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1 INTRODUCTION

Tree traversals are an important component inmany application domains. Compilers regularly per-
form multiple traversals over abstract syntax trees to analyze and transform the source code. Sim-
ilarly, layout engines for web browsers perform multiple traversals of render trees to compute at-
tributes of visual elements on web pages. Lastly, kd-trees can be used to represent numerical piece-
wise functions over multidimensional spaces [Harrison et al. 2016], and operations over these func-
tions require tree traversals. Performingmultiple traversals over a tree can be time-consuming and
ine�cient. Fusing together multiple traversals to form a coarse-grained tree traversals gives better
performance due to improved locality and reduced number of traversals [Meyerovich and Bodik
2010; Meyerovich et al. 2013; Petrashko et al. 2017; Rajbhandari et al. 2016; Rajbhandari et al. 2016;
Sakka et al. 2017].

In a coarse-grained approach to fusion, the computation of two separate traversals can be fully
combined only if the combined work is computable in a single pass over the tree. If not, the two
traversals are not fusible. On the other hand, it may be possible to combine the execution of two
traversals only over some portion of the tree (subtree). Additional passes over the tree may be
required to execute the combined work correctly. This results in partial fusion [Sakka et al. 2017,
2019]. Partial fusion yields locality and traversing overhead reduction bene�ts where the coarse-
grained fusion approach would fail to do so.
A tree traversal may be executed in parallel to utilize multi-core performance. It is straight-

forward to parallelize a tree traversal by visiting di�erent subtrees in parallel in the absence of
dependences in the computation. We coin the term homogeneous parallelism for this type of clas-
sic tree-based parallelism, where all subtrees are treated identically and independently. Homoge-
neous parallelism restricts speedups as it only allows complete and independent traversals to run
in parallel. In contrast, heterogeneous parallelism allows di�erent subtrees of a traversal to be pro-
cessed independently in parallel, even while other subtrees are processed sequentially to preserve
dependences. The latter is a more �ne-grained approach and exposes greater opportunities for
parallelism. In Cilk-style parallel programming [Blumofe et al. 1995], homogeneous parallelism
is equivalent to spawning all children traversals on a node in the tree, while heterogeneous paral-
lelism selectively spawns and syncs subtrees to preserve dependences. Additional opportunities for
heterogeneous parallelism in the face of dependences can be exposed by reordering the traversal
order of children in a tree [Sakka et al. 2017].

Consider the example code in Figure 1. In Figure 1(a), we call two functions, f1 and f2, on the
root node of a tree. To an untrained eye, it may seem that these two functions can be executed
readily in parallel. However, a close inspection of the function bodies of f1 and f2 reveals that this.x
has written to in f1 and then read in f2. There is a read-after-write dependence between f1 and
f2. Hence, these are not trivially parallelizable traversals. If a programmer tries to parallelize the
calls to f1 and f2 on the root node, it will lead to a race condition, thus breaking the correctness
of the code. The process of outlining and inlining, followed by fusion, brings the computation of
f1 and f2 closer. The dependence analysis that Grafter does realizes this dependence and does
fusion such that it does not break any dependences. The only di�erence is that f1 changes from a
post-order traversal to a pre-order traversal in the fused function f12. In addition, the child calls
are brought close together in the new fused function f34. We see that f3 and f4 are independent
functions without any dependences (See Figure 1(e)). By bringing the child calls to f3 and f4 closer,
we are able to trivially parallelize the child traversals. Figure 1(e) shows f34 with the two calls
in di�erent colors, symbolizing that the calls are executed in parallel. By re-ordering the traver-
sal and performing fusion, Orchard is able to exploit heterogeneous parallelism in the face of
dependences.
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Fig. 1. Fusion process in Grafter and parallelism opportunity identified by Orchard.

There is an inherent tension between writing simple, maintainable code and fully exploiting
fusion and parallelism. The most programmer-friendly approach prioritizes writing several small
traversals, where each traversal performs a small, logically coherent operation [Petrashko et al.
2017; Qasem and Kennedy 2006; Rajbhandari et al. 2016; Rajbhandari et al. 2016; Sakka et al. 2017,
2019; Sarkar and Waddell 2005]. But short, lightweight traversals both reduce locality and have
little to no parallelism. The same tree must be traversed many times, reducing temporal locality,
and �ne-grained parallel tasks may be overwhelmed due to parallel overheads. Manually fusing
and parallelizing traversals requires a lot of time and e�ort and may introduce new concurrency
bugs. Due to complex dependences between operations, performingmultiple operations in a single
traversal may require splitting up a single logical computation across multiple traversals or putting
unrelated operations together into a single traversal. Programmers may not be able to maintain
these complex dependences while rewriting software.
Meyerovich et al. [2013] addressed this problem by using attribute grammars to automatically

create parallel schedules for tree traversals. However, their approach neither supports �ne-grained
fusion nor creates a heterogeneous parallel schedule. Rajbhandari et al. [2016] describe the creation
of a compiler that optimizes kd-tree traversals using fusion in the MADNESS framework. Their
fusion approach requires that the traversals act in either a pre-order or post-order manner only.
The traversals must also visit all the tree nodes in the tree, and the nodes must be of the same type.
In addition, the recursive functions are only parallelized in a homogeneous pre-order or post-order
manner, which is a coarse-grained approach. These limitations mean that their framework does
not support partial fusion, heterogeneous tree types, or heterogeneous parallelism.
Grafter by Sakka et al. [2019] addresses the concept of partial fusion and fusing traversals of

heterogeneous trees. However, Grafter falls short because it does not exploit parallelism, limiting
the speedup potential. Hecate [Chen et al. 2022] is a tree traversal synthesis framework that uses
an SMT solver to generate fused schedules. Their framework generates programs that perform bet-
ter than Grafter, presenting the most novel fusion framework to date. Although they parallelize
their programs to get better performance, they rely on the programmer to �nd such parallelism
opportunities in the source code. Their framework is limited in extracting parallelism because it
requires signi�cant manual analysis. The programmer has to manually use speci�c data structures,
such as vectors, to �nd parallelism. In short, there is no existing framework that allows program-
mers to write general tree traversal applications and, at the same time, make them perform faster
automatically by extracting both �ne-grained fusion and heterogeneous parallelism.
This article showcases a new framework, Orchard, which is an extension to Grafter that au-

tomatically transforms complex tree traversal applications by extracting both �ne-grained fusion
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and heterogeneous parallelism to generate faster code. To our knowledge, Orchard is the �rst
framework to combine both �ne-grained fusion and heterogeneous parallelism.

(1) We show that this combination of transformations is mutually bene�cial: �ne-grained fusion
coarsens task granularity, hence making parallel computations more e�cient as it compen-
sates for various parallel overheads. In addition, it reduces overall work and cache misses.
In applications with abundant parallelism, the programmer can allow greater fusion and
vice-versa.

(2) Orchard allows the programmer to �ne-tune applications for bigger parallel speedups by
controlling the granularity of fusion.

(3) Orchard is able to extract heterogeneous parallelism in situations where it is not possible to
spawn whole subtrees in parallel. Heterogeneous parallelism can extract more parallel work
by using a combination of spawns and syncs to preserve dependences.

(4) We show across three case studies that Orchard can provide substantial speedups over
Grafter and is able to exploit signi�cant parallelism from complex, tightly interdependent
tree traversals.

(5) We compare the performance of Orchardwith Hecate, the best prior framework, and show
that it is faster than Hecate on the benchmarks that they evaluated.

The rest of the article is organized as follows: Section 2 gives an overview of Grafter. Section 3.1
discusses fusion and parallelism asmutually bene�cial optimizations and their tradeo�s. Section 3.2
introduces Algorithm 1 to extract parallelism. Section 3.3 explains our parallel code-generation
strategy. We showcase our results in Section 4. We discuss related work in Section 5, and Section 6
presents future work. Finally, Section 7 concludes the article.

2 BACKGROUND

We build an Orchard on top of the Grafter. Frameworks other than Grafter that allow pro-
grammers to automatically fuse tree traversals cannot express general tree traversals. Those ap-
proaches miss opportunities for fusion as they use a coarse-grained approach. Coarse-grained
fusion only allows fusion among tree traversals that can execute fully on a tree without breaking
dependences. If traversals cannot be fully fused, they are left unmodi�ed. But multiple traversals
may be executed together in the same pass over di�erent parts of the tree. This creates opportuni-
ties for partial fusion. Partially fused traversals give increasingly better performance as the size of
the tree increases. In addition, frameworks that only support coarse-grained fusion do not support
heterogeneous trees, which limits the types of tree traversals optimized.
Grafter is a Clang-based tool that performs fusion on the input source code and produces

a fused version [Sakka et al. 2019]. Grafter’s fused version gives better performance than the
original unfused version because of better locality by reducing the reuse distance of memory ac-
cesses. Grafter supports �ne-grained fusion by allowing traversals to be partially-fused. One of
the main novelties of Grafter lies in its dependence graph representation [Sakka et al. 2017] of
the program, which captures all the dependences in program order. It creates a Directed Acyclic

Graph (DAG) representation where statement nodes and call nodes are distinguished from each
other, and directed edges among the nodes represent dependences. To construct a DAG represen-
tation capturing the various dependences in the program, Grafter constructs access automaton

for each statement and call [Sakka et al. 2019]. The automaton summarizes the possible sets of
reads (or writes) that a statement or call can execute on the tree. By taking intersections of the
access automata for calls and statements, Grafter builds a DAG that captures all the dependences
among calls and statements in program order.
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Grafter follows a set of steps repeatedly to fuse traversals. First, it �nds an ordered sequence
of functions invoked on the same tree child, which are subject to an outlining step followed by an
inlining step. Then Grafter reorders statements to bring them closer and creates new sequences
of traversal functions invoked on the same child. In short, this new sequence constitutes the newly
fused version of the functions. Figure 1 shows an illustration of this process. Grafter creates a
topological ordering of the nodes using the newly created fused dependence graph to generate
the fused version of the source code. This topological sort generates a sequential program order
that respects the original dependences. Grafter supports “code motion,” which is the process of
moving calls around to expose more fusion opportunities. In the fused version of the source code,
a call can move from being a post-order to a pre-order traversal if no dependences are broken.
Ultimately, Grafter’s version of the output code is almost always faster than the original un-

fused version of the code. Programs with multiple �ne-grained traversals fuse into coarse-grained
ones that perform more computation per traversal. This improves locality (by bringing accesses
to the same tree node closer) and increases e�ciency (by requiring a fewer number of traver-
sals). When the overhead added after fusion outweighs the locality bene�ts, the version produced
by Grafter becomes slower. However, Grafter does not exploit the parallelism of these traver-
sals. Orchard provides programmers with the ability to automatically get the bene�ts of both
�ne-grained fusion and heterogeneous parallelism, which together give better performance than
either one of �ne-grained fusion or heterogeneous parallelism.

2.1 Gra�er Overview

Grafter adopts a strategy for fusing traversals where a programmer writes individual tree traver-
sals in a standard C++-like language [Sakka et al. 2019] as functions that traverse a tree structure.
The �elds of each tree node can be heterogeneous and part of a complex class hierarchy, and
the (mutually) recursive functions that perform a tree traversal can leverage dynamic dispatch
when visiting the children of a node. For illustration purposes, we use a simple example shown in
Figure 1(a), with two calls to the functions f1 and f2. Each of those functions consists of a single
statement (s1 and s2, respectively) and a traversing call on the root’s child (f3 and f4, respectively).
These two function calls are not independent of each other: s1 in f1 updates this.x while s2 in f2
reads this.x. Grafter performs fusion on such traversals to generate a new set of mutually recur-
sive functions that perform fewer traversals of the tree. The fusion process starts with a sequence
of traversals that are invoked on the same node of a tree, in this case, the root. Note that it is
clearly safe to outline the two calls in Figure 1(a) into one call to function f12 that executes the two
functions back-to-back in their original order as shown in Figure 1(b) (the two calls are outlined
and then inlined).
Grafter creates a dependence graph representation. This dependence graph represents each call

and statement of the traversals as a vertex, and (directed) edges are placed between vertices if two
statements when executing at a particular node in the tree can access the same memory location. In
Figure 1(b), there is a dependence between s1 and s2. We also assume, for illustration purposes, that
there is a dependence between s2 and the call child . f4(). Grafter �nds dependences between calls
and statements by considering the transitive closure of what calls may access. Section 2.2 describes
how Grafter analyzes accesses to �nd dependences and construct the dependence graph.
Function f12 is now a new, single one that performs multiple pieces of work on root and invokes

multiple traversals on root.child. To optimize the body of f12, it is desirable to have s1 and s2
executed closer to each other for locality bene�ts – if they access shared �elds of root, then that data
is likely to remain in the cache. Furthermore, if the calls f3 and f4 on child are back-to-back, then
we can further fuse them into one call, and both save a function invocation and “visit” root.child
only once, instead of twice.
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The key challenge to performing this fusion is that it is not always safe. Grafter performs
reordering for the statements using the dependence graph, trying to bring traversals of the same
child closer to each other without reordering any edges (and hence violating dependences). This
reordering is done by grouping the traversal calls that visit the same node together. Figure 1(c)
shows the results of such reordering.
Note that in this example, the reordering step changes the traversal f1 from a post-order traversal

to a pre-order one (s1 is executed at parents before their children in f12, while it is executed at the
children before their parents in the original function f 1). In other words, this reordering involves
performing implicit code motion that can safely changes the schedule of the traversals for the
purpose of achieving more fusion.
As calls are grouped together, Grafter is presented with new sequences of functions that this

same fusion process can be applied to. In our example, the two calls grouped in the dashed box
in Figure 1(c) are invoked on the same node of the tree (root.child), so Grafter can repeat this
merging process, creating a new merged function f34, building a new dependence graph for the
merged function, rearranging its statements, and so on. Each time this reordering is performed,
more and more operations from multiple logical traversals on the same node(s) of the tree are
brought closer together, improving locality, andmore andmore function invocations frommultiple
logical traversals are collapsed, reducing invocation overhead and the total number of times the
collection of traversals visit nodes of the tree.
If Grafter encounters a sequence of functions that has been fused before, it can simply call

the already-fused implementation. Grafter bounds the number of functions that can be fused
together to ensure this process terminates. Section 2.3 describes in detail how Grafter performs
its fusion, including how it handles virtual functions. Note that encountering cases where an al-
ready created fused function is being called again is the key to having signi�cant performance
improvement since the locality enhancement and traversing overhead reduction will be achieved
recursively. In the limit, instead of 2 traversals visiting each node of the tree once each, we will
have a single traversal that visits each node only once – total fusion. However, any amount of
collapsing still promotes locality and reduces node visits.

The end result of Grafter’s fusion process is a set of mutually recursive functions that together
form a partially fused traversal. Crucially, these fused functions are analyzed on a per-type basis. In
other words, the fusion can occur partially – not all sequences of calls in a function need to be fused
– and type-speci�cally – fusion can occur for some concrete instantiations of virtual functions,
but not for others. This process leads to more �ne-grained, precise fusion decisions than prior
work.

The following section describes the details of Grafter fusion process in details. First, we de-
scribe Grafter’s analysis of traversal functions to identify dependences and the dependence graph
representation used to drive fusion (Section 2.2). Then, we explain how Grafter uses the depen-
dence representation to synthesize new, fused functions (Section 2.3). For detailed information on
Grafter’s language, refer to the grafter article [Sakka et al. 2019].

2.2 Dependence Graphs and Access Representations

The primary representation that Grafter uses to drive its fusion process is the dependence
graph [Sakka et al. 2017]. As described in Section 2.1, this graph has one vertex for each top-level

statement and edges between statements if there are dependences between them. More precisely,
an edge exists between two vertices v1 and v2, arising from functions fa and fb (fa and fb could
be the same function) if, when invoking fa and fb on the same tree node ( i.e., when this is bound
to the same object in both functions), either:
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Fig. 2. An example of a program wri�en in Grafter.

(1) v1 and v2 may access the same memory location, with one of them being a write or
(2) v1 is control dependent on v2 (in Grafter’s language, this can only happen if v1 and v2 are

in the same function and either v1 or v2 could return from the function).

So, how does Grafter compute these data dependences?

Access automata. To compute dependences between statements in di�erent traversals, the �rst
step is for Grafter to capture the set of accesses made by any statement or call in a given traversal
function. To do so, Grafter builds access automata for each statement. These can be thought of
as an extension of the regular expression-based access paths used by prior work [Sakka et al. 2017;
Weijiang et al. 2015] to account for the complexities of virtual function calls and mutual recursion.

An access path for a simple statement such as n.x = n.l.y + 1 is straightforward. The statement
reads n.l .y and writes n.x . A simple abstract interpretation su�ces to compute these access paths
(intuitively, we perform an alias analysis on the function using access paths as our location ab-
straction [Larus and Hil�nger 1988; Wiedermann and Cook 2007]). The abstract interpretation
associates with each local variable an access path, or set of access paths, when merging across con-
ditionals, aliased to that variable. At each read (or write) of a variable, the access path(s) are added
to the read (or write) set of access paths for that statement. Grafter collects the set of access paths
for each top-level simple statement in each traversal function. We do not elaborate further on this
process, as this analysis is standard (and is similar to TreeFuser [Sakka et al. 2017]).
The more complicated question is how to deal with building access paths for traversing function

calls. Our goal is to build a representation that captures all possible access paths that could arise as
a result of invoking the function. Rather than trying to construct path expressions to summarize
the behavior of function calls, Grafter directly constructs access automata to account for this
complexity. Note that these access automata are not quite like the aliasing structures computed
by Larus and Hil�nger [1988], because Grafter’s representation is deliberately parameterized on
the current node that a function is invoked on. We describe how Grafter builds these automata
next.

Building access automata for statements. Each top-level statement in Grafter has six automata
associated with it that represent reads and writes of local, global, and tree accesses that can
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Fig. 3. Automata that represents summary of read accesses for the simple statement. eps is epsilon transition,
and root is the traversed node transition (i.e., root corresponds to this object). The double circle represents
an accept state.

happen during the execution of the statement. Grafter starts by creating primitive automata.
For each access path, a primitive automaton is constructed which is a simple sequence of states
and transitions. Transitions in the automata are the member accesses in the primitive access path
except for two special transitions: (1) the traversed-node transition, which appears only at the start
of tree-node-�eld access and replaces this, and (2) the “any” transition that happens on any mem-
ber access. If a primitive access path is read, then each pre�x of the primitive access is also being
read, and accordingly, each state in the primitive automata is an accept state except the initial state.
If a primitive access is being written, then only the full sequence is written to while the pre�xes are
read. There are some special cases to deal with while constructing primitive automata. If an access
ends with a non-primitive type (a C++ object), then accessing that location involves accessing any
possible member within that structure. Such cases are handled by extending the last state with a
transition to itself on any possible member using an any transition. Likewise, tree locations that
are manipulated using delete and new statements, writes to any possible sub-�eld accessed within
the manipulated node, and their automata uses any transition to capture that. After the construc-
tion of the primitive automata, access automata of simple statements can be constructed from the
union of the primitive automata. For example, the tree reads automaton for a simple statement is
the union of the primitive automata of the tree read accesses in the statement. Figure 3 shows the
tree read automaton for the statement:

Width = Content->Width + Border.Size*2;

Finding dependences between statements. These automata provide the information needed to
�nd dependences between statements. Because each statement’s automata captures the full set of
access paths read (or written) for a statement, and we are interested in whether the statements
have a dependence when invoked on the same tree node, we can simply intersect the write au-
tomaton for a statement with the read and write automata for another statement to determine if a
dependence could exist—a non-empty automaton means the two statements could access the same
location.

Building access automata for traversing calls. Representing accesses of traversal calls is not as
simple. For a given call statement, we want to construct a �nite automaton that captures any pos-

sible access path that could arise during the call relative to the tree node being traversed by caller –
including the fact that a call may invoke more traversals. When building the access automaton
for a traversal call, Grafter �rst creates a call graph that includes all the possibly (transitively)
reachable functions from that call. We �rst note that any o�-tree data accesses made by any of
these reachable functions are, inherently, not parameterized by the receiver of the traversal calls—
regardless of when and where the function gets called, those access paths will be the same. Thus,
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Fig. 4. Construction of tree writes automata for the traversing statement content->computeWidth(). root is
the traversed node transition.

we can simply union those automata together for the functions in the call graph to capture those
accesses. The situation is more complicated for tree-node-�eld accesses, as those are parameter-
ized by the receiver of the call, this (i.e., the node that is being traversed). To �nd the accessed
locations relative to this, we need to �nd two things: the functions that are reachable during the
call (to know which statements are executed) and the tree nodes that those functions are invoked
on.
Consider building the access paths for some function f . For each function q reachable from

f , the sequence of children traversed to get to the invocation of q gives an access path for the
node that q is invoked on relative to the receiver of f . This access path can be prepended to the
statements access paths in q to produce the access paths relative to this (the traversed node in f ).
For example, when a function f invokes another function д on a child x of this, it invokes x.g();
the receiver object of д is this.x. Thus, to incorporate the e�ects of д into the access paths of f , we
can pre�x the access paths of д with this.x. If д, in turn, calls h through child y, then we can pre�x
the access paths of h with this.x.y and add them to the access paths of f .
To account for tree-node-�eld accesses, Grafter takes the call graph for the traversing call

and labels each edge with the traversed �eld that is the receiver for that call. If the receiver for
the call is the currently traversed node (this), the edge is labeled with the epsilon (eps) transition.
Figure 4(a) shows the call graph that is generated for Content->computeWidth() from our running
example. Thus, paths in this graph correspond to possible sequences of child-node accesses to
reach each function in the graph. For each function, Grafter then attaches the statement au-
tomata of each simple statement in that function (see the previous section) to the corresponding
node in the call graph. This has the e�ect of treating the regular language from the statement
automata as the su�x attached to the pre�x that designates the receiver object. Figure 4(b) shows
the resulting automaton, and Figure 4(c) shows the reduced version. Note that the constructed
automata handle the possibility of non-statically bounded trees; whenever we encounter a func-
tion for which we already have created a state, we add a “back edge” in the automaton to the
state that corresponds to that function. Unbounded recursion is hence represented by loops in the
automaton.

Finding dependences between statements and calls. The access automata constructed for calls are
no di�erent than those constructed for statements. By using the call graph to construct access
paths for receiver objects of functions, all the access paths generated by the �nal access automata
are rooted at the same receiver object as the automata for statements. Hence, �nding dependences
between statements and calls (or between calls) can be achieved by intersecting the automata and
testing for emptiness.
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2.3 Fusing Traversals

At a high level, Grafter performs fusion by repeatedly invoking the following steps:

(1) Find a sequence L of consecutive traversal functions invoked on the same tree node n.
(2) Outline these traversal functions into a new function fL that is called on n. If such an fL has

already been created in an earlier iteration of this process, simply call the existing fL .
(3) Inline each of the individual traversal functions in fL to expose the work done on the node

n.
(4) Reorder the statements in fL to bring statements that access the same �elds closer together

and to create new sequences of traversal functions invoked on the same tree node (typically,
some child node of n).

(5) Repeat the process for these newly created sequences of calls.

These steps constitute the fusion algorithm of Grafter. In particular, every time a sequence L
is encountered more than once, and hence an existing fL can be reused, Grafter has exploited an
opportunity for fusion. We now explain this fusion process in more detail, and also sketch a proof
of correctness.

Details. Fusion starts with a sequence of traversal functions that are invoked at the same tree
node (e.g., the root). Grafter searches for such candidates in the compiled program and initiates
the fusion process for each of them. For example, the sequence ElementsList− > computeWidth()
followed by ElementsList− > computeHeight() in Figure 2 line 50.

Because a given function may be virtual, Grafter �rst computes all possible sequences of con-
crete functions that may be invoked as a result of a sequence of function calls. For each typeT that
the sequence of calls can be invoked on, Grafter constructs a sequence L of concrete calls. In our
example, there are three, depending on whether ElementList points to a TextBox, Group, or End.

For each function sequence L a fused function with label fL is created (if one has not already
been generated). If the label fL does not already exist, then its corresponding function needs to be
generated. A dependence graphGL is constructed for the statements in the traversals in L. In other
words, the fused function is essentially a function containing the inlined statements from each call
in the sequence L, in order. Note that a sequence Lmay contain the same static function more than
one time (i.e., the same function can be invoked on a given node of a tree more than once). In this
case, GL contains statements from multiple copies of that function, and the statements from the
two copies are treated as coming from di�erent traversal functions.
OnceGL is constructed, the statements (nodes) in the statement can be reordered as long as no

dependences are violated (as long as a pair of dependent statements are not reordered). Grafter
thus reorders the statements and try to group invocations on the same node together. It then gen-
erates the fused function code, as explained in the next section. This newly generated function
has grouped traversals invocations on the same node together (and these invocations may have
come from di�erent functions than the original sequence L), creating new sequences of functions.
Grafter then process these new sequences of functions to generate more fused functions. When-
ever Grafter encounters a sequence of functions it has seen before, it does not need to generate
a new function, but instead inserts a call to the already generated function. Crucially, if this new
sequence is the same as for a function currently being generated, Grafter just inserts a recursive
call to that function.
The end result is a set of mutually recursive fused functions, each for a di�erent set of traversals

that are executed together at some point. Furthermore, each of those functions is fused indepen-
dently of the others. This process introduces type-speci�c-partial-fusion, since for an invocation of
a traversals on a super type, the set of the called functions that corresponds to each dynamic type
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are fused independently, and hence some of them actually might be fusible while others are not.
Note that Grafter only generates new functions for sequences it has not seen before. Because
Grafter limits the number of functions that can be fused together [Sakka et al. 2019], the number
of sequences of functions is �nite, and hence fusion is guaranteed to terminate.

Proof sketch of soundness. The argument for the soundness of Grafter’s fusion procedure is
straightforward. First, we note that the outlining and inlining steps (steps 2 and 3) in the fusion
process are trivially safe because they do not reorder any computations, and hence cannot break
any dependences. Step 4 could potentially break dependences, but because Grafter performs a
dependence analysis, it can ensure that statements are only reordered if dependences are preserved.
Hence, this step is also clearly sound. The tricky step in Grafter’s fusion algorithm is the step
where it gains the advantage of fusion: if a sequence of calls to a particular sequence of traversal
functions matches a sequence that Grafter has already generated a fused function for, Grafter
immediately replaces the original sequence of calls with a call to the fused function rather than
generating another new function. This is only safe if the already-fused function will do the same
thing as the original function sequence.
To see that this is safe, we note that the process of outlining followed by inlining means that the

code of the fused function fL is not dependent on the node fL is invoked on—in other words, if the
original sequence of traversal functions are invoked on root.left, after outlining and inlining, the
statements within fL are relative to the formal parameter n of fL , and will be exactly the same as if
fL were produced from the same sequence of functions invoked on a di�erent tree node, such as
root.right. In other words, two identical sequences of traversal functions, L and L′ that are invoked
on di�erent tree nodes will yield identical functions fL and fL′ after outlining and inlining. Because
the dependence graph for these functions are identical, any reordering Grafter does to create a
fused function can be applied to both fL and fL′ . It is obvious, then, that, upon encountering the
same sequence of traversal functions L, even if those functions are invoked on di�erent nodes,
Grafter can reuse an existing synthesized function.
However, there remains one gap: if, while fusing a sequence of functions L to generate fL ,

Grafter encounters the same sequence of invocations L that is reachable (transitively) from fL ,
Grafter will substitute a call to fL . In the simplest case, if fL contains L, then a new invocation
to fL will be inserted into the body of fL . Hence, in these situations, Grafter is changing the
behavior of fL while using it to replace L. This process feels circular. However, a straightforward
inductive argument on the depth of the call stack (i.e., the number of recursive invocations of fL
before reaching the end of the tree or some base case) shows that this new invocation of (the
rewritten) fL behaves the same as the original sequence L. This argument mirrors the proof for
the soundness of TreeFuser [Sakka et al. 2017, Section 7].

3 ORCHARD DESIGN

Orchard’s goal is to generate e�cient parallel code by automating the task of extracting paral-
lelism from the source code. Manually parallelizing traversals is not a straightforward task and
requires careful tweaking in order to get performance. Our key insight is to use the dependence
graph generated by Grafter to parallelize traversals.
Figure 5 gives an overview of the framework. As shown, the dependence graph is at the core

of the transformations. We �rst fuse the dependence graph using a fusion heuristic and subse-
quently extract parallelism. This is followed by a code generation step and a compilation step,
which generates a target binary using Opencilk. Before we delve further, we talk about fusion
heuristics.
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Fig. 5. Orchard design overview.1

Fig. 6. Figure shows the benefits of greedy fusion.

3.1 Fusion Heuristics

We use Orchard to generate two di�erent types of code. One uses the greedy fusion heuristic
from Grafter, and the other is representative of the original parallelism in the source code by
completely ignoring the fusion step. We show these as two extreme strategies on the scale of
possible fusion schedules. Future work will focus on the space of fusion heuristics such that it
increases parallelism optimally.

The greedy fusion heuristic. The greedy heuristic starts to fuse all the possible candidate func-
tions for fusion it can �nd as long as there are no more functions to be fused. The idea behind this
heuristic is to fuse the maximum amount of functions together. As shown in Section 4, fusion re-
duces overall work, improving spatial and temporal locality due to fewer cache misses. It coarsens
the granularity of functions, which makes parallelism e�cient.
Figure 6 shows the di�erence between parallel schedules generated with and without greedy fu-

sion. As shown, the parallel schedule created after greedy fusion is more e�cient than the parallel

1
• Apple Inc., Public domain, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:ExecutableBinaryIcon.
png

• eric sink, CCBY-SA 4.0, viaWikimedia Commons, https://commons.wikimedia.org/wiki/File:GrafoAciclicoDirigido.png
• TB Schardl, OpenCilk logo, accessed 14th March, 2024, https://www.opencilk.org/
• Apple Inc., The LLVM logo, accessed 14th March, 2024, https://llvm.org/Logo.html
• Jeremy Kratz, Public domain, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:ISO_C%2B%2B_
Logo.svg

• Colin Smith/Apple Orchard by Mottynsden Farm, https://commons.wikimedia.org/wiki/File:Apple_Orchard_by_
Mottynsden_Farm_-_geograph.org.uk_-_227520.jpg
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Fig. 7. Figure shows how greedy fusion may be bad and provides a more e�icient dependence graph.

schedule with no fusion. It does not reduce parallelism but coarsens the granularity of parallelism
as functions 2 and 3 are now fused together.
Theoretically, as shown in Figure 7, the greedy fusion heuristic may not always lead to a more

e�cient parallel schedule. Allowing excessive fusion can reduce opportunities for parallelism. Sup-
pose two functions are fusible and at the same time can execute in parallel, which is the better
choice? While fusion does help in increasing locality, parallelism brings more dramatic increases
in speedups. However, parallel overheads may prevent speedups if a function is not computation-
ally heavy. In such a scenario, fusing those functions is a better choice. Fusion generates compu-
tationally dense traversals. Figure 7(c) shows a dependence graph where carefully chosen fusion
choices lead to an increase in computational density of traversals without decreasing parallelism.

3.2 Parallelizing Traversals

Asmentioned previously in Section 2.1, the dependence graph contains vertices and edges between
vertices capture data �ow dependencies. These vertices are either function calls or statements.
The dependence graph preserves dependences among function calls and statements in program
order. Vertices contain vectors storing its predecessor and successor vertices. At runtime, data ac-
cesses made by the currently executing function are dependent on accesses made previously by
its predecessors. Likewise, the successors depend on data accesses made by the currently execut-
ing function. To prevent a race condition, function calls executed in parallel must be completely
independent of each other. As a function executes, any set of vertices in the dependence graph that
are not yet visited and whose predecessors have all been visited are candidates to execute in paral-
lel without breaking any dependences. A topological sort (Algorithm 1) orders the vertices in the
dependence graph according to the dependence order, and it �nds function calls that can execute
in parallel along the critical path of the dependence graph. Orchard does not extract statement-
level parallelism because it is expensive. Individual statements are computationally lightweight;
parallelizing statements will not lead to e�cient parallelism because of various parallel overheads.
All statements are thus executed serially within the body of a function, and they are ordered to be
consecutive in the function body.
After the algorithm has visited all the vertices in the dependence graph, it outputs a parallel

schedule that de�nes the order in which statements and function calls should be executed. Imagine
this parallel schedule as a multi-story building. Each level contains either a bunch of function
calls that can execute in parallel or an individual statement that executes serially. The levels in
this building respect the program order and execute serially. Each individual concrete function in
the dependence graph is parallelized separately in accordance with dependences. Function calls
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ALGORITHM 1: Pseudo-code for the topological sort algorithm
1: function updateReadyList(readyList, node)
2: for each successor ϵ node do
3: if not visited[successor] and allPredessorsVisited(successor) then r eadyList ← r eadyList + [successor ]
4: end if
5: end for
6: end function
7:
8: function topologicalSort(dependenceGraph)
9: for each node ϵ dependenceGraph do
10: if node is root then r eadyList ← r eadyList + [node]
11: end if
12: end for
13: while readyList is not empty do
14: for each node ϵ readyList do
15: if node is not a CallNode then
16: if visited[node] then r eadyList ← r eadyList − [node]
17: else
18: statementOrder ← [node] ; executionOrder ← executionOrder + [statementOrder ]
19: visited [node] ← true ; r eadyList ← r eadyList − [node]
20: updateReadyList(readyList, node)
21: for each callnode ϵ readyList do
22: if not visited[callnode] then
23: visited [callnode] ← true ; parallel Functions ← parallel Functions + [callnode]
24: end if
25: end for
26: r eadyList ← []
27: for each callnode ϵ parallelFunctions do updateReadyList(readyList, callnode)
28: end for
29: executionOrder ← executionOrder + [parallel Functions]
30: end if
31: end if
32: end for
33: end while
34: return executionOrder
35: end function

can be invoked on di�erent children (f1(node.r) and f2(node.l) act on di�erent children), or
descendants of those children at di�erent levels in the tree (f1(node.r) and f2(node.r.l) act at
di�erent levels). These functions can traverse the tree in any traversal order as well. This enables
Orchard to generate a parallel schedule that is heterogeneous and �ne-grained.
Figure 6(a) shows a dependence graph representation of some source code. Inside the call vertex

(yellow rectangles) is information containing the call name followed by the tree child it traverses in
a binary tree. Statements are shown in blue circles. Figure 6(c) shows a parallel schedule of the de-
pendence graph in Figure 6(b). Our evaluation shows that parallelizing the dependence graph after
Grafter does fusion on the dependence graph yields considerable speedups. This mainly stems
from the coarsening of functions after fusion, which amortizes various parallelism overheads and
lowers cache misses. In addition, fusion may lead to more parallelism by reordering the traversal
order as highlighted in Figure 1.

3.3 Traversal Code Generation

The code generation step in Orchard is similar to the code generation step in Grafter [Sakka
et al. 2019]. Figure 8 shows an example of a function generated by Orchard from a tree rendering
program. To parallelize the source code, Orchard uses the topological sort (Algorithm 1) to order
the vertices (statements or calls) in the graphG. Each vertex in the sorted graph is then written to
the corresponding fused function body. This vertex can either execute sequentially or in parallel.
For vertices that are not function calls, Orchard writes them to the function sequentially as men-
tioned in Section 3.2. For vertices that are function calls, Orchard inserts a cilk_spawn (Figure 8
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Fig. 8. RenderTree code-gen: A fused function parallelized by Orchard. The function contains 2 parallel
calls. The “maxDepth” parameter for granularity control is set to 1024.

line 29) in front of all calls except for the last call that executes in parallel. It inserts a cilk_sync
(Figure 8 line 51) after the last call to ensure dependences do not break.

Orchard provides control over the granularity of parallelism by allowing the programmer to
restrict the maximum depth allowed to spawn recursive calls. For instance, let us assume the pro-
grammer wants to set themaximum depth to 10. This means that Orchardwill only spawn 10 con-
secutive recursive calls for every function in the generated code. After spawning 10 recursive calls
Orchard switches over to the serial version of the code. In order to switch over to the serial code
on reaching the maximum depth, Orchard generates replicas of the parallel version of the func-
tions. These replica functions have di�erent function names. They do not have Cilk directives and
depth controlling code so that the compiler can distinguish between them. For now, Orchard uses
a �xed threshold depth to enable granularity-control. This enables us to reduce overhead and code
complexity. Exploring static or dynamic parallelization granularity could serve as future work.

3.4 Writing Traversals in Orchard

Orchard uses Grafter’s language to enable programmers to write tree traversal applications.
Programmers de�ne their trees using a base node class and subclasses to enable heterogeneity. A
programmer can then write general tree traversals in a C++-like language, using virtual functions
to provide di�erent behavior for di�erent node types. As described in Section 2, Orchard then
uses Grafter’s dependence analysis to build a dependence graph representation of the traversals
in the program. Crucially, the programmer does not need to worry about the task of enabling
parallelism while writing applications. Orchard fully automates it.
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4 EVALUATION

We evaluate Orchard on three di�erent benchmarks: ASTs, render trees, and piece-wise func-
tions. For each benchmark, we present a detailed section discussing our results. We show strong
scaling, weak scaling, and cache misses for two versions of code generated by Orchard. One par-
allel version uses the greedy fusion heuristic. The other parallel version, named “solely parallel”,
is compiled by ignoring the fusion step in Orchard. It is the speedup achieved by parallelism
without fusion (i.e., traditional Cilk-style parallelism, without Orchard’s combination of the two).
The speedups are normalized relative to the fused serial version of the code, which is based on
Grafter’s default greedy fusion heuristic.

Background on Cilk: Cilk [Blumofe et al. 1995] is a runtime system written in C that allows
programmers to parallelize their applications within a constant factor of optimal. The performance
of a parallel program is accurately described by measures such as a “work” and “critical path”
at runtime. The Cilk language extension includes statements like cilk_spawn and cilk_sync. A
programmer can spawn child tasks using cilk_spawn, which works like a subroutine call; however,
the calling thread can function concurrently with the child task. To wait for child tasks to return,
a programmer can use cilk_sync, which causes all threads to join at that point in the program.
Cilk follows the design of a randomized work-stealing parallel scheduler. This allows a starving

thread to steal spawned tasks from the queue of a victim thread. The expected theoretical runtime
of a program parallelized using a work-stealing scheduler like Cilk is upper bounded by Equa-
tion (1) given the work and span of the program in seconds. In the following equation, TP is the
runtime of the parallel program in seconds. Tw is the work in seconds and T∞ is the span in sec-
onds. The number of processors a program uses is given by p. We use Equation (1) to get an upper
bound on the runtime of our benchmarks and use it to explain performance trends.

TP = Tw/p +O(T∞). (1)

Implementation: Orchard2 is a Clang-based software tool3 that performs source-to-source
transformations on input programs by fusing and parallelizing traversals as described in Section 3.
To enable parallelism, Orchard inserts Cilk directives such as cilk_spawn and cilk_sync as de-
scribed in Section 3.3. Orchard uses a greedy fusion heuristic by default; however, the choice of
fusion heuristic is open to future investigation.

Experimental platform: We evaluate Orchard on an AMD Ryzen Threadripper 3990X with 2.9
GHz clock speed. It has 64 CPUs, each with two threads, totaling 128 threads. The L1d and L1i
caches are 32 KB each, the L2 cache is 512 KB, and the L3 cache is 16 MB. We used Opencilk
release 2.0, which is based on the LLVM compiler infrastructure and implements Tapir [Schardl
et al. 2017]. It provides support for Cilk task-parallel language extensions to C/C++ and optimizes
Cilk programs to allow for e�cient parallel execution on shared-memorymulti-core machines. We
used clang++ with -O3 optimization to generate binaries. We used perf to collect cache misses, a
Linux-based pro�ling tool.

4.1 Case Study 1: AST Traversals

Our �rst case study looks at an AST traversal benchmark based on Grafter’s AST benchmark.
It uses a variety of abstract syntax tree passes written in a simple imperative language [Sakka
et al. 2019]. The AST tree consists of a variable number of functions containing a variable number
of statements set by the programmer. The statements are populated in the function based on a

2https://github.com/vidsinghal/Orchard
3https://clang.llvm.org/
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Table 1. AST: Showing Approximate Runtimes for the Programs when Calculated using Equation (1)

Threads fused-parallel runtime (∼s) solely-parallel runtime (∼s)

Work (s) Span (s) Work (s) Span (s)

1 6.86 3.25 10.11 7.01 3.32 10.33
2 7.04 3.27 6.79 7.25 3.32 6.95
4 7.19 3.27 5.07 7.40 3.31 5.16
8 7.73 3.27 4.24 7.89 3.32 4.31
16 8.08 3.28 3.79 9.13 3.32 3.89
32 10.17 3.28 3.60 12.59 3.38 3.77
64 19.18 3.36 3.66 24.91 3.52 3.91
128 50.02 3.69 4.08 54.66 3.59 4.02

For 300 functions and 20,000 statements.

random order containing multiple if, assignment, increment, and decrement statements. For eval-
uating strong scaling and cache-misses, the benchmark generates 300 functions, each with 20,000
statements. The parallelism mainly comes from AST traversals intra-procedurally optimizing mul-
tiple functions in parallel.
Orchard gives speedups (baseline greedy fused serial) for both the parallel versions of the AST

source code. Figure 9 shows both strong and weak scaling. For strong scaling, we �x the input size
but scale the number of threads logarithmically. Whereas, for weak scaling, we scale both the input
size and the number of threads. The fused parallel version performs signi�cantly faster than the
solely parallel version.We used the Cilkscale tool availablewithOpencilk to get thework and span
times for each benchmark and thread combination as shown in Table 1. We show the approximate
runtime of the program calculated based on the randomized work stealing Equation (1). The span
is higher for the fused parallel version which is expected—fusion may fuse independent functions
which could have otherwise run in parallel—however the overall runtime decreases due to the
reduction in work. The span increases as threads increase because multiple starving threads have
to compete with each other to perform a steal. Some steals may even be unsuccessful if a victim
thread’s work queue is empty. This increases communication overhead. We used the Opencilk
runtime to obtain statistics for the total steals and saw that the total steals increased by ∼3–8
times on average when run on 128 threads relative to 32 threads for the AST benchmark.
Figure 15(a) shows that the fused parallel version has signi�cantly lower cache-misses than the

solely parallel version due to increased locality. Hence, fusion is all to the good. Firstly, it coarsens
the granularity of parallelism by fusing multiple functions together. This makes parallelism more
e�cient by compensating for parallel overheads and communication costs. Secondly, it decreases
overall work without substantially increasing the span. Lastly, fusion increases locality which is
shown by the signi�cant reduction in cache-misses.

4.2 Case Study 2: Render Tree

Case study 2 uses Grafter’s render tree benchmark [Sakka et al. 2019]. Render Trees are a com-
bination of CSSOM and DOM trees used to render documents on web pages. These render trees
are traversed multiple times to calculate visual elements that are present on web pages.
For this case study, we use two types of experiments. The �rst type creates a document with

only one page. This page has n horizontal containers, and each container has n elements with a
random number of deeply nested components. For this benchmark, we set n to 78. The second
experiment creates a book with p multiple pages; each of these pages is identical to the one in
the �rst experiment. For this benchmark, we set p to 310 pages and n to 62. We refer to the �rst
experiment as the “single page benchmark” and the second as the “multi page benchmark”.
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Fig. 9. Speedups for AST Tree Traversals. Fig. 10. Speedups for RenderTree benchmark 1.

Table 2. Single Page Benchmark: Showing Approximate Runtimes for the Program when Calculated
using Equation (1)

Threads fused-parallel runtime (∼s) solely-parallel runtime (∼s)

Work (s) Span (s) Work (s) Span (s)

1 24.42 12.45 36.87 68.58 10.15 78.73
2 24.41 12.41 24.62 68.80 10.14 44.54
4 24.65 12.51 18.67 71.20 10.07 27.87
8 24.99 12.47 15.59 73.12 10.34 19.48
16 25.36 12.48 14.07 73.97 10.24 14.86
32 26.25 12.56 13.38 77.25 10.37 12.78
64 28.96 12.57 13.02 88.83 10.35 11.74
128 43.15 12.94 13.28 163.30 10.82 12.10

n is �xed to 78.

Single Page Benchmark: Figure 10 shows the speedups of the two parallel versions of the bench-
mark. The solely parallel version of the benchmark is faster than the greedy fused parallel version
after ∼8 threads. However, if a machine has less cores, the greedy fused parallel version will give
a lower runtime.
This is an example where fusion is hurting parallelism. From Table 2 we see that although the

overall work reduces for the fused parallel version, the dominant term in the runtime as threads
increase is the span of the program. The fused parallel version has a higher span, which is expected
since this render tree benchmark has a single page with deeply-nested components. The presence
of deeply nested components introduces greater dependencies post-fusion. This increases the span
as dependencies may prevent functions from executing in parallel.
There is always a balance between fusion and parallelism. Too much fusion may substantially

decrease parallelism if the source code has limited parallelism. On machines with fewer threads
available, allowing fusion is better. However, when threads are in abundance, the span term may
dominate the runtime of the program. In such scenarios, we should allow less fusion. As expected,
we observe a reduction in cache misses as shown in Figure 15(b) for the fused version.

Multi Page Benchmark: Figure 11 shows the speedups for the two versions in the case of the
multi-page benchmark. The greedy fused parallel version is always faster than the solely parallel
version. This is contrary to the single page benchmark. Although fusion reduces opportunities for
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Table 3. Multi Page Benchmark: Showing Approximate Runtimes for the Program when Calculated
using Equation (1)

Threads fused-parallel runtime (∼s) solely-parallel runtime (∼s)

Work (s) Span (s) Work (s) Span (s)

1 95.05 39.97 135.02 270.89 39.44 310.33
2 95.15 39.69 87.27 265.94 39.09 172.06
4 96.59 40.32 64.47 270.55 39.09 106.73
8 99.98 40.17 52.67 280.12 38.82 73.84
16 110.72 42.89 49.81 282.41 38.91 56.56
32 104.89 39.73 43.01 292.83 38.36 47.51
64 139.62 39.60 41.78 336.66 38.89 44.15
128 208.4 40.18 41.81 573.73 39.26 43.74

p is 310 and n is 62.

Fig. 11. Speedups for Render Tree benchmark 2. Fig. 12. PieceWise Functions Program 1.

parallelism on a single page, the presence of multiple pages ensures enough parallelism overall.
As shown in Table 3, there in an overall reduction in work after fusion; however, the span doesn’t
increase substantially. The fused parallel version has lower cache misses, as shown in Figure 15(c).
This is an important result because it shows the bene�ts of partial fusion in relation to

parallelism. Programs with abundant parallelism can bene�t from partial fusion even as threads
increase. Render tree benchmarks in the real world are like the multi-page benchmark requiring
rendering multiple pages. Partial fusion and parallelism show promise for increased speedups in
such benchmarks.

4.3 Case Study 3: Piecewise Functions

Our �nal case study looks at MADNESS-style kd-tree traversals, as in Rajbhandari et al. [2016].
This benchmark performs multiple traversals over piece-wise functions stored in kd-trees, such
as computing the square, adding a constant, multiplying with a variable, and di�erentiating a
node, among others. We look at three di�erent “programs” that do di�erent sets of operations
(i.e., perform di�erent traversals) on the piece-wise functions. When measuring strong scaling
and cache misses for program 2, we generate a tree of depth 25. For program 1 and program 3, the
tree depth is 15 and 18, respectively.
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Fig. 13. PieceWise Functions Program 2. Fig. 14. PieceWise Functions Program 3.

Fig. 15. Cache misses for AST and RenderTree.

Fig. 16. Cache misses for PieceWise Functions.

Figures 12, 13, and 14 show the speedups for program 1, 2, and 3, respectively. Table 4 shows the
work, span and runtime and Figure 16(a), (b), and (c) show the cache-misses. The fused parallel
version is always faster than the solely parallel version. This is a consequence of reduction in
overall work, coarsening of the granularity which bene�ts parallelism and lower cache misses.

4.4 Comparison with Hecate:

We compare the performance of Orchard with Hecate, the best state-of-the-art prior work in the
domain. We used the render tree and AST traversals as in the Hecate article4 and plotted all the
implementations as shown in Figure 17.5 We see that Orchard performs better than Hecate-L
(list based traversal), Hecate-V (sequential vector based traversal) and Hecate-P (parallel vector
based traversal) for both the benchmarks, especially as the tree size increases. This shows that
Orchard scales better than Hecate.
Although Hecate’s novelty lies in synthesizing potentially better fusion schedules than

Grafter using an SMT solver, Orchard is a complementary approach to automatically paral-
lelize traversals without any manual analysis. Hecate uses symbolic evaluation to generate fusion
schedules. The symbolic evaluation is greedy, as it fuses functions whenever possible whenever it

4Since Hecate was not evaluated on piecewise functions in the original article, we did not show it in our evaluation.
5We used a 20 thread Intel Core i7-12700K machine with a L2 cache size of 12 MiB and L3 cache size of 25MiB. We had
root access on this machine which allowed us to install all the dependencies required for Hecate

ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 41. Publication date: May 2024.



Orchard 41:21

Table 4. PieceWise Functions 1, 2, and 3: Showing Approximate Runtimes for the Programs when
Calculated using Equation (1)

Threads fused-parallel runtime (∼s) solely-parallel runtime (∼s)

Work (s) Span (s) Work (s) Span (s)

1 0.06 0.002 0.06 0.10 0.002 0.10
2 0.10 0.002 0.05 0.16 0.002 0.08
4 0.18 0.002 0.05 0.29 0.003 0.08
8 0.32 0.002 0.04 0.57 0.003 0.07
16 0.81 0.003 0.05 1.29 0.004 0.08
32 2.17 0.005 0.07 3.31 0.006 0.11
64 6.80 0.009 0.12 7.33 0.010 0.12
128 16.46 0.018 0.15 15.57 0.041 0.16

Threads fused-parallel runtime (∼s) solely-parallel runtime (∼s)

Work (s) Span (s) Work (s) Span (s)

1 9.11 3.59 12.70 27.69 3.62 31.31
2 8.95 3.55 8.03 27.80 3.58 17.48
4 9.12 3.61 5.89 29.52 3.57 10.95
8 9.71 3.81 5.02 31.52 3.54 7.48
16 9.38 3.70 4.29 30.31 3.55 5.44
32 9.91 3.66 3.97 31.91 3.67 4.67
64 10.95 3.56 3.73 36.69 3.72 4.29
128 15.63 3.64 3.76 59.58 3.80 4.27

Threads fused-parallel runtime (∼s) solely-parallel runtime (∼s)

Work (s) Span (s) Work (s) Span (s)

1 0.97 0.035 1.01 1.19 0.037 1.23
2 1.22 0.034 0.64 1.53 0.036 0.80
4 1.31 0.037 0.36 1.59 0.036 0.43
8 1.67 0.036 0.24 2.25 0.037 0.32
16 2.73 0.035 0.21 3.34 0.032 0.24
32 4.43 0.040 0.18 5.66 0.040 0.22
64 16.12 0.044 0.30 17.95 0.060 0.34
128 36.71 0.060 0.35 47.11 0.158 0.53

Fig. 17. Performance comparison amongst Hecate-L, Hecate-V, Hecate-P, Grafter and Orchard.

visits nodes in the tree. The heuristic that Grafter uses is also greedy, but it is deterministic with
one unique solution. Hecate’s synthesis technique is non-deterministic as it allows for di�erent
design choices, such as linked lists vs. vectors for traversals, and so on. This increases the space of
potential schedules at the expense of compile time.
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Hecate-P relies on the programmer to expose the parallelism using a vector-based data
structure for tree-traversals; this limits parallelism opportunities and puts the burden of �nding
parallelism hot spots on the programmer. Orchard on the other hand, automatically parallelizes
tightly interdependent recursive tree traversals and realizes an e�cient runtime performance
using Opencilk.

4.5 Discussion

Across these case studies, we can draw several conclusions. Fusion decreases the overall work
and simultaneously increases work per function. The former directly reduces the runtime of the
program, and the latter is indirectly bene�cial since it makes parallelism more e�cient. In addi-
tion, fusion reduces cachemisses by increasing data locality. However, toomuch fusionmay reduce
parallelism by increasing the span of the program, which is not ideal. In view of parallelism, the
amount of fusion that should be allowed depends on the hardware platform and source code prop-
erties. Greedy fusion o�ers the best performance if the programmer has a single thread. Hardware
with a lesser number of threads should allow more fusion before extracting parallelism, as fusion
will make parallelism more e�cient, and any reduction in parallelism will not be consequential
to runtime performance. On the other hand, machines with a greater number of threads should
control the amount of fusion to get the best parallel performance from their machine. Similarly,
source code with greater parallelism will bene�t by allowing more fusion and vice-versa.
On the whole, our benchmarks have shown that partial fusion is better for parallelism, and sup-

porting it can enable the programmer to get greater speedups for their applications. By automating
the process of �ne-grained fusion and heterogeneous parallelism, Orchard provides the program-
mer with a novel, sound, and easy way to make these choices. The programmer can control the
amount of fusion to get a better parallel run-time for their system.
To test the e�ectiveness of Orchard’s automated approach, we manually fused and parallelized

a simple tree traversal program. The original program is written in C++ with ∼120 lines of code.
The traversals in the program include adding one to values stored in the tree node, adding a con-
stant, and exponentiation on the integer values. It took a pro�cient C++ programmer ∼30 minutes
to fuse and parallelize the source code, whereas Orchard accomplished this almost instantly. The
original code took ∼5 seconds to run, the manually optimized code took ∼0.97 seconds, and the
Orchard generated code took ∼0.96 seconds. This shows that Orchard is not only fast but also
e�cient at extracting fusion and parallelism. As the complexity (loc, number of functions, etc.) in
the source code increases, the delta between Orchard and manual e�ort will increase drastically.
It may also introduce unwanted bugs in the program.

5 RELATEDWORK

This article presents a novel framework that allows programmers to write general tree traversals
in an elegant way and generate code that provides fast and e�cient performance. Prior works
aiming at achieving the goal of making tree traversals more e�cient have shortcomings when it
comes to extracting the full speedup potential.
Meyerovich et al. use attribute grammars to represent tree traversals [Meyerovich and Bodik

2010; Meyerovich et al. 2013]. The attribute grammar representation is used to perform a depen-
dence analysis which is then used to generate a parallel schedule. Their work supports both par-
allelism and fusion but is incomplete. They do not support partial fusion. Moreover, the parallel
schedules are designed to be a homogeneous pre-order or post-order traversal, which is not a �ne-
grained approach to extracting parallelism. Other works use attribute grammars to specify tree
transducers for expressing tree traversals [Doner 1970; Engelfriet and Maneth 2002; Maletti 2008].
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However, to our knowledge, we do not know of any tree transducer representation that supports
partial fusion and heterogeneous parallelism.
Rajbhandari et al. present a compiler framework to automatically enable fusion and parallelism

in kd-tree traversals [Rajbhandari et al. 2016; Rajbhandari et al. 2016]. Their fusion approach is lim-
ited because they require all traversals to be either pre-order or post-order and not a combination
of both. Correspondingly, they only extract parallelism in a homogeneous pre-order or post-order
manner; the traversals are either fully parallelized otherwise not.
Chen et al. [2022] develop a synthesizer (Hecate) for tree traversals that is able to exploit serial

and parallel traversals. However, they rely on the programmer to identify the inherent parallelism
in the source code which is then veri�ed by Hecate. In addition, they do not explore fusion and
parallelism as mutually bene�cial transformations and how certain fusion choices can make par-
allelism more e�cient. In contrast, Orchard is fully automated.
Functional programming languages use deforestation techniques to make traversals more ef-

�cient [Wadler 1990]. Other works use the stream fusion approach to perform fusion transfor-
mations on data structures such as arrays, lists, and so on. [Coutts et al. 2007]. As functional
languages are considered easy to parallelize, functional approaches that enable fusion also inher-
ently enable parallelism. However, both the fusion and parallelism problem in functional languages
are fundamentally di�erent than in imperative languages, as they do not have to deal with the
state.
Other works target speci�c areas in imperative programs such as loop fusion and parallelism

operating on data structures such as arrays, lists, and matrices [Bondhugula et al. 2008; Darte
1999; Kennedy and McKinley 1993; Qasem and Kennedy 2006]. While they often support fusion
and parallelism, they do not apply to tree traversals.
Orchard is a fully automated framework that extends Grafter [Sakka et al. 2019] with its abil-

ity to e�ciently parallelize tightly inter-dependent recursive functions that traverse trees. In order
to parallelize function calls, Orchard inserts Cilk directives using a dependence graph represen-
tation of the source code and a static analysis over that dependence graph to analyze dependences.
The parallelism extracted by Orchard is more e�cient as fusion coarsens the granularity of func-
tions, which makes parallelism more e�cient. In addition, fusion may expose more opportunities
for parallelism in the face of dependences and it reduces cache misses.

6 FUTURE-WORK

Fusion can make parallelism more e�cient. However, fusion prior to parallelization on the depen-
dence graph is not always bene�cial as shown in Section 4.2. In future work, we aim at generating
an optimal fusion schedule that is optimized for e�cient parallelism. To achieve this we look back
at Equation (1) and realize that we can optimize the program for the lowest runtime by tuning the
work and span parameters. This can be done either statically or dynamic approaches like pro�ling
can be used. For the static technique, we would like to come up with a good cost model that gives a
good estimate of the work and span from the dependence graph statically. We can use the amount
of fusion, i.e., the number of functions to fuse and the fusion choices (i.e, which functions to fuse
or not to fuse) to transform the work and span of the dependence graph and come up with a near-
optimal runtime for the program. In fact, Blumofe et al. [1995] encourage programmers to think
in terms of work and span as tunable parameters for optimizing the performance of programs.
If we have a principled way to analyze work and span from the dependence graph, the perfor-
mance of an algorithm can be characterized independent of the machine con�guration [Blumofe
et al. 1995]. This will make our technique general enough to apply in the case of di�erent machine
con�gurations.
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7 CONCLUSIONS

Orchard automates the complex and time-consuming task of extracting fusion and parallelism
from recursive tree traversals, including those that traverse heterogeneous trees. Orchard enables
both �ne-grained fusion and heterogeneous parallelism, allowing it to extract more opportunities
for parallelism and fusion than prior work. These two features complement each other, as �ne-
grained fusion produces the necessary coarser-grained tasks that make parallelism more e�ective.
In addition, fusion reduces overall work and decreases cache misses which reduces the overall
runtime of the program. We demonstrated through case studies on ASTs, render trees, and piece-
wise functions that Orchard’s �ne-grained mechanism to extract fusion and parallelism delivers
substantially better performance than prior work. As multi-core hardware systems are increasing,
the burden of making programs adhere and perform to such systems is directly falling on the
programmer. Orchard provides a novel, sound, and e�cient approach that ensures opportunities
for fusion and parallelism in tree traversal programs are not missed, automating the process of
applying these crucial transformations.
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