9 5.84e9 5.84e9

Cycles 2.89e9 2.74e9 4.27e9 2.84e9 4.34e9 4.29e9 2.06e9 2.06e9 2.81e9

L2 DCM 1.28e7 1.08e7 2.03e7 1.33e7 2.05e7 2.10e7 7.73e6 7.66e6 1.07e7

TagSearch

Ins 2.25e10 2.25e10 2.30e10 2.25e10 2.30e10 2.30e10 2.25e10 2.25e10 2.25e10

Cycles 8.59e9 8.59e9 9.61e9 7.29e9 9.61e9 9.75e9 7.88e9 7.61e9 7.57e9

L2 DCM 2.02e7 2.06e7 4.00e7 1.06e7 2.86e7 2.65e7 1.64e7 1.29e7 1.28e7

Figure 8 shows the the speedup of Marmoset over MLton. As shown, the performance

of Marmoset is better than MLton by significant margins for all the layouts and traversals.

Since ADTs in MLton are boxed – even though native integers or native arrays are unboxed

– such a behavior is expected because it adds more instructions (pointer de-referencing) and

results in worse spatial locality.

5.5 Cache behavior

The results from earlier sections demonstrate that Marmoset’s layout choices improve run-

time performance. This section investigates why performance improves. The basic premise of

Marmoset’s approach to layout optimization is to concentrate on minimizing how often

a traversal needs to backtrack or skip ahead while processing a buffer. By minimizing this

jumping around, we expect to see improvements from two possible sources. First, we expect

to see an improvement in instruction counts, as an optimized layout should do less pointer
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whereas Mgreedy chooses the layout tcbhiad. The mechanics of why can be explained using

our running example (Figure 1) which is essentially a simplified version of the traversal

shown in the evaluation. Figure 4b shows the access graph for this traversal. Msolver

generates constraints outlined in Section 3.6 that lead to the layout tbchiad. On the other

hand, Mgreedy starts at the root node of the graph and greedily chooses the next child to

traverse. The order in which nodes of the graph are visited fixes the order of fields in the

data constructor. In this case, the root node is HashTags which makes it the first field in the

greedy layout, next, the greedy heuristic picks the Content field making it the second field

and finally followed by the BlogList field.

In Figure 9 (p. 22), we show the compile times for different layout and traversal com-

binations when compiled with Gibbon, Mgreedy and Msolver respectively as a measure of

relative costs. The compile times for Msolver include the time to generate the control flow

graph, the field access graph, the solver time and the time to re-order the datatype in the

code. The solver times are in the order of the number of fields in a data constructor and not

the program size. Hence, the solver adds relatively low overhead. Since the compiler does

an IO call to the python solver, there is room for improvement in the future to lower these

times. For instance, we could directly perform FFI calls to the CPLEX solver by lowering

the constraints to C code. This would be faster and safer than the current implementation.

In addition, during the global optimization, we call the solver on each data constructor as of

the moment, we could further optimize this by sending constraints for all data constructors

at once and doing just one solver call.

Although the cost of Marmoset’s solver based optimization is higher than the greedy

approach, it is a complementary approach which may help the user find a better layout at

the cost of compile time. On the other hand, if the user wishes to optimize for the compile

time, they should use the greedy heuristic.

5.7 Discussion: Scale of Evaluation

Marmoset’s approach for finding the best layout for densely presented data is language

agnostic, but the evaluation has to be language specific. Hence, we implemented the approach

inside a most-developed (to our knowledge) compiler supporting dense representations of

recursive datatypes, the Gibbon compiler. Our evaluation is heavily influenced by this.

At the time of writing, the scale of evaluation is limited by a number of Gibbon-related

restrictions. Gibbon is meant as a tree traversal accelerator [25] and its original suite of

benchmarks served as a basis and inspiration for evaluation of Marmoset. “Big” end-to-end

projects (e.g. compilers, web servers, etc.) have not been implemented in Gibbon and,

therefore, are out of reach for us. If someone attempted to implement such a project using

Gibbon, they would have to extend the compiler to support many realistic features: modules,

FFI, general I/O, networking. Alternatively, one could integrate Gibbon into an existing

realistic compiler as an optimization pass or a plugin. For instance, the Gibbon repository

has some preliminary work for integrating as a GHC plugin11, but it is far from completion.

In any case, the corresponding effort is simply too big. Overall, the current Marmoset

evaluation shows that our approach is viable.

11 https://github.com/iu-parfunc/gibbon/tree/24c41c012a9c33bff160e54865e83a5d0d7867dd/
gibbon-ghc-integration

ECOOP 2024

https://github.com/iu-parfunc/gibbon/tree/24c41c012a9c33bff160e54865e83a5d0d7867dd/gibbon-ghc-integration
https://github.com/iu-parfunc/gibbon/tree/24c41c012a9c33bff160e54865e83a5d0d7867dd/gibbon-ghc-integration


38:24 Optimizing Layout of Recursive Datatypes with Marmoset

6 Future Work

Marmoset could allow the user to provide optional constraints on the layout (either relative

or absolute) through pragmas. A relative constraint would allow the user to specify if a field

A comes immediately after field B. An absolute constraint would specify an exact index in the

layout for a field. Such pragmas may be useful if the user requires a specific configuration of

a data type for external reasons or has information about performance bottlenecks.

Although the performance optimization is currently statically driven, there are many

avenues for future improvement. For instance, we can get better edges weights for the access

graphs using dynamic profiling techniques. The profiling can be quite detailed, for instance,

which branch in a function is more likely, which function takes the most time overall in a

global setting (the optimization would bias the layout towards that function), how does a

particular global layout affect the performance in case of a pipeline of functions.

We could also look at a scenario where we optimize each function locally and use “shim”

functions that copy one layout to another (the one required by the next function in the

pipeline). Although the cost of copying may be high, it warrants further investigation. Areas

of improvement purely on the implementation side include optimizing whether Marmoset

dereferences a pointer to get to a field or uses the end-witness information as mentioned in

section 2. Lesser pointer dereferencing can lower instruction counts and impact performance

positively. We would also like to optimize the solver times as mentioned in 5.6.

We envision that the structure of arrays effect that we discovered may help with opti-

mizations such as vectorization, where the performance can benefit significantly if the same

datatype is close together in memory. Regardless, through the case studies, we see that

Marmoset shows promise in optimizing the layout of datatypes and may open up the

optimization space for other complex optimizations such as vectorization.

7 Related Work

7.1 Cache-conscious data

Chilimbi and Larus [6] base on an object-oriented language with a generational garbage

collector, which they extend with a heuristic for copying objects to the TO space. Their

heuristic uses a special-purpose graph data structure, the object affinity graph, to identify

when groups of objects are accessed by the program close together in time. When a given

group of objects have high affinity in the object affinity graph, the collector is more likely

to place them close together in the TO space. As such, a goal of their work and ours is

to achieve higher data-access locality by carefully grouping together objects in the heap.

However, a key difference from our work is that their approach bases its placement decisions

on an object-affinity graph that is generated from profiling data, which is typically collected

online by some compiler-inserted instrumentation. The placement decisions made by our

approach are based on data collected by static analysis of the program. Such an approach

has the advantage of not depending on the output of dynamic profiling, and therefore avoids

the implementation challenges of dynamic profiling. A disadvantage of not using dynamic

profiling is that the approach cannot adapt to changing access patterns that are highly input

specific. We leave open for future work the possibility of getting the best of both approaches.

Chilimbi et al. [4] introduce the idea of hot/cold splitting of a data structure, where ele-

ments are categorized as being “hot” if accessed frequently and “cold” if accessed inferquently.

This information is obtained by profiling the program. Cold fields are placed into a new

object via an indirection and hot fields remain unchanged. In their approach, at runtime,

there is a cache-concious garbage collector [6] that co-locates the modified object instances.
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This paper also suggests placing fields with high temporal affinity within the same cache

block. For this they recommend bbcache, a field recommender for a data structure. bbcache

forms a field affinity graph which combines static information about the source location of

structure field accesses with dynamic information about the temporal ordering of accesses

and their access frequency.

Chilimbi et al. [5] propose two techniques to solve the problem of poor reference locality.

ccmorph. This works on tree-like data structures, and it relies on the programmer making

a calculated guess about the safety of the operation on the tree-like data structure. It

performs two major optimizations: clustering and coloring. Clustering take a the tree like

data structure and attempts to pack likely to be accessed elements in the structure within

the same cache block. There are various ways to pack a subtree, including clustering

k nodes in a subtree together, depth first clustering, etc. Coloring attempts to map

simultaneously accessed data elements to non-conflicting regions of the cache.

ccmalloc. This is a memory allocator similar to malloc which takes an additional parameter

that points to an existing data structure element which is likely accessed simultaneously.

This requires programmer knowledge and effort in recognizing and then modifying the

code with such a data element. ccmalloc tries to allocate the new data element as close

to the existing data as possible, with the initial attempt being to allocate in the same

cache block. It tries to put likely accessed elements on the same page in an attempt to

improve TLB performance.

Franco et al. [13, 14] suggest that the layout of a data structure should be defined once

at the point of initialization, and all further code that interacts with the structure should

be “layout agnostic”. Ideally, this means that performance improvements involving layout

changes can be made without requiring changes to program logic. To achieve this, classes

are extended to support different layouts, and types carry layout information – code that

operates on objects may be polymorphic over the layout details.

7.2 Data layout description and binary formats

Chen et al. [3] propose a data layout description framework Dargent, which allows program-

mers to specify the data layout of an ADT. It is built on top of the Cogent language [19],

which is a first order polymorphic functional programming language. Dargent targets C code

and provides proofs of formal correctness of the compiled C code with respect to the layout

descriptions. Rather than having a compiler attempting to determine an efficient layout,

their focus is on allowing the programmer to specify a particular layout they want and have

confidence in the resulting C code.

Significant prior work went into generation of verified efficient code for interacting with

binary data formats (parsing and validating). For example, EverParse [21] is a framework

for generating verified parsers and formatters for binary data formats, and it has been used

to formally verify zero-copy parsers for authenticated message formats. With Narcissus [9],

encoders and decoders for binary formats could be verified and extracted, allowing researchers

to certify the packet processing for a full internet protocol stack. Other work [23] has also

explored the automatic generation of verified parsers and pretty printers given a specification

of a binary data format, as well as the formal verification of a compiler for a subset of the

Procotol Buffer serialization format [26].

Back [1] demonstrates how a domain-specific language for describing binary data formats

could be useful for generating validators and for easier scripting and manipulation of the

data from a high-level language like Java. [18] introduce Packet Types for programming with

network protocol messages and provide language-level support for features commonly found

in protocol formats like variable-sized and optional fields.
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Hawkins et al. [15] introduce RELC, a framework for synthesizing low-level C++ code

from a high-level relational representation of the code. The user describes and writes code

that represents data at a high level as relations. Using a decomposition of the data that

outlines memory representation, RELC synthesizes correct and efficient low-level code.

Baudon et al. [2] introduce the Ribbit DSL, which allows programmers to describe the

layout of ADTs that are monomorphic and immutable. Ribbit provides a dual view on

ADTs that allows both a high-level description of the ADT that the client code follows

and a user-defined memory representation of the ADT for a fine-grained encoding of the

layout. Precise control over memory layout allows Ribbit authors to develop optimization

algorithms over the ADTs, such as struct packing, bit stealing, pointer tagging, unboxing,

etc. Although this approach enables improvements to layout of ADTs, it is different from

Marmoset’s: Ribbit focuses on manually defining low-level memory representation of the

ADT whereas Marmoset automatically optimizes the high-level layout (ordering of fields

in the definition ADT) relying on Gibbon for efficient packing of the fields. While Ribbit

invites the programmer to encode their best guess about the optimal layout, Marmoset

comes up with such layout by analysing access patterns in the source code.

7.3 Memory layouts

Early work on specifications of memory layouts was explored in various studies of PADS, a

language for describing ad hoc data-file formats [10, 11, 17].

Lattner and Adve [16] introduce a technique for improving the memory layout of the heap

of a given C program. Their approach is to use the results of a custom static analysis to enable

pool allocation of heap objects. Such automatic pool allocation bears some resemblance to our

approach, where we use region-based allocation in tandem with region inference, and thanks

to static analysis can group fields of a given struct into the same pool, thereby improving

locality in certain circumstances.

Floorplan [8] is a declarative language for specifying high-level memory layouts, imple-

mented as a compiler which generates Rust code. The language has forms for specifying

sizes, alignments, and other features of chunks of memory in the heap, with the idea that any

correct state of the heap can be derived from the Floorplan specification. It was successfully

used to eliminate 55 out of 63 unsafe lines of code (all of the unsafe code relating to memory

safety) of the immix garbage collector.

8 Conclusions

This paper introduces Marmoset, which builds on Gibbon to generate efficient orders for

algebraic datatypes. We show that a straightforward control-flow and data-flow analysis

allows Marmoset to identify opportunities to place fields of a data constructor near each

other in memory to promote efficient consecutive access to those fields. Because a given

function might use many fields in many different ways, Marmoset adopts an approach of

formulating the data layout problem as an ILP, with a cost model that assigns an abstract

cost to a chosen layout. Armed with the ILP problem formulation, an off-the-shelf ILP

solver allows Marmoset to generate minimal-(abstract)-cost layout for algebraic datatypes.

Marmoset then uses the best layout to synthesize a new ADT and the Gibbon compiler

toolchain to lower the code into an efficient program that operates over packed datatypes

with minimal pointer chasing.

We show, across a number of benchmarks, that Marmoset is able to effectively and

consistently find the optimal data layout for a given combination of traversal function and

ADT. In our experiments, Marmoset-optimized layouts outperform not only Gibbon’s

default layouts but also the popular SML compiler MLton.
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