Performance Evaluation 167 (2025) 102450

journal homepage: www.elsevier.com/locate/peva —mze

Contents lists available at ScienceDirect W

Performance Evaluation

Check for

FedCust: Offloading hyperparameter customization for federated

learning

Syed Zawad *!, Xiaolong Ma®!, Jun Yi*!, Cheng Li®, Minjia Zhang", Lei Yang?,

Feng Yan “", Yuxiong He "

2 Department of Computer Science & Engineering, University of Nevada, Reno, Reno, 89557, NV, USA

b Microsoft, Bellevue, 98052, WA, USA

¢ Department of Computer Science, University of Houston, Houston, 77204, TX, USA

ARTICLE INFO

ABSTRACT

Keywords:
Federated learning
Hyperparameter optimization

Federated Learning (FL) is a new machine learning paradigm that enables training models
collaboratively across clients without sharing private data. In FL, data is non-uniformly
distributed among clients (i.e., data heterogeneity) and cannot be redistributed nor monitored
like in conventional machine learning due to privacy constraints. Such data heterogeneity
and privacy requirements bring new challenges for learning hyperparameter optimization
as the training dynamics change across clients even within the same training round and
they are difficult to be measured due to privacy. The state-of-the-art in hyperparameter
customization can greatly improve FL model accuracy but also incur significant computing
overheads and power consumption on client devices, and slowdown the training process. To
address the prohibitively expensive cost challenge, we explore the possibility of offloading
hyperparameter customization to servers. We propose FedCust, a framework that offloads
expensive hyperparameter customization cost from the client devices to the central server
without violating privacy constraints. Our key discovery is that it is not necessary to do
hyperparameter customization for every client, and clients with similar data heterogeneity can
use the same hyperparameters to achieve good training performance. We propose heterogeneity
measurement metrics for clustering clients into groups such that clients within the same group
share hyperparameters. FedCust uses the proxy data from initial model design to emulate
different heterogeneity groups and perform hyperparameter customization on the server side
without accessing client data nor information. To make the hyperparameter customization
scalable, FedCust further employs a Bayesian-strengthened tuner to significantly accelerates the
hyperparameter customization speed. Extensive evaluation demonstrates that FedCust achieves
up to 7/2/4/4/6% better accuracy than the widely adopted one-size-fits-all approach on popular
FL benchmarks FEMNIST, Shakespeare, Cifar100, Cifar10, and Fashion-MNIST respectively,
while being scalable and reducing computation, memory, and energy consumption on the client
devices, without compromising privacy constraints.

* Corresponding author.
E-mail address: fyan@unr.edu (F. Yan).
1 Equal Contribution and Co-First Authors.

https://doi.org/10.1016/j.peva.2024.102450

Available online 16 November 2024

0166-5316/© 2024 Published by Elsevier B.V.

https://www.elsevier.com/locate/peva
https://www.elsevier.com/locate/peva
mailto:fyan@unr.edu
https://doi.org/10.1016/j.peva.2024.102450
https://doi.org/10.1016/j.peva.2024.102450
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2024.102450&domain=pdf

S. Zawad et al. Performance Evaluation 167 (2025) 102450

1. Introduction

Federated Learning (FL) has recently become a popular distributed learning paradigm that offers privacy and security protection
while supporting collaborative learning across different data owners (a.k.a, clients) [1,2]. Unlike traditional distributed learning,
in FL a shared global model is managed by a central server, and a random selection of client devices perform local learning with
on-device data in each training round. The clients then send the local learning model parameters to the centralized server for
aggregation (a.k.a, aggregator). Finally, the aggregated global model parameters are sent to a new random selection of the client
devices to perform the next training round. In this process, since the user data never leaves clients, data privacy is preserved.

Although FL provides support on privacy and security [3,4], achieving high accuracy in a FL setting is challenging due to data
heterogeneity [5,6], i.e., feature distribution is imbalanced among clients. Recent works try to alleviate the data heterogeneity
impact by introducing their own methods [7-9], but data heterogeneity still remains an open challenge [10,11].

Similar to conventional training, learning hyperparameters (e.g., learning rate, batch size) play an important role in Federated
Learning. Some recent works also explore hyperparameter customization for FL [12,13]. They adopt Random Search [14] or
Reinforcement Learning [15] on each device to find the most suitable hyperparameters for the client. However, our experimental
results show that the amount of resources required to perform such customized tuning is disproportionately high compared to the
cost of local training. For example, the tuning algorithms require many hundreds of train-and-evaluate iterations while, in contrast,
a client is typically selected only a few times to perform local training during the entire FL training process. This creates a vast
discrepancy in the hyperparameter customization vs. actual training cost which brings the question of whether the benefits of
hyperparameter customization is even worth it. In addition, the resources of client device in cross-device FL are usually highly
constrained [16-18] and our results show that the amount of computational, memory, energy, and time costs required for tuning
hyperparameters on most IoT and mobile clients may not even be feasible. There have also been ethical questions regarding the
heavy usage of user-owned devices for training third-party models and thus reducing the cost on clients as much as possible is
both urgent and critical [19,20]. Furthermore, existing works perform hyperparameter customization during each training round
and thus can significantly slowdown the training speed, e.g., tuning a set of hyperparameters with 100 combinations is similar to
perform 100x of local training and is thus roughly 100x slower training speed.

These observations lead us to a conundrum — performing Hyperparameter Customization on client devices is impractical due
to the resource costs and the slowdown of training, but at the same time it is difficult to offload hyperparameter customization
to the server without revealing client data or information. This motivates us to explore opportunities to perform hyperparameter
customization without using user data or information. Through extensive characterization experiments, our key discovery is that it
is not necessary to do hyperparameter customization for every client, and clients with similar data heterogeneity can use the same
hyperparameters to achieve good training performance.

Based on the key discovery, we propose FedCust, a privacy preserving hyperparameter customization framework for FL that
offloads the customization work to the server. In FedCust, clients are clustered into different heterogeneity groups according to
heterogeneity measurement metrics such as “Heterogeneity Index” [7]. Clients in the same heterogeneity group use the same
pre-tuned hyperparameters. To obtain pre-tuned hyperparameters, FedCust uses the proxy data from the initial model design
to emulate different heterogeneity groups, i.e., create non-IID datasets with different heterogeneity metric values, and then
perform hyperparameter customization for each group on the server side. In this way, the hyperparameters are tuned for each
heterogeneity group without accessing any client data nor information. To make the hyperparameter customization scalable, FedCust
further employs a Bayesian-strengthened tuner to significantly accelerates the hyperparameter customization speed. The pre-tuned
hyperparameters are stored in the Hyperparameter Reference Table (HRT) - a table whose row and column combinations embody
a specific heterogeneity group and the cell’s value is its corresponding optimal hyperparameter set. The HRT is very lightweight
(typically less than 1 KB) and is distributed to clients with model parameters. Clients choose the hyperparameters based on their
heterogeneity group.

We prototype FedCust on a real distributed FL testbed and evaluate its effectiveness and robustness using popular and
sophisticated FL benchmarks. Our evaluation results show FedCust offers superior performance over existing methods that are
heterogeneity-oblivious (such as [1,7,21,22]) and are on-par with the significantly more expensive on-client tuning methods [12,13].
For FEMNIST of LEAF [23], the most popular FL benchmark, we achieve up to 7% accuracy improvement as well as 2/4/4/6%
better accuracy than the widely adopted one-size-fits-all method for the Shakespeare, Cifar100, Cifar10, and Fashion-MNIST datasets
respectively. We show empirically that our method is scalable with the number of devices in the system, generalizable to different
data heterogeneity definitions and granularity, and completely reduces client-side tuning resource costs.

In summary, FedCust has two major advantages over all prior art. First, it completely offloads all tuning costs to the server and
imposes no additional overhead on resource-constrained client devices, which makes hyperparameter customization practical for
cross-device FL systems. And second, no client data is exposed throughout the whole process, which allows for preserving of privacy
constraints.

2. Background and related work
2.1. Data heterogeneity in federated learning

Data heterogeneity is an essential property of FL as clients usually have different amounts and distributions of data [24,25],
with the extent of data heterogeneity being much more pronounced than in conventional ML [10,25]. As such, there are lots of

S. Zawad et al. Performance Evaluation 167 (2025) 102450

recent works targeting at addressing this issue. The first line of works focus on designing a client selection policy for choosing
devices with similar data distribution, such as [9,26-29]. Another line of works propose strategies to identify which parts of the
model are mostly affected by data heterogeneity, and then apply regularization methods (such as weight regularization) to correct
them, some examples being [19,30]. Finally, another line of works innovate on the aggregation algorithms to mitigate the data
heterogeneity impact in FL. For example, [31] proposes three different server-side optimization algorithms. FedDF [32] allows
flexible aggregation over heterogeneous client models by using ensemble distillation, while [33] uses means and medians instead
of mean for aggregation. Some papers such as [34-36] also fundamentally change the system architectures by enabling server-side
training and hierarchical aggregation. In this work, we focus on hyperparameter customization, which is complementary to all the
above works and we demonstrate in our evaluation that together with our methodology, the performance can be further improved.

2.2. Hyperparameter optimization

2.2.1. One-size-fits-all hyperparameter optimization for FL

The state-of-the-practice hyperparameter optimization in FL is to hand tune a single set of hyperparameters and apply them to
all clients indistinguishably. Some recent works aim at improving this process by using different approaches. [37] adopts Bayesian
Optimization to tune the local training hyperparameters on-device individually, but does not customize the hyperparameters
individually. Rather, it trains the acquisition function based on clients’ data and uses it to predict a final global hyperparameter set
for the full system. [38] performs local Bayesian Optimization to find the best hyperparameters for differential privacy parameters,
but not for local training hyperparameters. [39] performs an evaluation of the [37] in an industrial setting, but does not propose
anything new. In addition, they perform the hyperparameter optimization on client devices, which slows down the training process
and degrades user experiences due to significantly longer computation and higher power consumption. In comparison, FedCust
offloads the tuning overheads to the server. FLoRA [40] optimizes hyperparameters by formulating a non-linear loss function and
optimizes it for decisions trees, but the approach is not generalizable for deep learning models.

2.2.2. Hyperparameter customization for FL

There are a few works explore hyperparameter customization for FL, but they either focus on certain aspect or require information
sharing that violates FL privacy requirements. FedProx [7] and FedNova [41] hand tunes the local number of SGD steps to reduce the
communication overheads, but such an approach does not apply to general hyperparameters. FedTune [42] focuses on tuning systems
hyperparameters instead of learning hyperparameters to minimize resource usage and their approach also requires expensive local
tuning. Genetic CFL [43] observes data directly to assign similar clients together into clusters. [13] uses Reinforcement Learning
(RL) to adapt the learning rates of clients over training rounds. It requires client information to train the RL model and the tuning
is performed on client devices, which slows down the training process and degrades user experiences due to significantly longer
computation and higher power consumption. In comparison, FedCust is a more general approach that supports other hyperparameters
beyond learning rate, batch size and offloads the tuning overheads to the server to reduce the burdens of client devices. FedCust
is designed to support a comprehensive range of commonly used parameters without restriction. The parameters selected for
demonstration in our paper were chosen specifically to showcase the effectiveness of our design. This holistic approach ensures that
all aspects of the model training process can be optimized to enhance overall performance. FedCust employs Bayesian Optimization
which is much more lightweight than RL, and requires no client information to meet stronger privacy requirements. FedEx [12] uses
One-shot Neural Architecture Search to develop customized models for each client, and also tunes the learning hyperparameters
along this process. Because they perform both architecture search and hyperparameter optimization on client during the training,
the overhead is even more expensive. We compare FedCust with [12,13] in our evaluations to further validate the advantage of
FedCust.

3. Federated learning hyperparameter optimization study

In this section, we first present a primer of FL. Then we explain why heterogeneity-aware hyperparameter optimization is critical
in Federated Learning. Finally, we discuss why it is prohibitively expensive to perform client-side hyperparameter customization
and whether it is possible to address this challenge by offloading hyperparameter customization to the server side.

3.1. Federated learning: A primer

Problem Formulation. The federated learning problem aims at learning a single, global model from data stored distributedly
on a large number of remote devices. Different from conventional distributed training, FL has the constraints that device generated
data is stored and processed locally, with only intermediate model updates being communicated periodically to a centralized server.
The server then performs an aggregation [44]. More formally, the goal of FL is to minimize the following objective function:

m
ming F(0), where F(6) := Y p,F,(6,D,) e))
i=1
Here, m is the number of devices. p; is a coefficient that determines the impact of each device, usually set to 1/m. F;(-) is the local
objective function for the ith device, and D; represents the local data on the ith device.

S. Zawad et al. Performance Evaluation 167 (2025) 102450

-O- H-oblivious

Test Accuracy (%)
(9,1
=}

0 500 1000 1500 2000
Training Rounds

(a)

~
w
o]
o

2 b
&s0 5%
] G 40
[re o
o
;25 % 20
((J).OO 0.25 0.50 0.75 0 8 24 40 56
LR Batch Size

(b) (c)

Fig. 1. Heterogeneity Impact - (a) Test accuracy vs. training rounds comparison. (b) The tuned learning rates and the corresponding number of clients that use
them. Derived after hand-tuning all clients. (c) Scalability of the number of training steps that must be run to tune hyperparameters with varying number of
clients in the system.

Data heterogeneity. One big challenge in solving the above problem lies in the heterogeneity in data D;. In FL, each client
has its own private data with different data distribution and data quantity. This data heterogeneity adds complexities in solving
Eq. (1), because it violates the independent and identically distributed (i.i.d.) data distribution assumption that many statistical
optimization methods (e.g. Stochastic Gradient Descent) rely on [25]. To further understand how data heterogeneity affects FL
performance, we need to look deeper into where data heterogeneity comes from. At the high level, there are two types of data
heterogeneity: heterogeneity in data distribution, and heterogeneity in data quantity. Data quality heterogeneity means the data from
different clients may have different types and features, which are often associated with the user behavior of the client devices. Take
image classification of cats and dogs as an example, cat-owners usually have more cat images than dog images on their phones. Such
data distribution heterogeneity may cause performance issues, e.g., a model trained on cat owners may have better performance
on cat images than dog images, and vice versa [1,7,25,29]. Some prior works propose different metrics to quantify heterogeneity
in data distribution for analysis and sensitivity experiments. For example, [45] uses Poisson distribution to synthetically distribute
the datasets across clients, while [46] uses Gaussian distributions. Recent papers use real-world distributions such as LEAF [23].
However, how to quantitatively measure heterogeneity in data distribution remains a challenging and open question.

Data quantity heterogeneity means that the amount of data may vary from client to client. This is also due to user behaviors. For
example, clients who text a lot have more data points to train for a word-prediction model than clients who text very little. Such
heterogeneity also impacts performance during the training process.

Privacy constraints. The problem gets even more complicated when taking privacy constraints into account, where the private
data of clients cannot be monitored nor manipulated (e.g., to create more balanced data across different devices). This means that
even if we can measure and characterize the data heterogeneity of a client, that data heterogeneity information must remain as
a black-box and cannot be shared outside of the client device. Without knowing the data heterogeneity information, conventional
wisdom for mitigating data heterogeneity impact is difficult to be adopted in FL [5], making it even harder to improve the FL process
based on data heterogeneity.

3.2. Heterogeneity-oblivious vs. Heterogeneity-aware hyperparameter optimization

In this section, we conduct an empirical study to understand the importance of heterogeneity-aware hyperparameter customiza-
tion, which adaptively chooses hyperparameters for individual client devices in FL. For detailed experimental setup, please refer
to Section 6.1. Our key intuition is that given the heterogeneity in client data, the hyperparameters for each client device should
be customized based on the data heterogeneity to facilitate the local learning process, and by improving the local learning of each
individual client we can obtain an overall improved global model. To test our hypothesis, we design a simulation experiment to
compare the performance of the following two different approaches.

+ Heterogeneity-oblivious (H-oblivious): Following the common practice of FL (such as FedAvg [1]), we hand tune a global set
of hyperparameters and use it across all clients.

+ Heterogeneity-aware (H-aware): We hand tune the hyperparameters for each client to have customized hyperparameters per
client.

S. Zawad et al. Performance Evaluation 167 (2025) 102450

) 40 50
‘;’:’10 30 40
v 8
= 30
5 6 20 20
5 4 10
2 5 10
0 le-4 le-3 le-2 le-1l 1.0 8 24 40 56 1 10 20 30
(a) Sample set 1
nls 100 50
c 80 20
210 60 30
t._) 5 40 20
: 20 10
0 0
0 le-4 le-3 le-2 le-1 1.0 8 24 40 56 1 10 20 30
(b) Sample set 2
80
15
£ 60 60
210
S 40 40
% 5 20 20
* 0 0 0
le-4 le-3 le-2 le-1 1.0 8 24 40 56 1 10 20 30
Local Epochs Batch Size Local Epochs

(c) Sample set 3

Fig. 2. Heterogeneity-aware Tuning Configurations - The Learning Rate, Batch Size and Local Epoch parameter value distributions across distinct client sets
chosen after Heterogeneity-aware tuning. Each of the client sets is mutually exclusive and sampled as 10% from the full LEAF dataset.

In the experiment, we use FEMNIST from LEAF [23], a popular image classification benchmark with data heterogeneity (see
Section 6). We hand tune the local hyperparameters learning rate, batch size, and local epochs (defined as the number of training
epochs at each client) for each client. We follow the literature [23] to set the search range of hyperparameters for the learning rate
between 0.0001 to 0.1, the batch size between 8 to 64, and the local epochs between 1 to 30 which gives us a total number
of combinations (or search space) of 24,000 (details explained in the next section). We apply grid search to identify the best
hyperparameters for individual clients. The distribution of the learning rates are given in Fig. 1(b) (batch sizes are given in
Table A.6).

The comparison of test accuracy curves across training rounds is shown in Fig. 1(a). We can see Heterogeneity-aware outperforms
Heterogeneity-oblivious in accuracy during the training process and yields a 7.4% better accuracy after the accuracy plateau. This is
presumably because the one-size-fits-all approach of Heterogeneity-oblivious is inevitably unfavorable for some clients no matter how
judiciously the tuning is due to the data heterogeneity across clients. On the other hand, the customization approach of Heterogeneity-
aware can tailor the hyperparameters for each client to maximize the performance benefits. Fig. 1(b) shows the hand-tuned learning
rate distribution across clients. The distribution demonstrates that while a majority of the learning rates are within the 0.0001 — 0.1
range, there are lots of clients requiring a much more diverse range of values, making it difficult to choose one set of hyperparameters
that work well for all clients. These results indicate that data heterogeneity-aware hyperparameter optimization approaches have the
potential to improve the learning performance compared to data heterogeneity-oblivious approaches.

To further understand the impact of data distribution on the impact on the hyperparameter choice, we perform experiments
where we vary the underlying data heterogeneity of the clients and derive their Heterogeneity-aware hyperparameters and observe
their differences. In Fig. 2, we sample different client distributions from LEAF’s FEMNIST dataset. It contains 62 classes of 805K
black-and-white 64 x 64 images which are hand-written by 3550 different users, and each user is represented as an individual
client. Thus the dataset provides a natural data distribution by default compared to other standard datasets which are usually IID
by nature and needs to be artificially split. Each of the clients also contain a variable amount of datapoints, thus representing data
quantity heterogeneity as well. For all our experiments, we randomly sample 200 clients (as is the standard practice [7,8,47]). For
this experiment, we sample different parts of the full dataset.

In Fig. 2, we show the results of the Hyperparameter-aware hyperparameter choices for different dataset samples. The samples
are chosen such that only clients with certain data quantities are used as the 200 clients in the full FL system. Lower data quantity
clients contain less number of classes and vice-versa, making it a simple metric for deriving different data heterogeneity distributions.
Sample sets 2 and 3 contain clients with >400 and <150 datapoints respectively while set 1 has a mixture of both. From the differences
in distribution, we can clearly see that the type of sampling has a significant impact on the hyperparameter choice. For Sample set
3 we have low number of datapoints and so seems to favor low learning-rates, batch sizes and local epochs since they tend to be
better at reaching the global minima faster for low-noise planes [48] (while the full system is heterogeneous, the data within each
client tend to be similar and thus less noise in the local datasets). For Sample set 2, we see the opposite effect due to more datapoints
and classes per client. Lower learning rates and batch sizes would result in overfitting on the larger and diverse datasets and so are
avoided. For Sample set 1, we see the hyperparameters are relatively more evenly spread out since it is a mixture of both. These
observations indicate that the underlying data quality and quantity distributions influence the tuning results significantly, and there
is a relationship between heterogeneity and chosen hyperparameter sets which we can exploit for reducing the search space.

S. Zawad et al. Performance Evaluation 167 (2025) 102450

60
.50
<40
>
230
2
e B B
10 &2
12 16 24 32 36 40 44
Search Space (x1000)
()
10!
200
_ T .
o =150
£ 10° T 53
@ = <9100
£ =] 2%
= lo-1 | — Sez-frch ? § 50
B Train
- - Q
865 i5 M1 1080Ti 102 10° 104
Hardware # of Clients
(b) ©

Fig. 3. Resource Cost and Scalability - (a) Energy spent per client for tuning hyperparameters (b) Time taken for each client for tuning and FL local training
(c) Scalability of the number of search steps that must be run to tune hyperparameters with varying number of clients in the system. The energy and time is
measured using the Android Profiler [49] over 200 clients with Samsung S20 devices.

3.3. Resource cost and scalability

Heterogeneity-oblivious methods only tune one set of hyperparameters and use it across all clients, so the tuning cost is not
associated with the number of devices. However, given that there could be millions or even billions of remote devices, data
heterogeneity-aware methods that perform customized tuning on each client would incur significant accumulated cost. More
importantly, clients in FL are usually IoT or mobile devices with limited computing capacity. Performing computing intensive
hyperparameter tuning tasks on these devices is slow and power demanding, which may significantly discourage user participation.
For this section, we evaluate the resource cost of Heterogeneity-aware tuning on low-powered devices to understand the cost-benefit
tradeoffs of performance benefit vs. resource usage.

For the first experiment, we compare the total power consumption on each client in the tuning phase. Fig. 3(a) shows the
median and quartiles of energy consumption of all 200 clients against the search space. Here we see that the energy consumption is
significantly high during the hyperparameter tuning phase. The most common mobile devices tend to have between 60kJ to 240kJ of
total battery life [50,511, and given that they usually run with multiple processes in the background, this load can make it infeasible
to tune on-device. Additionally, works such as [8,17,52,53] make the argument that the FL process must be minimally invasive which
may not be possible here as well. Next we look at the time spent tuning vs. training on-device across a wide range of hardware (the
results are presented in Fig. 3(b)). Here we train for 2000 rounds for 200 clients with 20 clients selected per round. For tuning, we
use the search space described above. The probability of having a client participate is very low. Even with a high number of epochs,
the small number of times a client gets selected means very minimal time is spent on the local training process, which is a desired
system property. Time spent tuning, however, requires many more training runs and is therefore exponentially more expensive than
the actual training phase. In resource-constrained systems, the clients’ may not be willing to bear this extra cost for the boost in final
model performance. These two results shows a significantly more cost in both time and energy for Heterogeneous-aware approach
since tuning hyperparameters requires considerable trial and errors, As pointed out in [21,29,53], clients can only be selected under
certain circumstances, such as when the devices are plugged in, not being used, with sufficient memory, to avoid impacts on the
user experience. Under such criteria, a significantly longer tuning and training time, resource consumption may prevent a large
portion of clients from participating in the training process.

Scalability is also a challenge for heterogeneity-aware tuning approaches. For the heterogeneity-oblivious tuning approach (the
global tuning), the traditional method is to train the full FL system for a few rounds for each hyperparameter set being trialed [27,29].
For the Heterogeneity-aware approach, we explore each hyperparameter set by first selecting a subset of clients randomly and training
the client with the set for a few local epochs and evaluate its final model performance, eventually selecting the best set for that
client. In Fig. 3(c), we show the total number of training iterations involved to find a good set of hyperparameters (i.e. Search Steps)
against the number of clients involved in the training process. We see that there is a linear increase of the number of search steps
proportional to the number of clients. given that the tuning cost is already expensive for each device, this linear scaling is also
highly costly for the full system. As such, in order to design a resource-efficient Heterogeneity-aware FL tuning framework, we must
offload the search phase from the clients.

S. Zawad et al. Performance Evaluation 167 (2025) 102450

Table 1
Optimal learning rates - Under different data heterogeneity levels, batch sizes, and data sizes.
Heterogeneity index Batch size/Number of data points
5/400 10/400 20/800 30/800
0.15 0.021 0.04 0.041 0.061
0.50 0.032 0.065 0.071 0.105
0.75 0.042 0.086 0.081 0.125

4. Hyperparameter customization offloading

Considering the prohibitively expensive cost for client-side heterogeneity aware hyperparameter customization, one natural
question is: would it be possible to offload hyperparameter customization to the server side to reduce the cost? Even though offloading the
hyperparameter customization process to the server side seems straightforward as servers are usually hosted in the cloud or data
centers with plenty of computing resources, it is actually very challenging. Due to the privacy constraints in FL, neither the data
nor the properties of data (e.g., including the data heterogeneity information) of a client can be shared with the server. Without
knowing the data properties, offloading tuning to the server becomes difficult as the hyperparameters are blind to the clients’ needs.

Given the restrictions on client data, directly customizing hyperparameters using client data on the server side is infeasible.
However, given that hyperparameters are highly influenced by data distribution, it raises an interesting question: can we categorize
datasets based on their data distribution characteristics and apply the same set of hyperparameters to each category? In other words,
can hyperparameters that are tuned to account for data heterogeneity provide consistent results across various datasets? To test this
out, we first have to define a quantitative measure of data heterogeneity. We define Heterogeneity Index following literature [25,29,
54]. Heterogeneity Index, denoted as H I(c), is defined as a normalized measurement of data distribution heterogeneity:

HI(C)=1—;1X(C_1)’Ce[1’cmax] 2

max

where ¢ controls the heterogeneity by adjusting the number of classes per client out of the total number of classes c,,,, in the full
dataset. H I(c) ranges from O to 1, where O represents a completely balanced synthetic dataset and 1 means there are only data points
with 1 class on the device, which is the highest level of imbalanced data distribution possible. We then run a simple experiment
where we use 6 different datasets with data quantity of 400 and 800 combined with HI of 0.15, 0.5, and 0.75 respectively. We
set the batch size of 5 and 10 for 400 samples dataset, and 20 and 30 for 800 samples dataset respectively. We hand tune the
learning rate to achieve the best performance. The optimal learning rates is shown in Table 1. We can see the optimal learning rates
have a clear pattern — with the increasing of heterogeneity level while other factors are the same, the learning rate increases. Also, with
more training steps (the ratio of data set size and batch size), the learning rate also increases. This observation is corroborated by
the paper [48], where they derive the relationship between the noise scale, i.e., the magnitude of the random fluctuations in the
training dynamics, and the learning hyperparameters. Specifically, they suggest that the learning rate should increase with increased
noise scale. In the federated learning case, the higher the heterogeneity, the noisier the training process [25,55] which is why we
observe that an increase in data heterogeneity requires higher learning rates. Such a pattern seems to be helpful in making offloading
hyperparameter customization on the server side possible even without the client data, since we can estimate the learning rate for
a client device based on the shared pattern in data heterogeneity. Fig. 4(a) shows the pattern of the optimal learning rates for
the system’s corresponding HI (Hand-tuned LR). We fit a quadratic regression model (Estimated LR) and interpolate the LR values
for other HI. Fig. 4(b) shows the difference of the accuracies derived with the interpolated learning rates against their optimal
hand-tuned values. For example, here if we estimate the learning rate at HI 0.36 via interpolation, the estimated learning rate is
0.029, very close to the actual optimized learning rate 0.034. However, we observe from Fig. 4(b) that the accuracy when using
the estimated learning rate is around 15% lower than the accuracy of tuned learning rate. This study suggests it is challenging to
utilize the patterns of hyperparameters for estimating optimal hyperparameter values to reduce the tuning cost since the learning
rates are very sensitive. However, this pattern is sufficient such that it can be used by the acquisition functions in BO as a guide
during the exploration phase e.g., by avoiding exploring known bad hyperparameters (see Table 2).

5. Fedcust : Heterogeneity-aware hyperparameter optimization

In summary, we make the following key observations from the above sections. First, there can be significant increase in final
model performance if hyperparameters are tuned to fit the local data than using a single global Heterogeneity-oblivious set, and that
the data distribution per client is influential here. Second, privacy requirements means that we have to tune hyperparameters on
the client hardware if we are to achieve good results. Third, local tuning is prohibitively expensive, especially on mobile hardware
which is the majority of the system in cross-device FL and so we must design a technique to reduce this burden. Lastly, it is possible
to offload hyperparameter tuning to the server, but special considerations must be taken into account when doing so. Based on
these insights grained, we propose an efficient and scalable hyperparameter customization framework named FedCust that offloads
hyperparameter customization to the central server without violating privacy constraints. We describe the proposed system in this
section.

S. Zawad et al. Performance Evaluation 167 (2025) 102450

0.04 '
P

0.02 —%— Hand-tuned LR

------- Estimated LR
0.00 0.0 0.2 0.4 0.6 0.8 1.0
Heterogeneity Index
(2)

100
< EEE Hand-tuned LR Estimated LR
< 75
3
& 50
.E 25
[T

0

0.17 0.36 0.6 0.7
Heterogeneity Index

(b)

Fig. 4. Comparison of Tuning Methods - (a) Hand-tuned vs. estimated Learning Rate (LR) under different heterogeneity index. Estimation is done via regression
fitting. (b) Final test accuracy comparison between hand-tuned vs. estimated LR under different heterogeneity index.

Table 2

Training setup - Describes the model, number of train/test datapoints, clients and global hyperparameter sets.
Dataset Model Train/Test split Clients Total/Per round Global LR/Batch size Training rounds
FEMNIST 2 conv 2 dense 49,644/6,200 192/10 0.0004/8 2000
Shakespeare 128 hidden size LSTM 74,000/13,000 10/1 0.0003/4 100
Cifar100 Resnet18 50,000/10,000 50/5 0.045/16 1000
Cifar10 4 conv 2 dense 50,000/10,000 50/5 0.05/16 500
F-MNIST 2 conv 2 dense 50,000,/10,000 50/5 0.002/8 500

5.1. Proxy dataset-based hyperparameter customization

Based on our observations, we know that per-client customized tuning based on data distribution can yield a significant boost in
model performance, but privacy and resource constraints can make this impossible for cross-device FL systems. The main problem
here is to enable hyperparameter tuning to be performed on the server without being able to directly access client data. We tackle
this problem by using a representative dataset called the proxy dataset. The main idea for FedCust is to manually configure this
dataset to be representative of the underlying clients’ data distributions and perform the hyperparameter customization process on
it on the server side. This allows us to search hyperparameters without any client information nor accumulated client information being
shared with the server. and offloading the tuning overhead to the server completely. Our observations from the previous section showed
that the hyperparameters are correlated with data heterogeneity. Using this intuition, we can create a set of proxy datasets with
different heterogeneity characteristics and tune the hyperparameters on those sets. Then by grouping clients based on their data
heterogeneity characteristics to a similar proxy set, we can reuse the corresponding tuned hyperparameters of the proxy set on the
clients.

Now, the main question here is how to derive a good proxy dataset such that it is representative of the underlying data. In
practical FL settings, proxy datasets are quite common. They are used for developing the model architecture and tune the global
hyperparameter set. In practice, such a dataset can be provided by the model developers, or from user-shared/publicly available
data [56,57]. For example, the initial training datasets used by the model developers when designing the architecture are derived
from public datasets [11,58], or some datapoints are scrapped from consenting users to tune the global hyperparameters [8,56,57].
We can use the same datasets for our case as well for two main reasons - (1) the model itself is designed based on this proxy dataset
so they are well suited to each other, and (2) the global hyperparameter is tuned on it to capture the correct features in the first place.
Therefore, the proxy dataset only needs to reflect some general information about the task such as the number of classes and input
dimensions. This is done in practice by using similar datasets. For example, MNIST [59] is used as proxy for Fashion-MNIST [60]
due to having similar input features and classes even though they are separate datasets. The important point to note here is that this

S. Zawad et al. Performance Evaluation 167 (2025) 102450

Server | Proxy Data Generate proxy dataset with different quantity and distribution
| 1 S 0 Generator heterogeneity.

Proxy Data
| Hyperparameter tuning on generated proxy dataset using Bayesian

[Generator

I | 9 Tuner Strengthened Tuner.

[I © Populate HRT Populate Hyperparameter Reference Table (HRT) and send to each
rk—————— = A

client.

CIFl’er(r;]tCi-ls;?e Profile data quantity and distribution heterogeneity of the client.
Look up Use profiled information to look up the HRT and apply the
HRT corresponding hyperparameters for training.

Local Training

Module Perform local training using selected hyperparameters.

Fig. 5. FedCust System Design - Shows the major steps involved in the tuning process.

allows us to have a representative dataset on the server without violating the clients’ privacy. We do an analysis on the impact of
proxy dataset choice in the Evaluation section to better understand how it impacts the hyperparameter search and training phases.

5.2. Privacy-preserving hyperparameter customization via hyperparameter reference table

Since the server does not have the client data, it is challenging to figure out what exact data heterogeneity the client data may
exhibit. To resolve this issue, FedCust takes a reference table based approach, where FedCust would explore a large number of
data qualities and quantities that represent different combinations of data heterogeneity. For each data heterogeneity point, FedCust
would let the server to perform a hyperparameter tuning to identify a set of promising hyperparameters under that point. The results
are recorded in a Hyperparamter Reference Table (HRT). HRT is a two-dimensional array where the rows are the data distribution
heterogeneity (e.g. Heterogeneity Index) and the columns are the data quantity. Each cell contains the hyperparameter sets for its
combination of quality and quantity properties.

In order for this HRT to function, we need to quantify the data quality and quantity such that each cell can represent a certain
type of data distribution as a measure of its combination of quality/quantity values. Quantity is a direct metric, but assessing data
quality is non-trivial. Ideally, data quality should be a measure of how much useful feature representations can be learned by a
model from that dataset. While this is well understood conceptually in literature [7,25], there is yet a formal quantifiable definition
for it, and this problem is over-arching for ML research in general. Data heterogeneity is a commonly-faced issue in FL and therefore
many works have provided metrics to quantify it in their own way. However, there has yet to be a single formal definition and
so we adapt these metrics for our purposes. These measures are usually based on class-wise random sampling methods. Some of
the most common definitions use Gaussian [61,62], Poisson [63,64], Dirichlet [65,66] distributions or the HI value for sampling
the from the full dataset. For example, the Gaussian mean and variance parameters determine the spread of the sampling of the
number of classes where higher variance values mean more evenly distributed the classes. Poisson and Dirichlet can also function
similarly, and HI functions as explained above. They are convenient to use since these functions are controllable, well-understood
and generalizable to different datasets (for non-classification tasks such as next-word prediction [67] we can sample based on the
similarity of the output word vectors [68]). While not directly a measure of “quality”, they have been found sufficient by the latest
FL literature and so we use them for our purposes as well.

After setting up the HRT with our chosen metrics, we sample from the proxy dataset such that the cell metrics (i.e. data quantity
and quality) are met. We then perform hyperparameter search to find the best hyperparameter set for that cell on that sampled
proxy dataset subset. We explain the search process in the next sub-sections. Once the HRT (example given in Table A.7) is fully
populated in this way, it is sent one way from server to clients. The table is typically a few KBs and sent with the global model, thus the
networking overhead is negligible. On the client-side, FedCust has a profiler that measures the local dataset’s data quality and data
quantity. This is profiler uses suitable distance metrics based on the quality metric used. For example, for HI, the Euclidean distance
is used. The client’s data heterogeneity is first calculated on the client side by measuring the number of classes and datapoints, which
can give us the HI number. Then the Euclidean distance between each of the cell’s row/column HI/quantity and the current client’s
measured HI and quantity is taken, and the most similar cell type to the client’s distribution is determined to be the one with the
lowest distance value. The client then uses the chosen cell’s hyperparameters for local training. Similarly, for Gaussian, Poisson and
Dirichlet distributions we use the Chi-squared [69] or B-distance [70] values. Note that our framework is generalizable to any type
of such metrics, even novel ones that do not rely directly on class quantities such as HI. For the rest of our paper we use HI as an
example since it is most intuitive but it should work well regardless of the choice of metric. The main idea here is to be able to
derive an HRT that can sufficiently capture the possible clients’ heterogeneity, which can be done with any suitable distribution
and distance metrics. We provide empirical results using different metrics in Section 6.

It is important here to note here that while the generation of the HRT occurs at the server, the distance between the cells
and the individual client’s local data distribution measures are only kept at the client. Only the client knows the combination of
quantity/quality that it has and selects the hyperparameter by itself. The server acquires no information from the clients at this
stage, making this a fully private mechanism.

S. Zawad et al. Performance Evaluation 167 (2025) 102450

By having each client look up the HRT to choose the best matching entry based on its profiler’s HI measure, the client then can
use the customized hyperparameters provided by HRT for local training. The rest of the FL training proceeds as usual. A description
of all the steps and a complete system overview is given in Fig. 5. Note that in this process, FedCust does not collect or monitor
client data, so it respects the privacy constraints of FL. At the same time, it also imposes almost no additional overhead to the clients.

5.3. Determining HRT granularity

Since the hyperparameters are tuned across each cell of the HRT, it is a direct determinant of the search space along in addition
to the hyperparameter ranges. The higher the granularity (i.e. the number of quantity/quality cell combinations) the more the search
overhead but more fine-grained the tuning and thus better local training results. Therefore, we need a mechanism to determine the
best suited granularity for the HRT. We do this by first setting up and populating a low-granularity HRT (for example, with 24
total cell combinations as in Table A.7), then selecting a client and measuring its data distribution distance to the closest HRT cell
as described above. Note that this too is generalizable to the heterogeneity metric choice. If this distance value is above a certain
threshold r, the client sends a signal to the server to ask it to increase its granularity. The server then increases the number of
quantity/quality rows and columns and finds the new hyperparameters for the new combinations, and FL training continues as
usual. The 7 value functions as a tradeoff threshold between search cost and tuning performance. We analyze its effect in Section 6
in more detail. This system is also private since the server still has no idea about the client’s data distributions but only that the
current available cells are insufficient for tuning.

At implementation, this calculation of the HRT granularity can be performed both before the training begins and online. The
former method can be applied by selecting client in a round-robin fashion to determine whether they require finer granularity
for HRT. The latter method can be performed during training when a client gets selected. Either way is equally effective, but the
latter method may cause delays per round if in the worst case scenario every client ends up asking for finer granularity. For the
experiments in Section 6, we first try our basic FedCust implementation with a static HRT to demonstrate that it is an efficient
FL hyperparameter tuning platform. We then add the HRT granularity determination on top of it to further enhance it for use in
real-world scenarios.

5.4. Scalable hyperparameter customization via Bayesian strengthened tuner

One challenge raised from creating the HRT is that because we have to cover a wide range of data heterogeneity (i.e. data
quantity and distribution), as well as different hyperparameters (e.g., learning rates, batch sizes), the combinations can be extremely
large and the customization process can still take excessively long to run even on the server side. To accelerate the customization
speed, we use Bayesian Optimization (BO) as our tuning method as it has been proven to be quite useful in hyperparameter
optimizations [71,72]. Here we leverage BO for tuning the hyperparameters in the tailored search space. For simplicity, we define
the search space for each cell in the HRT to be the same. For example, if we set the learning rate range between 0.002,0.8 with 0.002
increments (400 total learning rates), batch sizes 4,8, 16, and local epochs are 5, 10, 15, the total number of possible combinations
of hyperparameters are 3600 per cell.

BO judiciously selects the next points to explore based on the values of the predefined acquisition function obtained from previous
exploration steps. We use EI (Expected Improvement) [73] as our acquisition function as it does not require hyperparameter tuning
and it is easy for setting intuitive stop conditions. EI aims at maximizing the expected improvement from the new explorations over
the current best results and is defined as:

EI(Hp) = (y, — u(Hp)P(y(Hp)) + o (H p)$p(y(H p)) (3)

where u(-) and o(-) are the predictive mean function and predictive standard deviation function, respectively; y, is the best current
value at argminy, y(Hp); y(Hp) = %(H”) ; @(-) and ¢(-) are predictive cumulative distribution function of standard normal and
probability density function of standard normal. FedCust also creates a small FL simulator that runs for 20 rounds with 5 clients
which we find sufficient. This is done instead of simply evaluating it directly on a single client due our observations of fairness as
described in Section 3. By tuning on a single client, we risk yielding hyperparameters that overfit on the local dataset, thus reducing
generalizability. Instead, by participating in a full FL system, we find that the hyperparameters found are more suited to deriving
local models that result in a better overall global model. The dataset heterogeneity properties of these clients are set to those of the
cell which the optimizer is running on. The FL simulator returns the final accuracy as the function output, and the BO maximizes
this output.

To populate the HRT, FedCust uses the BO-based tuner to traverse through each of the possible combinations of quality and
dquantity, searching the full hyperparameter space to find the set that gives the highest accuracy. The search for each cell stops
when there was no increase in the FL simulator’s accuracy in the last n (e.g., 5) rounds. This traversal continues until we find a
hyperparameter set for each cell. Therefore, the total search space is number of possible hyperparameters (e.g., 3600) times the
number of cells.

We use BO to demonstrate how it can accelerate the construction of the HRT. However, our framework is also compatible with
other widely used hyperparameter tuning methods such as Reinforcement Learning and Evolutionary Algorithms. Users are free to
select and replace the tuner according to their specific needs.

10

S. Zawad et al. Performance Evaluation 167 (2025) 102450

=
~N O
U o

H-aware
-O- H-oblivious
—A— FedCust

500 1000 1500 2000
Training Rounds

N
w

Test Accuracy (%)
(6]
o

o
o

Fig. 6. Accuracy Curve Comparison - The test accuracy comparisons between FedCust, Hand-Tuned, and Global Tuning.

Table 3

Accuracy comparison - Accuracy over rounds comparison for different datasets.
Dataset Global tuning FedCust Hand-tuning
FEMNIST 74.14% 81.24% 81.64%
Shakespeare 50.99% 54.23% 55.13%
Cifar10 68.13% 72.32/% 72.66%
Cifar100 52.52% 56.21% 56.89%
F-MNIST 73.99% 79.73% 80.03%

6. Evaluation
6.1. Experiment setup

Data Heterogeneity. Due to the lack of production level user datasets, prior literature in FL [11,45,46,54,55] use controlled data
distribution heterogeneity. We follow these works for our evaluation as well. The total dataset is split into smaller separate datasets
which contains a specific data distribution and quantity heterogeneity (such as HI of 0.8 and 800 datapoints) and then assigned
to a client (details are provided in Appendix A.4). This is similar to the distribution strategies used in [25,29,54]. Such controlled
setups are usually for the purpose of a systematic characterization and clear analysis. It is worth noting that our approach does not
assume any specific patterns in data distribution heterogeneity and thus can be applied to any dataset. We also conduct experiments
using the Gaussian, Dirichlet and Poisson distributions as used by other papers [45,46], as well as the default distribution used in
LEAF [23] to demonstrate that our approach is general and does not depend on specific heterogeneity distribution.

Training and Proxy Dataset Setup. We perform our experiments using the popular image classification datasets FEMNIST [23],
Shakespeare [23], Cifar10/Cifar100 [74], and Fashion MNIST [60] (F-MNIST), details in Table A.6. We use the popular FEMNIST
dataset for the majority of our demonstrations (in the interest of space) since it was made specifically for benchmarking Federated
Learning applications.? Since it does not have a separate evaluation dataset, we use the same setup as in [23] and derive a balanced
test dataset of size 6200 by randomly sampling 100 datapoints per class from the unused datapoints. Unless otherwise specified,
the overall trends are consistent for other datasets too.

The set of proxy datasets are uniformly sampled from their full training datasets. Note that this sampled dataset is removed from
the full dataset. Therefore, all proxy datasets have no overlap with either training nor testing datasets. Proxy datasets in FEMNIST,
Shakespeare, CIFAR10, CIFAR100, and FashionMNIST (F-MNIST) contain 5000, 15000, 5000, 5000, and 4000 samples, respectively.
The remaining training datasets (after removing the sampled proxy datasets for training) are 44 664, 45000, 45000, and 46 000
samples, respectively. We control the different data distributions within each client by splitting them into groups and subgroups.
We first create 6 groups of clients by splitting them equally (e.g. in FEMNIST, 192 clients are split into 32 clients per group), and
assign each of these devices to get 100/200/400,/600,/800/1000 data points respectively. We further split these groups into 4 more
evenly split subgroups (e.g. in FEMNIST, 32 clients get split into 4 groups of 8). These groups are then assigned varying HIs between
0.2 and 1.0.

Hyperparameter Optimization Methods. We compare our BO-based solution to Random Search (method used by FedEx) and
Grid Search baselines since there are no dedicated hyperparameter tuning frameworks for FL. For Random Search, we perform
uniform random sampling from the full search space without replacement and keep the hyperparameter set that gives us the highest
accuracy per cell. In Grid Search, we traverse the full space in order and only keep the best hyperparameter set. The total search
space is 86,400 possible combinations of hyperparameters, as explained in the previous sections.

Testbed. We build a FL testbed using Tensorflow for the datasets by deploying each client on a cluster with its own exclusive
Intel Xeon 2.2 GHz CPU. The server (i.e. aggregator) is deployed on a separate node with 40 CPUs. FedCust’s Bayesian Strengthened
Tuner, Random Search and Grid Search are performed on the server. The server and the clients communicate their weights via
sockets.

2 https://github.com/TalwalkarLab/leaf}.

11

https://github.com/TalwalkarLab/leaf/

S. Zawad et al. Performance Evaluation 167 (2025) 102450

©
N

> |

»>

o]
o

—4&— Random Search
—O— FedCust
e Grid Search

%OO 20000 40000 60000 80000
of Exploitation Steps

~
o

Final Test Acc. (%)
~
e}

(a)

O
o

(=)}
o

Search Steps
(x1000)

Il FedCust
Random Search

30 FEMNIST Shakespeare Cifarl0 Cifarl00 F-MNIST

(b)

Fig. 7. Cost Comparison - (a) Test accuracy of the global model achieved with hyperparameters derived at different stages of tuning for the FEMNIST dataset.
(b) Tuning iterations comparison across different datasets.

Table 4
Accuracy Improvement - Increase in accuracy (%) over Global Tuning for different datasets and distribution metrics.
Dataset Gaussian (f = 15) Poisson (4 = 70) Dirichlet (a = 0.01)
Grid Random FedCust Grid Random FedCust Grid Random FedCust
FEMNIST 11.8 8.2 11.1 7.4 4.3 6.7 9.3 7.2 8.9
Cifar10 9.1 4.3 8.8 7.6 2.5 6.8 11.3 8.5 10.3
Shakespeare 3.1 1.2 2.9 1.3 0.4 0.8 2.4 1.7 1.9

6.2. Performance comparison

First, we run different datasets FEMNIST, Shakespeare, Cifar10, Cifar100, and F-MNIST separately with the FL setting. We
compare Global Tuning, FedCust, and Hand-tuning method, and present the best test accuracy achieved in Table 3. We can find that
our proposed method FedCust outperforms Global Tuning by a large margin in all models. For example, on FEMNIST dataset, the
test accuracy by FedCust improves more than 7% than Global Tuning (Fig. 6). On other datasets, FedCust still gets better accuracy
by at least 3.69% increase. On the other hand, the accuracies achieved with FedCust come very close to the Hand-Tuning method
with less than 1% margin of error. This demonstrates that our framework can achieve a model performance on par with the best
case. Apart from HI, state-of-the-art papers also use other methods of quantifying heterogeneity such as Gaussian, Dirichlet and
Possion distribution sampling for both quantity and distribution heterogeneity [31,54]. To demonstrate that FedCust works with the
other distribution metrics, we compare the accuracy increase we get after applying FedCust compared to Global Tuning. We do this
across the various metrics we discussed in Section 5.2, as shown in Table 4. For this experiment, we generated data quality and
quantity for each client with the mean sampling distribution parameters given in the table (set by following literature [62,64,66]).
The number of total clients, clients per round and all other setup parameters were kept the same as for the HI experiments. The
HRT and search space also uses the same cell granularities and search value ranges. Thus, with little changes in the overall BO and
HRT configurations, we can achieve reasonably good results. We observe that across all datasets, FedCust results in varying degrees
of accuracy improvement for all different types of data heterogeneity metrics. FedCust incurs significantly less cost for searching
than Grid Search yet yields final model improvements within 0.5% using a static HRT granularity and search space. These results
demonstrate that FedCust is generalizable to heterogeneity metrics or underlying data distributions, and can completely offload
hyperparameter tuning to the server. The main idea of simulating data distribution using proxy datasets and tuning on it instead of
on local devices is robust to whatever metric is used to measure the data distribution.

6.3. Hyperparameter optimization cost

We next evaluate the efficiency of FedCust’s tuner compared to Random Search and Grid Search (Hand-Tuning can be considered
as Grid Search). In Fig. 7(a), we show the test accuracies achieved by the FL system when using the hyperparameters found after
searching for that particular number of steps for the FEMNIST dataset. Each step represents the number of total hyperparameter
combinations searched. We observe that FedCust’s Bayesian Strengthened Tuner explores the space efficiently and achieves the same
accuracy as the Grid Search method (81.24%) after around 36,000 steps, which is less than half the total search space. For Random

12

S. Zawad et al. Performance Evaluation 167 (2025) 102450

)
as —& Local BO 8 o
o 8 1 o
§S pro- FedCustlo ° T 82_ =R
£3 | -0 FedCust-100 ® 5 6{ -@ Accuracy lgo® T
53 | -a FedCust-1000 58 s 58
£9 584 788 —
3% 5% v
n d © <2 1769
a = g &= [
1 2 3 4 — . 174
10 0% 10 10 071 7% 24 100 200
of Clients # of Cells T

(2) (b) ©

g Local BO EEE FedCust =~ o
Z100 - 2, a 25
= o =
S o “o 2o
Server Client Server Client Server Client
(d) (e) (H)

Fig. 8. Scalability of number of clients and HRT and Resource cost - (a) Number of iterations for tuning vs. number of clients in the FL system. This compares
the search cost scalability of FedCust against using local Bayesian Optimization. (b) The hyperparameter search space as a function of HRT cells against test
accuracy and cost using FEMNIST. (c¢) Analysis on how the HRT granularity varies depending on the 7 threshold between the current HRT data distribution
combination cells and actual data distribution. (d-f) Resource consumption of the various resources for Local BO and FedCust during hyperparameter tuning
with the 90th percentile.

Search, we show the mean accuracy vs. steps and their 95% error margin after 10 runs with different seeds. We find that while
some runs initially perform better than FedCust at around 5000 steps, eventually FedCust performs better. The mean number of
steps taken by Random Search is around 79,000 steps, which is more than twice as that for FedCust. The number of steps taken to
achieve terminal accuracy for the other datasets for FedCust and Random Search with their error margins are given in Fig. 7(b). We
see here that FedCust consistently outperforms Random Search across all of them.

6.4. Scalability

Given the large scale of mobile and IoT based Federated Learning [8], an good hyperparameter tuning framework should
efficiently scale with the number of participating client devices. To evaluate this, we perform the experiments as shown in Fig. 8(a).
Here, we change the number of FL clients present in the system and train them from scratch. We use the LEAF’s FEMNIST dataset
since it can provide 300,000 clients with their own individual data distributions. Here we compare the number of tuning iterations
needed for our FedCust against local Bayesian Optimization (Local BO) performed on each individual client. For FedCust, we run
multiple variations of the search algorithm with different HRT cell sizes labeled as FedCust-[size]. For Local BO, the black-box
function of the Bayesian Optimizer is the local training process and the tunable parameters are the learning rate, batch size and
number of local epochs, and we count the number of local optimization steps used until convergence.

As the results show in Fig. 8(a), scaling up the number of clients can significantly increase the number of tuning iterations
required to yield a good set of hyperparameters for every device for Local BO. The increase is linear, which is expected due to
the number of time the local Bayesian Optimization runs is directly proportional to the number of clients. For FedCust search, we
observe that the number of tuning iterations remains the same regardless of the number of clients. This is because FedCust does not
require the knowledge of the local datasets for search and therefore the number of clients is inconsequential to the search process.
Instead, we clearly see that the number of cells of the HRT is what impacts the tuning cost, which is because the search algorithm
only uses the cells of the HRT for tuning. We observe from these results that our method is scalable with the number of clients and
therefore can provide a practical method of hyperparameter tuning for large-scale FL systems.

6.5. HRT size

Fig. 8(b) shows the results of the sensitivity analysis of how the number of cells in the HRT impacts the search space. For
example, 1 cell means that only one set of hyperparameters is used to train the full system, i.e., a global tuning set. As we increase
the number of cells, there is a drastic increase in the total search space, making it expensive to tune. It also shows how the final
test accuracy for FEMNIST changes with varying number of HRT cells for our approach. It is clear that the benefits of increasing
the number of cells after 24 diminish greatly while the search space keeps on increasing. Thus, in our experiments, an HRT with 24
cell blocks strikes a good balance between search cost and accuracy. Specifically, we use HIs of 0.2,0.4,0.6,0.8 and data quantities
of 100,200,400, 600, 800, 1000 in our evaluation. We also perform an analysis of how the granularity threshold = impacts the size of
HRT size for the default system described at the start of this section (Fig. 8(c)). Since we are using HI as the data quality metric,
we use the Euclidean distance as the distance metric but it functions the same with other data quality metrics and its appropriate
distance measures (we remove the results in the interest of space). As we increase the threshold of z, we observe that the lower
the number of HRT cells are generated. This is because with a high threshold, there is larger room for error between the actual
client’s data distribution and the HRT’s data distribution. This results in more coarse-grained tuning since there is a larger difference
between the actual fine-tuned hyperparameters and the ones available in the HRT. As we know from Fig. 8(b), with increasing the

13

S. Zawad et al. Performance Evaluation 167 (2025) 102450

Table 5
Final model accuracy - Comparison of FedCust against the reported state-of-the-art performance. Missing values are due to them
not being reported in the paper.

Dataset Distr. Global FedCust FedEx FedRL
) 1D 81.1 83.9 - 84.3
Cifar10 Non-IID 50.4 53.2 - 52.9
1D 97.8 97.9 - 98.0
MNIST Non-IID 94.3 96.9 - 95.5
Shakesheare 1D 55.2 58.1 57.0 _
P Non-IID 52.2 55.0 54.6 -

number of cells results in better fine-tuning and thus better final model performance but at higher search cost. Therefore, the
distance threshold r acts as a trade-off parameter between search cost and final model accuracy, and can be set as per requirement
by the users. Additionally, users even can customize the HRT dimensions that they believe are most critical to their hyperparameter
tuning process, finer-grained metrics and additional dimensions could potentially contribute to overall performance, however, it
is important to carefully consider the trade-off between the size of the HRT and the associated computing and communication
overhead.

6.6. Resource cost

We next evaluate the memory, computation and power consumption of FedCust compared to the local BO method of tuning.
As mentioned above, FedCust offloads the complete search process on the server instead of executing them on the clients. Fig. 8
shows the results of memory, computation and power consumption on the mobile devices. For this experiment, we set up our
clients on a real Samsung S20 Android device (Qualcomm Snapdragon 855 chipset) and profile the resources using the Android
SDK Profiler [49]. Here we clearly see that our FedCust has almost 0 resource consumption across all resource types during the
hyperparameter tuning phase. The local BO consumes a large amount of resources since it requires the training and evaluation of
the deep models for every combination of hyperparameters explored on device, which is significantly more compared to the actual
rounds of training conducted when the client is selected. The offloading of the search process on the server by FedCust results in
more resource consumption on the server side but completely takes off the load from the device-side hardware. This is a extremely
beneficial in a mobile or IoT environment where these client devices will already have little available resources [75-77]. Thus, our
FedCust framework is proficient at conserving resources on the client-side as well as being scalable, privacy-preserving and effective.

6.7. Comparison against state-of-the-art

Few works have tackled the challenge of customized hyperparameter tuning for FL. While some of them tend to violate privacy
constraints [37,39], two of the latest works FedEx [12,13] (which we name FedRL for space) avoid this problem by performing
tuning on-device per client. Apart from the resource cost, they also have other drawbacks as pointed out in Sections Section 2. We
compare the results of FL training using our hyperparameter tuning against theirs, and the results are shown in Table 5.

Neither of them have their code open-sourced, so we report their numbers from the paper. We set up our FL system as closely
to their systems (i.e. the number of clients, clients per round and per-client data distribution) based on their descriptions. We then
use FedCust and determine the HRT size using the mechanism defined in Section 5.3. For Cifar10 and MNIST, we observe that our
method outperforms FedRL for the non-IID case. For the IID case, we are on par. This is due to data heterogeneity being a central
theme in our solution and IID data will not effect our tuning customization much. For Shakespeare, we use outperform in both
situations since FedEx’s focus is more on finding good models and ignore data heterogeneity and hyperparameter tuning mostly.

6.8. Compatibility with other heterogeneity-aware FL optimization

We perform additional experiments to demonstrate FedCust is compatible with other state-of-the-art heterogeneity-aware
optimizations in FL. In Fig. A.12, the first set of bars shows the comparison of test accuracy at convergence between global tuning
(Default) and FedCust when using LEAF’s default distribution. We observe that using our customized hyperparameter tuning can
achieve an accuracy improvement of around 2.3%. The second set of bars show the change in accuracy when using FedAdagrad [31]
by itself (Default) versus adding FedCust on top of it (FedCust). We observe that with the help of FedCust, the final accuracy is
improved around 4%, confirming that FedCust and FedAdagrad are complementary to each other and can be combined to achieve
an even better performance.

6.9. Impact of proxy dataset quality

For the proxy dataset, we assume it contains no knowledge about the training data. In this section, we evaluate the extreme case
where the proxy dataset is completely different from the training data. We emulate this situation by using a completely different
dataset that has the same number of classes as the proxy dataset to generate the HRT and the accuracy results are present in Fig. 9(b).
We observe that in such an extreme scenario, the accuracy indeed drops compared to using a better proxy dataset. However, our
approach still outperforms the one-size-fits-all baseline. This verifies that a better quality proxy dataset would indeed improve the
model performance, but our method is robust even with a very poor quality proxy dataset.

14

S. Zawad et al. Performance Evaluation 167 (2025) 102450

Hl Default v/ FedCust
80

FedAvg FedAdagrad FedProx SCAFFOLD

Accuracy %)

Dataset
(@)
HEl Global
§ 80 @Zm FedCust (Bad Proxy)
> N\ FedCust (Good Proxy)
@ 75
=}
g 70
<(
FEMNIST Cifarl0 F-MNIST
Dataset

(b)

Fig. 9. Compatibility with other frameworks, robustness of proxy datasets. (a) Final test accuracy of state-of-the-art FL frameworks when used with and without
FedCust. (b) Test accuracy comparison of one-size-fits-all approach (labeled as Global), FedCust with extremely poor quality of proxy dataset (i.e., use Double
MNIST, Cifar100 and MNIST as proxy dataset for FEMNIST, Cifar10 and F-MNIST as training dataset labeled as FedCust (Bad Proxy)), and FedCust using the
same datasets for proxy and training, though no overlapping between proxy and training labeled as FedCust (Good Proxy).

7. Conclusion

In this paper, we provide new insights for efficient hyperparameter customization in FL by identifying the opportunities and
challenges via empirical experiments. We observe that the hyperparameter choices vary depending on data heterogeneity and we
can group clients based on heterogeneity to share hyperparameters. Inspired by our study, we propose FedCust, a privacy preserving
and data heterogeneity-aware hyperparameter customization framework for FL which customizes hyperparameters for clients on
the server side to avoid imposing overheads on client devices. The core of FedCust is the use of heterogeneity measurement metrics
for clustering clients into heterogeneity groups and a sever-side proxy dataset based hyperparameter customization approach for
addressing the privacy and tuning cost challenges. We evaluate FedCust in a real testbed and show that it outperforms baselines and
state-of-the-art methods. Therefore, FedCust is an effective, privacy-preserving, scalable, and robust hyperparameter customization
framework for FL that incurs no additional computational cost on client devices.

CRediT authorship contribution statement

Syed Zawad: Writing — review & editing, Writing — original draft, Visualization, Validation, Software, Methodology, Formal
analysis, Data curation, Conceptualization. Xiaolong Ma: Writing — review & editing, Writing — original draft, Visualization,
Validation, Software, Methodology, Formal analysis, Data curation, Conceptualization. Jun Yi: Writing — review & editing, Writing
- original draft, Visualization, Validation, Software, Methodology, Formal analysis, Data curation, Conceptualization. Cheng Li:
Writing — review & editing, Writing — original draft, Resources, Methodology, Formal analysis, Conceptualization. Minjia Zhang:
Writing — review & editing, Writing — original draft, Software, Resources, Methodology, Investigation, Formal analysis, Conceptu-
alization. Lei Yang: Conceptualization, Supervision. Feng Yan: Writing — review & editing, Writing — original draft, Visualization,
Validation, Supervision, Software, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal
analysis, Data curation, Conceptualization. Yuxiong He: Supervision, Software, Resources, Project administration, Investigation,
Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by NSF CAREER-2305491.

15

S. Zawad et al. Performance Evaluation 167 (2025) 102450

Table A.6
Training setup.

Dataset Model Train/Test split Clients total/Per round Global LR/Batch size Training rounds
FEMNIST 2 conv 2 dense 49,644/6,200 192/10 0.004/8 2000

Cifar100 Resnet18 50,000/10,000 50/5 0.045/16 1000

Cifar10 4 conv 2 dense 50,000/10,000 50/5 0.05/16 500

F-MNIST 2 conv 2 dense 50,000/10,000 50/5 0.002/8 500

Table A.7

HRT - Sample HRT for HI data quality metric. Each cell contains the tuned learning rate, batch size, local epochs
for that distribution combination. The HI can be substituted with any other heterogeneity metric, and is shown
as an example only.

of data points

100 20 L 1000
0.2 2e-4/8/4 5e-4/8/6 - 5e-4/8/20
HI 0.4 4e-4/8/15 2e-3/6/20 - 2e-3/24/20
1.0 4e-3/8/8 4e-3/16/20 - 4e-3/16/30

I Space
—@— Accuracy

oON B O

Search Space
(x100000)

(S}
<<
764
748

6 24 100 200

of Cells

Fig. A.10. Sensitivity analysis - The hyperparameter search space as a function of HRT cells against test accuracy and cost using FEMNIST.

9 8

-~ . H

%6 7] Gaussian
o (XX] Poisson
24

g

<2

FEMNIST Cifar10 Cifar100 F-MNIST

Fig. A.11. Final test accuracy - Comparison between global, FedCust with transferred dataset and FedCust on original dataset.

Appendix. Supplementary materials

A.1. Sensitivity analysis of HRT size against accuracy

Fig. A.10 shows the results of the sensitivity analysis of how the number of cells in the HRT impacts the search space. For
example, 1 cell means that only one set of hyperparameters is used to train the full system, i.e., a global tuning set. As we increase
the number of cells, there is a drastic increase in the total search space, making it expensive to tune. Fig. A.10 shows how the final
test accuracy for FEMNIST changes with varying number of HRT cells for our approach. It is clear that the benefits of increasing
the number of cells after 24 diminish greatly while the search space keeps on increasing. Thus, in our experiments, an HRT with 24
cell blocks strikes a good balance between search cost and accuracy. Specifically, we use HIs of 0.2,0.4,0.6,0.8 and data quantities
of 100,200, 400, 600, 800, 1000 in our evaluation.

A.2. Robustness to data heterogeneity metrics

Apart from HI, state-of-the-art papers also use other methods of quantifying heterogeneity such as Gaussian and Possion
distribution sampling (for both quantity and distribution heterogeneity) [31,54]. To demonstrate that FedCust works with other
distribution metrics, we compare the accuracy increase we get after applying FedCust compared to Global Tuning. We do this across
the heterogeneity types HI, Gaussian, and Poisson, and the results are presented in Fig. A.11. We observe that across all datasets,
FedCust results in varying degrees of accuracy improvement for all different types of data heterogeneity metrics. This demonstrates
that our framework is robust to different types of data distribution metrics.

16

S. Zawad et al. Performance Evaluation 167 (2025) 102450

85.0
82,5
X
<80.0
Q
<775

HEl Default v/ FedTune

75.0

LEAF Distr. FedAdagrad

Fig. A.12. Final test accuracy comparison - Comparison between global and FedCust when using LEAF’s [23] default distribution (LEAF Distr.) and when used
with and without FedCust.

A.3. Compatibility with other heterogeneity-aware FL optimization

We perform additional experiments to demonstrate FedCust is compatible with other state-of-the-art heterogeneity-aware
optimizations in FL. In Fig. A.12, the first set of bars show the comparison of test accuracy at convergence between global tuning
(Default) and FedCust when using LEAF’s default distribution. We observe that using our customized hyperparameter tuning can
achieve an accuracy improvement of around 2.3%. The second set of bars show the change in accuracy when using FedAdagrad [31]
by itself (Default) versus adding FedCust on top of it (FedCust). We observe that with the help of FedCust, the final accuracy is
improved around 4%, confirming that FedCust and FedAdagrad are complementary to each other and can be combined to achieve
an even better performance.

A.4. Training and proxy dataset setup

We perform our experiments using the popular image classification datasets Cifar100, Cifar10 and Fashion-MNIST. We also
use the widely used FEMNIST dataset, which is a handwritten digit and character image classification dataset made specifically
for benchmarking Federated Learning applications. It contains 62 classes and around 800,000 images split into 3550 clients. We
sample from it using the seed and sample found in their official repository in github® and our code.* Since it does not have a
separate evaluation dataset, we use the same setup in [23] and derive a balanced test dataset of size 6200 by randomly sampling
100 datapoints per class from the unused datapoints.

The set of proxy datasets are uniformly sampled from their full training datasets. Note that this sampled dataset is removed from
the full dataset. Therefore, all proxy datasets have no overlap with either training nor testing datasets. Proxy datasets in FEMNIST,
CIFAR10, CIFAR100, and FashionMNIST contain 5000, 5000, 5000, and 4000 samples, respectively. The remaining training datasets
(after removing the sampled proxy datasets for training) are 44 664, 45000, 45000, and 46 000 samples, respectively.

We control the different data distributions within each client by splitting them into groups and subgroups. We first create 6
groups of clients by splitting them equally (e.g. in FEMNIST, 192 clients are split into 32 clients per group), and assign each of
these devices to get 100/200/400,/600/800/1000 data points respectively. We further split these groups into 4 more evenly split
subgroups (e.g. in FEMNIST, 32 clients get split into 4 groups of 8). These groups are then assigned HIs of 0.2, 0.4, 0.6 and 0.8.

References

[1] J. Kone¢ny, H.B. McMahan, F.X. Yu, P. Richtarik, A.T. Suresh, D. Bacon, Federated learning: Strategies for improving communication efficiency, 2016,
arXiv preprint arXiv:1610.05492.
[2] V. Smith, C.-K. Chiang, M. Sanjabi, A. Talwalkar, Federated multi-task learning, 2017, arXiv preprint arXiv:1705.10467.
[3] J. Liang, S. Li, B. Cao, W. Jiang, C. He, Omnilytics: A blockchain-based secure data market for decentralized machine learning, 2021, arXiv preprint
arXiv:2107.05252.
[4] Z. Zhang, R. Hu, Byzantine-robust federated learning with variance reduction and differential privacy, in: 2023 IEEE Conference on Communications and
Network Security, CNS, IEEE, 2023, pp. 1-9.
[5] T. Li, AK. Sahu, A. Talwalkar, V. Smith, Federated learning: Challenges, methods, and future directions, IEEE Signal Process. Mag. 37 (3) (2020) 50-60.
[6] Y. Wang, D. Kumar, A. Chandra, Poster: Exploiting data heterogeneity for performance and reliability in federated learning, in: 2020 IEEE/ACM Symposium
on Edge Computing, SEC, IEEE, 2020, pp. 164-166.
[7] T. Li, AK. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, V. Smith, Federated optimization in heterogeneous networks, 2018, arXiv preprint arXiv:1812.06127.
[8] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Kone¢ny, S. Mazzocchi, B. McMahan, et al., Towards federated
learning at scale: System design, Proc. Mach. Learn. Syst. 1 (2019) 374-388.
[9] H. Wang, Z. Kaplan, D. Niu, B. Li, Optimizing federated learning on non-iid data with reinforcement learning, in: IEEE INFOCOM 2020-IEEE Conference
on Computer Communications, IEEE, 2020, pp. 1698-1707.
[10] C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, X. Liu, Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone
data, 2021, arXiv:2006.06983.
[11] H.B. McMahan, et al., Advances and open problems in federated learning, Found. Trends® Mach. Learn. 14 (1) (2021).
[12] M. Khodak, T. Li, L. Li, M. Balcan, V. Smith, A. Talwalkar, Weight sharing for hyperparameter optimization in federated learning, in: Int. Workshop on
Federated Learning for User Privacy and Data Confidentiality in Conjunction with ICML 2020, 2020.

3 https://github.com/TalwalkarLab/leaf/.
4 https://anonymous.4open.science/r/FLTUNE-EAD4/.

17

http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1705.10467
http://arxiv.org/abs/2107.05252
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb4
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb4
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb4
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb5
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb6
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb6
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb6
http://arxiv.org/abs/1812.06127
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb8
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb8
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb8
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb9
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb9
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb9
http://arxiv.org/abs/2006.06983
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb11
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb12
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb12
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb12
https://github.com/TalwalkarLab/leaf/
https://anonymous.4open.science/r/FLTUNE-EAD4/

S. Zawad et al. Performance Evaluation 167 (2025) 102450

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]

[27]
[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]

[53]
[54]

[55]
[56]
[57]

H. Mostafa, Robust federated learning through representation matching and adaptive hyper-parameters, 2019, arXiv e-prints, arXiv—1912.

J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (2) (2012).

M.A. Wiering, M. Van Otterlo, Reinforcement learning, Adapt. Learn. Optim. 12 (3) (2012) 729.

S. Savazzi, M. Nicoli, V. Rampa, Federated learning with cooperating devices: A consensus approach for massive IoT networks, IEEE Internet Things J. 7
(5) (2020) 4641-4654.

D.C. Nguyen, M. Ding, P.N. Pathirana, A. Seneviratne, J. Li, H.V. Poor, Federated learning for internet of things: A comprehensive survey, IEEE Commun.
Surv. Tutor. 23 (3) (2021) 1622-1658.

G. Lan, X.-Y. Liu, Y. Zhang, X. Wang, Communication-efficient federated learning for resource-constrained edge devices, IEEE Trans. Mach. Learn. Commun.
Netw. (2023).

A. Fallah, A. Mokhtari, A. Ozdaglar, Personalized federated learning: A meta-learning approach, 2020, arXiv preprint arXiv:2002.07948.

A.Z. Tan, H. Yu, L. Cui, Q. Yang, Towards personalized federated learning, IEEE Trans. Neural Netw. Learn. Syst. (2022).

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H.B. McMahan, S. Patel, D. Ramage, A. Segal, K. Seth, Practical secure aggregation for privacy-preserving
machine learning, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 1175-1191.

S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, Adaptive federated learning in resource constrained edge computing systems, IEEE
J. Sel. Areas Commun. 37 (6) (2019) 1205-1221.

S. Caldas, S.M.K. Duddu, P. Wu, T. Li, J. Kone¢ny, H.B. McMahan, V. Smith, A. Talwalkar, Leaf: A benchmark for federated settings, 2018, arXiv preprint
arXiv:1812.01097.

A. Ghosh, J. Hong, D. Yin, K. Ramchandran, Robust federated learning in a heterogeneous environment, 2019, arXiv preprint arXiv:1906.06629.

X. Li, K. Huang, W. Yang, S. Wang, Z. Zhang, On the convergence of FedAvg on non-IID data, in: International Conference on Learning Representations,
2019.

G. Ding, Z. Li, Y. Wu, X. Yang, M. Aliasgari, H. Xu, Towards an efficient client selection system for federated learning, in: International Conference on
Cloud Computing, Springer, 2022, pp. 13-21.

J. Qian, X. Fafoutis, L.K. Hansen, Towards federated learning: Robustness analytics to data heterogeneity, 2020, arXiv preprint arXiv:2002.05038.

J. Wolfrath, N. Sreekumar, D. Kumar, Y. Wang, A. Chandra, Haccs: Heterogeneity-aware clustered client selection for accelerated federated learning, in:
2022 IEEE International Parallel and Distributed Processing Symposium, IPDPS, IEEE, 2022, pp. 985-995.

Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y. Zhou, H. Ludwig, F. Yan, Y. Cheng, Tifl: A tier-based federated learning system, in:
Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing, 2020, pp. 125-136.

S.P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, A.T. Suresh, SCAFFOLD: Stochastic controlled averaging for federated learning, in: International
Conference on Machine Learning, PMLR, 2020, pp. 5132-5143.

S.J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Kone¢ny, S. Kumar, H.B. McMahan, Adaptive federated optimization, in: International Conference
on Learning Representations, 2020.

T. Lin, L. Kong, S.U. Stich, M. Jaggi, Ensemble distillation for robust model fusion in federated learning, 2020, arXiv preprint arXiv:2006.07242.

K. Pillutla, S.M. Kakade, Z. Harchaoui, Robust aggregation for federated learning, 2019, arXiv preprint arXiv:1912.13445.

X. Yao, T. Huang, R.-X. Zhang, R. Li, L. Sun, Federated learning with unbiased gradient aggregation and controllable meta updating, 2019, arXiv preprint
arXiv:1910.08234.

H. Zheng, M. Gao, Z. Chen, X. Feng, A distributed hierarchical deep computation model for federated learning in edge computing, IEEE Trans. Ind. Inform.
(2021).

W. Wu, L. He, W. Lin, R. Mao, Accelerating federated learning over reliability-agnostic clients in mobile edge computing systems, IEEE Trans. Parallel
Distrib. Syst. (2020).

Z. Dai, B.K.H. Low, P. Jaillet, Federated Bayesian optimization via thompson sampling, Adv. Neural Inf. Process. Syst. 33 (2020).

Z. Dai, B.K.H. Low, P. Jaillet, Differentially private federated Bayesian optimization with distributed exploration, Adv. Neural Inf. Process. Syst. (2021).
S. Holly, T. Hiessl, S.R. Lakani, D. Schall, C. Heitzinger, J. Kemnitz, Evaluation of hyperparameter-optimization approaches in an industrial federated
learning system, 2021, arXiv preprint arXiv:2110.08202.

Y. Zhou, P. Ram, T. Salonidis, N. Baracaldo, H. Samulowitz, H. Ludwig, FLoRA: Single-shot hyper-parameter optimization for federated learning, 2021,
arXiv preprint arXiv:2112.08524.

J. Wang, Q. Liu, H. Liang, G. Joshi, H.V. Poor, Tackling the objective inconsistency problem in heterogeneous federated optimization, Adv. Neural Inf.
Process. Syst. 33 (2020).

H. Zhang, M. Zhang, X. Liu, P. Mohapatra, M. DeLucia, Automatic tuning of federated learning hyper-parameters from system perspective, 2021, arXiv
preprint arXiv:2110.03061.

S. Agrawal, S. Sarkar, M. Alazab, P.K.R. Maddikunta, T.R. Gadekallu, Q.-V. Pham, Genetic CFL: hyperparameter optimization in clustered federated learning,
Comput. Intell. Neurosci. 2021 (2021).

B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-efficient learning of deep networks from decentralized data, in: Artificial
Intelligence and Statistics, PMLR, 2017, pp. 1273-1282.

C. Briggs, Z. Fan, P. Andras, Federated learning with hierarchical clustering of local updates to improve training on non-IID data, in: 2020 International
Joint Conference on Neural Networks, IJCNN, IEEE, 2020, pp. 1-9.

F. Sattler, S. Wiedemann, K.-R. Miiller, W. Samek, Robust and communication-efficient federated learning from non-iid data, IEEE Trans. Neural Netw.
Learn. Syst. 31 (9) (2019) 3400-3413.

T. Nishio, R. Yonetani, Client selection for federated learning with heterogeneous resources in mobile edge, in: ICC 2019-2019 IEEE International Conference
on Communications, ICC, IEEE, 2019, pp. 1-7.

S.L. Smith, P.-J. Kindermans, C. Ying, Q.V. Le, Don’t decay the learning rate, increase the batch size, 2017, arXiv preprint arXiv:1711.00489.

G. Inc, The android profiler, 2022, URL https://developer.android.com/studio/profile/android-profiler.

G. Callebaut, G. Leenders, J. Van Mulders, G. Ottoy, L. De Strycker, L. Van der Perre, The art of designing remote IoT devices—Technologies and strategies
for a long battery life, Sensors 21 (3) (2021) 913.

A. Zouinkhi, A. Flah, L. Mihet-Popa, A novel energy-safe algorithm for enhancing the battery life for IoT sensors’ applications, Energies 14 (20) (2021)
6613.

Y. Guo, Z. Zhao, K. He, S. Lai, J. Xia, L. Fan, Efficient and flexible management for industrial internet of things: A federated learning approach, Comput.
Netw. 192 (2021) 108122.

A. Imteaj, U. Thakker, S. Wang, J. Li, M.H. Amini, A survey on federated learning for resource-constrained IoT devices, IEEE Internet Things J. (2021).
S. Zawad, A. Ali, P.-Y. Chen, A. Anwar, Y. Zhou, N. Baracaldo, Y. Tian, F. Yan, Curse or redemption? How data heterogeneity affects the robustness of
federated learning, 2021, arXiv preprint arXiv:2102.00655.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, V. Chandra, Federated learning with non-iid data, 2018, arXiv preprint arXiv:1806.00582.

N. Guha, A. Talwalkar, V. Smith, One-shot federated learning, 2019, arXiv preprint arXiv:1902.11175.

T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, F. Beaufays, Applied federated learning: Improving google keyboard query suggestions,
2018, arXiv preprint arXiv:1812.02903.

18

http://refhub.elsevier.com/S0166-5316(24)00055-5/sb13
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb14
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb15
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb16
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb16
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb16
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb17
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb17
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb17
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb18
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb18
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb18
http://arxiv.org/abs/2002.07948
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb20
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb21
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb21
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb21
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb22
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb22
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb22
http://arxiv.org/abs/1812.01097
http://arxiv.org/abs/1906.06629
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb25
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb25
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb25
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb26
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb26
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb26
http://arxiv.org/abs/2002.05038
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb28
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb28
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb28
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb29
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb29
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb29
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb30
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb30
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb30
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb31
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb31
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb31
http://arxiv.org/abs/2006.07242
http://arxiv.org/abs/1912.13445
http://arxiv.org/abs/1910.08234
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb35
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb35
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb35
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb36
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb36
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb36
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb37
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb38
http://arxiv.org/abs/2110.08202
http://arxiv.org/abs/2112.08524
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb41
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb41
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb41
http://arxiv.org/abs/2110.03061
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb43
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb43
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb43
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb44
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb44
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb44
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb45
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb45
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb45
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb46
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb46
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb46
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb47
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb47
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb47
http://arxiv.org/abs/1711.00489
https://developer.android.com/studio/profile/android-profiler
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb50
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb50
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb50
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb51
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb51
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb51
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb52
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb52
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb52
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb53
http://arxiv.org/abs/2102.00655
http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1902.11175
http://arxiv.org/abs/1812.02903

S. Zawad et al. Performance Evaluation 167 (2025) 102450

[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]

[74]
[75]

[76]

[77]

H. Zhang, J. Bosch, H.H. Olsson, Engineering federated learning systems: A literature review, in: International Conference on Software Business, Springer,
2020, pp. 210-218.

Y. LeCun, The MNIST database of handwritten digits, 1998, http://yann.lecun.com/exdb/mnist/.

H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017, arXiv preprint arXiv:1708.07747.
A. Reisizadeh, F. Farnia, R. Pedarsani, A. Jadbabaie, Robust federated learning: The case of affine distribution shifts, Adv. Neural Inf. Process. Syst. 33
(2020) 21554-21565.

Z. Sun, P. Kairouz, A.T. Suresh, H.B. McMahan, Can you really backdoor federated learning? 2019, arXiv preprint arXiv:1911.07963.

N. Agarwal, P. Kairouz, Z. Liu, The skellam mechanism for differentially private federated learning, Adv. Neural Inf. Process. Syst. 34 (2021) 5052-5064.
T. Chen, X. Jin, Y. Sun, W. Yin, Vafl: a method of vertical asynchronous federated learning, 2020, arXiv preprint arXiv:2007.06081.

Q. Li, B. He, D. Song, Model-contrastive federated learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 10713-10722.

T. Li, S. Hu, A. Beirami, V. Smith, Ditto: Fair and robust federated learning through personalization, in: International Conference on Machine Learning,
PMLR, 2021, pp. 6357-6368.

A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner, C. Kiddon, D. Ramage, Federated learning for mobile keyboard
prediction, 2018, arXiv preprint arXiv:1811.03604.

M.T. Pilehvar, J. Camacho-Collados, Embeddings in natural language processing: Theory and advances in vector representations of meaning, Synth. Lect.
Hum. Lang. Technol. 13 (4) (2020) 1-175.

R.L. Plackett, Karl Pearson and the chi-squared test, Int. Statist. Rev./Rev. Int. Statist. (1983) 59-72.

T. Kailath, The divergence and bhattacharyya distance measures in signal selection, IEEE Trans. Commun. Technol. 15 (1) (1967) 52-60.

J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat, R. Adams, Scalable Bayesian optimization using deep neural
networks, in: International Conference on Machine Learning, PMLR, 2015, pp. 2171-2180.

J. Wu, S. Toscano-Palmerin, P.I. Frazier, A.G. Wilson, Practical multi-fidelity Bayesian optimization for hyperparameter tuning, in: Uncertainty in Artificial
Intelligence, PMLR, 2020, pp. 788-798.

E. Vazquez, J. Bect, Convergence properties of the expected improvement algorithm with fixed mean and covariance functions, J. Statist. Plann. Inference
140 (11) (2010) 3088-3095.

A. Krizhevsky, et al., Learning Multiple Layers of Features from Tiny Images, Technical Report, University of Toronto, 2009.

W.Y.B. Lim, N.C. Luong, D.T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, C. Miao, Federated learning in mobile edge networks: A comprehensive
survey, IEEE Commun. Surv. Tutor. 22 (3) (2020) 2031-2063.

C. Zhan, M. Ghaderibaneh, P. Sahu, H. Gupta, Deepmtl: Deep learning based multiple transmitter localization, in: 2021 IEEE 22nd International Symposium
on a World of Wireless, Mobile and Multimedia Networks, WoWMoM, IEEE, 2021, pp. 41-50.

M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: A survey on enabling technologies, protocols, and applications, IEEE Access 8 (2020)
140699-140725.

19

http://refhub.elsevier.com/S0166-5316(24)00055-5/sb58
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb58
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb58
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1708.07747
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb61
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb61
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb61
http://arxiv.org/abs/1911.07963
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb63
http://arxiv.org/abs/2007.06081
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb65
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb65
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb65
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb66
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb66
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb66
http://arxiv.org/abs/1811.03604
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb68
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb68
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb68
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb69
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb70
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb71
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb71
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb71
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb72
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb72
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb72
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb73
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb73
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb73
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb74
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb75
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb75
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb75
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb76
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb76
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb76
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb77
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb77
http://refhub.elsevier.com/S0166-5316(24)00055-5/sb77

	FedCust: Offloading hyperparameter customization for federated learning
	Introduction
	Background and Related Work
	Data Heterogeneity in Federated Learning
	Hyperparameter Optimization
	One-size-fits-all Hyperparameter Optimization for FL
	Hyperparameter Customization for FL

	Federated Learning Hyperparameter Optimization Study
	Federated Learning: A Primer
	Heterogeneity-oblivious vs. Heterogeneity-aware Hyperparameter Optimization
	Resource Cost and Scalability

	Hyperparameter Customization Offloading
	FedCust : Heterogeneity-aware Hyperparameter Optimization
	Proxy dataset-based Hyperparameter Customization
	Privacy-Preserving Hyperparameter Customization via Hyperparameter Reference Table
	Determining HRT Granularity
	Scalable Hyperparameter Customization via Bayesian Strengthened Tuner

	Evaluation
	Experiment Setup
	Performance Comparison
	Hyperparameter Optimization Cost
	Scalability
	HRT Size
	Resource Cost
	Comparison against State-of-the-art
	Compatibility with Other Heterogeneity-aware FL Optimization
	Impact of Proxy Dataset Quality

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Supplementary Materials
	Appendix. Supplementary Materials
	Sensitivity Analysis of HRT Size against accuracy
	Robustness to Data Heterogeneity Metrics
	Compatibility with Other Heterogeneity-aware FL Optimization
	Training and Proxy Dataset Setup

	References

