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Abstract We explore the characteristics of EMIC waves generated in a non‐dipole, compressed magnetic
field at the minimum of the magnetic field. We conducted 2D full‐wave simulations using the Petra‐M code,
focusing on a compressed magnetic field in the outer dayside magnetosphere for a range of L values
(L = 8 − 10). By comparing the simulation results with MMS observations, we aim to understand how the
observed wave characteristics are affected by a shifting source region across different L‐shells. Our findings
indicate that the direction of the Poynting vector systematically changes depending on the local source location
of the wave, which is consistent with the observations. EMIC waves propagate along the magnetic field line and
reach both the northern and southern hemispheres; however, there is a notable difference in the power of EMIC
waves between the two hemispheres, indicating seasonal asymmetries in their occurrence.

Plain Language Summary Electromagnetic ion cyclotron (EMIC) waves, with frequencies ranging
from 0.1 to 5 Hz, are commonly found in Earth's magnetosphere. These waves can be detected in the outer
dayside magnetosphere, where the interaction between Earth's magnetic field and the solar wind causes the
magnetic field lines to compress. EMIC waves can be generated at points where the magnetic field strength
becomes minimum in each magnetic field line, meaning the magnetic latitude of the source location can vary for
each L‐shell. We conducted a full‐wave simulation of EMIC waves in the outer dayside magnetosphere using
the Petra‐M code, incorporating a non‐dipole compressed magnetic field. Our results indicated that the direction
of wave energy flow from the source varies; thus, based on a satellite's location, it can detect wave energy
flowing either parallel or antiparallel to the magnetic field, which is consistent with satellite observations. We
also show that EMIC waves generated in the northern hemisphere can reach both the north and the south Polar
Regions. However, the wave power reaching the northern hemisphere is significantly stronger than that which
reaches the southern hemisphere.

1. Introduction
Known for decades, electromagnetic ion cyclotron (EMIC) waves in the Pc 1–2 (0.1–5 Hz) frequency range have
been observed to be a prominent feature of the Earth magnetosphere‐ionosphere system (e.g., Bashir & Ilie, 2021;
Blum et al., 2020; Chen et al., 2019; Engebretson et al., 2018; Jun et al., 2021; G.‐J. Kim et al., 2016; K.‐H. Kim
et al., 2017; Noh et al., 2022; Saikin et al., 2015; Toledo‐Redondo et al., 2024; Usanova et al., 2016) and other
magnetized planets (e.g., Yao et al., 2021; Yuan et al., 2024). These waves are known to be excited as left‐handed
polarized (LHP) waves by the ion cyclotron instability of hot and anisotropic (T⊥ > T‖) distributions (Anderson
et al., 1996; Cornwall, 1965; Jordanova et al., 2001; Kozyra et al., 1997; Taylor & Lyons, 1976; Thorne
et al., 2006) or as linearly polarized waves by mode‐conversion at the ion‐ion hybrid resonance (E.‐H. Kim
et al., 2015; E.‐H. Kim & Johnson, 2023; Klimushkin et al., 2010; D.‐H. Lee et al., 2008; Mikhailova et al., 2019;
Xu & Zhou, 2023; Xu et al., 2023). EMIC waves play an important role in the exchange of particle energy in the
magnetosphere. These waves interact with energetic ring current ions and radiation belt electrons (Albert &
Bortnik, 2009; Shprits et al., 2016; Summers & Thorne, 2003; Usanova, 2021; Usanova et al., 2014; Yu
et al., 2019). EMIC waves can also interact with cold ions with energies of a few electron volts or less (M. J. Kim,
Goldstein, et al., 2023; K.‐H. Kim, Jun, et al., 2024; Kwon et al., 2023; J. Lee, Kim, & Lee, 2021; Mauk, 1982;
Mouikis et al., 2002; Roux et al., 1982).
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EMIC waves are frequently observed across a wide range of L‐shells in the outer dayside magnetosphere (Allen
et al., 2015, 2016; Min et al., 2012; Noh et al., 2023; Vines et al., 2019; Wang et al., 2017). Particles in the
compressed magnetosphere region undergo peculiar Shabansky orbits that enhance anisotropy in the high‐latitude
region by breaking the second adiabatic invariant (Shabansky, 1971). Additionally, the minimum of the magnetic
field along a field line moves to higher latitude in both hemispheres as L‐shell increases for a compressed
magnetic field configuration (McCollough et al., 2010, 2012). Thus, the region of EMIC wave generation is
similarly expected to change in latitude. Such off‐equator source regions at high latitudes in the dayside
magnetosphere were suggested to be present in case studies and statistical observations from the Cluster mission
(Allen et al., 2013, 2016). Observations from the Magnetospheric Multiscale (MMS) mission detected a shift in
the direction of the Poynting flux concurrent with plasma conditions favorable to local generation as the satellites
passed from the outer to the inner magnetosphere, indicating that MMS flew through a source region at high
latitudes in the outer magnetosphere (Vines et al., 2019).

The EMIC waves generated in the outer magnetosphere can reach the ground near the polar region. The
occurrence of EMIC waves at the Antarctic station exhibited seasonal asymmetry (Regi et al., 2017), with a higher
occurrence in local summer than in local winter. The hemispheric asymmetry in the arrival time of EMIC waves
can also occur in the outer magnetosphere (Noh et al., 2023). The observed time differences between the
hemispheres suggested that the source region of the wave was in an off‐equatorial region.

Since satellite observations alone are insufficient for capturing the global characteristics of wave propagation,
numerical simulations are essential for understanding the global features of EMIC wave propagation along the
Earth's magnetic field lines. Previous simulations have been conducted in the Earth's magnetosphere using the
dipole magnetic field model (Denton, 2018; Hanzelka et al., 2023; Hu & Denton, 2009; E.‐H. Kim & Johnson,
2016, 2023; Omidi et al., 2011; Pakhotin et al., 2022). However, to better understand the propagation of EMIC
waves in the dayside outer magnetosphere, it is crucial to utilize non‐dipole compressed magnetic field models
(Cheng, 1995; Stern, 1967) integrated into the existing wave model (E.‐H. Kim, Shiraiwa, et al., 2023).

In this letter, we numerically investigate the characteristics of EMIC waves generated off‐equator related to
regions of Shabansky orbits, employing a non‐dipole magnetic field configuration in the dayside magnetosphere.
We perform full‐wave simulations covering the outer magnetosphere within the range 8 ≤ L ≤ 10 and analyze the
wave electric field strength, ellipticity, and Poynting fluxes. In addition, we explore the wave properties as they
propagate to the ionosphere from the source.

The structure of this paper is as follows: Section 2 provides an overview of the Petra‐M full‐wave simulation code
and displays the simulation results. We first present wave solutions across different L‐shells, followed by the
characteristics of EMIC waves observed by virtual satellites on various paths. In the last section, we compare
these simulated wave properties with observations and discuss the EMIC wave propagation.

2. Full‐Wave Simulations
We adopt the Petra‐M full‐wave simulation code. Petra‐M is an open‐source finite element method platform
based on a scalable MFEM finite element library (Shiraiwa et al., 2016, 2017). In this platform, the cold plasma
wave equation has been solved,

∇ × (∇ × E/μ0) − ϵω2E − iωJin = iωJext, (1)

where E is the perturbed electric field, Jin = σ ⋅ E is the perturbed current density, Jext is the external current
source that generates waves within our model, ϵ is the permittivity tensor, μ0 is the permeability of free space, and
σ is the conductivity tensor. This code has been widely used for plasma wave simulations in fusion devices
(Bertelli et al., 2022, 2023; E.‐H. Kim, Ono, et al., 2024; Shiraiwa, Bertelli, Tierens, et al., 2023; Shiraiwa,
Bertelli, Bilato, et al., 2023), in Earth's magnetosphere (E.‐H. Kim & Johnson, 2023; E.‐H. Kim, Shiraiwa, et al.,
2023), and also adopted for high‐temperature conductors (Mohebujjaman et al., 2023).

For 2D simulations in cylindrical coordinates, we use the simulation domain 0.1 < r/ RE < 11.5 and
−11 < z/ RE < 11 (or −3 < z/ RE < 11 when we focus on the northern hemisphere) to encompass the outer
magnetosphere, with RE representing the Earth's radius. Similarly to previous works (E.‐H. Kim & Johnson, 2016,
2023; E.‐H. Kim, Shiraiwa, et al., 2023), a collisional absorption layer near the boundary is included for an open
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space. This layer efficiently absorbs all waves, allowing them to exit the
simulation domain without reflection. The Earth is assumed to be a perfect
conductor; however, strong absorption is also applied at R = 2 RE as a
Gaussian function, where R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 + z2

√
is the geocentric distance, to

minimize wave reflection from the Earth's surface.

To analyze the dayside magnetic field configuration, we integrate the mag-
netic field model developed by Stern (1967) (hereafter referred to as Stern's
model) into the Petra‐M code. We determine the unit vector of the magnetic
field in cylindrical coordinates ( b̂r, b̂ϕ, b̂z) along with the magnitude of the
background magnetic field (B0) . Figure 1 shows the non‐dipole magnetic
field lines and B0 as derived from Stern's model. In this figure, the red dots
mark the locations of the minimum B0 within each L‐shell. At L = 8, the
magnetic field exhibits a weak compression, yet the minimum B0 remains at
the magnetic equator. As the L‐shell increases, the magnetic latitude (λB0)

corresponding to the minimum B0 also rises from λB0 = 0°, 28°, and 44° for
L = 8, 9, and 10, respectively.

We employ an empirical electron density model from Denton et al. (2006),
defined by

Ne = 1390(
3
L

)

4.83

(
L

R/RE
)

0.8

, (2)

where L represents a modified L‐shell as depicted in Figure 1. In this paper, we do not consider realistic iono-
spheric density and conductivity. We also exclude heavy‐ion effects to focus on the influence of the magnetic
field configuration.

We launch left‐hand polarized waves with f = 0.34 Hz at the northern hemisphere source locations, which are
indicated by red dots in Figure 1. These dots are the location of minimum B along the field line where wave
growth is maximum due to higher temperature anisotropy and increased plasma beta (McCollough et al., 2010,
2012). This choice of frequency is motivated by observations of EMIC waves from Vines et al. (2019). At the
source locations with L = 8 − 10, the ratio of wave frequency (ω) to the local ion cyclotron frequency (ωci) is
ω/ωci = 0.22 − 0.5. ω at L = 8 is lower than the He+ cyclotron frequency; however, these waves can be treated
as H‐band EMIC waves in a single‐ion plasma. We assume that the wavefront is perpendicular to the field line at
the center of the source and that the source's cross‐field dimension is larger than the dimension along the field line,
channeling the waves to propagate along the magnetic field. For simplicity, the azimuthal wavenumber is
assumed to be 0. For the given condition, the field‐aligned wavelength for each field line is 0.246 − 0.152 RE,
respectively. In order to describe the wavelength of the EMIC waves near the outer magnetosphere and to
consider magnetic field line separation near the Earth, non‐uniform triangle meshes are adopted.

2.1. Wave Propagation in the Compressed Magnetic Field Line

Figure 2 shows the propagation of EMIC waves initiated in various L‐shells. The columns displayed from the left
to the right in Figure 2 are the electric field components perpendicular to the magnetic field in the meridian plane
(Eη) , in the azimuthal direction (Eϕ) , the field‐aligned Poynting flux (S‖), and the ellipticity (ϵ), respectively.
The electric field and the Poynting flux are normalized with respect to the maximum values of the total electric
field strength (Emax) or the total Poynting flux strength (Smax) .

For the case of L = 8, as shown in Figure 2a–2d, the wave source is located at the magnetic equator. The waves
propagate along the field line toward Earth. As the waves move to higher magnetic latitudes, the wave polari-
zation rapidly changes from left‐handed (LHP) to linear in Eη (see Figures 2a and 2d). Since strong artificial
absorption near Earth is adopted, no wave power is detected below the ionospheric altitude. Given that the shape
of the magnetic field line and the source location exhibit symmetry between the northern and southern hemi-
spheres, S‖ also exhibits interhemispheric symmetry except for the sign.

Figure 1. Simulation parameters: The magnetic field strength (B0) and
magnetic flux line (white solid lines). Here, the red points represent the
location where the magnetic field is minimized in each L‐shell.
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When the waves are launched at higher magnetic latitude (L = 9) in Figures 2e and 2f, an asymmetric structure of
the EMIC wave power distribution is found between the northern and southern hemispheres, although the plasma
configuration is the same for both hemispheres. When the waves propagate toward the north pole, the LHP waves
rapidly transform into linearly polarized waves and propagate to ionospheric altitudes, as shown in Figures 2e and
2h. Despite our implementation of strong absorption near the ionosphere, the wave power still reaches near the
ionosphere. Left‐handed polarized waves propagating southward from the source are effectively guided by B0.
This wave mode propagates roughly parallel to the magnetic field line and extends slightly to larger L‐shells. As a
result, it spans a wide range of L‐shells during its propagation, and the center of the ray path reaches near L = 10
at the southernmost point of the field line. As shown in Figure 2, the waves can spread over a wider range of L‐
shells, which leads to significantly weaker wave power per L‐shell compared to the northern hemisphere. As
circular LHP waves propagate toward lower latitudes, they transition to elliptical polarization; the ellipticity
changes from −1 at the source and near the magnetic equator to approximately −0.33. Ultimately, waves become
linearly polarized near the southernmost point. The field‐aligned Poynting flux is positive, parallel to B0, when
the magnetic latitude is higher than the source location. For magnetic latitudes below the source location, it is
negative and antiparallel to B0.

2.2. EMIC Waves Detected by Virtual Satellites

By assuming that the waves are simultaneously generated via Shabansky orbits at local minima in the magnetic
field across various L‐shells, we evaluate the wave polarization and field‐aligned Poynting flux along trajectories
of virtual spacecraft. To account for simultaneous wave generation over different locations, we superpose the

Figure 2. Wave solutions at (a–d) L = 8 and (e–h) L = 9, respectively. From left to right, the electric field in the direction
perpendicular to the magnetic field in the meridian plane (Eη) , in the azimuthal direction (Eϕ) , the field‐aligned Poynting
flux (S‖), and the ellipticity (ϵ), respectively. The electric field and the Poynting flux are normalized with respect to the
maximum values of the total electric field strength (Emax) or the total Poynting flux strength (Smax). For Poynting flux, positive
and negative values are parallel and antiparallel directions, and for the ellipticity, +1 (red color), −1 (blue), and 0 (green)
indicate circularly right‐handed, left‐handed, and linear polarization, respectively.
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wave solutions of the electric and magnetic fields at L = 8, 8.5, 9.0, 9.3, 9.7, and 10, respectively. In this case, we
conduct simulations in the northern hemisphere to focus wave polarization and Poynting flux variations from the
source to the ground. The total electric field (Etot) and the magnetic field (Btot) are the sum of the individual
electromagnetic fields. We then compute the Poynting flux and the ellipticity of the resulting electromagnetic
field using Etot and Btot.

Figure 3a shows that the field‐aligned Poynting flux is bidirectional near the source location, indicating that
waves propagate outward from the source. It becomes positive or negative at latitudes higher or lower than the
source location. Left‐hand polarization is found near the source, as shown in Figure 3b. The northward‐
propagating waves quickly transition to linear polarization across all L‐shells. However, the southward propa-
gating waves in the inner L‐shells still appear as LHP near the magnetic equator. In contrast, the waves in the
outermost L‐shells become linearly polarized as soon as they escape from the source location. Consequently, the

Figure 3. Superposition of the wave solutions at L = 8, 8.5, 9.0, 9.3, 9.7, and 10; (a) Normalized field‐aligned Poynting flux
and (b) Ellipticity (ϵ). Here, the dashed lines are traces of the virtual spacecraft, and the solid pink line indicates the
Shabansky orbit (c)–(e) Measured Poynting flux and ellipticity of EMIC waves generated at three virtual spacecraft. The gray
shades in (c)–(e) are the source locations of L = 9.7, 8.5, and 8, respectively. Here, R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 + z2

√
is the geocentric distance,

and λ is the magnetic latitude.
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LHP was dominant in proximity to the source area only, specifically the Shabansky orbit, with a broad span in
magnetic latitude and radial distance.

Then, we consider three virtual satellites that pass at different magnetic latitudes. The trajectories of the satellites
are shown as dashed lines in Figures 3a and 3b, with each satellite intersecting the source region at L = 9.7, 8.5,
and 8.0, respectively. Figures 3c–3e show the Poynting flux and wave ellipticity recorded by the virtual satellites.
In Figure 3c, at the highest magnetic latitude, when the satellite's position exceeds the wave source's latitude at
R ≤ 8.7RE, the Poynting flux is positive (S‖ > 0) , signifying wave propagation parallel to the magnetic field away
from the magnetic equator, or toward the northern ionosphere. Within the source region that spans
8.7 ≤ R ≤ 9.2 RE, indicated by the gray area in Figure 3c, the satellite detects wave activity with no dominant
direction in the Poynting flux. Beyond R > 9.2RE, the satellite is positioned at magnetic latitudes lower than the
source, resulting in a negative Poynting flux (S‖ < 0) , which indicates wave propagation in the antiparallel di-
rection toward the southern hemisphere. When the satellite is located far from the source within the inner L‐shells,
it exhibits linear polarization. As it transitions to the outer L‐shells, the polarization gradually shifts from linear to
left‐handed polarization.

In the case of the second satellite shown in Figure 3d, the Poynting flux is more clearly illustrated across different
magnetic latitudes, with its direction reversed and the wave source located between. Thus, S‖ > 0 for R ≤ 8.21 RE,
S‖ ∼ 0 for 8.21 ≤ R ≤ 8.6 RE, and S‖ < 0 for R ≥ 8.6 RE. Here, the satellite is near the source region within the
inner L‐shells; the waves are LHP and change to linear polarization when it moves toward the outer L‐shells.
Similarly, as the satellite traverses the magnetic equator in Figure 3e, the waves exhibit LHP for the inner L‐shells
near the source region (indicated by the gray shaded area in Figure 3e) without prevailing Poynting flux,
signifying bidirectional Poynting flux. For the outer L‐shells, the virtual satellite also detects antiparallel prop-
agating EMIC waves directed toward the south pole, consistent with the source locations at higher magnetic
latitudes in the northern hemisphere.

To compare the simulations with observations, we further examine the EMIC wave event captured by the MMS
satellites on 2015‐10‐28 from 14:30‐17:15 UT, as described in Vines et al. (2019). Here, the Poynting flux and
ellipticity of the wave train are shown in Figure 4 in the same format as the virtual satellite paths in Figures 3c–3e.
Each point shown in Figure 4 is derived from the average of the Poynting flux (S‖ and Stot) and ellipticities at that
time over the frequencies of 0.33fci to 0.66fci. This frequency range captures the peak emission of the proton‐band

Figure 4. MMS2 EMIC wave observations from 2015‐10‐28/14:30 ‐ 17:15 UT, showing (a) normalized field‐aligned
Poynting flux mirrored to the northern hemisphere and (b) Ellipticity. Quantities are shown in the same format as Figures 3c–
3e, as a function of geocentric distance (R) and an absolute value of magnetic latitude (|λ|). The wave source region inferred
by Vines et al. (2019) is shown by the gray‐shaded region.
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EMIC wave while reducing the contribution of non‐associated broadband emission. Smax is then the maximum of
the averaged Stot over the full interval. Because MMS2 measurements were taken in the southern hemisphere, and
the wave source region was also inferred to be in the southern hemisphere, the observations in Figure 4 have been
“mirrored” to the northern hemisphere. Values of S‖ are multiplied by −1 (since in the south, parallel Poynting
flux indicates equatorward propagation), and the absolute value of the magnetic latitudes is shown (see also
Figure 1 of Vines et al. (2019)). The field‐aligned Poynting flux shifts from positive to negative values as MMS2
passes above, through, and then below the source region. The polarization is linear to LHP around 9.5RE, then
becomes more LHP, though the trend is not quite as clear when MMS is at larger radial distances. In general, this
result is very consistent with the simulations, particularly with the virtual satellite path 2 in Figure 3.

3. Discussion and Summary
Although the generation of EMIC waves via ions undergoing Shabansky orbits has been explored (e.g.,
McCollough et al., 2012; Shabansky, 1971), clear evidence that the source of the waves is located at different
magnetic latitudes for different L‐shells in a compressed magnetic field configuration has only recently been
observed (e.g., Noh et al., 2023; Vines et al., 2019). In this paper, we provide solid evidence of the previous theory
and observations about the location of the EMIC wave generation in the outer magnetosphere. Our findings are
consistent with observations, showing that if the satellite's position is below the source's magnetic latitude in the
same hemisphere, we predict that the Poynting flux will flow toward the equator. Conversely, a poleward
Poynting flux is detected when the satellite is above the source's magnetic latitude.

We show that waves exhibit linear polarization even at the magnetic equator in the outer magnetosphere, while
LHP is mostly confined to regions near the source. Previous statistical analysis using the Cluster spacecraft
indicated that LHP prevails in the outer magnetosphere (r ≥ 7 RE) , whereas linear polarization is more dominant
closer to Earth (Allen et al., 2015). Our simulation is consistent with the statistical pattern in the noon sector and
provides theoretical insight into the polarization patterns seen in the outer magnetosphere. However, the polar-
ization state can also be influenced by factors such as heavier ion concentration and wave frequency, which
should be considered in the future.

The simulations examine the interhemispheric propagation of EMIC waves when a single source is located off‐
equator in the northern hemisphere. In the hemisphere closer to the source, the wave exhibits minimal spreading,
enabling it to concentrate on a single field line and reach the ionosphere with significant amplitude. In contrast, in
the opposite hemisphere, waves do not penetrate effectively because wave power disperses across field lines to
different L‐shells along an extended ray path. This phenomenon results in a hemispherically asymmetric
occurrence of EMIC waves at higher magnetic latitudes.

Ground‐based magnetometer observations indicated an asymmetry in wave occurrences between the southern and
northern hemispheres, with a higher incidence detected during local summer (Regi et al., 2017). During the
summer, the geographic equatorial plane is positioned at higher magnetic latitudes due to Earth's magnetic field
tilt, which may cause a difference in growth rates between the north and south. Thus, it is possible to have an
asymmetric occurrence rate at the ground. E.‐H. Kim and Johnson (2023) numerically explored the impact of
dipole tilt on the generation and propagation of EMIC waves. They revealed that the waves could reach the ground
strongly during the local summer. Still consistent with the observations by Regi et al. (2017), our results here
suggest an additional scenario that can lead to interhemispheric asymmetries in wave power and characteristics
observed by ground magnetometers. With a source region at a higher magnetic latitude in one hemisphere due to
the interhemispherically asymmetric structure of the magnetic field with non‐zero dipole tilt, the EMIC growth
rate, in general, will exhibit an interhemispheric asymmetry. For observations of large L‐shells, this asymmetry
could be further impacted by whether that source location occurs in the hemisphere during local summer versus
local winter.

While LHP EMIC waves propagate toward Earth, the wave polarization changes from LHP to linear polarization,
as predicted by previous simulations (Hu & Denton, 2009; E.‐H. Kim & Johnson, 2016; Denton, 2018). When
waves approach Earth, the ratio between the wave frequency and the local ion cyclotron frequency (ω/ωci)

becomes of the order of 10−2 − 10−3 near R ∼ 1 − 3(RE) for the given condition. In the dispersion relation, the
LHP EMIC waves can be coupled with the shear Alfvén wave branches for ω ≪ ωci. Our simulation shows the
linear polarization enhanced in Eη (and Bϕ, not shown here), which represents the shear Alfvén waves.
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EMIC waves detected in the ionosphere or by ground magnetometers have shown various polarizations, including
RHP, LHP, and linear polarization. At ionospheric altitudes, it has been observed that the wave signal is highly
polarized within the plane perpendicular to the main magnetic field (Park et al., 2013) and the ellipticity of the
waves is generally linear (H. Kim et al., 2010; Park et al., 2013), which is consistent with our simulations.
However, the polarization of waves detected on the ground can be altered due to the ducting effect between the
ground and the ionosphere (H. Kim et al., 2010, 2011; Mann et al., 2014). Despite the consistency between the
simulations and the waves detected at the ionosphere, it is important to consider realistic ionospheric densities and
ducting processes to accurately discuss the polarization of EMIC waves in the ionosphere and ground stations in
the future.

We are focusing on the effect of magnetic field geometry while ignoring heavy‐ion effects. Heavy ions, such as
O+, can be abundant in the outer magnetosphere and near the magnetopause (e.g., Bouhram et al., 2005; Fuselier
et al., 2019; S. H. Lee et al., 2016; Zeng et al., 2020). When heavy ions are included, along with impacting growth
rates and wave polarization (e.g., J. H. Lee, Blum, & Chen, 2021; J. H. Lee et al., 2019), additional cutoffs and
resonances are introduced, which, in turn, prevent the propagation of EMIC waves to the ground (Denton
et al., 2010; Denton, 2018; Hanzelka et al., 2023; Hu & Denton, 2009; Johnson et al., 1989, 1995; Johnson &
Cheng, 1999; E.‐H. Kim & Johnson, 2016). Furthermore, we consider the spatial structuring of magnetospheric
plasma properties between the two hemispheres. The configuration of the magnetic field and plasma densities and
composition near the magnetopause can significantly change depending on the strength and direction of the
interplanetary magnetic field (IMF). The coupling of the solar wind and IMF to the magnetosphere can exhibit
interhemispheric asymmetries through more enhanced ion outflow at high latitudes in one hemisphere versus the
other depending on season and IMF direction (e.g., Barakat et al., 2015; Cully et al., 2003; Nowrouzi &
Walsh, 2024; Yau et al., 1985). As EMIC waves travel along the field line, the wave propagation path would be
influenced by this north‐south asymmetry in the local plasma properties and magnetic field configurations as
discussed by Noh et al. (2023). Additionally, while the propagation of ultralow frequency waves to the ground can
be significantly influenced by ionospheric conductivity (e.g., Lysak et al., 2020), we do not incorporate a realistic
ionosphere. Therefore, the heavy‐ion effect and the more realistic magnetosphere and ionosphere configurations
should be considered and remain a future work.

In summary, we demonstrate EMIC wave propagation in a non‐dipole magnetic field topology in the outer
magnetosphere using the Petra‐M simulation code. In this case, we launched the waves off‐equator in the northern
hemisphere, where particles can undergo Shabansky orbits around local minima in the compressed magnetic field.
Our research shows that the direction of the Poynting vector of EMIC waves consistently changes based on the
local source location of the wave, which is consistent with previous observations. Additionally, EMIC waves
generated off‐equator can propagate along the magnetic field line and reach the ionosphere in both the northern
and southern hemispheres. However, EMIC wave power at ionospheric altitudes shows significant hemispheric
differences, demonstrating the contribution of off‐equator source regions in the outer dayside magnetosphere to
interhemispheric asymmetries in ionospheric and ground observations.

Data Availability Statement
The full‐wave simulation data are available in E.‐H. Kim, Shiraiwa, et al. (2024). MMS data used in this article are
publicly available at the MMS Science Data Center (https://lasp.colorado.edu/mms/sdc/public/). MMS data
shown here are directly derived from that used and described in Vines et al. (2019).
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