

290:2 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

Networks (GNN), Physical Simulation, and Quantum Chemistry [Hamilton et al. 2017; Hu et al.

2020; Rahman et al. 2021] make use of sparse tensor contractions.

Due to the compressed data formats that store the sparse tensors, their contractions are realized as

non-a�ne loop nests, where bounds depend on the input, and accesses are indirect. The non-a�ne

loop nests of sparse tensor contractions prevent us from directly applying classical a�ne loop

transformation frameworks to reduce load imbalances and bad locality for performance enhance-

ment. This challenge has given rise to specialized compilers for sparse tensor computations [Bik

et al. 2022; Bik and Wijsho� 1993; Kjolstad et al. 2019, 2017; Kotlyar et al. 1997; Senanayake et al.

2020; Tian et al. 2021; Venkat et al. 2015] and various abstractions for the schedule — realization

of computation (e.g., loop structure, parallelization etc.) — to separate it from the computation.

Schedule abstractions (§ 2.4) make it convenient to realize a plethora of ways to materialize a

computation using transformations such as loop reordering, loop fusion/�ssion, loop tiling, loop

parallelization, etc.

Choosing a better-performing schedule for a sparse tensor contraction is not straightforward.

Therefore, it is more challenging than �nding a schedule for its dense counterpart, which is realized

as a�ne loop nests (i.e., There exist well-studied analytical cost models of schedules and machines

for dense tensor computations). The schedule selection heavily depends on sparse tensor inputs

(number of non-zero values and sparsity structure), making it di�cult to pick a performant one for

sparse tensor computations. Hence, the simplest method to evaluate the cost of a schedule is to

execute it on a given machine using the provided sparse tensor inputs to measure the time it takes to

�nish the execution. The sheer number of schedules makes it an arduous time-consuming process,

rendering it impractical to execute all schedules in search of the best one. Also, it is important to

note that there may not be a single best schedule for all sparse tensor inputs and machines, and

some schedules may be asymptotically better than others.

The challenge in �nding a performant schedule for sparse tensor contractions arises from two

main factors: vast space of schedules and heavy dependency on sparse tensor inputs. We provide

a systematic way to completely explore the vast space of schedule at compile-time rooted in

transformations (i.e., loop reordering and loop/kernel fusion/�ssion), which makes it convenient to

realize the schedule. The exploration of the schedule space is augmented with machine-independent

pruning strategies and symbolic sparse tensor input attributes at compile-time to �lter most of the

schedules and keep a handful of schedules to be evaluated at run-time with machine-dependent

parameters and concrete sparse tensor input attributes to select a performant schedule. As there are

asymptotically superior schedules, the pruning strategy encompasses comparing schedules for both

time and auxiliary memory complexity, which depends on the attributes of sparse tensor inputs.

To the best of our knowledge, prior work does not optimize for both time and auxiliary memory

complexity [Ahrens et al. 2022; Kanakagari and Solomonik 2023].

Consider this example of sparse tensor times matrix contraction: �;<= =

∑

8 9: B8 9: �8; � 9< �:=
1.

This computation can be expressed using a simple linear loop nest with a time complexity of

$ (nnz(B8 9:)!"#). Alternatively, the contraction can be expressed as)8 9= =

∑

: �8 9: �:= and

�;<= =

∑

8 9)8 9=�8;� 9< – two separate computations with a total time complexity of$ (nnz(B8 9:)#+
� �#!") and a dense temporary) . Another schedule can be obtained from the observation that

the outer loops of the �rst computation (producer) can be fused with the second computation

(consumer) (i.e., loop fusion). This schedule reduces the overall time complexity to$ (# (nnz(B8 9:) +
nnz(B8 9)!")) 2 and a scalar temporary, which is asymptotically superior to both of the previous

schedules in time and memory complexity. The last schedule has a branching loop structure

1Bold face letters denote sparse tensors.
2nnz(B8 9) refers to iterating only the �rst two levels in the indexing arrays of B8 9 without visiting the third dimension : .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:3

(i.e., imperfectly nested loop nest) that is di�erent from the other two schedules, which have simple

loop structures (i.e., perfectly nested loop nests). However, the last schedule dominates the other

two schedules in terms of both time and memory complexity (§ 3). Therefore, to explore schedules

with multi-level branching loop structures, which are of asymptotically superior time and auxiliary

memory complexity, we introduce the extended representation of branched iteration graphs [Dias

et al. 2022] and a new scheduling directive to realize such schedules (§ 4). Furthermore, we explore

the schedule space of a given sparse tensor computation and present strategies based on partially

ordered sets (posets) that can be combined with user-de�ned constraints at compile-time to prune

the schedule space (§ 5). Contributions of this paper are as follows:

Recursive extension of branched iteration graph We generalize the branched iteration graph

(BIR) representation of SparseLNR [Dias et al. 2022] to support schedules with multiple

levels of imperfectly nested loops and new scheduling primitives to realize the schedules by

recursively applying loop/kernel fusion/�ssion with loop reorder.

Complete schedule space exploration We provide a strategy to explore the schedules of a given

sparse tensor contraction guaranteed to cover the complete space of schedules with loop

structures, including multi-level branching (i.e., multiple levels of imperfectly nested loops),

attainable using loop/kernel fusion/�ssion.

Novel auto-scheduler We introduce a novel poset-based auto-scheduler to prune the space of

schedules to create a Pareto frontier wrt. both time and auxiliary memory complexity. We

use a Satis�ability Modulo Theory (SMT) solver to compare the symbolic time and memory

complexity with user-de�ned constraints.

The rest of the paper is organized as follows. We provide the necessary background in Section 2

and in Section 3, we motivate the problem. The multi-level branched iteration graph and the

scheduling primitives are introduced in Section 4. We discuss schedule exploration and selection in

Section 5. Evaluation of our auto-scheduler is presented in Section 6. We conclude the paper in

Section 8 with a discussion.

2 Background

This section discusses the necessary background on sparse tensor access constraints, tensor index

notation, iteration graph representation, and scheduling primitives to understand the challenge in

auto-scheduling for sparse tensor contraction.

2.1 Sparse Tensor Access Constraints

There are several compressed data formats used to store sparse tensors: Compressed Sparse Row

(CSR), Sorted Coordinate (Sorted COO), Compressed Sparse Fiber (CSF), etc., to name a few. These

formats are abstracted by level format [Chou et al. 2018], a tree structure that shows the order in

which index arrays must be traversed to retrieve an element. The sparse tensor access constraints are

imposed by the order of access of the index arrays in compressed data formats. For example, if A8 9
is in CSR format, the row index should be traversed to get to the column index, which results in a

dependency between 8 and 9 , the indices traverse rows and columns of A, respectively. Therefore,

the loops 8 and 9 belong to cannot be freely reordered. TACO Format Abstraction [Chou et al. 2018]

describes the level formats in detail.

2.2 Tensor Index Notation for Tensor Contractions

The notation that describes tensor contraction operations is based on the Einstein Summation

(Einsum) convention. This notational convention implies summation over a set of repeated indices.

For example, the expression - (8, :) = �(8, 9) · �(9, :) implies summation over the repeated index

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:4 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

i

j

k

B2

B1A1

C1

C2

A2

(a)

1 for (int32_t i = 0; i < B1_dimension; i++) {

2 for (int32_t jB = B2_pos[i]; jB < B2_pos[(i + 1)]; jB++) {

3 int32_t j = B2_crd[jB];

4 for (int32_t k = 0; k < C2_dimension; k++) {

5 int32_t kA = i ∗ A2_dimension + k;

6 int32_t kC = j ∗ C2_dimension + k;

7 A_vals[kA] = A_vals[kA] + B_vals[jB] ∗ C_vals[kC];

8 }

9 }

10 }
(b)

Fig. 1. An example of an iteration graph for sparse matrix-matrix multiplication and corresponding code.

9 and equivalent to the standard mathematical notation �8: =

∑

9 �8 9� 9:
3. We use both these

notations interchangeably in the text. Since this computation can be performed using a simple

linear triply nested loop, its iteration time complexity is $ (� �), where � , � , and are the loop

bounds. If B is sparse, then the iteration time complexity is$ (nnz(B8 9)), where nnz is the number

of non-zero elements.

2.3 Iteration Graph

Consider the example sparse matrix-matrix multiplication (SpMM),�8: =

∑

: B8 9 � 9: . An iterator

that iterates through all of 8 , 9 , and : can read each value of B8 9 , � 9: , multiply each value sharing

the same 9 , and store the result in �8: . An example iteration graph is shown in Figure 1a, and

this internal representation (IR) is used to generate code in Figure 1b. The nodes in the iteration

graph represent indices in the Einsum notation. This is an acyclic graph where the edges represent

the dimensions of tensors and how they map to indices. Since B is sparse, �1 and �2, incidents

on indices 8 and 9 must not change the order, and other indices can appear in any order as they

traverse dense tensors (e.g.,�1 and�2). No other sparse tensor access constraints (§ 2.1) are imposed.

TACO [Kjolstad et al. 2017] describes the concept of iteration graphs in detail.

2.4 Scheduling Primitives

A schedule describes one way of realizing a computation, and multiple schedules can realize the

same computation. For example, we can change the loop order in Figure 1 to get the order 8, :, 9

instead of 8, 9, : . TACO and Sparse Iteration Space Framework [Senanayake et al. 2020] describe

the importance of abstractions to separate the computation from the schedule. The algorithmic

and scheduling languages describe the computation and schedule, respectively, and scheduling

primitives form the scheduling language. Some of the scheduling primitives are as follows: reorder

to reorder the loops; split to split a loop for tiling; collapse to collapse one loop onto another;

parallelize and vectorize for parallel execution. TACO-Workspaces [Kjolstad et al. 2019] introduces

precompute to add dense intermediaries to schedules. In Section 4, we introduce a new scheduling

primitive called loopfuse, which can produce loop nests with branched loops (i.e., imperfectly

nested loops) combined with the reorder directive.

3 Overview

It may not be straightforward to decide whether to apply transformations across multiple kernels.

The decision depends both on the iteration complexity of the �nal loop nests and the working set

3This is the matrix-matrix multiply operation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:5

1 for perm(l,m,n,i,j_pos,k_pos):

2 A(l,m,n)+=B(i,j,k)∗C(i,l)∗D(j,m)∗E(k,n)

(a) �;<= =

∑

8 9: B8 9: ·�8; · � 9< · �:=
Time: !"# · nnz(�), Memory: 0
Loop Depth: 6, Memory Depth: 0

1 for perm(m, l):

2 T<k> = 0

3 for i, j_pos, k_pos:

4 T(k) += B(i,j,k)∗C(i,l)∗D(j,m)

5 for perm(n, k):

6 A(l,m,n) += T(k)∗E(k,n)

(b) �;<= =

∑

: (
∑

8 9 B8 9: ·�8; · � 9<) · �:=
Time: !" · (nnz(�) + #), Memory:
Loop Depth: 5, Memory Depth: 1

1 for l:

2 T<k,j> = 0

3 for i, j_pos, k_pos:

4 T(k,j) += B(i,j,k)∗C(i,l)

5 for perm(j, m, k, n):

6 A(l,m,n) += T(k,j)∗D(j,m)∗E(k,n)

(c) �;<= =

∑

9: (
∑

8 B8 9: ·�8;) · � 9< · �:=
Time: ! · (nnz(�) + �" #), Memory: �
Loop Depth: 5, Memory Depth: 2

1 for l:

2 T<k,j> = 0

3 for i, j_pos, k_pos:

4 T(k,j) += B(i,j,k)∗C(i,l)

5 for perm(m, k):

6 t = 0

7 for j:

8 t += T(k,j)∗D(j,m)

9 for n:

10 A(l,m,n) += t∗E(k,n)

(d) �;<= =

∑

: (
∑

9 (
∑

8 B8 9: ·�8;) · � 9<) · �:=
Time: ! · (nnz(�) +" (� + #)), Memory: �
Loop Depth: 4, Memory Depth: 2

1 for l:

2 T<j,k> = 0

3 for i, j_pos, k_pos:

4 T(k,j) += B(i,j,k)∗C(i,l)

5 T<m,k> = 0

6 for perm(j, m, k):

7 T(m,k) += T(j,k)∗D(j,m)

8 for perm(m, k, n):

9 A(l,m,n) += T(m,k)∗E(k,n)

(e) �;<= =

∑

: (
∑

9 (
∑

8 B8 9: ·�8;) · � 9<) · �:=
Time: ! · (nnz(�)+" (� +#)), Memory: � +"
Loop Depth: 4, Memory Depth: 2

Fig. 2. Di�erent schedules of executing �;<= =

∑

8 9: B8 9: ·�8; · � 9< · �:= . Here, the code snippet 2a has a
perfectly nested loop structure while all the other code snippets has a nested loop structure. Here, 9_?>B
refers to the non-a�ine loop associated with the index 9 . The loop 9_?>B is non-a�ine because B8 9 is sparse.
The code snippets 2b and 2c has one level of branching whereas the code snippets 2d and 2e has a branch
nesting depth of two.

sizes.4 If the working set sizes are small and �t into the cache then, it is better to use the version

with lower iteration complexity. Otherwise, it is better to use the schedule with lower auxiliary

memory. Hence, an auto-scheduler that only looks at the iteration complexity or only the auxiliary

memory complexity may choose the wrong schedule as the �nal output or prune a good schedule

from the search space in the process.

3.1 Motivating Example

There may be many schedules to perform a tensor contraction, and which one to choose depends

on your viewpoint. Consider the following example involving a sparse tensor B:

�(;,<, =) = B(8, 9, :) ∗� (8, ;) ∗ � (9,<) ∗ � (:, =)

4Iteration complexity refers to the number of total iterations in a loop nest required to complete the computation. For

example, iteration complexity of the kernel in Figure 2a is !"# · (nnz(�))

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:6 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

Figure 2a refers to performing the computation using a simple loop nest of depth 6. The same

computation can be written as in �gures 2b, 2c, 2d, and 2e with branching loop nests of depth 4 or

5. In this section, we will discuss the performance of these di�erent schedules. We will evaluate all

the schedules with the same loop structure, but with di�erent index ordering and report the best

one. For the loop structure in Figure 2d, we will evaluate both the inner loop order of<,: and :,<.

Similarly, for Figure 2b, we will evaluate four di�erent loop orders, two of them by interchanging

the inner loops =, : and two of them by interchanging the outer loops ;,<.

From the asymptotic time complexity viewpoint, an auto-scheduler might lean towards pruning

Schedule 2a. This is due to its loop nesting depth of 6 and time complexity of$ (nnz(�� �)!"#), in
contrast to the schedule in Figure 2b with a loop nesting depth of 5 and asymptotic time complexity

of $ (nnz(�� �)!" + !"#) or the schedule in Figure 2d with a loop nesting depth of 4 and

asymptotic time complexity of $ (nnz(�� �)! + !" (� + #)). Notably, the schedule in Figure 2e

has the same asymptotic time complexity as the schedule in Figure 2d, while the asymptotic time

complexity of the schedule in Figure 2c is $ (nnz(�� �)! + !�" #).

2a
2b

2c2d

2e

Time

Auxiliary
Memory

Fig. 3. Relative placement of schedules from
Figure 2 based on asymptotic time vs. auxil-
iary memory complexities.

These schedules can be placed on a asymptotic time

complexity vs. auxiliary memory complexity space plot

as shown in Figure 3, relative to each other. From the

perspective of asymptotic time complexity, an auto-

scheduler might favor either the schedule in Figure 2d

or Figure 2e, both having a loop depth of 4, the lowest

among the �ve schedules in Figure 2. Comparing these

two schedules, Figure 2d uses one 2D auxiliary mem-

ory for storing intermediate results between branched

loop nests, while Figure 2e uses a 2D and a 1D auxiliary

memory. Consequently, the former has lower memory

complexity than the latter. In summary, the schedule in

Figure 2d dominates Figure 2e, as both schedules share

the same asymptotic time complexity, but the former is

better in terms of auxiliary memory complexity.

Comparing the schedules in Figures 2d and 2c from the asymptotic memory complexity per-

spective, both exhibit an auxiliary memory complexity of $ (�). The time complexity of the

former, Figure 2d, is superior with $ (� + #) being better than $ (�#) for larger values of � and
. Consequently, Figure 2d dominates Figure 2c. For the sake of brevity, comparisons involving

Figures 2e and 2c with other schedules are omitted in the following paragraphs.

Consider the comparison of the schedules in Figures 2a, 2b, and 2d when the bounds change

in the range as follows; 1 ≤ � ≤ 1800, 1 ≤ � ≤ 1600, 400 ≤ ≤ 4000, 8 ≤ ! ≤ 256, 8 ≤ " ≤ 256,

8 ≤ # ≤ 256, and 0.001 ≤ sparsity(�) ≤ 0.01. Note that the schedule in Figure 2a dominates both

the schedules in Figures 2b and 2d in terms of the auxiliary memory usage because no auxiliary

memory is used in the Schedule 2a. Although the loop depth is four for the schedule in Figure 2d,

within the given ranges of bounds and the sparsity of �, we cannot claim that it is the best in

all cases. Let us look at some cases by changing the loop bounds and sparsity for tensor �. The

evaluation con�guration is explained in Section 6.

Case 1©: Lowest loop depth schedule (Figure 2d) is the best In this case, we set the loop

bounds for the schedules in Figure 2 to speci�c values: � = 1800, � = 800, = 1000, ! = 64," = 16,

= 325, and sparsity(�) = 0.08. Under these conditions, the iteration time complexities follow the

5� , � , , !,", and # are the loop bounds of loops with indices 8, 9, :, ;,<, and =, respectively.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:7

inequality Φ(3) 6
< 7.5 ∗ Φ(3) ≈ Φ(1) < 237.5 ∗ Φ(3) ≈ Φ(0). The corresponding execution times

follow the inequality Ψ(3) 7
= 2.48B < Ψ(1) = 6.26B < Ψ(0) = 32.40B . The schedule in Figure 2d

exhibits the lowest loop depth and iteration time complexity. An auto-scheduler that factors in

loop depth could choose the best schedule in this case.

Case 2©: E�ect of the size of auxiliary memory Adjusting the loop bounds to � = 1600,

 = 2000 and sparsity(�) = 0.02 while maintaining other loop bounds as in the previous example,

the schedule in Figure 2d now incurs an auxiliary temporary memory requirement of 12.21"�

(compared to 3.05"� in Case 1©). This consumes more than 50% of the last-level cache (LLC). The

iteration time complexities follow the inequality: Φ(3) < 3 ∗ Φ(3) ≈ Φ(1) < 92.5 ∗ Φ(3) ≈ Φ(0).
Execution times for the schedules follow the inequality, Ψ(1) = 8.60B < Ψ(3) = 10.20B < Ψ(0) =
33.51B . The schedule in Figure 2d, with the minimum loop depth, exhibits the lowest iteration

time complexity as in the previous example, but the schedule in Figure 2b, with a loop depth of

5, performs better. It is evident from this case that a good auto-scheduler must consider the sizes

of the auxiliary memory arrays used in the computation. Consequently, an auto-scheduler solely

reliant on loop depth would fail in this scenario.

Case 3©: Highest loop & lowest memory depth schedule (Figure 2a) is the best Setting

loop bounds and sparsity as � = 1, � = 200, = 4000, ! = 256, " = 200, # = 196, and

sparsity(�) = 0.002, the execution times of the schedules in Figure 2a, Figure 2b, and Figure 2d

follows the inequality: Ψ(0) = 4.9<B < Ψ(1) = 9.1<B < Ψ(3) = 282.5<B . This scenario is an

example where the schedule with the highest loop depth (Schedule 0) executes the fastest. An

auto-scheduler that factors in loop depth would discard this schedule in favor of the schedules with

lower loop depths. This case highlights the need for a robust auto-scheduler to consider factors

beyond loop depth.

Case 4©: Neither the lowest loop depth, nor the highest loop depth schedule (Figure 2b)

is the best Setting loop bounds and sparsity as � = 265, � = 1207, = 479, ! = 251, " = 234,

= 42, and sparsity(�) ≈ 0.0033, Figure 2b performs the fastest at Ψ(1) = 513<B , followed by

Ψ(3) = 1.14B for Figure 2d, and Ψ(0) = 1.66B for Figure 2a. In this scenario, auxiliary memories

account for less than 12% of the LLC. For these values, Φ(0) = 1.13 × Φ(1) and Φ(3) = 40.4 × Φ(1).
Execution times align with iteration complexities, and auxiliary memory usage is reasonably modest.

Unlike previous cases, where the best loop or memory depth proved to be the most e�cient, this

instance underscores the need for schedulers to consider multiple factors beyond loop and auxiliary

memory depth when pruning the search space.

3.2 Our approach: SparseAuto

The insights drawn from the motivating example and our approach to schedule selection can be

summarized as follows.

Multi-Level Branched Loop Nests Nested loop computations with reduced loop depth (as in

Case 1©) are crucial. However, existing scheduling languages lack support for multi-level branched

loop nests. To address this, we extend the branched iteration graph (BIG) [Dias et al. 2022; Kjolstad

et al. 2017] to accommodate recursive, multi-level branched iteration graphs with multi-dimensional

temporary bu�ers.We also enhance the scheduling language to support recursive fusion by adapting

TACO ’s code generation strategies.

Time and Auxiliary Memory Complexities Both time and auxiliary memory complexities

contribute to the schedule’s execution time. An e�ective auto-scheduler needs to consider both

6
Φ(G) refers to the iteration time complexity of the schedule in Figure2G for concrete bounds in the given Case.

7
Ψ(G) refers to the execution time of the schedule in Figure 2G .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:8 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

aspects when selecting a schedule (as seen in Cases 2©– 4©). If a schedule’s auxiliary memory

takes up a large portion of the last-level cache, it tends to perform worse than the alternatives

(as observed in Case 2©). To address this, we introduce an auto-scheduler that employs an SMT

solver. The solver is guided by the constraints of sparse computations and reasons about the partial

orders of time and auxiliary memory complexity. This approach e�ectively prunes the search space,

leading to the selection of schedules that dominate others in both time and memory complexity.

4 Design of the Transformation

Tensor contractions can be materialized using a simple linear loop nest where there would be a

corresponding loop for each of the indices in the Einsum expression. This loop nest is represented

as a linear iteration graph (LIG) as explained in Section 4.1, which is used for sparse code generation.

However, this simple loop nest must respect the sparse tensor access constraints. For example, if a

sparse tensor is in CSR format, the row should be accessed �rst. In this section, we describe an

algorithm to recursively generate a branched iteration graph (BIG), the transformation required to

convert a LIG into a multi-level BIG (§ 4.2), and how this transformation can cover a plethora of

possible loop nests for the computation (§ 4.5).

4.1 Linear Iteration Graph (LIG) —Equivalence Class of Tensor Contractions

Consider a tensor contraction:

$ (idxout) =
∑

idxcontract

�1 (idx1) ∗ · · · ∗ �8 (idx8) ∗ · · · ∗ �= (idx=).

Here, �1 . . . �= denote the input tensors; $ denotes the output tensor; idx2>=CA02C denotes the indices

that need to be contracted from the tensor expression. The example tensor contraction can be

materialized in several ways, two of which are as follows (access indices are omitted for brevity):

1 loop1 . . . loop8 . . . loop9 . . . loop= :

2 $ += �1 ∗ ... ∗ �; ∗ ... ∗ �< ∗ ... ∗ �4

1 loop1 . . . loop9 . . . loop8 . . . loop= :

2 $ += �1 ∗ ... ∗ �< ∗ ... ∗ �; ∗ ... ∗ �4

There are two main di�erences between the two materializations: loops 8 and 9 are swapped,

as well as tensors �; and �< in the expression. Therefore, the orders of accessing elements of

input tensors and storing elements of the output tensor di�er. But in general, any permutation of

;>>?1, ;>>?2, . . . , ;>>?= , and any permutation of �1, . . . , �= yields the correct output tensor $, when

we complete all the iterations. This observation also holds when some of the tensors are sparse,

although the index order must satisfy the sparse tensor access constraints. Overall, materializations

like the ones above belong to an equivalence class because they produce the same output.

We de�ne a linear iteration graph (LIG) as a loop nest with no two loops having the same depth

from the root of the nest and an index order that respects all the sparse tensor access constraints.

Hence, we consider any permutation of the loops and input tensors that do not violate the sparse

access constraints as a representative of an equivalence class since it produces the same result for a

given tensor contraction.

4.2 Multi-level Branched Iteration Graphs (BIG)

In this section, we describe the multi-level BIG transformation. We demonstrate how the algorithm

works for the example tensor contraction from Section 3 and by showing how the LIG in Figure 5

transforms into a BIG (5a→ 5b and 5a → 5c→ 5d→ 5e).

The tensor contraction �(;,<, =) = B(8, 9, :) ∗� (8, ;) ∗ � (9,<) ∗ � (:, =) has a default iteration
graph (Figure 5a) which implies generated code in Figure 2a. The IR of this iteration graph is shown

in the listing below:

1 forall(l, forall(m, forall(n, forall(i, forall(j, forall(k, A(l,m,n) += B(i,j,k) ∗ C(i,l) ∗ D(j,m) ∗ E(k,n)))))))

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:9

l

m

n

i

A2

A1C2

C1

D1

D2

B1

B2

j

A3

k

B3

E2

E1

(a)

l

m

n
i

A2

A1C2

C1

D1

D2

B1

B2

j

A3

k

B3

E2

E1

k

Producer

Consumer

scratch
mem

T<K>

(b)

l

m

n

i

A2

A1C2

C1

D1

D2
B1

B2

j

A3

k

B3

E2

j

k

E1

scratch
mem

T<J,K>

Producer

Consumer

(c)

l

m

k

i

A2

A1C2

C1

D1

D2B1

B2

j
A3

k

B3

E1

n

j

E2

scratch
mem

T<J,K>

Producer

Consumer

(d)

l

m

k

i

A2

A1C2

C1

D1

D2B1

B2

j
A3

k

B3

E1

nj

E2

scratch
mem

T<J,K>

Consumer

Consumer
Producer

Producer

scratch
mem
t

(e)

Fig. 5. loopfuse transformation performed on �;<= =

∑

8 9: B8 9:�8;� 9<�:= . (a) TACO default kernel, (b)
Fused kernel with extra memory, (c) Fused kernel with � extra memory, (d) 5c with reordered consumer
branch, and (e) Multi-level nesting a�er fusing inner branch of 5d.

Transform Iteration Graph 5a → 5b Let us split the computation into two parts, the pro-

ducer and the consumer. The �rst one,) (idxtemp) =
∑

B(8, 9, :) ∗� (8, ;) ∗ � (9,<), produces the
intermediate temporary tensor) with indices idxtemp, which is consumed in the second one,

�(;,<, =) =) (idxtemp) ∗ � (:, =), to generate the output �. Here, idxtemp = {;,<, :} is obtained by

evaluating: Indices(B(8, 9, :) ∗� (8, ;) ∗ � (9,<)) ∩ (Indices(�(;,<, =)) ∪ Indices(� (:, =))). Hence,
the auxiliary memory required is $ (!").
The split computations from the original one have iteration graphs with the following index

orders: l) m) i) j) k for the producer and l) m) n) k for the consumer.

These ones preserve the index order in the original iteration graph l) m) n) i) j) k

(Figure 5a). As both iteration graphs share the same indices ; and< at the beginning, they can be

fused into the BIG in Figure 5b, facilitating code generation in Figure 2b. Since the unfused sections

of the producer and consumer graphs include 8, 9, : and =, : respectively, the fused iteration graph

would require extra memory of , obtained from {8, 9, :} ∩ {=, :}, to pass the intermediate results

between the two computations. Notably, only an auxiliary memory of size is required after fusion,

compared to the one with size !" before fusion.

Transform Iteration Graph 5a→ 5c The original tensor contraction can be split into two

computations in a di�erent way. For example,) (idxtemp) = B(8, 9, :) ∗ � (8, ;) and �(;,<, =) =

) (idxtemp) ∗ � (9,<) ∗ � (:, =) where idxtemp = {;, 9, :}. This would result in the producer and

consumer iteration graphs l) i) j) k and l) m) n) j) k , respectively. Since

they have a common index ; at the beginning of the iteration graph, they can be fused to generate

the BIG in Figure 5c. Fusing the iteration graph reduces the auxiliary memory requirement to �

as opposed to the !� before. After fusion, the IR is shown in the listing below (notice the addition

of the temporary C1 and the where clause to combine the producer and consumer computations):

1 forall(l, where(

2 forall(m, forall(n, forall(j, forall(k, A(l,m,n) += t1(j,k) ∗ D(j,m) ∗ E(k,n))))),

3 forall(i, forall(j, forall(k, t1(j,k) += B(i,j,k) ∗ C(i,l))))))

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:10 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

Algorithm 1 Multi-level BIG Transformation

Input: Valid Iteration Graph �
complete
�

Input: Path to Inner Iteration graph ?0Cℎ : +42C>A

Input: Split Position 8 : �=C

Input: Is Producer On the Left? ?>; : 1>>;

Output: Multi-level BIG � ′
�

1: �>;3
�

= GetInnerGraphUsingPath(�
complete
�

, ?0Cℎ)

2: comp = GetInnerComputation(�>;3
�

) ⊲ computation: �>DC+ = �1 ∗�2 ∗ .. ∗�8 ∗ ... ∗�=
3: exprproducer = (?>; ==)AD4) ? �1 ∗ ... ∗�8 : �8+1 ∗ ... ∗�=
4: exprconsumer = (?>; == �0;B4) ? �8+1 ∗ ... ∗�= : �1 ∗ ... ∗�8
5: �C4<? = GetIndices(exprconsumer) ∩ (GetIndices(exprproducer) ∪ GetIndices(�>DC))

6: ProducerExpr :=) ′(�C4<?)+ = exprproducer
7: ConsumerExpr := �>DC+ = (?>; ==)AD4) ?) ′(�C4<?) ∗ exprconsumer : exprconsumer ∗)

′(�C4<?)

8: !8BC�−%A3 = GetIndicesInOrder (ProducerExpr,�>;3
�

)

9: !8BC�−�>= = GetIndicesInOrder (ConsumerExpr,�>;3
�

)
10: De�ne: �5 DB81;4 = ∅

11: for each 8 ∈ �>;3
�

do

12: if 8 ∈ !8BC�−%A3 and 8 ∈ !8BC�−�>= then

13: �5 DB81;4 = �5 DB81;4 ∪ 8
14: else break;

15: De�ne: �shared = {!8BC�−%A3 ∩ !8BC�−�>=} \ �5 DB81;4
16: De�ne:) (�shared)
17: ProducerExpr :=) (�shared) = exprproducer
18: ConsumerExpr := �>DC = (?>; ==)AD4) ?) (�C4<?) ∗ exprconsumer : exprconsumer ∗) (�C4<?)

19: �=4F
�

= GraphRewrite(�>;3
�
, �5 DB81;4 , ProducerExpr,ConsumerExpr)

20: return GraphReplace(�
complete
�

,�=4F
�

,�>;3
�

)

Transform Iteration Graph 5c→ 5d We notice that, after fusion, each of the unfused sections

of the producer and consumer iteration graphs can be treated as separate iteration graphs by

keeping all the fused indices �xed in the computation. For example, take the consumer computation,

�(;,<, =) =) (;, 9, :) ∗� (9,<) ∗� (:, =). We can rewrite the computation as�(_,<, =)+ =) (_, 9, :) ∗

� (9,<) ∗ � (:, =) by �xing ; , with corresponding iteration graph m) n) j) k . This can be

split into two computations:) ′(<,:)+ =) (_, 9, :) ∗ � (9,<) and �(_,<, =)+ =) ′(<,:) ∗ � (:, =),

with corresponding iteration graphs m) j) k and m) n) k , respectively. Both

of these iteration graphs have the same �rst index m that can be fused. The iteration graph

in this con�guration (not shown in Figure 5) would be able to generate the code in Figure 2e.

This con�guration would require auxiliary memory of size because the unfused part of each

iteration graph shares the common index {:} = { 9, :} ∩ {=, :}. The iteration graph in Figure 5c

can be transformed to the iteration graph in Figure 5d with the inner consumer index order

m) k) n) j , by reordering the consumer part of Figure 5c.

Transform Iteration Graph 5d → 5e Splitting the consumer computation as described

previously yields the producer and consumer iteration graphs m) k) j and m) k) n ,

respectively, which can be fused to generate the multi-level BIG in Figure 5e. Since the unfused

sections of the producer and consumer graphs do not share any common indices, it only requires a

scalar auxiliary memory to pass the intermediate results between the producer and consumer. The

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:11

�nal IR is shown in the listing below (notice the use of two temporaries C1 and C2, and the nested

combination of where clauses):

1 forall(l, where(

2 forall(m, forall(k, where(

3 forall(n, A(l,m,n) += t2 ∗ E(k,n)),

4 forall(j, t2 += t1(j,k) ∗ D(j,m))))),

5 forall(i, forall(j, forall(k, t1(j,k) += B(i,j,k) ∗ C(i,l))))))

4.3 LIG to BIG Transformation Algorithm

Algorithm 1 shows the pseudo-code for the transformation described previously in Section 4.2.

This algorithm takes several inputs: the original iteration graph (LIG or BIG), the ?0Cℎ to an

inner producer/consumer section, the position to split ((?;8C %>B8C8>= : 8), the input tensors in the

contraction, and a boolean �ag to indicate whether the producer expression is on the left or the right

after the split. Input variable ?0Cℎ is used in line 1 to access the inner producer/consumer graph

sections, which helps to apply the transformation recursively to the inner linear graph sections.

The split operation occurs in lines 2–4. For example, given the expression� = � ∗� ∗� and 8 = 2,

the splits are) = � ∗� and � =) ∗ � . If 8 = 1, then the splits are) = � and � =) ∗� ∗ � . The
algorithm initially deduces the indices of the temporary resulting from the split (line 5) using the

equation �=3824B (�>=BD<4A) ∩ (�=3824B (%A>3D24A) ∪ �=3824B ($DC?DC)). This equation calculates

the indices in the producer that also appear in either the consumer or the output. The algorithm

generates corresponding split expressions in lines 6–7. Subsequently, the producer and consumer

graphs are computed in lines 8–9, preserving the index order of the original graph. Then, the

algorithm determines the fusible outer loops (lines 10–14) and shared indices (lines 15–16). Finally,

it produces the expressions for the producer and consumer in the fused iteration graph in lines 17–

18, and the original iteration graph is replaced with the fused iteration graph in lines 19–20. One

step of the transformation is linear time with respect to the number of indices in the graph.

4.4 Scheduling Language

Figure 6 shows the implementation of the transformations described in Section 4.2 using the

scheduling language. The schedule description in Figure 6a can be used to transform the iteration

graph in Figure 5a to the one in Figure 5b. The schedule description in Figure 6b can be used

to transform the original iteration graph in Figure 5a to the one in Figure 5e by doing multiple

transformations.

• loopfuse scheduling directive splits and fuses LIGs. It takes three parameters:

– path identi�es linear graph sections, consumer or producer sections, of a BIG. The path

parameter must direct to a linear graph section for the transformation to be applied. Here, {}
means accessing the root of an iteration graph, {0} means accessing the producer section, and

{1} means accessing the consumer section. If the BIG has multiple levels, {0, 1} would access

the producer of the �rst level and then the consumer of the second level.

– loc speci�es the split position in the inner computation. For example, if the inner computation

is � = � ∗� ∗ � and loc=2, then the split is) = � ∗� and � =) ∗ � , and if loc=1, then the

split is) = � and � =) ∗� ∗ � .
– pol designates the �rst or second half of the contraction as the producer. If pol=True, then

the producer is on the left, and the consumer is on the right, and if pol=False, then vice versa.

For example, if the expression is� = � ∗� ∗� , loc=2 and pol=True, then the split is) = � ∗�
and � =) ∗ � , and if pol=False, then the split is) = � ∗ � and � = � ∗) .

• reorder scheduling directive reorders indices of a linear graph section. It takes two parameters:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:12 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

1 A(l,m,n) = B(i,j,k)∗C(i,l)∗D(j,m)∗E(k,n);

2 // Index stmt of 5a

3 IndexStmt stmt = A.getAssignment().

concretize();

4 // Apply transformation

5 stmt = stmt // 5a −> 5b

6 .loopfuse(loc = 2, pol = True, path = {});

(a) 5a → 5b

1 A(l,m,n) = B(i,j,k)∗C(i,l)∗D(j,m)∗E(k,n);

2 // Index stmt of 5a

3 IndexStmt stmt = A.getAssignment().concretize();

4 // Apply transformation

5 stmt = stmt

6 .loopfuse(loc = 3, pol = True, path = {}) // 5a −> 5c

7 .reorder(order = {m, k, n, j}, path = {1}) // 5c −> 5d

8 .loopfuse(loc = 2, pol = True, path = {1}); // 5d −> 5e

(b) 5a → 5c → 5d→ 5e

Fig. 6. Transformation on the loop contraction

1 ;>>?B % :

2) (()+ = �><?%

3 ;>>?B � :

4 �(..)+ =) (() ∗�><?�

(a)

1) (() =
∑

%\(�><?%

2 ;>>?B � :

3 �(..)+ =) (() ∗�><?�

(b)

1 ;>>?B � :

2 �(..)+ =

3 (
∑

%\(�><?%) ∗�><?�

(c)

1 ;>>?B � :

2 �(..)+ =

3 (
∑

%\(�><?% ∗�><?�)

(d)

1 ;>>?B � ∪ (% \ () :

2 �(..)+ = �><?% ∗�><?�

(e)

Fig. 7. Moving producer computation to the consumer to obtain a LIG.

– path identi�es an inner linear graph section.

– order speci�es the new order of the indices in the linear graph section.

The reorder and loopfuse directives can be used together to obtain the desired multi-level

BIG. These two directives can be used in conjunction to generate all possible loop trees for a given

tensor contraction.

4.5 Completeness of the algorithm

This section provides a proof sketch for the completeness of Algorithm 1: we argue that the algorithm

can generate all possible loop structures for a given tensor contraction using the loopfuse and

reorder scheduling directives.

Constraints Two essential constraints ensure the validity of BIG constructed by Algorithm 1

and the equivalence of the BIG to the initial LIG. First, the BIG must not violate any sparse tensor

access constraints present in the initial computation. For instance, in all the iteration graphs in

Figure 5, the iteration order �1)�2)�3 (i.e., 8) 9):), is consistently maintained when contracting

the sparse tensor B with other tensors. Second, a permutation of indices in producer and consumer

loops is required to establish identical orders of shared indices (i.e., indices in the temporary tensor).

The second constraint can be understood as follows. Let 8 and 9 be the indices present in the

temporary tensor. Let % and� be the sets of all valid (in the sense of the �rst constraint) permutations

of indices in the loops of producer and consumer, respectively. Let the focus be on 8) · · ·) 9 and
9) · · ·) 8 in % and � sets. Let condition1 be 8) · · ·) 9 in % and 8) · · ·) 9 in � , and condition2 be

9) · · ·) 8 in % and 9) · · ·) 8 in � . If either condition1 or condition2 is satis�ed, then we say that the

BIG is valid. If neither condition1 nor condition2 is satis�ed, then we say the second constraint is

violated and the BIG is invalid. The temporary tensors introduced by the Algorithm 1 are dense.

Hence, they do not impose extra constraints, and establishing identical orders of shared indices is

not impeded by the temporaries.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:13

Equivalence of BIG and LIG In the context of reasoning about LIGs and BIGs, having a

transformation from BIG to LIG, complementary to the one performed by Algorithm 1, proves

bene�cial. This transformation involves examining the innermost subtree (with no nested subtrees

inside of it), as illustrated in Figure 7. Denoting shared indices between the producer and consumer

as (, producer loops as % , and consumer loops as � , the transformation requires an order of (

complying with sparse tensor access constraints in both % and� , adhering to the second constraint.

By keeping the outer loops constant in inner branch computations (details omitted for simplicity),

the BIG illustrated in Figure 7a is realized. The contraction for) is depicted in Figure 7b, where

% \ (denotes contracted indices. Substituting) (() inside the consumer (Figure 7c), the consumer

computation (�><?2) is moved inside the summation operation, ensuring none of its indices contain

the ones in % \ ((Figure 7d). Further, contracting indices are reintegrated into consumer graph

loops (Figure 7e), satisfying all constraints and resulting in a LIG. This recursive process applies to

multi-level BIGs, yielding a LIG equivalent to the initial BIG.

Fineteness of the space A conservative upper bound on the number of BIGs can be established

by considering the number of input tensors in the tensor contraction (=), and the number of indices

in the tensor contraction (<). The input tensors can be permuted in =! ways. A BIG can be built by

recursively splitting the computation into producer and consumer sections. Since the number of

input tensors are =, the number of binary trees that can be built is bounded by 2= . The indices can

be permuted in<! ways. Since there are 2= splits, indices can be permuted at each split giving<!2
=

permutations. At each split operation, there is a choice to fuse the indices or not. Since the number

of indices is<, the number of ways to fuse the indices is bounded by< + 1 for each of those binary

trees. Therefore, the total number of BIGs is bounded by =! × 2= ×<!2
=

× (< + 1).

Completeness Consider the di�erent schedules for a given tensor contraction as points in

a space. If you can reach a schedule from another, then they are connected in this space. We

established that a BIG can be linearized. Therefore, every BIG is connected to a LIG. As outlined

in Section 4.1, LIG schedules are equivalent, and we end up connecting all the points. Focusing

on the linearization procedure for a BIG, the movement of) from producer to consumer involves

reordering the loops of producer and consumer such that after reordering the loops, the shared

indices have the same relative ordering.) consists of some input tensors in the original tensor

contraction. In other words, input tensors in the producer computation are some combination

of the input tensors. This combination can be obtained by permuting the input tensors in the

original expression and splitting from a speci�c position. Since each valid BIG can be transformed

to a LIG, it is possible to traverse in the direction of LIG to BIG by using the transformation in

Sections 4.2–4.4. Therefore, by (1) permuting all schedules in our equivalence class, (2) applying

the transformation in Section 4.2 to obtain BIGs, and (3) recursively applying (1) and (2) on inner

producer and consumer sections, we can generate all possible iteration graphs (loop structures of

schedules) for that computation.

5 Auto-Scheduler

We build an auto-scheduler that, given a tensor contraction, explores the schedule space and chooses

a memory- and time-e�cient schedule. The main function of the scheduler is pruning the schedule

space. The scheduler decides on what schedules to prune by creating a Pareto frontier of schedules

using partially ordered sets of time and memory complexity.

The complete pruning pipeline is shown in Figure 8. The pipeline starts by generating schedules

in the search space (§ 5.1). The following stages are divided into two parts. The �rst three stages

are executed during compile-time with symbolic expressions (§ 5.2), and the last two stages are

executed with concrete expressions at run-time (§ 5.3). We add the language support as an extension

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:14 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

Generated
Schedules

Stage 3:
Poset of Time
and Memory
Complexity

Stage 2:
Poset of Loop
and Memory

Depth

Stage 1:
Memory Depth

Stage 4:
Evaluated Time

Complexity

Stage 5:
Evaluated

Cache Access
Chosen

Schedule

Compile-Time
(Symbolic)

Run-Time
(Concrete)

Fig. 8. Pruning stages of the auto-scheduler. Stage 1 uses an absolute measure to filter schedules without
comparing them to each other. Stages 2 through 5 compare a schedule against others for pruning.

to the TACO/SparseLNR compilers. We implement the auto-scheduler in Python. The abstract

schedules selected by the auto-scheduler is then described using the language de�nition provided

in the Section 4.

5.1 Schedule Generation

For a given expression and a LIG, we generate all the loop index orders that conform to the

sparse tensor access constraints. Then, we split the tensor contraction at di�erent positions for

all those index orders. Once tensor contraction is split, we infer the temporary indices and call

the same function recursively for both the consumer and producer sub-computations. After those

sub-computations return the consumer schedules �sch and producer schedules %sch, we combine

those two schedule spaces as %sch × �sch to create super schedules that completely describe the

initial computation. If the producer and consumer sections can be fused as explained in Section 4.2,

we merge the sub-computations to create fused schedules, which we add to the list of schedules.

Consider the previous example (§ 3-4). First, we create di�erent permutations of input tensors.

Since tensor contractions are commutative in Einsum notation, �(;,<, =) = B(8, 9, :) ∗ � (8, ;) ∗
� (9,<) ∗ � (:, =) is equivalent to �(;,<, =) = B(8, 9, :) ∗ � (:, =) ∗� (8, ;) ∗� (9,<). For each of these

permutations, we create permutations of indices that conform to sparse tensor access constraints.

These two steps combined create the complete set of LIGs (§ 4.1). For each LIG, we split the input

tensors at di�erent positions to generate producers and consumers.

There are two ways in which we can split the input tensors. � = � ∗� ∗ � ∗ � can be split as (a)

) = �∗� , and� =) ∗�∗�: the result of the producer is directly used in consumer, and (b)) 1 = �∗� ,
) 2 = � ∗ �, and � =) 1 ∗) 2: the consumer expects results of two producers. This procedure can be

repeated (recursive application of the algorithm) on the producer and consumer sub-computations.

Out of these two ways, the �rst one is more interesting because it opens up avenues for loop

fusion. If the producer and consumer graphs contain the same indices, then we can fuse them.

Consider �(;,<, =) = B(8, 9, :) ∗ � (8, ;) ∗ � (9,<) ∗ � (:, =) with index order ;)<) =) 8) 9) : ,

split between � , and � . The fusion of them would result in ;) ⟨) (9, :);?A>3D24A : 8) 9) : :

) (9, :)+ = �(8, 9, :) ∗� (8, ;), 2>=BD<4A :<)=) 9): : �(;,<, =)+ =) (9, :) ∗� (8, ;) ∗� (:, =)⟩ (§ 4.2).
After the fusion operation, we remove the fused indices in the inner computation, for example,

�(_,<, =)+ =) (9, :) ∗ � (8, _) ∗ � (:, =), to recursively call the schedule generation procedure, and

combine the results with the outer loops.

5.2 Symbolic Stages

Stage 1: Memory-Depth-Based Pruning The �rst pruning stage analyzes the dimensions of the

temporary tensors used in the schedule. For example, Schedule 2a does not use any temporaries,

and hence, its memory depth is 0. In Schedule 2b, the temporary) ⟨ ⟩ has the memory depth of 1,

whereas Schedules 2d and 2e have the memory depth of 2 since they employ 2D temporary tensors.

If we split the computation as before to)9:; = �8 9: ∗�8; and �;<= =)9:; ∗� 9< ∗ �:= but do not fuse

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:15

(see Figure 5b for the fused version), the memory depth would be 3. The memory depth 3 is too

high for most realistic scenarios, and hence, we use it as a threshold to prune schedules like that.

The memory-depth-based heuristic goes �rst in the pruning pipeline because it usually discards

many unrealistic schedules. At the end of this stage, we compute the symbolic iteration time and

auxiliary memory complexity for each of the schedules. Then, we allocate the schedules into groups

using the symbolic (time, auxiliary memory) complexity tuples.

We note that this stage can be replaced by a more sophisticated memory-volume-based pruning

mechanism that uses an SMT solver. With such an approach, the user can provide a heuristic

upper bound value on the total auxiliary memory use. This type of pruning would guarantee that

the schedules with higher depth but lesser auxiliary memory are not pruned and the schedules

with lesser depth but higher auxiliary memory are pruned. However, this would require further

exploration on how to select the upper bound value which often depends on the execution envi-

ronment (i.e., machine parameters, such as cache size, etc.). Moreover, a memory-based pruning

stage capable of reasoning about the actual volume of auxiliary memory will require the complete

information about the loop bounds. Knowing either piece of information—machine parameters or

loop bounds—blurs the boundary between compile-time and run-time stages and goes beyond our

approach. We leave this idea for future work.

Stage 2: Poset of Loop- and Memory-Depth-Based Pruning In Section 3, we explain that

using only the loop depth could prune potentially useful schedules. Therefore, at this stage, we

consider both the loop depth and memory depth for pruning to create a Pareto frontier of schedules

for the next stage. We use a poset to remove the schedules that are worse in terms of both loop

depth and memory depth. The poset-based pruning mechanism ensures that pruned schedules

contain linear loop nest schedules (with no branches), including the default TACO schedule, as

long as there are no other schedules with a scalar auxiliary memory and lesser time complexity.

This guarantees that we end up with a superior schedule when compared to the default schedule, if

such a schedule exists. The memory depth heuristic we use in Stage 1 (Section 5.2) ensures that we

do not prune schedules that are likely to have lesser loop depth than the fused simple linear loop

nest schedules.

The poset-based pruning mechanism can be formally written as follows. This stage removes a

schedule B from the set of schedules ((received from Stage 1) if there exists 2 ∈ (such that

(!(B) > !(2) ∧" (B) >= " (2)) ∨ (!(B) >= !(2) ∧" (B) > " (2))

where !(B) and" (B) are the loop and memory depths of the schedule B , respectively.

This type of pruning ensures that we do not remove schedules that are likely to be better in the

Pareto frontier of schedules. We allocate each schedule to a di�erent (time, memory) bucket at

the end of this stage. In other words, the schedules in a bucket have the same iteration time and

memory complexity but di�er in the order of loops.

Stage 3: Poset of Time- and Memory-Complexity-Based Pruning Using an SMT-Solver

In some cases, the user (e.g., performance engineer) may know during the compile-time some

information about the loop bounds or sparsities of the tensors used in the computation. For

example, if it is a graph neural network computation, the user may know that the feature size of

the nodes is in the range of [16, 256], or the graph size is in the order of 10" and the sparsity of the

graph is in the range of [0.001, 0.01]. Then, they can provide those ranges, and the auto-scheduler

can use an SMT solver to reason about the time and auxiliary memory complexities of the schedules

using symbolic cost expressions that it builds for every schedule (§ 3). Note that we assume that

the tensors have uniform sparsities.

There are three types of constraints that we can provide the SMT solver;

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:16 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

1 # De�nition of Range (R), Inferred (I), and User−De�ned (U) constraints

2 R = (i >= 1e3) ∧ (i <= 1e6) ∧ (sparsity_B >= 0.001) ∧ (sparsity_B <= 0.01) ∧ (nnz_B <= 10e4) ∧ ...

3 I = (j_pos < j) ∧ (k_pos < k) ∧ (nnz_B < i∗j∗k) ∧ ...

4 U = (10∗j < k) ∧ ...

5

6 # Obtain time and auxiliary memory complexities of schedules in Figure 5a (s1) and Figure 5e (s2)

7 t1 = l∗m∗n∗nnz_B; m1 = 0; t2 = l∗nnz_B + l∗m∗k∗j + l∗m∗k∗n; m2 = j∗k;

8

9 # Formulation of the Pareto frontier:

10 c1 = (t1 >= t2); c2 = (m1 > m2); c3 = (t1 > t2); c4 = (m1 >= m2)

11 cond1 = R ∧ I ∧ U ∧ ((c1 ∧ c2) ∨ (c3 ∧ c4));

12 cond2 = R ∧ I ∧ U ∧ ((¬c1 ∧ ¬c2) ∨ (¬c3 ∧ ¬c4));

13

14 if (cond1 is SAT and cond2 is UNSAT): # s1 is dominated by s2. Remove s1 from the Pareto frontier.

15 else if (cond1 is UNSAT and cond2 is SAT): # s2 is dominated by s1. Remove s2 from the Pareto frontier.

16 else: # s1 and s2 are incomparable. Keep both s1 and s2 in the Pareto frontier.

Listing 1. Formulation of the Pareto frontier using the SMT solver.

(1) Range constraints: the range in which dense loop bounds and sparsities can vary (e.g., line 2

in Listing 1).

(2) Inferred constraints: non-zero values in a sparse tensor are always less than the number of

elements in its dense representation, and the non-a�ne loop that iterates through the sparse

tensor will vary between 0 and the dense loop bound that de�nes the sparse tensor (e.g., line 3

in Listing 1).

(3) User-de�ned constraints: other special constraints that the user may know about the loop

bounds or sparsities. For instance, the user may know that one loop bound is twice of another

(e.g., line 4 in Listing 1).

After providing the constraints known at compile-time, we check if one schedule is dominated by

at least another schedule in terms of both iteration time and auxiliary memory complexity; if so,

we remove that schedule from the Pareto frontier (See line 10 in Listing 1). In other words, the

system removes a schedule (B) if there exists at least one schedule (2) in the schedule space such

that for all possible loop bounds and sparsities, the time and memory complexities of B are worse

than or equal to 2 and there is no set of loop bounds and sparsities for which the time and memory

complexities of B are better than 2 . The system does not remove a schedule if there exists at least

one set values of loop bounds and sparsities for which the time and memory complexities of B are

better than 2 . This gurantees that the system does not over-prune the schedules.

This procedure can be formally written as follows. Let user-de�ned constraints of loop bounds

and sparsities be Φ, let Z3 be the SMT solver, and the schedules from Stage 2 be (. Provide Φ to Z3.

Remove B from (if ∃ 2 ∈ (s.t.

∃ loop bounds and sparsities s.t.

() (B) >) (2) ∧ # (B) >= # (2)) ∨ () (B) >=) (2) ∧ # (B) > # (2))

� loop bounds and sparsities s.t.

() (B) <=) (2) ∧ # (B) < # (2)) ∨ () (B) <) (2) ∧ # (B) <= # (2))

Here,) (B) and # (B) denote the symbolic iteration time and auxiliary memory complexities of the

schedule B , respectively.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:17

An auto-scheduler could have this stage alone without the previous stage in Section 5.2. But,

when any of the above conditions are D=B0C , the Z3 solver takes a long time to return. The previous

stage compares a lot more schedules than this stage. Therefore, using a poset-based pruning strategy

with absolute depth values, which is computationally e�cient, is bene�cial compared to using an

SMT solver alone. Nonetheless, this stage is important because we can further reduce the number

of schedules evaluated at run-time with the information available at compile-time.

Furthermore, the user could use this stage alone by removing both the memory depth-based and

poset-based pruning stages. Although this removes the dependency on using memory depth as a

heuristic to prune the schedules, it takes a long time for the solver to prune the schedule and does

not work when the number of generated schedules is large.

5.3 Concrete Stages

Stage 4: Evaluated Time-Complexity-Based Pruning At the �rst stage of �ltration at run-time,

we evaluate the symbolic cost expressions with real values available at the run-time and select

schedules that have the least iteration time complexity such that the auxiliary memory requirement

is less than 50% of the last level cache (LLC) from the Pareto frontier. We take 50% as a rough

margin for the selection criterion, assuming that 50% of LLC is available for the other input and

output tensors in the computation. Multiple schedules with the same iteration time complexity can

exist due to the same branched loop nest structure with di�erent loop reorderings. These schedules

are then passed to the next stage for further pruning.

Stage 5: Evaluated Cache-Access-Based Pruning At the second stage of run-time �ltration

of schedules, we prune the schedules based on cache behavior. We have included this stage here

for completeness, and it is not our primary focus. Many remaining schedules may share equivalent

time and memory complexity due to loop reorderings, such as the loop orders ;,<, and<, ; in the

outer loops of Figure 2b. Since some schedules have the same time and memory complexity, if one

of those schedules is not �ltered away by previous stages, both of them will remain unpruned.

Thus, we have a simple model that assigns a cache access cost to each schedule. This cache model

takes two criteria into account. One, it looks at the leaves in the BIG and the leaf loop index. If

the leaf loop index is 8 and if a tensor in the expression at that leaf branch has 8 as the last index

(e.g., �(9, 8)) or index 8 is not present in the tensor (e.g., �(9, :)), then the cost of access is zero. If 8 is

present and not in the last accessed index (e.g., �(8, 9)), then we take the cache access cost as � since

elements are accessed � locations apart. We assign costs to all the leaves in the BIG and sum those

to calculate a �nal cache access cost. We consider the last index of the leaves in the BIG because

it has the highest impact on temporal and spatial cache locality. Two, we give precedence to the

schedules that have the same index order as the loop order in the iteration graph. For instance, if

tensors in the computation have �(8, 9) and � (9, :), it would favor the loop order 8, 9, : over :, 9, 8 .

If both these criteria are the same for two schedules, we randomly pick one of them.

6 Evaluation

We assess SparseAuto using a collection of sparse tensor kernels in comparison to the schedules

from TACO. We compare the results of SparseAuto with Pigeon [Ahrens et al. 2022] and SpTTN-

Cyclops [Kanakagari and Solomonik 2023] qualitatively and quantitatively when applicable.

Experimental Setup. We conducted the experiments on a machine with four Non-Uniform Mem-

ory Access (NUMA) nodes of Intel(R) Xeon(R) CPU E5-4650 8-core processor (32-cores in total),

operating at 2.70 GHz, with 32KB L1 data cache, 256KB L2 cache per core, and 80MB LLC shared

between 4 NUMA nodes. Code compilation utilized GCC 11.4.0 with with optimization �ags -O3

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:18 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

Table 1. Tensors and matrices used in the evaluation from various matrix and tensor collections

Tensor Size of �le on disk Dimensions Non-zeros Sparsity

bcsstk17 5.4 MB 11 × 11 429 4E-3

pdb1HYS 55.0 MB 36 × 36 4.34" 3E-3

rma10 59.0 MB 47 × 47 2.37" 1E-3

cant 57.0 MB 62 × 62 4.01" 1E-3

consph 83.0 MB 83 × 83 6.01" 9E-4

cop20k_A 27.0 MB 12 × 12 2.62" 2E-4

shipsec1 83.0 MB 140 × 140 7.81" 2E-4

scircuit 28.0 MB 171 × 171 959 3E-5

mac_econ_fwd500 32.0 MB 207 × 207 1.27" 9E-5

webbase-1M 68.0 MB 1.00" × 1.00" 3.11" 3E-6

circuit5M 2.1 GB 5.56" × 5.56" 59.52" 2E-6

vast-2015-mc1-3d 431.0 MB 165 × 11 × 2 26.02" 8.36E-08

darpa1998 575.0 MB 22 × 22 × 23.7" 28.42" 2.50E-06

nell-2 1.5 GB 12 × 9 × 288 76.88" 5.73E-05

�ickr-3d 2.6 GB 320 × 2.82" × 1.60" 112.89" 3.92E-11

--ffast-math. The process involved a warm-up run, followed by 31 executions of the kernel com-

putation. The results reported are the median values, accompanied by the corresponding standard

deviation across the 31 runs. Parallel executions were performed on 32 threads using OpenMP.

Datasets. In the evaluation, we employ numerous real-world tensors sourced from the SuiteSparse

Collection [Davis and Hu 2011], Network Repository [Rossi et al. 2015], Formidable Repository

of Open Sparse Tensors and Tools [Smith et al. 2017], and the 1998 DARPA Intrusion Detection

Evaluation Dataset [Lippmann et al. 2000]. The tensors and matrices used in the evaluation are

shown in Table 1. These tensors span a wide range of sizes and sparsities. Sparse inputs to the

kernels used the Compressed Sparse Fiber (CSF) format.

Kernels. We compare the performance of SparseAuto and TACO using kernels in Table 2. The

kernel naming conventions are as follows: ⟨(��"", (?""⟩ indicates that the kernel is a com-

bination of (��"" and (?"" , and the kernel can be decomposed into these two sub-kernels,

each capable of being executed sequentially. The evaluation incorporates various combinations of

the following kernels. (��"" Sampled Dense-Dense Matrix Multiplication and (?"" Sparse

Matrix-Matrix Multiplication are used in graph neural networks. In this context, the (��""

operation is used in computing attention values along the edges of a graph, then (?"" is used after

the (��"" operation to transform the feature vector of each node, and the ��"" operation is

used for multiplication with a weight matrix [Dias et al. 2022]. ⟨3�))"�⟩ Tensor-Times Matrix

Contractions are used in Tucker Decompositions [Tucker 1966]. Matrizied Tensor Times Khatri-

Rao product (")) '%) is used in sparse computations such as signal processing and computer

vision [Choi et al. 2018]. Sparse Tensor Times Matrix ((?))") operation is used in data mining

and data analytics applications and is a sub-computation in Tucker Decomposition [Tucker 1966].

Number of schedules and overheads of each stage. Table 3 shows the schedule counts of each stage

in the pruning pipeline, and Table 4 shows the corresponding execution times for each of these

stages. These tables expose a correlation between execution times and the number of schedules to

process. Also, Table 4 shows that Depth Poset-based pruning (Stage 2) helps to save on expensive

SMT work (Stage 3) because the column Stage 3 (Skipping Stage 2) is always longer than Stage 2

and 3 combined.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:19

Table 2. Chosen schedules a�er the SMT solver-based pruning stage. Naming convention: B denotes sparse
tensor �, and j′ denotes the index of a non-a�ine loop. Di�erent kernels inside the angle brackets denote
that the fused computation can be separated into those kernels. The inner branches of the loop nests are
wri�en as ⟨)4<?>A0A~; %A>3D24A,�>=BD<4A ⟩.

Kernel Description Chosen Schedules After Z3 Pruning

1 : ⟨(��"", (?""⟩ �8; =
∑

9: B8 9 �8: � 9: � 9; 8, j′
〈

C ;: : C+ = B8 9 �8: � 9: , ; : �8;+ = C � 9;
〉

2 : ⟨(��"", (?"",��""⟩ �8< =

∑

9:; B8 9 �8: � 9: � 9; �;<

8 ⟨); ;
j′
〈

C ;: : C+ = B8 9 �8: � 9: , ; :)
1
;
+ = C � 9;

〉

,

<, ; : �8<+ =); �;<⟩

8, j′
〈

C ;: : C+ = B8 9 �8: � 9: ,<, ; : �8;+ = C � 9; �;<
〉

8, ;
〈

C ; j′, : : C+ = B8 9 �8: � 9: � 9; ,<, ; : �8;+ = C �;<
〉

3 : ⟨(?""�,��""⟩ �8; =
∑

9: B8 9 � 9: � 9: �:; 8, j′
〈

C ;: : C+ = B8 9 � 9: � 9: , ; : �8;+ = C � 9;
〉

4 : ⟨(?"",��""⟩ �8; =
∑

9: B8 9 � 9: �:; 8, :
〈

C ; j′ : C+ = B8 9 � 9: , ; : �8;+ = C �:;
〉

5 : ⟨3�))"�⟩ �;<= =

∑

8 9: B8 9: �8; � 9< �:= 8, j′, =
〈

C ;k′ : C+ = B8 9: �:= ,<, ; : �;<=+ = C �8; � 9<
〉

8, = ⟨)< ;
j′
〈

C ;k′ : C+ = B8 9: �:=,< :)<+ = C � 9<
〉

,

<, ; : �;<=+ =)< �8; ⟩

8,<, =
〈

C ; j′, k′ : C+ = B8 9: � 9< �:= ,<, ; : �;<=+ = C �8;
〉

6 : ⟨(?))",))"⟩ �8;< =

∑

9: B8 9: � 9; �:< 8, j′<
〈

C ;k′ : C+ = B8 9: � 9: , ; : �8;+ = C � 9;
〉

7 : ⟨(?))", (?))"⟩ A8 9< =

∑

9: B8 9: �:; �;< 8, j′;
〈

C ;k′ : C+ = B8 9: �:; ,< : A8;+ = C �;<
〉

8 : ⟨")) '%,��""⟩ �8< =

∑

9: B8:; �; 9 �: 9 � 9< 8, j′
〈

C ;k′; : C+ = B8 9: �:; �: 9 ,< : �8;+ = C � 9<
〉

Table 3. The number of schedules a�er each stage in the pruning pipeline. The numbers in the parenthesis
denote the number of di�erent (time complexity, auxiliary memory complexity) pairs. Stage 3 (Skipping
Stages 1 & 2) is time-limited to 24 hours per kernel.

Kernel
Generated

Schedules

Stage 1

Mem Depth

Stage 2

Depth Poset

Stage 3

SMT Solver

Stage 3

(Skipping

Stage 2)

Stage 3

(Skipping

Stages 1 & 2)

1 : 16 169 1472 (255) 1 (1) 1 (1) 1 (1) 1 (1)

2 : 145 448 232 207 129 (18 277) 224 (43) 8 (3) 32 (4) timeout

3 : 7426 692 (133) 2 (1) 2 (1) 2 (1) 2 (1)

4 : 258 128 (34) 2 (1) 2 (1) 2 (1) 2 (1)

5 : 14 701 776 30 203 (2541) 101 (26) 16 (3) 16 (3) timeout

6 : 2561 352 (60) 3 (1) 3 (1) 3 (1) 3 (1)

7 : 109 46 (13) 1 (1) 1 (1) 1 (1) 1 (1)

8 : 58 127 4715 (728) 5 (2) 2 (1) 2 (1) timeout

Table 5 shows the time taken for the two run-time stages, including the code generation and

compilation times. While we execute the codegen and compilation at run-time (for SparseAuto

and TACO alike), both can be done o�ine, at compile-time, as an optimization. The optimization

can work by maintaining a mapping from schedules chosen at compile-time to the corresponding

compiled functions. Using this mapping, we can lookup the code for the schedule we deem the

best. Ultimately, the time taken for the codegen and compilation is not a concern in practice.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:20 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

Table 4. Time taken by each compile-time stage. Stage 3 (Skipping Stages 1 & 2) has the timeout of 24 hours.

Kernel

Schedule

Generation

(16 threads)

Stage 1

Mem Depth

Stage 2

Depth Poset

Stage 3

SMT Solver

Stage 3

(Skipping

Stage 2)

Stage 3

(Skipping

Stages 1 & 2)

1 : 631.4 ms 13.0 ms 1723.2 ms 121.5 ms 2877.4 ms 5.6 s

2 : 10740.5 s 167.5 s 454.1 s 1.5 s 1538.9 s timeout

3 : 475.9 ms 3.7 ms 896.7 ms 48.0 ms 2623.4 ms 1.7 s

4 : 54.6 ms 0.5 ms 56.6 ms 49.7 ms 327.0 ms 0.8 s

5 : 864.3 s 71.9 s 25.8 s 1.5 s 4567.1 s timeout

6 : 304.6 ms 6.2 ms 238.2 ms 50.0 ms 1244.2 ms 5.4 s

7 : 35.3 ms 0.3 ms 46.6 ms 48.3 ms 486.7 ms 0.9 s

8 : 4.2 s 57.8 ms 4.7 s 123.2 ms 204.1 s timeout

Table 5. Time taken by each run-time stage including the code generation and compilation times.

Kernel
Run-time Filtration Build Time

Stage 4

(us)

Stage 5

(us)

Total

(us)

Codegen

(ms)

Compile

(ms)

Total

(ms)

1 : 185.2 111.1 296.2 10.9 163.4 174.3

2 : 265.1 94.6 359.7 12.0 364.2 376.1

3 : 159.6 111.3 270.9 12.1 174.4 186.5

4 : 161.6 125.9 287.5 12.1 174.6 186.8

5 : 220.3 209.4 429.7 16.5 251.6 268.1

6 : 158.0 115.9 274.0 14.9 205.2 220.1

7 : 198.0 82.3 280.3 11.6 189.3 200.8

8 : 198.0 101.6 299.6 15.2 173.0 188.2

6.1 Performance Comparison with TACO

Table 2 shows the selected kernels after the compile-time pruning stages. Table 3 shows the number

of schedules after each stage in the pruning pipeline. Furthermore, we bypass the second stage

in the pruning pipeline and directly apply the SMT solver-based pruning in Stage 3 to the output

from Stage 1. We observe that for kernel 2 , the number of schedules spared when Stage 2 is

bypassed is 32 compared to the 8 schedules spared with Stage 2. For other kernels, the number of

�nal schedules is the same with or without Stage 2. This indicates the e�ectiveness of the Depth

Poset-based pruning in Stage 2. We also see that some of the schedules in Stage 2 are pruned in

Stage 3, indicating the e�ectiveness of the SMT solver-based pruning in Stage 3.

Figure 9 shows the execution times and speedups of the selected schedules against the default

TACO schedule. We observe orders of magnitude better performance compared to TACO. Although

we do not reason about the e�ects of parallel execution in our auto-scheduler, we report the parallel

performance of schedules by parallelizing the outer loops using OpenMP for completeness. We

observe that parallel executions of the schedules have similar gains over TACO. We report only the

serial execution times for ⟨(?))", (?))"⟩ because the output of the kernel is sparse.

6.2 Performance Comparison with Auto-Schedulers from Prior Work

Comparison with Pigeon [Ahrens et al. 2022]. Pigeon introduces an auto-scheduler based on

the time complexity of the schedule. They explore the search space with data layout transforms

and transposes of sparse tensors, targetting an o�ine schedule selection. Given A8 9 , they would

consider schedules having both A8 9 , and A98 , with corresponding index orders of 8, 9 and 9, 8 in

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:24 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

Table 6. Auxiliary memory requirements for di�erent kernels. The right four columns show the number
of elements required to store the intermediate results. The ‘—’ label shows that the given schedule is not
available with the given framework.

Kernel Description
Auxiliary Memory Requirements

TACO SpAuto Cyclops Pigeon

1 : ⟨(��"", (?""⟩ �8; =
∑

9: B8 9 �8: � 9: � 9; 0 1 – –

2 : ⟨(��"", (?"",��""⟩ �8< =

∑

9:; B8 9 �8: � 9: � 9; �;< 0 1 to 1 + ! – –

3 : ⟨(?""�,��""⟩ �8; =
∑

9: B8 9 � 9: � 9: �:; 0 1 – –

4 : ⟨(?"",��""⟩ �8; =
∑

9: B8 9 � 9: �:; 0 1 –

5 : ⟨3�))"�⟩ �;<= =

∑

8 9: B8 9: �8; � 9< �:= 0 1 to 1 +" # +" ∗ # –

6 : ⟨(?))",))"⟩ �8;< =

∑

9: B8 9: � 9; �:< 0 1 – –

7 : ⟨(?))", (?))"⟩ A8 9< =

∑

9: B8 9: �:; �;< 0 1 – !

8 : ⟨")) '%,��""⟩ �8< =

∑

9: B8:; �; 9 �: 9 � 9< 0 1 – –

Table 7. Performance with changing auxiliary memory sizes of TTMC kernel. We do not evaluate the instances
marked with ‘—’ due to very long execution times (i.e., timeout).

Dense Dims

L, M, N

Aux. Mem. (B) nell-2 �ickr

SpAuto Cyclops
SpAuto

Time (s)

Cyclops

Time (s)
Speedup

SpAuto

Time (s)

Cyclops

Time (s)
Speedup

16, 16, 16 68 1088 4.4 2.2 0.5x 12.3 67.4 5.5x

32, 16, 16 68 1088 4.3 3.0 0.7x 15.2 130.1 8.6x

64, 16, 16 68 1088 5.6 4.6 0.8x 20.9 254.8 12.2x

128, 16, 16 68 1088 5.2 8.2 1.6x 33.0 542.7 16.4x

16, 32, 32 132 4224 13.4 5.6 0.4x 40.6 208.8 5.2x

32, 32, 32 132 4224 13.8 8.3 0.6x 54.3 434.5 8.0x

64, 32, 32 132 4224 15.1 17.5 1.2x 88.9 1042.7 11.7x

128, 32, 32 132 4224 17.6 27.4 1.6x 152.6 2063.8 13.5x

16, 64, 64 260 16640 36.3 16.6 0.5x 170.7 996.9 5.8x

32, 64, 64 260 16640 38.9 31.8 0.8x 213.6 1990.0 9.3x

64, 64, 64 260 16640 43.4 52.8 1.2x 334.4 3952.8 11.8x

128, 64, 64 260 16640 52.6 103.3 2.0x — — —

16, 128, 128 516 66048 97.5 55.9 0.6x — — —

32, 128, 128 516 66048 108.6 102.9 1.0x — — —

64, 128, 128 516 66048 136.6 200.8 1.5x — — —

128, 128, 128 516 66048 221.1 426.9 1.9x — — —

auxiliary memory excels in instances like �8; =
∑

9: B8 9 �: 9 �:; , and �8; =
∑

9: B8 9 �: 9 �;: . The

discrepancy arises from cache access e�ects with transposed matrices. Addressing cache misses

and access patterns would require the auto-scheduler to delve into intricate details, surpassing the

scope of this paper. We identify this as potential future work.

6.4 E�ect of Auxiliary Memory on Performance

This section analyses the auxiliary memory requirements of the selected schedules in each of the

di�erent frameworks. The auxiliary memory requirements are shown in Table 6. The default TACO

schedule does not use any auxiliary memory because it generates perfectly nested loops (i.e., linear).

Schedules generated by SparseAuto require auxiliary memory no more than the other frameworks

except the default TACO schedules.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:27

pruning. Their system does not optimize for both time and auxiliary memory complexities, operates

completely o�ine, executes multiple schedules at the last stage, in other words they design the

system for complete o�ine schedule selection, their search space exploration algorithm does not

explore the schedules with multi-level branch nests, and lacks the use of user-de�ned constraints at

compile time for search space pruning. Although they introduce a good cost model, their system has

the disadvantages described in Section 3. Their framework, evaluated on TACO, faces limitations in

supporting intermediate temporaries with more than one dimension and includes schedules with

data layout transformations in their auto-scheduler.

SpTTN-Cyclops [Kanakagari and Solomonik 2023] presents another auto-scheduler for sparse

tensor contractions, o�ering a fully automated framework without user intervention in schedule

selection. Unlike our approach, they do not emphasize poset-based pruning and opt for minimum

loop depth schedules and then a maximum number of dense loops, which may not always be

optimal, as discussed in Section 3. They lack support for user-de�ned constraints using an SMT

solver to analyze schedule complexities for search space pruning. Their run-time loop generation

algorithm a�ects evaluation time, while our method minimizes the number of schedules evaluated

during run time.

8 Discussion and Conclusion

Auto-scheduling is a challenging problem due to the vast number of potential schedules — rang-

ing from thousands to hundreds of thousands — for a given computation. Factors such as time

complexity, memory usage, cache behavior, and parallelism must all be considered. Most systems

rely on heuristic-based approaches or empirical evaluations to identify optimal schedules. We

advocate for a systematic approach that dedicates considerable time to o�ine schedule generation

and analysis; by investing hours in this process, most schedules can be eliminated, leaving only a

few for evaluation at run-time. This viewpoint suggests that scheduling as a service (SchaaS) could

bene�t expensive computations, particularly scienti�c workloads, and lead to faster compute times

and more e�cient resource utilization.

We have introduced SparseAuto, a framework for recursive loop nest restructuring, including a

scheduling language for sparse tensor contractions. An auto-scheduler for sparse tensor contractions

is implemented, leveraging the said scheduling language to generate schedules. Among the many

factors in�uencing schedule performance, we focus on two machine-independent criteria: time

complexity and auxiliary memory usage, arising from variations in loop structures within sparse

tensor contractions. SparseAuto employs a poset-based approach to prune the search space and

utilizes an SMT solver for analyzing the symbolic cost of a schedule. Our �ndings demonstrate that

SparseAuto delivers noteworthy performance enhancements.

Data Availability Statement

The paper is accompanied by the artifact [Dias et al. 2024] that contains the source code of

SparseAuto, the benchmarks, and the scripts to reproduce the results presented in the paper.

Acknowledgments

We would like to thank Charitha Saumya for the valuable discussions we had regarding SparseAuto.

This work was supported in part by the National Science Foundation awards CCF-2216978, CCF-

1919197 and CCF-1908504. Any opinions, �ndings, and conclusions or recommendations expressed

in this paper are those of the authors and do not necessarily re�ect the views of the National

Science Foundation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:28 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

References

A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, I. Masliah, and

S. Tomov. 2016. High-performance Tensor Contractions for GPUs. Procedia Computer Science 80 (2016), 108–118.

https://doi.org/10.1016/j.procs.2016.05.302 International Conference on Computational Science 2016, ICCS 2016, 6-8 June

2016, San Diego, California, USA.

Willow Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoscheduling for Sparse Tensor Algebra with an

Asymptotic Cost Model. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language

Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY,

USA, 269–285. https://doi.org/10.1145/3519939.3523442

A. Allam, J. Ramanujam, G. Baumgartner, and P. Sadayappan. 2006. Memory minimization for tensor contractions using

integer linear programming. In Proceedings 20th IEEE International Parallel Distributed Processing Symposium. 8 pp.–.

https://doi.org/10.1109/IPDPS.2006.1639717

Alexander A. Auer, Gerald Baumgartner, David E. Bernholdt, Alina Bibireata, Daniel Cociorva Venkatesh Choppella,

Xiaoyang Gao, Robert Harrison, Sandhya Krishnan Sriram Krishnamoorthy, Chi-Chung Lam, Qingda Lu, Marcel Nooijen,

Russell Pitzer, J. Ramanujam, P. Sadayappan, and Alexander Sibiryakov. 2006. Automatic code generation for many-

body electronic structure methods: the tensor contraction engine. Molecular Physics 104, 2 (2006), 211–228. https:

//doi.org/10.1080/00268970500275780

Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia Zheng, and Fredrik Kjolstad. 2022. Compiler

Support for Sparse Tensor Computations in MLIR. ACM Trans. Archit. Code Optim. 19, 4, Article 50 (sep 2022), 25 pages.

https://doi.org/10.1145/3544559

Aart J. C. Bik and Harry A. G. Wijsho�. 1993. Compilation Techniques for Sparse Matrix Computations. In Proceedings of

the 7th International Conference on Supercomputing (Tokyo, Japan) (ICS ’93). Association for Computing Machinery, New

York, NY, USA, 416–424. https://doi.org/10.1145/165939.166023

Jee Choi, Xing Liu, Shaden Smith, and Tyler Simon. 2018. Blocking Optimization Techniques for Sparse Tensor Computation.

In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 568–577. https://doi.org/10.1109/IPDPS.

2018.00066

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstraction for Sparse Tensor Algebra Compilers.

Proc. ACM Program. Lang. 2, OOPSLA, Article 123 (oct 2018), 30 pages. https://doi.org/10.1145/3276493

D. Cociorva, Xiaoyang Gao, S. Krishnan, G. Baumgartner, Chi-Chung Lam, P. Sadayappan, and J. Ramanujam. 2003. Memory-

Constrained Data Locality Optimization for Tensor Contractions. In Proceedings International Parallel and Distributed

Processing Symposium. 8 pp.–. https://doi.org/10.1109/IPDPS.2003.1213121

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. 38, 1,

Article 1 (dec 2011), 25 pages. https://doi.org/10.1145/2049662.2049663

Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni. 2024. SparseAuto: An

Auto-Scheduler for Sparse Tensor Computations Using Recursive Loop Nest Restructuring. https://doi.org/10.5281/

zenodo.12764370

Adhitha Dias, Kirshanthan Sundararajah, Charitha Saumya, andMilind Kulkarni. 2022. SparseLNR: accelerating sparse tensor

computations using loop nest restructuring. In Proceedings of the 36th ACM International Conference on Supercomputing

(Virtual Event) (ICS ’22). Association for Computing Machinery, New York, NY, USA, Article 15, 14 pages. https:

//doi.org/10.1145/3524059.3532386

Johnnie Gray and Stefanos Kourtis. 2021. Hyper-optimized tensor network contraction. Quantum 5 (March 2021), 410.

https://doi.org/10.22331/q-2021-03-15-410

Will Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. Advances in neural

information processing systems 30 (2017), 1024–1034.

Albert Hartono, Qingda Lu, Thomas Henretty, Sriram Krishnamoorthy, Huaijian Zhang, Gerald Baumgartner, David E.

Bernholdt, Marcel Nooijen, Russell Pitzer, J. Ramanujam, and P. Sadayappan. 2009. Performance Optimization of Tensor

Contraction Expressions for Many-Body Methods in Quantum Chemistry. The Journal of Physical Chemistry A 113, 45

(2009), 12715–12723. https://doi.org/10.1021/jp9051215 PMID: 19888780.

So Hirato. 2003. Tensor Contraction Engine: Abstraction an Automated Parallel Implementation of Con�guration-Interaction,

Coupled-Cluster, and Many-Body Perturbation Theories. The journal of physical chemistry. A 107, 46 (2003), 9887–9897.

https://doi.org/10.1021/jp034596z

Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru Zhang, and Yida Wang. 2020. FeatGraph:

A Flexible and E�cient Backend for Graph Neural Network Systems. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 71,

13 pages.

Raghavendra Kanakagari and Edgar Solomonik. 2023. Minimum Cost Loop Nests for Contraction of a Sparse Tensor with a

Tensor Network. https://doi.org/10.48550/arXiv.2307.05740

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest Restructuring 290:29

Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram Krishnamoorthy, Ajay Panyala, Louis-Noël Pouchet,

Atanas Rountev, and P. Sadayappan. 2019. A Code Generator for High-Performance Tensor Contractions on GPUs. In

2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 85–95. https://doi.org/10.1109/

CGO.2019.8661182

Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. 2019. Tensor Algebra Compilation with Workspaces.

In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization (Washington, DC,

USA) (CGO 2019). IEEE Press, Piscataway, NJ, USA, 180–192. http://dl.acm.org/citation.cfm?id=3314872.3314894

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The Tensor Algebra Compiler.

Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133901

Jean Kossai�, Aran Khanna, Zachary Lipton, Tommaso Furlanello, and Anima Anandkumar. 2017. Tensor Contraction

Layers for Parsimonious Deep Nets. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops.

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. 1997. A Relational Approach to the Compilation of Sparse Matrix

Programs. In Proceedings of the Third International Euro-Par Conference on Parallel Processing (Euro-Par ’97). Springer-

Verlag, Berlin, Heidelberg, 318–327.

Chi-Chung Lam, P. Sadayappan, and Rephael Wenger. 1997. On Optimizing a Class of Multi-Dimensional Loops with

Reductions for Parallel Execution. Parallel Process. Lett. 7 (1997), 157–168. https://api.semanticscholar.org/CorpusID:

9440379

Alan LaMielle and Michelle Mills Strout. 2010. Enabling Code Generation within the Sparse Polyhedral Framework.

Richard Lippmann, David Fried, Isaac Graf, Joshua Haines, Kristopher Kendall, David McClung, Dan Weber, Seth Webster,

Daniel Wyschogrod, Robert Cunningham, and Marc Zissman. 2000. Evaluating intrusion detection systems: the 1998

DARPA o�-line intrusion detection evaluation. 2 (02 2000), 12 – 26 vol.2. https://doi.org/10.1109/DISCEX.2000.821506

Jiawen Liu, Dong Li, Roberto Gioiosa, and Jiajia Li. 2021a. Athena: High-Performance Sparse Tensor Contraction Sequence

on Heterogeneous Memory. In Proceedings of the ACM International Conference on Supercomputing (Virtual Event, USA)

(ICS ’21). Association for Computing Machinery, New York, NY, USA, 190–202. https://doi.org/10.1145/3447818.3460355

Jiawen Liu, Jie Ren, Roberto Gioiosa, Dong Li, and Jiajia Li. 2021b. Sparta: High-Performance, Element-Wise Sparse Tensor

Contraction on Heterogeneous Memory. Association for Computing Machinery, New York, NY, USA, 318–333. https:

//doi.org/10.1145/3437801.3441581

Igor L. an Shi Yaoyun Markov. 2008. Simulating Quantum Computation by Contracting Tensor Networks. SIAM J. Comput.

38, 3 (2008), 963–981. https://doi.org/10.1137/050644756

Thomas Nelson, Axel Rivera, Prasanna Balaprakash, Mary Hall, Paul D. Hovland, Elizabeth Jessup, and Boyana Norris. 2015.

Generating E�cient Tensor Contractions for GPUs. In 2015 44th International Conference on Parallel Processing. 969–978.

https://doi.org/10.1109/ICPP.2015.106

Md. Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad. 2021. FusedMM: A Uni�ed SDDMM-SpMM Kernel for

Graph Embedding and Graph Neural Networks. In 2021 IEEE International Parallel and Distributed Processing Symposium

(IPDPS). 256–266. https://doi.org/10.1109/IPDPS49936.2021.00034

Shi-Ju Ran, Emanuele Tirrito, Cheng Peng, Xi Chen, Gang Su, and Maciej Lewenstein. 2017. Review of tensor network

contraction approaches. arXiv preprint arXiv:1708.09213 (2017).

Shi-Ju Ran, Emanuele Tirrito, Cheng Peng, Xi Chen, Luca Tagliacozzo, Gang Su, and Maciej Lewenstein. 2020. Tensor Network

Contractions: Methods and Applications to Quantum Many-Body Systems. Springer Nature. https://doi.org/10.1007/978-3-

030-34489-4

Luca Rossi, Nesreen K. Ahmed, Jennifer Neville, and Keith Henderson. 2015. The Network Data Repository with Interactive

Graph Analytics and Visualization. 42, 1 (2015). https://doi.org/10.1145/2740908

S.K. Sahoo, S. Krishnamoorthy, R. Panuganti, and P. Sadayappan. 2005. Integrated Loop Optimizations for Data Locality En-

hancement of Tensor Contraction Expressions. In SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing.

13–13. https://doi.org/10.1109/SC.2005.35

Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen Chou, Shoaib Kamil, Saman Amarasinghe,

and Fredrik Kjolstad. 2020. A Sparse Iteration Space Transformation Framework for Sparse Tensor Algebra. Proc. ACM

Program. Lang. 4, OOPSLA, Article 158 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428226

Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George Karypis. 2017. FROSTT: The

Formidable Repository of Open Sparse Tensors and Tools. New York, NY, USA. https://doi.org/10.1145/2049662.2049663

Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. 2018. The Sparse Polyhedral Framework: Composing

Compiler-Generated Inspector-Executor Code. Proc. IEEE 106, 11 (2018), 1921–1934. https://doi.org/10.1109/JPROC.2018.

2857721

Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara Kreaseck, and Catherine Olschanowsky. 2016.

An Approach for Code Generation in the Sparse Polyhedral Framework. Parallel Comput. 53, C (apr 2016), 32–57.

https://doi.org/10.1016/j.parco.2016.02.004

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

290:30 Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni

Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, and Gokcen Kestor. 2021. A High Performance Sparse Tensor Algebra

Compiler in MLIR. In 2021 IEEE/ACM 7th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC). 27–38.

https://doi.org/10.1109/LLVMHPC54804.2021.00009

Ledyard R. Tucker. 1966. Some Mathematical Notes on Three-Mode Factor Analysis. Psychometrika 31, 3 (1966), 279–311.

https://doi.org/10.1007/BF02289464

Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data Transformations for Sparse Matrix Code. In Proceedings

of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI

’15). Association for Computing Machinery, New York, NY, USA, 521–532. https://doi.org/10.1145/2737924.2738003

Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023. SparseTIR: Composable Abstractions for Sparse

Compilation in Deep Learning. In Proceedings of the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for

Computing Machinery, New York, NY, USA, 660–678. https://doi.org/10.1145/3582016.3582047

Tong Zhou, Ruiqin Tian, Rizwan A. Ashraf, Roberto Gioiosa, Gokcen Kestor, and Vivek Sarkar. 2023. ReACT: Redundancy-

Aware Code Generation for Tensor Expressions. In Proceedings of the International Conference on Parallel Architectures

and Compilation Techniques (Chicago, Illinois) (PACT ’22). Association for Computing Machinery, New York, NY, USA,

1–13. https://doi.org/10.1145/3559009.3569685

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 290. Publication date: October 2024.

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Tensor Access Constraints
	2.2 Tensor Index Notation for Tensor Contractions
	2.3 Iteration Graph
	2.4 Scheduling Primitives

	3 Overview
	3.1 Motivating Example
	3.2 Our approach: SparseAuto

	4 Design of the Transformation
	4.1 Linear Iteration Graph (LIG) —Equivalence Class of Tensor Contractions
	4.2 Multi-level Branched Iteration Graphs (BIG)
	4.3 LIG to BIG Transformation Algorithm
	4.4 Scheduling Language
	4.5 Completeness of the algorithm

	5 Auto-Scheduler
	5.1 Schedule Generation
	5.2 Symbolic Stages
	5.3 Concrete Stages

	6 Evaluation
	6.1 Performance Comparison with TACO
	6.2 Performance Comparison with Auto-Schedulers from Prior Work
	6.3 Global Schedule Comparison, Scalability, and the Effect of Transposition
	6.4 Effect of Auxiliary Memory on Performance
	6.5 Discussion on the Effect of Transposition

	7 Related Work
	8 Discussion and Conclusion
	Acknowledgments
	References

