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Abstract Using NASA's Global‐scale Observations of the Limb and Disk (GOLD) imager, we report
nightside ionospheric changes during the G5 super geomagnetic storm of 10 and 11 May 2024. Specifically, the

nightside southern crest of the Equatorial Ionization Anomaly (EIA) was observed to merge with the aurora near

the southern tip of South America. During the storm, the EIA southern crest was seen moving poleward as fast as

450 m/s. Furthermore, the aurora extended to mid‐latitudes reaching the southern tips of Africa and South

America. The poleward shift of the equatorial ionospheric structure and equatorward motion of the aurora

means there was no mid‐latitude ionosphere in this region. These observations offer unique insights into the

ionospheric response to extreme geomagnetic disturbances, highlighting the complex interplay between solar

activity and Earth's upper atmosphere.

Plain Language Summary On Earth's nightside during the super geomagnetic storm that occurred

on 10 May 2024, NASA's GOLD imager saw something new: a part of Earth's ionosphere, the southern peak of

what typically appears as a double‐peaked structure in the ionospheric density at equatorial and low latitudes,

merged with the aurora near the southern tip of South America. This has never been reported before.

Additionally, the boundary of the aurora expanded further equatorward than usual. These observations of what

happened in the Earth's ionosphere during this super storm are reported for the first time in this study.

1. Introduction

The terrestrial ionosphere can be divided into three latitude regions based on Earth's magnetic field topology: (a)

equatorial and low‐latitude ionosphere extending to ±>20° magnetic latitude (Mlat), where the magnetic field

lines are closed and nearly horizontal; (b) the high‐latitude polar cap and auroral ionosphere (>60° to >90° Mlat)

where magnetic field lines are open and nearly vertical; and (c) the mid‐latitude ionosphere (>20° to >60° Mlat)

located between the other two (Hunsucker & Hargreaves, 2003; Schunk & Nagy, 2009).

In the equatorial and low‐latitude ionosphere, Equatorial Ionization Anomaly (EIA) (also known as the Appleton

Anomaly) is a persistent feature that appears as a double‐peaked structure in the latitudinal distribution of the

ionospheric density (Appleton, 1946; Eastes et al., 2019). Its formation is generally explained by the uplift of the

plasma to higher altitudes and at latitudes in the equatorial region through E × B drifts, along with subsequent

plasma motion parallel to the magnetic field B due to pressure gradient force and gravity (Heelis, 2004). Under

geomagnetically quiet conditions, the EIA crests are typically near ±>10–20° Mlat depending on the solar ac-

tivity (Balan et al., 2018; Eastes et al., 2023). The changes in the EIA crests latitude and brightness depend on

several factors, including neutral winds, electric fields, magnetic declination, ion production and loss rates, and

the subsolar point location (Eastes et al., 2023). During geomagnetic storms, the injection of energy from the solar

wind and magnetosphere causes profound changes in these factors that in turn alter the EIAmorphology. Previous

studies showed that during a weak geomagnetic storm with SYM‐H >−60 nT in a solar minimum year, 2020, the

EIA crests shifted >8° poleward and reached >15° Mlat (Karan, Eastes, Daniell, et al., 2023). A moderate

geomagnetic storm with SYM‐H >175 nT in a solar maximum year, 2023, shifted the EIA crests poleward by

>11° and reached >25° Mlat (Karan et al., 2024). During the 30 October 2003 Halloween storm, the EIA
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expanded to >28° Mlat which was attributed to the combined effect of an eastward penetration electric field and

wind transport (Lin et al., 2005; Mannucci et al., 2005).

Like the expansion of the EIA crests during geomagnetic storms, at high‐latitudes the aurora also expands from its

quiet time location (e.g., >70° Mlat) (Lassen et al., 1988). During extremely intense geomagnetic storms, the

auroral oval can expand equatorward to >40°–50° Mlat (Akasofu, 1966). During the 20–25 March 1940

geomagnetic storm, auroral oval reaching >40° Glat was reported (Hayakawa et al., 2022).

Recently, a super geomagnetic storm, classified as G5, occurred on 10 May 2024. This geomagnetic storm is the

most intense storm recorded within the past two solar cycles (O'callaghan & Billings, 2024). In this study, we

report on NASA's Global‐scale Observations of the Limb and Disk (GOLD) mission's nighttime observations

during this storm. These observations reveal a significant poleward motion of the EIA crests, along with equa-

torward expansion of the aurora, which leads to the merging of the EIA crests with the aurora. This is the first time

such an event has been reported and represents the disappearance of the mid‐latitude ionosphere during this storm.

2. Data

The data utilized in this investigation comprises nocturnal partial disk images obtained from the GOLD instru-

ment which is in a geostationary orbit at 47.5° W. The GOLD instrument consists of two independent channels

denoted as A and B, each equipped with a scan mirror and interchangeable slits. These images of the far ultraviolet

(FUV) wavelength range (>134–162 nm) emissions from Earth. Detailed descriptions of the instrument and its

observations can be found in prior works (Eastes et al., 2017, 2019, 2020; Karan et al., 2020; Karan, Eastes,

Martinis, et al., 2023; McClintock et al., 2020). GOLD measures the nocturnal airglow emission at OI 135.6 nm,

which originates from the recombination of atomic oxygen ions and electrons in the Earth's ionosphere. Given

that the emission intensity correlates with the square of the electron density, it reaches its peak at the F layer

maximum assumed to be at 300 km altitude during image geolocation. GOLD images the South American, the

Atlantic, and the West African sectors, from 19 to 22 local time (LT). These images provide, with clarity, the

spatio‐temporal progression of various nightside ionospheric‐thermospheric phenomena.

Solar wind density and speed, the interplanetary magnetic field and geomagnetic indices are used to provide

context for the GOLD observations. Ionosonde observations from Cachoeira Paulista (22.7°S Glat, 45.0°WGlon,

20°S Mlat) and Bahia Blanca (38.7°S Glat, 62.3°W Glon, 27°S Mlat) are used to investigate the ionospheric

changes during the storm. The in situ electron density measurements by Swarm Alpha (A) and Swarm Charlie (C)

satellites at an altitude of >462 km (Friis‐Christensen et al., 2006) are used to cross‐check the EIA crest latitudes

against those observed by GOLD. Optical airglow emissions from all‐sky‐imagers (ASIs) at the Sutherland

(32.37°S Glat, 20.81°E Glon, 40.73°S Mlat) and Rio Grande (53.79°S Glat, 67.75°W Glon, 40.35°S Mlat)

Observatories are also investigated to confirm the GOLD's observations.

3. Results and Discussion

Figure 1 presents 135.6 nm images captured by GOLD on the night of the storm, 10 and 11May 2024. Images are

selected to cover all the longitudes in the GOLD field of regard and to avoid repetition at similar longitudes. All

the images in this night are available as Movie S1. The brightness in these images is saturated above 700 R. The

images illustrate enhanced brightness patches on either side of the magnetic equator, which are the EIA crests.

The equatorward sides of the red patches at higher latitudes indicate the equatorward boundary of the aurora.

With the progression of time, both EIA crests are seen to move rapidly poleward, particularly in the Atlantic and

South America sectors. The southern EIA crest reaches latitudes in the southern Atlantic Ocean and near the

southern tip of South America (Panels d–i). It is observed to merge repeatedly with the aurora (see 23:10 UT and

00:22 UT images in Movie S1 and Panel i in Figure 1). A study by Martinis et al. (2015) during a moderate

geomagnetic storm showed the simultaneous incursion of equatorial plasma bubbles (EPBs) into mid‐latitudes

(>40° Mlat) and a stable auroral red (SAR) arc, between >45° and 50° MLat, where the ionospheric trough

was also detected by GPS TEC maps. That study stressed the reduction of the mid‐latitude ionosphere to a few

degrees in latitude. In the present case, instead of observing typical mid‐latitude characteristics such as low‐

density plasma, reduced airglow and the presence of MSTIDs (Medium Scale Traveling Ionospheric Distur-

bances), we measured a crest of the EIA, a low latitude process, and the high‐latitude aurora. Therefore, our study

constitutes the first observation of the disappearance of the mid‐latitude ionosphere. The southern EIA crest
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appeared as a “V” shape at>40°WGlon at 22:40 UT (Panel f; also, in Movie S1) that gradually moved to the west

with time. The aurora reached >30°S Glat over Western Africa (Panel b, c) and the Atlantic (Panels e, f). In the

North and South America sector, it reached >35°N and >50°S Glat (Panels h–i).

Solar wind parameters for 10 and 11 May 2024 storm are shown in Figure 2, panels a (interplanetary magnetic

field north‐south component, IMF Bz) and b (solar wind proton density and speed). Geomagnetic conditions are

shown in Panel c (Dst index with its hourly rate of change). The thick black line at the bottom of panel c marks the

time of GOLD observations. The main phase of the storm started around 16:30 UT on 10 May with sudden

changes (southward turning) in the IMF Bz, which reached >−30 nT, and increases in solar wind density and

speed, which reached >700 km/s and >30/cc, respectively. The main phase persisted until >03:00 UT on 11 May

when Dst reached a minimum value of >−400 nT. Approximately 4 hr after the initiation of the main phase,

GOLD nighttime observations began as Dst reached a value of >−350 nT. GOLD's nightside observations,

depicted in Figure 1, occurred during the main phase of the storm.

Figure 1. GOLD nighttime 135.6 nm images on 10 and 11 May 2024 (Day of the year 131 and 132). The dashed and solid black line represent the geomagnetic equator

and the sunset terminator, respectively. The dashed magenta lines indicate±30°Mlat. The solid magenta line in panel E indicates the Swarm A orbit. The white “X” and

“+” symbols in panel (h) indicate the locations of the ionosonde at Cachoeira Paulista and Bahia Blanca, respectively.
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We investigated the poleward motion of the EIA crest by first identifying the latitudes at which the northern and

southern EIA crests peak in all images (refer to Movie S1) obtained by GOLD. These images were then trans-

formed into quasi‐dipole geomagnetic coordinates (Laundal & Richmond, 2017) using the International

Geomagnetic Reference Field scalar potentials (Alken et al., 2021). This transformation enabled us to analyze

variations in airglow brightness with respect to magnetic latitudes. By applying this method to all images, we

determined the latitudes of the crests, as shown in Figure 2, panel d. The red and blue color dots indicate the

northern and southern crest latitudes. There are multiple dots at some longitudes because crest latitudes were

obtained from multiple images. We computed the average and standard deviation of both crest latitudes (Panel e)

in corresponding colors.

The EIA crests were observed more poleward within the>70°–35°WGlon range compared to the east of>35°W.

The maximum poleward location of the northern and southern EIA crests was observed between >60°–65°W

Glon (Panel d) with average crest latitudes at >36.5°N and >33°S Mlat, respectively (Panel e). The farthest

poleward values of the northern and southern EIA crests were>38°N and>35°S Mlat (Panel d) which indicates a

super fountain effect (Rout et al., 2019; Tsurutani et al., 2008). At this longitude region, the equatorward edge of

the aurora shifted to mid‐latitudes (>45°N and >36°S Mlat), as can be seen from the equatorward edge of the red

patch in Figure 1 panel i. This indicates a more equatorward incursion of the aurora in the southern hemisphere.

Thus, the poleward side of the southern EIA crest (>35°S Mlat) merged with the equatorward edge of the aurora

australis (>36°SMlat). At>10°Mlon, the 00:22 UT image (see Figure 1 Panel i andMovie S1) showed increasing

brightness from the EIA, followed by the edge of the aurora moving to a higher latitude. The recurrence of these

changes suggests that the EIA and aurora are influencing one another.

The southern EIA crest started to evolve into a “V” shape structure at >40°W Glon in the 22:40 UT image

(Figure 1 Panel f and Movie S1). At the location of the “V” sunset occurred around 21 UT. At that time, the storm

was rapidly intensifying as IMF Bz and d(Dst)/dt reached maxima of > −40 nT and > −125 nT/hr, respectively

(Figure 2 Panel A). These conditions suggest a prompt penetration of electric field into the equatorial and low

latitudes at the dusk sector due to under‐shielding conditions (Fejer et al., 1979; Karan, Eastes, Daniell,

et al., 2023; Karan et al., 2024; Kelley et al., 2003; Martinis et al., 2005). Thus, the observed poleward expansion

of the southern EIA crest and evolution into a “V” shape may be due to resulting increase the ion drifts at low

latitudes.

As described above, the poleward shift of the EIA crest in the>70°–35°WGlon range points to a strengthening of

the upward drifts at the magnetic equator and low latitudes due to prompt penetration electric fields that moved

the equatorial ionosphere to higher altitudes and latitudes. This can be confirmed by ionosonde measurements at

these longitudes. After the sunset at >22 UT, the peak electron density height (hmF2) measured by the ionosonde

Figure 2. (left): Solar wind data and geomagnetic indices. (a) IMF Bz, (b) solar wind density and flow speed, (c) Dst and d

(Dst)/dt. The thick black line at the bottom of panel C indicates the times of GOLD observations; (right) EIA crests latitudes

on 10 and 11 May 2024. (d) EIA crests latitudes, North (red) and South (blue) (green) obtained from all the images on 10 and

11 May 2024. The plus symbols mark Swarm observations; (e) the average EIA crest latitudes from panel (d) and

uncertainties.
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at Cachoeira Paulista (22.7°S Glat, 45.0°W Glon, 20°S Mlat) increased from >300 to >500 km while the critical

frequency of the F2 layer (foF2) decreased from>10 to 4MHz. Amid‐latitude ionosonde at Bahia Blanca (38.7°S

Glat, 62.3°W Glon, 27°S Mlat) measured an increase in the foF2 from >8 to >17 MHz, with decrease in hmF2 at

that time. The ionosonde measurements are shown in Figure S1. The ionosonde observations indicate that most of

the ionosphere from the magnetic equator to >20°S Mlat was moved poleward which resulted in an increase in

foF2 at >27°S Mlat. These measurements suggest the strengthening of the upward (perpendicular to B) plasma

drift over these longitudes.

In addition, we investigated the poleward shift of the southern EIA crest with time. At >35°W Glon the southern

EIA crest shifted poleward from >18°S Mlat at 21:10 UT to >27°S Malt at 22:25 UT with an inferred speed of

>280 m/s. We also investigated the in situ electron density (Ne) measurements from Swarm A satellite for the

orbit near the longitudes of maximum EIA poleward shift (>55°W Glon). The orbit is shown in Figure 1 panel e.

Swarm A crossed the geographic equator at 22:40 UT. The peak Ne latitudes are marked as green “+” symbols in

Figure 2 Panel d. Swarm A measured the northern and southern EIA crests at about 30°N and 24°S Mlat at

22:35UT and 22:50 UT, respectively. When GOLD scanned the same southern longitude >20 min later (23:10

UT scan) the southern crest had moved >5° poleward and reached 29°S Mlat. This corresponds to a motion of

>450 m/s polewards. These poleward motions of 280 and 450 m/s are many times larger than those seen during

quiet times, for example, (Scherliess & Fejer, 1999). Assuming this motion is the result of E × B drift, it is

possible to estimate the electric fields that were present in this region. Taking into account the inclination of the

magnetic field relative to the horizontal plane and using a representative field strength of 24,000 nT estimated

electric fields of >8 and >12 mV/m at >35 W and 55°W Glon are obtained which could have created the super

fountain effect.

Figure 3 presents additional effects observed during the storm. The top panel shows two GOLD images at 21:10

UT (left) and 22:10 UT (right) where westward tilted EPBs reaching high latitudes are observed. Westward tilted

EPBs piercing through the EIA crests are also observed at the West African sector. Their foot points are marked

by red dots. Changes in the locations of the dots in the left and right images clearly show the westward motion of

the EPBs in this latitude region. The westward motion of the EPBs at mid‐latitudes tilt the EPBs westward as has

been seen previously in strong storms (e.g., Karan et al., 2024). In the South American sector near 45°W Glon,

EPBs reached >30°S Mlat (See the right wing of the “V” shaped EIA structure in GOLD image at 23:52 UT in

Figure 1 and Movie S1).

The bottom panel of Figure 3 shows concurrent GOLD images of the OI 135.6 nm (left) and N2 (Lyman‐Birge‐

Hopfield bands, LBH) emissions (right). The 135.6 nm emissions extend over the southern tip of South America

and further north than the LBH emissions. In addition to the 135.6 nm emissions energetic particles in the aurora

also produce the LBH emissions, if the particles have sufficient energy to penetrate to altitudes where the N2
concentration is significant relative to that of atomic oxygen. The occurrence of 135.6 nm emission without

coincident LBH emissions indicates an area where particle energies were low, only hundreds of eV. These areas

are likely where the red aurora, which is sometime seen from the ground, occurred. The red aurora (OI 630.0 nm)

is typically seen equatorward of the normal green line (OI 557.7 nm) aurora, and it occurs at higher altitudes,

mostly above 300 km. At these higher altitudes, there is almost no molecular nitrogen (N2) relative to atomic

oxygen. The result is emissions from atomic oxygen but very little from molecular nitrogen.

GOLD measurements are confirmed by observations from the Boston University network of ASIs, which capture

airglow emissions at 630.0 and 557.7 nm. During the initial phase of the geomagnetic storm, the ASI in

Sutherland, South Africa measured significant 630.0 nm airglow enhancements linked to the aurora australis.

These enhancements, initially observed in the south, moved equatorward and reached zenith. Later there were

similar observations over South America. Over the southern tip of South America, the ASI at the Rio Grande

Observatory also detected an increased 630.0 nm emission from the aurora. Figure 4 displays a sequence of four

images from Sutherland (>20:30–22:00 UT; top panel) and Rio Grande (>00:00–00:30 UT; bottom panel) that

were unwrapped assuming an emission height of 300 km. Cloudy skies did not allow continuous observations of

the auroral incursion. The two panels clearly show the equatorward expansion of auroral displays that reached an

unusual low magnetic latitude, >40°Mlat. In both sites the activity saturated the images. These observations

correlate with the GOLD's 135.6 nm images taken on 10 and 11 May (see Figure 1 Panels a–c, i), showing

enhancements in 135.6 nm reaching the southern tips of Africa and South America, respectively.
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4. Summary

We report on unprecedented observations of the nightside ionosphere captured by the GOLD imager during the 10

and 11 May 2024 super geomagnetic storm. Following are the key results:

i. The northern and southern EIA crests reached >38°N and >35°S Mlat, respectively. The southern EIA crest

moved poleward with speeds of >280 and >450 m/s at > 35°W and >55°W Glon, respectively, indicative of

the rapid poleward motion that occurred over a wide range of longitudes.

ii. The southern EIA crest evolved into a “V” shape near 40°WGlon at 22:40 UT that then drifted west. At these

longitudes, there was a significant poleward shift of the southern EIA crest during the period of maxima IMF

Bz and d(Dst)/dt of >−40 nT and > −125 nT/hr, respectively. This suggests a prompt penetration of electric

field into the equatorial and low latitudes. Increased hmF2 and decreased foF2 at >20°S Mlat from Cachoeira

Paulista ionosonde and increased foF2 at >27°S Mlat from Bahia Blanca ionosonde confirm a strengthening

of the upward plasma drift.

iii. The aurora reached >30°S Glat over the Western African and Atlantic sectors. It moved to mid‐latitudes

reaching >45°N and >36°S Mlat over the American sector. The auroral OI 135.6 nm emission reached

lower latitudes than the N2 LBH emission, in agreement with ground based all‐sky imagers observations of

only red line (OI 630 nm) enhancements.

Figure 3. (top) GOLD nighttime images at 21:10 UT (left) and 22:10 UT (right). The EPB foot points are marked by red dots,

clearly showing westward tilt and westward motion; (bottom) GOLD nighttime images in OI 135.6 nm (left) and LBH

emission (right). The 135.6 nm images clearly reach lower latitudes than the LBH images.
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iv. The poleward shift of the equatorial ionospheric structure, equatorward motion of the aurora, and the merging

of these two structures seen by GOLD means there was no mid‐latitude ionosphere. They merge multiple

times and when they do the resulting changes in the EIA and aurora suggests that the merging affects each of

them. This is the first reported observation of the nighttime EIA crest merging with the aurora.

Data Availability Statement

The GOLD data are available from the GOLD Science Data Center (https://gold.cs.ucf.edu/data/search/). The

solar wind parameters are obtained from SWPC data service center (https://services.swpc.noaa.gov/products/

solar‐wind/). The geomagnetic indices are obtained from https://www.gfz‐potsdam.de/en/hpo‐index and https://

isgi.unistra.fr/data_download.php. Bahia Blanca ionosonde data can be found at http://www.eswua.ingv.it/.

Cachoeira Paulista ionosonde data are obtained using the SAO Explorer software from the Global Ionospheric

Radio Observatory website (https://ulcar.uml.edu/SAO‐X/SAO‐X.html and http://spase.info/SMWG/Observa-

tory/GIRO). Swarm in situ Ne data were obtained from (https://swarm‐diss.eo.esa.int/#swarm/Level1b/Entire_

mission_data/EFIx_LP). Quick look all‐sky images and movies from Sutherland and Rio Grande can be obtained

from www.buimaging.com. The ionosonde data from Bahia Blanca station are obtained from the Upper atmo-

sphere physics and radiopropagation Working Group (Marcocci et al., 2020).
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