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Abstract: Satellite image time series (SITS) segmentation is crucial for many applications, like
environmental monitoring, land cover mapping, and agricultural crop type classification. However,
training models for SITS segmentation remains a challenging task due to the lack of abundant training
data, which requires fine-grained annotation. We propose S4, a new self-supervised pretraining
approach that significantly reduces the requirement for labeled training data by utilizing two key
insights of satellite imagery: (a) Satellites capture images in different parts of the spectrum, such
as radio frequencies and visible frequencies. (b) Satellite imagery is geo-registered, allowing for
fine-grained spatial alignment. We use these insights to formulate pretraining tasks in S4. To the best
of our knowledge, S4 is the first multimodal and temporal approach for SITS segmentation. S4’s
novelty stems from leveraging multiple properties required for SITS self-supervision: (1) multiple
modalities, (2) temporal information, and (3) pixel-level feature extraction. We also curate m2s2-SITS,
a large-scale dataset of unlabeled, spatially aligned, multimodal, and geographic-specific SITS that
serves as representative pretraining data for S4. Finally, we evaluate S4 on multiple SITS segmentation
datasets and demonstrate its efficacy against competing baselines while using limited labeled data.
Through a series of extensive comparisons and ablation studies, we demonstrate S4’s ability as an
effective feature extractor for downstream semantic segmentation.

Keywords: SITS; foundational models; self-supervised learning; multimodal

1. Introduction
In recent years, many organizations [1–3] have launched large satellite constellations

for Earth observation. These constellations regularly capture high-resolution Earth imagery
that is critical for measuring climate change [4,5], responding to humanitarian crises [6],
precision agriculture [7], and natural resources management [8]. Specifically, satellites with
multiple visits over a given location on Earth provide unique insights into complex spatial
and temporal patterns [9–11] at such locations, unlike single satellite images. These satellite
image time series (SITS) (as shown in Figure 1), for example, can provide greater insights
into how crops on a farm grow over time, what types of crops are growing, or when the
crops are ready to be harvested. SITS is also more robust to temporary disruptions such as
cloud cover that may occur in single images. Due to its key advantages and environmental
implications, SITS semantic segmentation has become a task of critical importance and has
widespread use in many Earth-sensing applications, such as deforestation monitoring [12],
urban planning [13], and agriculture crop type classification [14].

However, training segmentation models for SITS requires collecting large amounts
of labeled data, requiring laborious manual annotation from domain experts [15]. This is
especially challenging for semantic segmentation which requires pixel-level annotations.
Moreover, many satellite images use nonoptical channels [16] beyond the standard RGB
wavelength, making them difficult to interpret for humans.
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Figure 1. Optical images in one SITS captured at different points in time over the same location.
The rightmost image is the segmentation mask corresponding to this spatial location. The different
images illustrate the significant temporal variation that occurs during crop growth.

We propose S4, a novel self-supervised approach for semantic segmentation of SITS that
eliminates the need for large amounts of labeled data. We observe that while labeling
requires human effort, unlabeled data are abundant because satellites continuously orbit
the Earth and collect data. Our key insight is that we can leverage this unlabeled data by
utilizing two properties unique to SITS:

• Multimodal Imagery: Different satellites (or different sensors on the same satellite)
collect images in different parts of the electromagnetic spectrum (e.g., RGB, radar). We
can use such multimodal images for cross-modal self-supervision.

• Spatial Alignment and Geographic Location: Satellite images are geo-referenced, i.e.,
each pixel has a geographic coordinate (latitude and longitude) associated with it. This
allows for spatial alignment between data collected in different parts of the spectrum.

Given the unique properties of SITS, S4 exploits the abundant unlabeled satellite data
through cross-modal self-supervision. Specifically, we use different data modalities for a
given location to learn informative intermediate representations without any labeled data.
Using unlabeled SITS, we can pretrain representative SITS encoders that perform effectively
on downstream SITS segmentation. We achieve this by pretraining SITS segmentation
models through two auxiliary tasks:

• Cross-Modal Reconstruction Network: We design a new cross-modal SITS reconstruc-
tion network that attempts to reconstruct imagery in one modality (e.g., radar) from
the corresponding imagery in another modality (e.g., optical). Our reconstruction
network encourages the encoder networks to learn meaningful intermediate represen-
tations for pixel-wise tasks by leveraging the structured spatial alignment in satellite
image data.

• MMST Contrastive Learning: We formulate a novel multimodal, spatiotemporal
(MMST) contrastive learning framework for SITS. We train one encoder for each
modality (e.g., for radar and optical imagery) and align the intermediate representa-
tions using a contrastive loss. Our contrastive loss operates along both the space and
time dimensions of the feature space to align multimodal SITS. Intuitively, our loss
helps negate the impact of temporary noise (such as cloud cover) that is visible in only
one of the input images.

We also design a temporal resampling strategy to reduce temporal misalignment
between modalities (Section 5) as a preprocessing step. Our temporal preprocessing
strategy leverages timestamp metadata from the satellite imagery to provide a course-
grained time alignment of images across multiple modalities. After temporal preprocessing,
the coarsely aligned multimodal SITS is then fed to our encoder network. We jointly
train two encoders, one for each modality, using our auxiliary constrastive learning and
reconstruction tasks as defined above. Consequently, our encoders generate informative
intermediate feature representations appropriate for downstream semantic segmentation.
The auxiliary tasks solely rely on unlabeled data. The intermediate representations will be
fed into a task-specific decoder network for segmentation. Given our pretraining tasks, the
downstream decoder network needs only a small amount of labeled data for training. We
visualize our proposed model in Figure 2.
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Figure 2. Overview of S4. S4 takes in temporally preprocessed multimodal time series data. During
pretraining, radar-optical SITS pairs flow through the network and our proposed MMST contrastive
loss and cross-modal reconstructive loss operate on their encodings. After pretraining, a small amount
of labeled data are used to fine-tune the model for SITS segmentation.

We evaluate S4’s performance on two satellite image datasets: PASTIS and Africa
Crop Type Mapping segmentation tasks. To demonstrate the efficacy of aligned satellite
imagery and showcase the opportunity for self-supervised pretraining for SITS segmen-
tation, we collected m2s2-SITS, two large-scale unlabeled but modality-aligned datasets
of satellite images corresponding to the same regions of our labeled datasets. In our eval-
uation, we pretrain our model using our curated dataset m2s2-SITS and fine-tune the
models on the existing datasets with segmentation labels. We compare against multiple
self-supervised remote sensing baselines including SatMAE (masked autoencoder), SeCo
(temporal contrastive learning), GSSL (geographical and temporal contrastive learning),
and CaCo (change aware sampling and contrastive learning). Additionally, we compare
against a custom-designed multimodal baseline based on naive variants of S4 and conduct
detailed ablation studies across various influences on our model, such as geographic data
usage, cloud cover robustness, input modalities, and differing loss functions. Experiments
demonstrate that S4 outperforms competing self-supervised baselines for segmentation,
especially in the case where the number of labeled data is relatively small. As a result, S4
takes a first step towards self-supervised SITS segmentation through novel techniques that
reliably leverage multimodal and spatially aligned imagery. In summary, this paper makes
the following contributions:

• We propose S4, a self-supervised training method for SITS semantic segmentation
that considers the unique structural characteristics of satellite data, such as multi-
ple modalities, spatial alignment, and temporal change through novel cross-modal
reconstruction and contrastive learning frameworks.

• We release m2s2-SITS, a large dataset of spatially-aligned, multimodal SITS to aid in
self-supervised pretraining.

• We evaluate S4 on multiple SITS datasets and benchmark our approach against other
self-supervised approaches commonly used on satellite imagery. Our results demon-
strate the effectiveness of S4 through significant improvement over prior state-of-the-
art methods on downstream SITS semantic segmentation.
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2. Design Motivation and Advantages of S4
Our design solves multiple challenges unique to SITS segmentation. First, S4 can

significantly reduce the need for labeled training data by exploiting abundant unlabeled
images. Second, some image modalities such as optical images are obstructed by clouds,
leading to missing or incorrect information (see Figure 3). In fact, around 75% of the
Earth’s surface is covered by clouds at any given point in time [17–19]. Through pixel-wise
alignment of radar and optical image encoders, S4 effectively leverages the rich information
provided by radar in cloudy settings (since radar passes through clouds). As a result,
S4 pretrains powerful encoders for both modalities that can reduce the negative impact
of cloud cover on model performance. Third, for each modality, the reflectance value of
each pixel is different. Because of this, certain Earth surface characteristics may be clearly
visible in one modality, but not necessarily as visible in the other. S4 solves this through its
cross-modal reconstruction network which is able to infer the presence of vegetation (for
example) in one modality based on the patterns learned from the other. Intuitively, this
enables the model to learn to understand the signatures or indicators that would correspond
to certain features across modalities. Lastly, although satellite images are easily aligned
spatially, it is difficult to align them temporally, since different imaging modalities are
often on separate satellites [20]. As these separate satellites have different orbital patterns,
they do not simultaneously pass over the same location at the exact same instant. S4
resolves the temporal heterogeneity of satellite data through temporal alignment across
modalities—first through its coarse-grained preprocessing strategy and second through its
fine-grained contrastive learning framework.

Figure 3. Multimodal images captured on the same day: while the optical image (left) is occluded by
clouds, the radar image (right) is not affected.

Importantly, S4 delivers single-modality inference. Single-modality inference is crucial
due to two real-world constraints. First, satellites capturing images of different modalities
may be operated by different entities. In fact, 95% of Earth Observation satellites are
equipped with only a single sensing modality [21]. Thus, while multimodal training
data may be available through aggregating public datasets, such data are almost always
not available at inference time [20]. Second, requiring both modalities during inference
increases the delay of decision-making in response to critical events (e.g., floods and fires),
since multiple modalities can be offset in time by several hours to days (depending on
satellite orbits) [22]. Hence, while we leverage multimodal data at training time, we limit
ourselves to a single modality inference.

3. Related Work
To the best of our knowledge, we present the first self-supervised approach for seman-

tic segmentation of multimodal satellite image time series. We discuss related work below.
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Learning with Satellite Imagery Prior work on satellite imagery can be characterized
as (a) single-image or (b) SITS. Single-image methods [23–25], although more extensively
studied, are unable to effectively gain insights into many environmental sensing applica-
tions that typically evolve over time, such as crop mapping and disaster monitoring [26,27].
Most of the prior work in self-supervised learning for satellite imagery are single-image
unimodal techniques [28,29] that cannot leverage the multitemporal and multimodal struc-
ture of SITS data. Therefore, there has been a growing number of recent supervised efforts
that leverage SITS, which better captures the complex characteristics that evolve over time
in many environmental sensing tasks. These efforts have designed SITS-based models for
a variety of downstream Earth observation tasks, such as image classification [26], super-
resolution [30], and segmentation [9]. Each of the cited methods focuses on developing
space–time encoding for effective feature extraction.

Although the state-of-the-art SITS-based techniques yield vast improvements over
single-image methods for a variety of tasks, they mainly rely on unimodal, optical satellite
imaging. However, optical imagery is not robust under low visibility conditions (e.g.,
due to rain, night, or clouds), making it difficult to obtain such data in time-sensitive
settings [31]. S4 extracts insights even from nonoptical SITS during training, making it
significantly more practical in these challenging conditions.

More recently, self-supervised methods have been explored for satellite imagery
that aims to provide downstream benefits on a variety of different satellite imaging
tasks [28,29,32,33]. Although these methods demonstrate some promise, they all provide
only uni-modal solutions for self-supervision and do not leverage the spatial alignment
between modalities as S4 does. Other solutions that do provide a multimodal solution
to self-supervision are often only monotemporal and are incapable of performing any
SITS-related tasks since they only operate on a single image [34]. Additionally, many prior
works in satellite image self-supervision [29,32,34] often break down the structure of the
image pixels in the feature space by flattening the image. As a result, although this may
be beneficial for some tasks like classification, it is problematic for semantic segmentation
which requires a deeper level of spatial context from pixel-wise features in the image.
Unlike prior works in satellite image self-supervision, S4 is specifically designed for the
task of self-supervision of SITS by leveraging the ALL key characteristics of SITS data
(1) multiple modalities, (2) temporal alignment, and (3) pixel-wise feature extraction.

Learning with Multiple Modalities Many modern satellites are equipped with nonop-
tical sensing modalities [3,35]. Computer vision in nonoptical imaging modalities, such as
radar, has been explored much less than optical imaging modalities. This is due to radar
images being difficult to interpret by humans compared with optical images, making it
harder to acquire labeled data. Most prior works focus on exploring radar images using
unsupervised techniques [36–38]. These techniques do not generalize well to different
events and often exhibit limited performance. Prior work on multimodal satellite imagery
has also explored the reconstruction of obscured or cloudy optical images by leveraging
aligned nonoptical radar images [19,39,40]. These multimodal reconstruction models tend
to provide a more accurate optical reconstruction than prior unimodal methods like image
in-painting [41,42], demonstrating the potential utility of nonoptical multimodal learn-
ing. More recently, there have been efforts to try and incorporate multiple modalities for
SITS [27,43,44]. Such efforts typically focus on designing fusion techniques for modalities
along with reliable spatiotemporal encodings to improve performance. S4 distinguishes
itself from these methods by providing a training method that requires significantly less
labeled data and only a single SITS modality at inference time.

Self-Supervised Learning Self-supervised learning for visual representations has
gained prominence within the last few years [45–49]. One of the most recent notable
self-supervised methods has been contrastive representation learning, which attempts
to align similar pairs of images as a pretraining task to help with downstream model
performance [50–52]. Although prior work mainly focuses on instance-level contrastive
learning for downstream classification, recent works explore pixel-level contrastive learning
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techniques, which provide better transfer to segmentation tasks [53–56]. For the majority
of these contrastive learning approaches, positive pixel pairs are assigned either by using
corresponding pixels with the same label or through corresponding pixels from different
augmented views of the same image. In contrast, S4 leverages the spatial alignment
between different satellite modalities and associates positive pairs through corresponding
pixels in different modalities.

Semantic Segmentation of SITS Many prior methods have found success in using
UNet-based architectures [57] for encoding representations helpful for satellite image seg-
mentation [9,44,58]. More recent efforts specific to SITS have also designed multitemporal
and multimodal fusion schemes using convolutional encoders [27,43]. The advantage of S4
is that we require only a single modality of SITS during inference time, whereas every prior
multimodal method requires both. S4 also incorporates a novel self-supervised approach
that significantly reduces the need for labeled data.

4. Problem Setup: Satellite Imaging with Multiple Modalities
Our work is situated in the emerging context where different satellite constellations

capture Earth imagery in different frequency bands. We seek to extract spatiotemporal
insights from these data. A majority of the satellites capture optical images that passively
monitor the reflections of sunlight off the Earth’s surface. These optical images are often
multispectral, including imaging bands outside the standard visible red, green, and blue
channels. However, a key disadvantage of such imagery is that optical satellite images
are often occluded by clouds (Figure 3) and are easily obscured in low-lighting conditions,
such as night and fog [18,19,39,40].

Some satellites are equipped with radar imaging that works by actively transmitting
pulses of radio waves and measuring the reflectance of these radio pulses to produce
radar images. These radio waves utilize a longer wavelength than optical images and are
typically better at monitoring certain aspects of the surface, such as moisture and topology.
However, the resolution of radar imagery is lower than that of optical images. Satellites
are typically equipped with either optical or radar imaging modalities, but not both [20].
Therefore, images in optical and radar SITS cannot be perfectly aligned in time.

Each image captured by satellites is georeferenced, i.e., we can extract per-pixel
geographic coordinates. This allows us to spatially align images even when captured on
different satellites. However, leveraging the temporal aspect of SITS data poses some
challenges. First, images in SITS, unlike videos, are not taken at regular intervals. Images
are taken over a location only when a satellite orbits over that location, meaning the time
between images in SITS is irregular based on the satellite’s orbit. Second, for multimodal
SITS, different sensing modalities are often located on different satellites, meaning that
images of SITS of different modalities are not only unaligned in time, but they can also
result in time series of vastly different lengths.

S4’s primary task is to use the ample amount of unlabeled imagery collected by
satellites for cross-modal self-supervision. Our formulation builds upon the key idea of
pixel-level semantic consistency between multimodal images captured over the same location at
roughly the same time. We propose a new training objective that encourages the similarity
of corresponding space–time features across modalities while maximizing the distance
between the features corresponding to either different locations or different times. Though
different modalities have certain distinctions like differing spectral ranges, the semantic
representation of the underlying scene should be agnostic to both wavelength and noise, e.g., cloud
cover (for optical) or capture angle (for radar), and thus S4 can be used to achieve a course-
grained alignment of the multimodal, multitemporal features beneficial for self-supervised
learning. By leveraging these natural structural characteristics of SITS, our approach
extracts a more informative representation that limits the impact of modality-specific noise.

Notation and Setup We consider the respective radar and optical image modalities,
Xr → R(T1↑C1↑H↑W) and Xo → R(T2↑C2↑H↑W), where Ti, Ci, H, and W are the num-
ber of images in the time series, number of image channels, image height, and image
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width dimensions, respectively. During training, we assume access to N SITS pairs
{(xln

o , xln
r )}N

n=1 ↓ (Xo ↑ Xr)N , where li corresponds to the location where the SITS was
captured. Although we have N total SITS pairs, we assume that only K of these N image
pairs (K ↔ N) have segmentation labels: {(xlk

o , xlk
r , ylk )}K

k=1, where the label ylk ↓ NH↑W

maps each pixel location to a given class.

5. Method
Figure 2 provides an overview of S4. At a high level, S4 operates in three stages:

• Pretraining: During the pretraining stage, S4 leverages abundant unlabeled data by
jointly optimizing the proposed pixel-wise multimodal contrastive loss Lc (Section 5.1)
and reconstruction loss Lr (Section 5.2):

L = Lc + λ · Lr, (1)

where λ is a hyperparameter controlling the relative weight between the two loss
terms. Neither of the above two losses require labels.

• Downstream Training: In this stage, our network is fine-tuned on the K SITS pairs with
labels for downstream segmentation by further appending a segmentation module
over the learned features (Section 5.3).

• Inference: In the final stage, S4 predicts a single segmentation map per different
location from the SITS of a single modality (either radar or optical).

Time Series Interpolation A key challenge for S4 is that satellites visit the same loca-
tion at different times, leading to temporal mismatch across modalities. Higher temporal
mismatch across images causes more semantic mismatch in the underlying representa-
tion. To avoid this problem, we introduce a preprocessing strategy to coarsely align the
temporal dimension between differing modalities. Our preprocessing strategy leverages
temporal metadata from satellite imagery. This preprocessing step is necessary to ensure
finer-grained spatial and time alignment through the rest of the training process. Recall that
we are given as input xln

r ↓ R(T1↑C1↑H↑W) and xln
o ↓ R(T2↑C2↑H↑W), where T1 ↗= T2 in gen-

eral. We determine which SITS modality has fewer time frames: let Tmin = min(T1, T2) and
define xln

min := xln
r if Tmin = T1 and xln

min := xln
o otherwise. The time series xln

min remains un-
changed. To make the other modality’s SITS the same length, we adopt nearest-timestamp
interpolation: for each image xln

mini
↓ xln

min, we find the image in the corresponding time

series of the opposite modality that was captured at the time closest to xln
mini

. The result

of our interpolation strategy results in N SITS pairs {(xln
o , xln

r )}N
n=1 where both modalities’

time series each contain Tmin images coarsely aligned in time.
Encoder Design The first part of S4 consists of an encoder network that takes the

spatially aligned optical and radar SITS, xln
o and xln

r , as input. The encoder consists of
four convolution layers, of which the first two are input-specific based on modality. Let
yr, yo denote the first two layers (used for the radar and optical domains, resp.) and yc
denote the last two layers. The encoder for the radar and optical domains are fr = yc ↘ yr
and fo = yc ↘ yo. We use the outputs of fr, fo as the features passed to the rest of the
network. The encoders fr(·) and fo(·) use a 3D U-Net backbone architecture [59] consisting
of convolution, batchnorm [60], and max-pooling layers with leaky ReLU activations. The
3D operations are applied along both the temporal dimension and the spatial dimensions.
This architecture has been used as a state-of-the-art benchmark for a wide variety of prior
work in SITS segmentation tasks [9,44,58] and offers a relatively simple design that is
comparable in performance to other state-of-the-art SITS segmentation architectures that
use a separate sequential technique to handle the temporal dimension.

5.1. Multimodal Space–Time Contrastive Learning
Our approach builds upon the key idea of semantic scene consistency between varying

satellite modalities that are captured over the same space and at the same time. Therefore, our
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encoder should map image pixels captured over similar space–time to similar representa-
tions; while encoding random noncorresponding pixels to differing representations. We
incorporate this intuition in our training scheme through contrastive learning. Inspired by
recent successes of pixel-wise contrastive learning [56], we propose a pixel-wise contrastive
loss that preserves the spatiotemporal structure of our representations for better transfer to
downstream pixel-level tasks like semantic segmentation. Figure 4 outlines this approach.

Radar SITS

Optical SITS
repel

!(⋅)

Feature Space

%!(⋅)

%"(⋅)

!(⋅)

Feature Space

attract

Figure 4. Multimodal Space–Time Contrastive Learning for SITS. Our approach operates on the
encoded SITS feature maps. Corresponding space–time pixels on the feature map are denoted as
positive pairs that the contrastive loss tries to align. Noncorresponding pixel pairs are negative and
repelled by the loss.

Prior work [28,29,50] on contrastive learning for images often use single image views
and perform a variety of data augmentations (e.g., crop, rotate, blur) on a single view.
Different augmentations that correspond to the same view are often correlated together as
a positive pair for the loss function. However, in the case of satellite images, we benefit
from the availability of multimodal data and omit the augmentation step. Each modality
captures the same view of Earth at different wavelengths and can be used as a different
transformation.

Similar to prior work [50,56], we implement a projection head network g(·) that maps
the output of fr(·) and fo(·) to the latent space where the contrastive loss is applied. The
projection head consists of two successive 1 ↑ 1 ↑ 1 3D convolution layers with batch
normalization and LeakyReLU activation. Note that g(·) is only used during contrastive
pretraining and not while training the reconstruction network or the downstream segmen-
tation network. The output of g(·) is a feature map of the encoded SITS with compressed
spatiotemporal dimensions.

We assign positive pairs as pixels in the feature space with the same spatial and temporal
dimensions, across different modalities. Pixel pairs with different space or time dimensions
are considered negative pairs in our loss, since they correspond to different semantics. We
opt to use the InfoNCE loss [61] as our contrastive loss function:

Lc = ≃ log




esim(zi ,zj)/τ

esim(zi ,zj)/τ + ∑
zn↓Z

esim(zi ,zn)/τ



 (2)

Positive pairs zi and zj are corresponding space–time pixels in the feature map rep-
resentations of opposite modalities. Z is the set of all negative feature map pairs with
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anchor pixel zi in the opposite modality. More broadly, Z consists of the features that
were captured at different spatial locations or different times from zi. The cosine similarity
function is defined as sim(u, v) = uTv/⇐u⇐⇐v⇐. The temperature hyperparameter τ is set
to 0.5 by default. The loss is first averaged over all pixels in the first modality’s feature map;
then, we compute the loss averaged across all pixels in the second modality feature map as
anchor pixels. Finally, we average the loss across both modalities together to compute the
final contrastive loss per sample in the batch.

5.2. Cross-Modality Reconstruction Network
Although acquiring semantic segmentation labels for SITS is challenging, an advantage

of SITS is that images can be easily aligned spatially. To leverage the spatial alignment
between multiple modalities, we design a reconstruction network that infers the SITS of
one modality given the other. By learning to reconstruct SITS from other modalities as an
auxiliary task, the reconstruction network is able to learn representative features for the
input modality that are helpful for the downstream segmentation task.

Our reconstruction network uses encoder fin (either fr or fo depending on the inference
modality) and decoder h. The network takes as input a SITS from one modality (denoted
xln

in, which has Cin channels) and attempts to reconstruct the corresponding SITS of the other
modality (denoted xln

out, which has Cout channels). The output of our reconstruction network
is the estimated reconstruction of the SITS of the second modality: x̂ln

out = h( fin(xln
in)). We

define the loss for our reconstruction network as the mean absolute error (L1 loss) between
the original and the reconstructed time series as expressed in the equation below:

Lr =
⇐x̂ln

out ≃ xln
out⇐1

Tmin · Cout · H · W
(3)

5.3. Downstream Training
Finally, after pretraining our network with spatially aligned modalities, we fine-tuned

the network on a small number of labeled samples. We use the same encoder fin(·) and
decoder h(·) networks used during pretraining. However, we modify the number of
channels of the decoder’s final convolution layer for the relevant segmentation map output.
We carry out the downstream training using standard cross-entropy loss.

Generalizing to Other Temporal Encoders A key advantage of S4 is that it can be
easily extended to other types of SITS segmentation architectures that may encode the
temporal dimension differently. Such architectures may use convolutional layers to encode
the spatial dimensions and a temporal model, such as LSTM/RNN [9,62], to handle the
temporal dimensions. In these cases, S4 can first be used to train the convolutional spatial
encoders of the network. During downstream training, the temporal encoder can be added
to the network and trained using multimodal features extracted from the spatial encoders.

6. Experiments and Results
In this section, we describe experiments conducted to evaluate S4. We train all self-

supervised models in two phases. First, we pretrain all models for 100 epochs. For
pretraining, the models are trained using m2s2-SITS, our curated geographic-specific,
pretrain datasets. The pretrain datasets consist only of images and do not have annotated
labels. In the second stage, we fine-tune the network for the downstream segmentation
task for 50 epochs using the datasets with annotated labels. For optical imagery, we train
using only using the RGB channels to be consistent and fair to prior work in self-supervised
models for remote sensing [28,29,33].

6.1. Curated Pretrain Datasets
We demonstrate the efficacy of multimodal self-supervised pretraining by gathering

a large unlabeled dataset of aligned optical and radar SITS. Although labeling satellite
images is difficult, there is an abundant amount of unlabeled multimodal satellite SITS.
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Our main motivation for curating this dataset is to illustrate how geographically specific
aligned multimodal satellite data are easy to acquire, allowing for greater opportunities to
benefit from pretraining. Given the geo-tagged characteristic of satellite images, we can also
collect data from geographically specific locations and study how the geographic location
of images from certain regions can have an impact on the performance of downstream
segmentation. Given that our pretrain data come from the same geographic location as the
fine-tuned sets, our curated dataset is suitable and a geographically representative set of
imagery for pretraining.

Motivation: We collected our own pretraining dataset because there is no large-scale
SITS dataset available in which radar and optical satellite imagery are spatially aligned,
i.e., all images of the same location have the same number of pixels, and the same pixel
in all images corresponds to the exact same geographic coordinate. We curate this dataset
by collecting and aligning Sentinel-1 (radar) and Sentinel-2 (optical) images. Furthermore,
a constantly shifting satellite orbit requires stitching multiple different images that each
capture a given location partially. This pixel-level alignment of m2s2-SITS is crucial for
our self-supervised model which requires pixel-wise contrastive and reconstruction loss
in pretraining.

Curation: Images in our dataset were collected from Sentinel 1 and 2 satellites and
were aligned using the Microsoft FarmVibes SpaceEye workflow [63]. m2s2-SITS consists of
satellite imagery from randomly sampled geographic locations within France and South Su-
dan, where the fine-tune datasets (PASTIS-R and Africa Crop Type Mapping, respectively)
are captured from, and the time period of m2s2-SITS is approximately one year. We ensure
that the images of m2s2-SITS are taken at least a year prior to the images in the fine-tuned
datasets to prevent the chance of duplicates. Although in our evaluation we use only
3 RGB bands to ensure a fair comparison with baseline approaches, our dataset contains
the full 12-band multispectral imagery from optical S2 and the 2 polarizations from radar
S1. Specifically, we collect a pretraining dataset over France that contains 5314 time series
with a total of 731 k Sentinel 1 images and 90 k Sentinel 2 images. After pretraining on this
dataset, the models are fine-tuned on the PASTIS-R dataset. Our Africa pretrain dataset
contains 5941 time series, with 193 k Sentinel 1 images and 70 k Sentinel 2 images. After
pretraining on this dataset, the models are fine-tuned on the Africa Crop Type Mapping
dataset. We plan to release our custom-curated pretrain datasets.

6.2. Fine-Tuned Datasets
PASTIS-R: The PASTIS-R [43] agricultural dataset contains 2433 optical and radar SITS

from the ESA’s Sentinel 1 and 2 satellites. Each SITS contains between 38 and 61 images
taken between September 2018 and November 2019. The dataset provides an annotated
semantic segmentation map for each of 2433 spatial locations, where every pixel is given a
semantic label from one of 20 different crop type classes. Many optical images are partially
occluded by clouds. Note that we only consider the semantic segmentation labels from
this dataset and DO NOT perform parcel classification experiments (as carried out in the
original paper), as semantic segmentation is a strictly more challenging task. Table 1 shows
the semantic segmentation classes for the labels of this dataset.

Africa Crop Type Mapping: The Africa Crop Type Mapping dataset [14] contains
multi-modal SITS over various regions in Africa. Ground truth labels in this dataset
were collected for 4 classes in 2017. Table 2 shows the semantic meanings of the labels
for the Africa Crop Type Mapping dataset. For our experiments, we used 837 fields in
the South Sudan partition.
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Table 1. Table showing class names and the number of parcels in the PASTIS-R dataset [43].

Class Name Number of Parcels
Meadow 31,292

Soft winter wheat 8206

Corn 13,123

Winter barley 2766

Winter rapeseed 1769

Spring barley 908

Sunflower 1355

Grapevine 10,640

Beet 871

Winter triticale 1208

Winter durum wheat 1704

Fruits, vegetables, flowers 2619

Potatoes 551

Leguminous fodder 3174

Soybeans 1212

Orchard 2998

Mixed cereal 848

Sorghum 707

Void label 35,924

Table 2. Table showing class names and the number of parcels in the Africa Crop Type Mapping
South Sudan dataset [14].

Class Name Number of Parcels
Groundnut 59

Rice 75

Maize 84

Sorghum 619

6.3. Implementation Details
Preprocessing: We preprocess data using mean-std standardization using values

from the fine-tuned dataset. We preprocess both the pretrain and fine-tuned datasets.
For optical images, we use only the RGB channels in our experimentation rather than
the 10–12 multispectral channels to be consistent with the prior self-supervised baseline
approaches that were designed for 3-channel images [33].

Training: Across experiments, we set λ (the joint hyperparameter weighting Lc and
Lr) to be 10≃2 when pretraining. Additionally, we split our original datasets into the
train, validation, and test splits. For PASTIS-R, we use folds 1, 2, and 3 for training, fold
4 for validation, and fold 5 for testing as specified by the authors in [43]. For Africa Crop
Type Mapping, we use the original partitions specified by the curators of the dataset for
training, validation, and testing [58]. We run each segmentation model on the validation
set after every epoch during training; at test time, we evaluate using the model checkpoint
that attains the highest validation IoU. We train all models on a 2 ↑ NVIDIA A100 GPUs.
Pretraining takes approximately 3 h and fine-tuning takes around 1.5 h. We use the Adam
optimizer [64] with a learning rate of 10≃3. In our evaluation of the Africa Crop Type
dataset, due to high class imbalance and irrelevance of predicting the background class, we
ignore the background class when computing the mIoU score.
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Model Architecture: We follow the implementation of 3D U-Net provided by Garnot
and Landrieu [9]. The encoder takes as input either an optical or radar image. In total, the
encoder consists of a total of five 3D convolution layers. In each 3D convolution layer, stride
and padding of 1 are used. The input dimension of the first convolution block is modified to
either three or ten based on whether the input image is radar or optical. Three-dimensional
batchnorm followed by a leaky ReLU activation function is used after all convolution layers.
When training on the PASTIS-R crop segmentation dataset, 3D max-pooling layers are used
after the 2nd and 4th convolution layers. The max-pooling layers use a kernel size of 2,
stride of 2, and padding of 0. The multimodal fusion model uses this backbone as well.

The decoder consists of a total of four 3D convolution layers. The first two convolution
layers are followed by 3D transposed convolution layers. The transposed convolution
layers use a stride size of 2 and padding of 0. Each of these layers is also followed by a
3D batchnorm and leaky ReLU activation function. The output dimensions of the final
convolution layer are modified to match the number of classes for the corresponding
segmentation task. In the case of using the architecture for the reconstruction task, the final
number of output features is equivalent to the number of input features to the encoder. The
network architectures also utilize skip connections between the encoder and decoder.

For fine-tuning, given that our time series can be of variable length, we use the collate
function provided by the original dataset. In pretraining, we fix the time series to the length
of the 90th percentile length of the time series in the dataset. For shorter time series than
our fixed length, we repeat the last image in the time series to ensure all time series are of
the same length. For longer time series, we clip the last few samples to make the time series
match the fixed length.

6.4. Evaluation Metric
We chose to use mIoU as the main evaluation metric for evaluating our model’s

segmentation performance. Many prior works on satellite image segmentation [65,66] use
this metric as opposed to overall segmentation accuracy since it is more robust to datasets
with high class imbalance. For example, in a dataset that consists mostly of background
class labels, a model’s accuracy can be high by simply overpredicting the background
class. However, mIoU is a much more strict metric that gives equal importance to all the
predicted classes. Formally, mIoU can be defined by the following equation:

mIoU =
1
N

N

∑
i=1

TPi
TPi + FPi + FNi

(4)

where TP, FP, and FN denote the number of true positive, false positive, and false negative
pixels, respectively. N is the total number of classes.

6.5. Baselines
We benchmark S4 against several competing self-supervised baselines. To the best

of our knowledge, we are the first self-supervised approach that leverages multimodal
imagery for SITS.

SatMAE: SatMAE (2022) [32] is a SOTA Masked AutoEncoder-based vision trans-
former architecture. designed specifically for multitemporal satellite imagery. We im-
plement SatMAE from the original codebase provided by the authors. Given that our
work pertains to SITS, we use the multitemporal variant of SatMAE designed for SITS.
We pretrain these models for 100 epochs. For segmentation, we similarly use a transpose
convolutional neural network as a decoder that is trained during the fine-tuning stage. The
authors of SatMAE also use a convolutional decoder when performing such experiments
for downstream segmentation. We tuned the hyperparameters of the baseline to achieve
the best possible performance on our two datasets during the evaluation.

SeCo, CaCo, and GSSL: We compare against modern prior self-supervised work
for remote sensing that uses single-modal contrastive loss. We compare against SeCo
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(2021) [28], CaCo (2023) [33], and GSSL (2021) [29], all of which use contrastive learning to
align single-modal image pairs. In their original papers, these baselines use a single image
ResNet-NN network to contrast scenes of different timestamps.

We implement SeCo, CaCo, and GSSL from the original code base provided by the
authors. All models use the MoCo-V2 architecture [67] with ResNet [68] backbone. We
pretrain these models for 100 epochs. In the original implementation, a 2D UNet is used
as the fine-tuned network. We found that the performance of this implementation was
limited in our scenario since it is incapable of training on the entire SITS. Considering such
limitations, our fine-tuning implementation for these baselines involves feeding each image
in the SITS through the pretrained ResNet encoder and collecting the encoded feature maps
of all of them. As a result, instead of one single feature map at each skip connection, we
now obtain a time series of feature maps. We then pass the encoded image time series
through a pixel-wise ConvLSTM decoder network to reduce the temporal dimension for
fair comparison, before feeding the reduced single feature map into the upsampling part of
the UNet-2D structure to achieve the final semantic segmentation predictions. We tuned
the hyperparameters of the baselines to achieve the best possible performance on our two
datasets during the evaluation.

Self-Supervised Multimodal Fusion: This approach is a naive self-supervised ap-
proach of leveraging multimodal data for SITS segmentation. Let xln

m1 denote the SITS
modality we have access to at inference time. We first pretrain a network r(·) that, given
xln

m1 , learns to reconstruct the SITS of the other modality xln
m2 (using the loss in Equation (3)).

Then, we train a separate network that takes as input the concatenation of xln
m1 and r(xln

m1).
Using this network, we produce the segmentation label using the PASTIS early fusion
technique [43]. During inference, we similarly generate the SITS of the missing modality
using the reconstruction network and perform segmentation on the original and gener-
ated modalities.

6.6. Quantitative Segmentation Results
We first examine the segmentation performance quantitatively using only a few labels

for downstream training.
Results on PASTIS-R: Table 3 reports the mIoU on the PASTIS-R test set using both

100% and 10% of the labeled dataset. S4 outperforms all competing baselines across the
board for both optical and radar inference experiments. We observe less relative improve-
ment in the radar inference experiments due to radar being a low-resolution modality
that provides less information than nonoccluded optical images. We also observe greater
improvement when the amount of labeled data provided is lower. Finally, although the
self-supervised fusion technique leverages multimodal, temporal data and largely outper-
forms all other baselines, S4 provides greater performance gain through its sophisticated
cross-modal contrastive and reconstruction framework.

Table 3. Segmentation results on the PASTIS-R and Africa Crop Type Datasets (mIoU).

Dataset PASTIS-R Africa Crop Type

Method Radar
100%

Optical
100%

Radar
10%

Optical
10%

Radar
100%

Optical
100%

Radar
10%

Optical
10%

SatMAE 37.9 36.2 11.1 28.2 12.4 11.9 3.30 7.06
SeCo 43.3 23.9 27.2 12.4 9.05 9.05 2.85 2.58
GSSL 41.8 21.9 30.9 13.6 18.8 4.36 5.67 8.04
CaCO 42.7 23.4 24.9 16.4 9.05 9.05 2.78 2.82
MMF 1 53.2 48.3 36.0 27.4 9.08 18.1 9.02 18.5
Sup. 2 51.6 52.9 22.8 17.1 7.08 6.94 2.58 2.69

S4 (Ours) 54.6 53.4 36.5 33.7 21.2 31.2 10.2 24.4
1 MMF stands for multi-modal fusion baseline. 2 Sup. stands for supervised baseline.
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Results on Africa Crop Type Mapping: In Table 3, we report segmentation results on
the Africa Crop Type Mapping test set. This dataset is more challenging due to multiple
reasons. First, the pretrain dataset contains less temporal information due to sparse image
collection by the Sentinel satellites. Therefore, we see lower mIoU values for this dataset.
However, S4 continues to significantly outperform all baselines for different modalities.
Without S4’s self-supervised multimodal approach, the mIoU drops for both single and
multimodel baselines.

We also provide quantitative results on a strong supervised baseline [62] specifically
designed for SITS semantic segmentation and crop type mapping. Since the baseline is
supervised, it is only trained on labeled data from the fine-tuned set in our experiments.
Naturally, the supervised model performs well when given lots of labeled data but performs
very poorly in limited labeled scenarios. We observe, however, that S4 still manages to
outperform the supervised baseline in all cases, demonstrating its efficacy in extracting
useful information from the pretraining dataset.

6.7. Ablation Study
We provide ablation studies using the PASTIS-R test dataset.
Loss Ablation: We measure the individual contribution of different losses used in S4.

Table 4 reports the results using the PASTIS-R dataset with both radar and optical inference.
In both scenarios, the benefits of jointly optimizing the contrastive and reconstruction
losses are higher as the number of labels increases. This demonstrates S4’s ability to
provide both temporal and spatial alignment benefits in pretraining to improve downstream
model performance.

Table 4. Loss Ablation Results.

Ablation Inference Modality mIoU

Lc Optical 52.6
Lr Optical 52.5
Lc Radar 53.6
Lr Radar 53.3

Lr + Lc Optical 53.4
Lr + Lc Radar 54.6

Modality Ablation: We measure the effect of multiple modalities in Table 5. We
compare against a unimodal variant of S4, where our proposed contrastive objective
operates over an optical SITS and the same optical SITS with random augmentations, similar
to how contrastive loss is used in prior work. We find significant gains in performance
when the radar modality is added during training. This holds true for both scenarios of
inference modality.

Table 5. Modality Ablation Results.

Ablation Inference Modality mIoU

Single Modal Optical 51.3
Single Modal Radar 53.8

S4 (Multimodal) Optical 53.4
S4 (Multimodal) Radar 54.6

Geographical Ablation: We report ablation results on the PASTIS dataset by pretrain-
ing on our curated, unlabeled Africa dataset. Table 6 reports our results for SL (Same
Location Pretraining) and DL (Different Location Pretraining). In this setup, we fix our
pretraining sets to have the same number of SITS samples for fair comparison. Although
we see a dip in performance due to different geographical pretraining locations, which
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is less representative of the fine-tuned dataset, the performance drop is limited and still
performs well compared with other self-supervised approaches even when they use SL
pretraining. This demonstrates the utility of S4 even on data where the geographic location
is unknown.

Table 6. Geographical Ablation Results.

Ablation Inference Modality mIoU

SL 1 10% Optical 33.7
SL 10% Radar 36.5
SL 100% Optical 53.4
SL 100% Radar 54.6

DL 2 10% Optical 29.5
DL 10% Radar 33.4

DL 100% Optical 48.7
DL 100% Radar 51.9

1 short for Same Location pretraining. 2 short for Different Location Pretraining.

6.8. Qualitative Evaluation
In Figure 5, we plot an example of segmentation results of S4 from the test set of the

PASTIS-R dataset from models trained with 100% of the labels. Images from the first two
rows show model results with optical inference. Images from the last two rows show model
results with radar inference. Qualitatively, we can visualize our model’s ability to benefit
from supervision, as we can segment hard class labels such as the light green ones with
very few training examples.

Figure 5. Qualitative results on optical inference. Each row represents a different sample or ge-
ographic location from the PASTIS-R dataset for S4’s evaluation. The first column (leftmost) is a
single optical image from the optical SITS. The second column is a single radar image from the radar
SITS. The third column is the prediction from S4. The fourth column (rightmost) is the ground truth
segmentation map.
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In Figure 6, we plot example segmentation results of S4 from the test set of the Africa
Crop Type Mapping dataset from models trained with 100% of the labels. Just as in Figure 5,
the rows show different samples and the columns show the model inputs, outputs, and
labels. Note that in this set of visualizations, we omit the background class due to the
high background label class imbalance of the dataset. On this dataset, we can examine
S4 can largely identify the correct class for most of the pixels associated with the relevant
agricultural parcel.

Figure 6. Qualitative results on optical and radar inference. Each row represents a different sample or
geographic location from the Africa Crop Type Mapping dataset for S4’s evaluation. The first column
(leftmost) is a single optical image from the optical SITS. The second column is a single radar image
from the radar SITS. The third column is the prediction from S4. The fourth column (rightmost) is the
ground truth segmentation map.

6.9. Reconstruction Visualization Results
We plot visuals of the reconstruction network from S4. Figure 7 visualizes the S4

radar image reconstruction when using optical images as input. Figure 8 visualizes the
S4 optical image reconstruction when using the radar images as input. S4 can effectively
reconstruct the key shapes in the scene shared across modalities, illustrating its potential
effectiveness as a feature extractor. In general, radar imagery is typically stronger in sensing
high moisture surfaces such as bodies of water, which may otherwise appear as shadows
or clouds in optical images. Some of these key shapes, including the river in Figure 8,
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which is a high moisture surface, are able to be successfully extracted in the reconstruction
likely due to multimodal training on radar data. Although the contours and shapes of
our reconstructions are accurate, there is a significant difference in the color map. The
difference in the magnitude of colors stems from the satellite being at different heights,
affecting the magnitude of the SAR measurements. As a result, the model is trained on SAR
measurements with dramatically varying and noisy magnitudes, creating a discrepancy in
the color maps.

Figure 7. Optical to radar reconstruction of S4 (optical input, radar ground truth, radar reconstruction).
Red boxes indicate similar features between reconstruction and output modality images.

Figure 8. Radar to optical reconstruction of S4 (optical ground truth, radar input, optical reconstruc-
tion). Red boxes indicate similar features between reconstruction and output modality images.

6.10. Robustness to Cloud Cover
We analyze S4’s ability to tackle the challenge of cloud cover during inference on

optical images. We start by dividing the optical SITS in the PASTIS test set into different
groups based on the amount of cloudy pixels they contain. We obtain a cloud mask for
every image in the PASTIS test set using the S2Cloudless algorithm [69]. We compute the
cloud cover ratio as the number of clouded pixels to total pixels in the SITS. After grouping
every SITS by cloud cover ratio, we compute the mIoU. Figure 9 reports the mIoU gain of
S4 over the CaCo baseline for 100% labels (the scenario when our model has the highest
relative improvement). The mIoU improvement is the mean improvement over CaCo
baseline. The results illustrate that our approach provides greater gains in the presence of
clouds. The radar data can help guide the model to make better predictions on partially
clouded data, since the radar images provide insights into how the model can “see through
the clouds". The improvement drops for SITS where the cloud cover ratio is greater than
25%, where many images are mostly or even fully occluded by clouds (and contain little
useful information).
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Figure 9. Updated graph cloud cover robustness prediction on optical image inference over PASTIS-R
test set.

7. Discussion and Limitations
We discuss some of the limitations of S4 based on the results of our evaluation.
High cloud cover scenarios As illustrated by Figure 9, S4 does provide improved

robustness against cloud cover in optical images due to the incorporation of radar data.
However, the method still faces performance challenges when cloud cover exceeds 25%. In
such cases, the optical information is so heavily occluded that it provides so little useful
information, impacting the overall performance of the model. Potential avenues for future
work to solve this solution include the incorporation of historical time series data (years
before the crop growth phase). Additionally, training on synthetic data generation or
painted cloud images may also be useful in addressing the challenges in training with very
highly cloud-covered images.

Modalities other than radar or optical Although we explore the benefits of exploring
multimodal self-supervision specifically with radar and optical imagining modalities,
satellite imaging has ample additional modalities such as infrared and hyperspectral,
which we do not explore in this work. We envision that S4’s reconstructive and contrastive
frameworks can be extended to support these additional modalities by using multiple
modality-specific encoders.

Adaptive fusion techniques In our study, we observed that different modalities excel
in specific conditions. For instance, optical images perform well when there is low cloud
cover, while radar images are more effective in high-moisture environments, such as near
lakes and rivers. Currently, our model, S4, treats all multimodal inputs with equal impor-
tance during training and segmentation. However, based on our observations, we believe
that enhancing S4 to incorporate adaptive multimodal fusion—where the model dynam-
ically adjusts the weight given to each modality based on the specific conditions—could
significantly improve overall performance.

Applications of S4 S4’s ability to provide accurate segmentation results with limited
labeled data makes it beneficial for a variety of different environmental segmentations
beyond the agricultural crop segmentation studies discussed above. Some of these applica-
tions include land cover classification and ecosystem monitoring, as well as early detection
of natural disaster events such as wildfires, mudslides, etc. S4 can be generalized to all
these different applications specifically because the amount of actual labeled data needed
for its training can be very small.

8. Conclusions
In this paper, we introduced S4, a multimodal self-supervised training framework for

satellite image time series segmentation. S4’s design can be characterized by (1) multimodal
learning, (2) temporal alignment, and (3) a pixel-wise feature space. To enable improved
self-supervision for SITS, S4 proposes the following:
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• Novel joint pixel-wise space–time contrastive learning;
• Reconstruction loss for multimodal satellite imagery;
• A SITS preprocessing strategy to temporally align SITS across modalities.

We also curate M2S2-SITS, a new multimodal SITS dataset that enables our new
geographic ablations and highlights the greater opportunities to benefit from multimodal
SITS pretraining. Using our datasets, we demonstrate how S4 can outperform a variety
of other self-supervised baselines on the downstream task of semantic segmentation,
and we conduct detailed ablations to better illustrate the robustness of our model in
specific situations, such as cloud cover and geographic diversity. We envision that S4 will
unlock the potential of using satellite imagery for emerging Earth-scale applications like
climate monitoring and precision agriculture by reducing the requirement for large, labeled
datasets.
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