Check for
Updates

Towards Automated Model Design on Recommender Systems

TUNHOU ZHANG?®, Duke University, Durham, United States
DEHUA CHENG, Meta Platforms Inc, Menlo Park, United States
YUCHEN HE, Meta Platforms Inc, Menlo Park, United States
ZHENGXING CHEN, Meta Platforms Inc, Menlo Park, United States
XIAOLIANG DAI, Meta Platforms Inc, Menlo Park, United States
LIANG XIONG, Meta Platforms Inc, Menlo Park, United States
YUDONG LIU, Duke University, Durham, United States

FENG CHENG, Duke University, Durham, United States
YUFAN CAOQ, Duke University, Durham, United States

FENG YAN, University of Houston, Houston, United States

HAI LI, Duke University, Durham, United States

YIRAN CHEN, Duke University, Durham, United States

WEI WENT, Meta Platforms Inc, Menlo Park, United States

The increasing popularity of deep learning models has created new opportunities for developing Al-based recommender
systems. Designing recommender systems using deep neural networks requires careful architecture design, and further
optimization demands extensive co-design efforts on jointly optimizing model architecture and hardware. Design automation,
such as Automated Machine Learning (AutoML), is necessary to fully exploit the potential of recommender model design,
including model choices and model-hardware co-design strategies. We introduce a novel paradigm that utilizes weight sharing
to explore abundant solution spaces. Our paradigm creates a large supernet to search for optimal architectures and co-design
strategies to address the challenges of data multi-modality and heterogeneity in the recommendation domain. From a model
perspective, the supernet includes a variety of operators, dense connectivity, and dimension search options. From a co-design
perspective, it encompasses versatile Processing-In-Memory (PIM) configurations to produce hardware-efficient models.
Our solution space’s scale, heterogeneity, and complexity pose several challenges, which we address by proposing various
techniques for training and evaluating the supernet. Our crafted models show promising results on three Click-Through
Rates (CTR) prediction benchmarks, outperforming both manually designed and AutoML-crafted models with state-of-the-art

A majority of this work was done when the first author was an intern at Meta Platforms, Inc.
T Corresponding author. Intern Manager.

Authors’ Contact Information: Tunhou Zhang, Duke University, Durham, North Carolina, United States; e-mail: tunhou.zhang@duke.edu;
Dehua Cheng, Meta Platforms Inc, Menlo Park, California, United States; e-mail: dehuacheng@meta.com; Yuchen He, Meta Platforms Inc,
Menlo Park, California, United States; e-mail: yuchenhe@meta.com; Zhengxing Chen, Meta Platforms Inc, Menlo Park, California, United
States; e-mail: czxttkl@meta.com; Xiaoliang Dai, Meta Platforms Inc, Menlo Park, California, United States; e-mail: xiaoliangdai@meta.com;
Liang Xiong, Meta Platforms Inc, Menlo Park, California, United States; e-mail: Ixiong@meta.com; Yudong Liu, Duke University, Durham,
North Carolina, United States; e-mail: yudong.liu@duke.edu; Feng Cheng, Duke University, Durham, North Carolina, United States; e-mail:
feng.cheng@duke.edu; Yufan Cao, Duke University, Durham, North Carolina, United States; e-mail: yufan.cao@duke.edu; Feng Yan, University
of Houston, Houston, Texas, United States; e-mail: fyan5@central.uh.edu; Hai Li, Duke University, Durham, North Carolina, United States;
e-mail: haili@duke.edu; Yiran Chen, Duke University, Durham, North Carolina, United States; e-mail: yiran.chen@duke.edu; Wei Wen, Meta
Platforms Inc, Menlo Park, California, United States; e-mail: wewen@meta.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2770-6699/2024/12-ART

https://doi.org/10.1145/3706124

ACM Trans. Recomm. Syst.

HTTPS://ORCID.ORG/0000-0001-9590-9433
HTTPS://ORCID.ORG/0000-0002-6177-9834
HTTPS://ORCID.ORG/0000-0001-7447-6552
HTTPS://ORCID.ORG/0000-0002-5030-3005
HTTPS://ORCID.ORG/0000-0003-3098-2714
HTTPS://ORCID.ORG/0000-0003-4224-5797
HTTPS://ORCID.ORG/0009-0006-9878-3745
HTTPS://ORCID.ORG/0000-0002-5936-0030
HTTPS://ORCID.ORG/0009-0006-7747-5815
HTTPS://ORCID.ORG/0000-0001-9840-7754
HTTPS://ORCID.ORG/0000-0003-3228-6544
HTTPS://ORCID.ORG/0000-0002-1486-8412
HTTPS://ORCID.ORG/0000-0003-0027-4821
https://orcid.org/0000-0001-9590-9433
https://orcid.org/0000-0002-6177-9834
https://orcid.org/0000-0001-7447-6552
https://orcid.org/0000-0002-5030-3005
https://orcid.org/0000-0003-3098-2714
https://orcid.org/0000-0003-4224-5797
https://orcid.org/0009-0006-9878-3745
https://orcid.org/0000-0002-5936-0030
https://orcid.org/0009-0006-7747-5815
https://orcid.org/0000-0001-9840-7754
https://orcid.org/0000-0003-3228-6544
https://orcid.org/0000-0002-1486-8412
https://orcid.org/0000-0003-0027-4821
https://doi.org/10.1145/3706124
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706124&domain=pdf&date_stamp=2024-12-09

T. Zhang et al.

performance when focusing solely on architecture search. From a co-design perspective, we achieve 2x FLOPs efficiency, 1.8x
energy efficiency, and 1.5X performance improvements in recommender models.

1 Introduction

Recommender systems, which are widely used in search engines and social media platforms [6, 19] to optimize
Click-Through Rates (CTR), rely on deep learning-based models [9, 15, 26] that incorporate multi-modality features.
However, these models present challenges in feature interaction modeling and neural network optimization due
to the heterogeneity of the features. Finding a good backbone model with appropriate priors on multi-modality
features is standard practice, but it requires significant manual efforts [8, 16, 17, 21, 26, 28, 30, 31] and is limited
by available resources.

Automated Machine Learning (AutoML) techniques, such as Weight-Sharing Neural Architecture Search
(WS-NAS) [5, 23, 46], have shown promise in optimizing the design of efficient models for recommender systems
without human intervention. NAS seeks the best architecture choice within an abundant solution space, with
versatile search strategies [20, 25, 50] and evaluation strategies of models. However, these techniques face unique
challenges due to the multi-modality and heterogeneity of data and architecture in recommendation systems
compared to vision models. One challenge is that the inputs to building blocks in recommendation systems
are multi-modal and generate 2D and 3D tensors, whereas vision models have homogeneous 3D tensors [5,
37] as inputs. Additionally, while state-of-the-art NAS in vision converges to searching size configurations,
recommendation models are heterogeneous, with each stage using a different building block. Furthermore,
recommendation models use a variety of heterogenous operators, such as Fully-Connected layer [8], Dot-
Product [26], Multi-Head Attention [34], and Factorization Machine [16, 21]. In contrast, vision models mainly
use homogenous convolutional operators and backbone search on design motifs [5, 46], such as layer width,
layer depth, and kernel size. These challenges are further complicated by co-design tasks such as mixed-precision
quantization search, which can worsen the quality of the product driven by AutoML. Overall, there is a need for
more effective AutoML techniques that can handle the unique challenges of data multi-modality and architecture
heterogeneity in recommendation systems.

Due to the challenges above, the study of AutoML in recommender systems is limited. For example, search
spaces in AutoCTR [33] and DNAS [20] follow the design principle of human-crafted DLRM [26], and they only
include Fully-Connected layer and Dot-Product as searchable operators. They also heavily rely on manually
crafted operators, such as Factorization Machine [33] or feature interaction module [13] in the search space
to increase architecture heterogeneity. Moreover, existing works suffer from huge computation costs [33] or
challenging bi-level optimization [20]. Thus, they only employ narrow design spaces (sometimes with strong
human priors [13]) to craft architectures, discouraging diversified feature interactions and harming the quality of
crafted models.

We propose a full-stack solution paradigm to fully enable Neural Architecture and Parameter Search via
WS-NAS under data modality and architecture heterogeneity. We offer end-to-end solutions on model design

Table 1. Comparison of our approach vs. existing AutoML methods for recommender systems, from a model perspective.

Method Building Dense Full arch | Co-design | Criteo
Operators? Connectivity? | Search? | Support? | Log Loss
DNAS [20] FC, Dot-Product v 0.4442
PROFIT [13] FC, FM 0.4427
AutoCTR [33] | FC, Dot-Product, FM, EFC v v 0.4413
FC, Gating, Sum, Attention,
Ours Dot-Product, FM, EFC Y Y Y 0-4399

ACM Trans. Recomm. Syst.

Towards Automated Model Design on Recommender Systems «

and hardware co-design strategies. From a model perspective, we summarize the advancement of our proposed
paradigm over other NAS approaches in Table 1. We achieve this by building a supernet incorporating much more
heterogeneous operators than previous works, including a Fully Connected (FC) layer, Gate, Sum, Dot-Product,
Self-Attention, and Embedded Fully Connected (EFC) layer. In the supernet, we densely connect a cascade of
blocks, each including all operators as options. As dense connectivity allows any block to take in any raw feature
embeddings and intermediate tensors, the supernet is not limited by any particular data modality. Such supernet
design minimizes the encoding of human priors [47], supporting the nature of data modality and architecture
heterogeneity in recommenders and covering models beyond popular recommendation models such as Wide &
Deep [8], DeepFM [16], DLRM [26], AutoCTR [33], DNAS [20], and PROFIT [13]. Our approach also supports
the co-design of model and hardware (e.g., Processing-In-Memory architecture [45]), providing headroom for
improvement when deploying recommender models in reality. The ad-hoc analysis of structured pruning on our
crafted models further expands the opportunity to improve the efficiency of recommender models.

The supernet essentially forms a search space. We obtain a model by zeroing out some operators and connections
in the supernet; that is, a subnet of the supernet is equivalent to a model. All subnets share weights from the same
supernet called Weight Sharing NAS (WS-NAS). To efficiently search models/subnets in the search space, we
advance one-shot approaches [5, 46] to the recommendation domain. We propose Single-operator Any-connection
sampling to decouple operator selections and increase connection coverage, operator-balancing interaction blocks
to train subnets in the supernet fairly, and post-training fine-tuning to reduce weight co-adaptation. These
approaches enable a better training efficiency and ranking of subnet models in the supernet, resulting in ~0.001
log loss reduction of searched models on full NASRec search space. We further apply the search on model-hardware
co-design and study ad hoc structured pruning, unlocking extra benefits in the efficiency of recommender models.

From a model perspective, we evaluate our AutoML-crafted models on three popular CTR benchmarks and
demonstrate significant improvements compared to hand-crafted and NAS-crafted models. Remarkably, our
approach advances the state-of-the-art with log loss reduction of ~ 0.001 and ~ 0.003 on Criteo and KDD Cup
2012, respectively. On Avazu, our approach advances the state-of-the-art PROFIT [13] with AUC improvement of
~ 0.002 and on-par log loss while outperforming PROFIT [13] on Criteo by ~0.003 log loss reduction. Thanks to
the efficient weight-sharing mechanism, our approach only needs to train a single supernet, greatly reducing
the search cost. From a co-design perspective, we offer a detailed analysis to exploit the potential of our crafted
models and uncover 1.5X theoretical speedup on discovered models. The ad-hoc structured pruning achieves
~2x FLOPs saving without harming log loss and AUC on recommender benchmarks.

We demonstrate the outline of our manuscript as follows. Section 2 introduces the related work in recommender
systems. Section 3 elaborates on the search space from both the model and co-design perspectives. In Section
4, we propose the search methodology and demonstrate the main technologies. In Section 5, we evaluate our
crafted models on 3 CTR benchmarks, demonstrating state-of-the-art performance and uncovering theoretical
efficiency gain from model-hardware co-design. In Section 6, we provide ablation studies and discussions to
better understand our system and methodologies, including structured pruning to advance the model efficiency.
In Section 7, we present our conclusion. We summarize our major contributions below.

e We propose a new paradigm to scale up the automated design of recommender systems from both the model
and co-design perspectives. NASRec establishes a flexible supernet (search space) with minimal human priors,
overcoming data modality and architecture heterogeneity challenges in the recommendation domain.

e We advance weight-sharing NAS to the recommendation domain by introducing single-operator any-connection
sampling, operator-balancing interaction modules, and post-training fine-tuning.

e From a model perspective, our crafted models outperform hand-crafted and AutoML-crafted models with a
smaller search cost.

ACM Trans. Recomm. Syst.

T. Zhang et al.

e From a co-design perspective, we explore various choices to co-design model architecture with Processing-In-
Memory hardware, demonstrating significant speed-up headroom.

2 Related Work

Deep learning based recommender systems. Machine-based recommender systems, such as those predicting
Click-Through Rates (CTR), have been extensively studied using various approaches like Logistic Regression [30],
Gradient-Boosting Decision Trees [17], Wide & Deep Neural Networks [8], crossing networks [31], Factorization
Machines [16, 21], Dot-Product [26], and gating mechanisms [38, 39, 44]. Additionally, researchers have explored
efficient feature interactions via feature-wise multiplications [42] and sparsifications [10] to develop lightweight
recommender systems. However, these methods require significant manual efforts and may result in suboptimal
performance due to limited resource availability and constrained design choices. Our work introduces a novel
paradigm for learning effective recommender models, including novel model architecture search space and
effective model hardware co-design via Processing-In-Memory hardware and mixed-precision quantization.
AutoML and NAS. Automated Machine Learning (AutoML) has gained significant popularity in automating the
design of Deep Neural Networks across various applications such as Computer Vision [5, 23, 40, 43, 50], Natural
Language Processing [32, 37], and Recommendation Systems [13, 20, 33]. Neural Architecture Search (NAS),
especially Weight-Sharing Neural Architecture Search (WS-NAS) [5, 37], has recently garnered attention due to
its ability to train a supernet representing the entire search space directly on target tasks and efficiently evaluate
subnets with shared supernet weights. However, applying WS-NAS to recommender systems is challenging
because these systems involve heterogeneous architectures dedicated to interacting with multi-modality data,
requiring more flexible search spaces and effective supernet training algorithms. These challenges lead to
co-adaptation [3] and operator-imbalance problems [22] in WS-NAS, resulting in lower rank correlation for
distinguishing models. To address these issues, our work introduces a series of technical solutions: single-operator
any-connection sampling, operator-balancing interaction modules, and post-training fine-tuning to address these
challenges. In addition, our work considers both joint architecture-hardware search and ad-hoc mixed-precision
exploration to enhance discovered models, providing novel perspectives and insights on recommender system
model designs.

Software-hardware Co-design. Classic software-hardware co-design works mainly focus on the joint op-
timization of the model architecture and hardware execution throughput [5, 37]. In this work, we explore
Processing-in-memory (PIM) architectures and discuss the co-design of recommender models with PIM architec-
tures for real-world applications, and connect PIM optimization with model compression techniques such as
pruning and quantization. PIM uses crossbar-based structures in advanced memory technologies such as Resistive
Random-Access Memory (ReRAM) [45]. Prior research in this field [41] has explored using PIM’s inherent parallel
processing capabilities to enhance the performance of recommender systems. However, many of these studies
have not fully addressed the unique challenges posed by PIM-based recommender systems, such as uneven
cache access patterns, inefficient mapping strategies, and sub-optimal heuristic-based design methodologies.
Further exploration in this field [35] reveals that varying configurations of PIM—such as the size of crossbars, the
precision of Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs), and the resolution
of crossbars—can significantly influence key performance metrics like accuracy and energy consumption. Our
work incorporates the optimization of PIM design into model architecture search and demonstrates the initiative
to craft hardware-friendly models for recommendation and user personalization.

ACM Trans. Recomm. Syst.

Towards Automated Model Design on Recommender Systems

Output
T] Dense Input | Sparse Input |
Block 7 . |
: Block !
- | |
! Merger |
Block 3 : !
[
| /\ |
! I
Block 2 ! Dense Ops Sparse Ops I
! I
Block 1 A ______ ___ |
InIut Dense Input | Sparse Input |

Fig. 1. NASRec search space enables a full architecture search on dense connectivity of blocks, dense/sparse operators, and
mergers that fuse dense/sparse representations.

3 Hierarchical Search Space for Model and Co-design

We first introduce the hierarchical search space design dedicated to architecture search from a model perspective.
We propose our resolutions to craft more hardware-friendly models from a co-design perspective. This comple-
ments our vision to start AutoML research and realize an end-to-end recommender model design paradigm for
social good.

3.1 Model Architecture Search Space

Thus, we first demonstrate the model architecture space design by revisiting NASRec [47]. The flexibility of
search space is the key to supporting data modality and architecture heterogeneity in recommender systems.
The major manual process in designing the search space is simply collecting common operators used in existing
approaches [16, 21, 26, 33, 38, 39]. Beyond that, we further incorporate the prevailing Transformer Encoder [36]
into the search space for better flexibility and higher potential in searched architectures, thanks to its dominance
in applications such as ViT [11] for image recognition, Transformer [36] for natural language processing, and its
emerging exploration in recommender systems [7, 14].

In recommender systems, we define a dense input as X; € RB*dima which is a 2D tensor from either raw dense
features or generated by operators, such as FC, Gating, Sum, and Dot-Product. A sparse input X; € RBxNsxdims jq
a 3D tensor of sparse embeddings either generated by raw sparse/categorical features or by operators such as
EFC and self-attention. Similarly, a dense or sparse output (i.e., Y; or Y;) is respectively defined as a 2D or 3D
tensor produced via corresponding building blocks/operators. In NASRec, all sparse inputs and outputs share the
same dims, which equals to the dimension of raw sparse embeddings. Accordingly, we define a dense (sparse)
operator as one that produces a dense (sparse) output. In NASRec, dense operators include FC, Gating, Sum, and
Dot-Product, which form the “dense branch”; sparse operators include EFC and self-attention, which form the
“sparse branch”.

A candidate architecture in NASRec search space is a stack of N choice blocks, followed by a final FC layer to
compute the final logit. Each choice block admits an arbitrary number of multi-modality inputs, each of which is

ACM Trans. Recomm. Syst.

T. Zhang et al.

X = (X4, X;s) from a previous block or raw inputs, and produces a multi-modality output Y = (Y, Y5) of both a
dense tensor Y; and a sparse tensor Y; via internal building operators. Within each choice block, we can sample
operators for search.

We construct a supernet representing the NASRec search space; see Figure ??. The supernet subsumes all
possible candidate models/subnets and performs weight sharing among subnets to train them simultaneously. We
formally define the NASRec supernet S as a tuple of connections C, operators O, and dimensions D as follows:
S = (C, D, 0) over all N choice blocks. Specifically, the operators: O = [O(l), . O(N)] enumerates the set of
building operators from choice block 1 to N. The connections: C = [C W, . cWN)] contains the connectivity
< i, j > between choice block i and choice block j. The dimension: D = [D™, ..., D'N)] contains the dimension
settings from choice block 1 to N.

A subnet Ssampie = (Osampies Csamples Dsample) in the supernet S represents a model in NASRec search space.
A block uses addition to aggregate the outputs of sampled operators in each branch (i.e., “dense branch” or
“sparse branch”). When the operator output dimensions do not match, we apply zero masking to mask the extra
dimension. A block uses concatenation Concat to aggregate the outputs from sampled connections. Given a
sampled subnet S;appie, the input X V) to choice block N is computed as follows given a list of previous block

outputs {Y(M), .., YIN=11 and the sampled connections Cs(jlvrr)lple'
(N) _ N- (i)
X~ = Concati,; ' [y,” - 1<i,N>EC5(-aNr:1ple], W
X0 = Coneatly 191, g @
f sample

Here, 1; is 1 when b is true otherwise 0.
A building operator o € Os(ivn)lple transforms the concatenated input XV) into an intermediate output with a

sampled dimension D™ This is achieved by applying a mask function on the last dimension for dense output
sample

and the middle dimension for sparse output. For example, a dense output Yd(N) is obtained as follows:

(N) _ (N) (N)
Yd - Z 10605(5'21;718 > MaSk(O(Xd)’Dsample,o)' (3)
0€0
where
V., ifi<d
Mask(V,d) = | *0 "1 =4 (4)
0, Otherwise.

Next, we clarify the set of dense/sparse building operators as follows:

e Fully-Connected (FC) layer. The connected layer is the backbone of DNN models for recommender systems [8]
that extracts‘dense representations. FC is applied on 2D dense inputs, and followed by a ReLU activation.

¢ Sigmoid Gating (SG) layer. We follow the intuition in [7, 39] and employ a dense building operator, Sigmoid
Gating, to enhance the potential of the search space. Given two dense inputs Xy; € REX4ma1 and X, € RBXdimaz
Sigmoid Gating interacts these two inputs as follows: SG(Xy1, Xg2) = sigmoid(FC(Xy1)) * Xg2. If the dimensions
of two dense inputs do not match, zero padding is applied to the input with the lower dimension.

e Sum layer. This dense building operator adds two dense inputs: Xy, € RBX4mai X, € RB¥dimaz and merges
two features from different levels of the recommender system models by simply performing Sum(Xg1, X42) =
Xa1 + Xga2. Like Sigmoid Gating, zero padding is applied on the input with a lower dimension.

e Dot-Product (DP) layer. We leverage Dot-Product to grasp the interactions among multi-modality inputs
via a pairwise inner product. Dot-Product can take dense and/or sparse inputs and produce a dense output.
After being sent to the “dense branch,” these sparse inputs can later use the dense operators to learn better
representations and interactions. Given a dense input X; € RF*@Md and a sparse input X; € RBE*Nexdims

ACM Trans. Recomm. Syst.

Towards Automated Model Design on Recommender Systems «

a Dot-Product first concatenate them as X = Concat[Xy, X;], and then performs pair-wise inner products:
DP(Xy,Xs) = Triu(XXT). dimy is first projected to dim if they do not match.

¢ Embedded Fully-Connected (EFC) layer. An EFC layer is a sparse building operator that applies FC along
the middle dimension. Specifically, an EFC with weights W € RNin*Nout transforms an input X, € RBXNinxdims
to Y, € RBmeuxdimS

e Attention (Attn) layer. Attention layer is a sparse building operator that utilizes the Multi-Head Attention
(MHA) mechanism to learn the weighting of sparse inputs and better exploit their interaction in recommendation
systems. Here, We apply Transformer Encoder on a given sparse input X, € REXNsxdims wwith identical queries,
keys, and values.

We observe that the aforementioned set of building operators provides opportunities for the sparse inputs to
transform into the “dense branch”. Yet, these operators do not permit a transformation of dense inputs towards
the “sparse branch”. To address this limitation, we introduce "dense-sparse merger" allow dense/sparse outputs
to merge into the “sparse/dense branch optionally”. Dense-sparse merger contains two major components.

e "Dense-to-sparse” merger. This merger first projects the dense outputs X using an FC layer, then uses a reshape
layer to reshape the projection into a 3D sparse tensor. The reshaped 3D tensor is merged into the sparse
output via concatenation.

o "Sparse-to-dense" merger. This merger employs a Factorization Machine (FM) [16] to convert the sparse output
into a dense representation and then add the dense representation to the dense output.

Beyond the rich choices of building operators and mergers, each choice block can receive inputs from any
preceding choice blocks, and raw input features. This involves exploring any connectivity among choice blocks
and raw inputs, extending the wiring heterogeneity for search.

3.2 Co-design Model Architecture and Hardware

Next, we consider further enhancing the co-design of model architecture and hardware, specifically, Figure
2 illustrates an overview of PIM hardware design, representing a significant innovation in computing. These
designs apply analog voltages to each Word Line (WL), initiating a process where these voltages are multiplied by
the conductance present in each row. This multiplication adheres to the principles of Ohm’s Law. Following this,
the currents produced from this multiplication are combined along each column according to Kirchhoff’s Current
Law. At the end of each Bit Line (BL), specialized circuitry interprets these aggregated currents to facilitate
complex Matrix-Vector Multiplication (MVM) functions within the memory array.

As such, we propose integrating ReRAM-related parameters into the search space from a co-design perspective.
This enables simultaneous and efficient co-exploration of the recommender system model architecture and the
Processing-In-Memory (PIM) architecture. We map the building above operators onto the crossbars with minimal
effort for straightforward evaluation. Operators like EmbedFC, FC, and the dense-to-sparse merger are intrinsically
MVM and follow the mapping protocol outlined in the background section. DP and sparse-to-dense-merger (i.e.,
Factorization Machine [16]), not ideal for PIM, are assigned to the digital functional unit instead.

Our vision adopts mixed-precision search as a preliminary study for PIM hardware co-design, such as crossbar
optimization and Resistive Random-Access Memory (ReRAM) optimization. This is because quantization provides
headroom analysis in ReRAM design towards hardware metrics such as digital-to-analog converter (DAC)
resolution, Memristor precision, analog-to-digital converter (ADC) resolution, etc. We provide theoretical analysis
and demonstrate the simulation results on hardware, providing concrete guidance on the theoretical headroom
of co-designing software and hardware for recommender models.

ACM Trans. Recomm. Syst.

T. Zhang et al.

>
S
=
)
>
S
°
ko)
>
S
S
=
>
S
>
=

------ Aon-1[7]|Aon-1[6]] .. JAon-1[1]]A0Nn-1[0]

R
R
R
k3
kY
R
kS
K
R
k)

Cycle 7, .., Cycle 0 &
Vol7], ..., Vo[0]

&
°

S
=
°

&
EN
=
=
=
°

=

------ Ay y-a[7]f A y-1[6]] .. Ay y-1[1]f A1 n-1[0]

K
R
RN
R
R
kY
=R
R
k3
k3
K}

&
g
)
=
5
g
>
&
2
=
>~
5
8
=
EY
5
=
&
&l
=
IS
=
L
=
&
=

7
=
EY
I
=
&
&

:.
=
=
3
g
=

%,
% 1%,
% [%,
%1%,
% [
% [2 %
% [2
R [%
R [%
%
R,

>
&
g
=l
&
g

o6l | .o As,

An-2,0[7)) Am-2,0[6

oL/) Am—2,010]) e Ap-2,0[1)f Am-2,0[0)] - - Wv—2n-1[7Am-2n-116] ... Wu—2n-1[1Am-2n-1[0]
v O S & o SO S

Ay-10[71) Am-10[6]f ... Ay-1,0[1)[Am-1,0[0] - Wr-1n-1[7m-1n-al6) ..o -18-1[1Am-1,8-1(0]

Vi al7), ., Vi1 [0] & &

2 valomn| Y vololrole) 2 valoiinlf Y viatolao) 2 ol 1| 3 Vol0lin-fe) Do iololiyals)] DHil0Vn-1 1)
Shared ADCs I

kY
R [R

RN
kY
kY
N
kY
kY
2
K

| Adder & Shift Register |

Fig. 2. Operation principle of ReRAM-based in-memory computing.

3.3 Search Components

In the NASRec search space dedicated to model architectures, we search for each choice block’s connectivity,
operator dimensions, and building operators. We illustrate the three key search components as follows:

e Connection. We place no restrictions on the number of connections a choice block can receive: each block
can choose inputs from an arbitrary number of preceding blocks and raw inputs. Specifically, the n-th choice
block can connect to any previous n — 1 choice blocks and the raw dense (sparse) features. The outputs from
all preceding blocks are concatenated as inputs for dense (sparse) building blocks. We separately concatenate
the dense (sparse) outputs from preceding blocks.

e Dimension. In a choice block, different operators may produce different tensor dimensions. In NASRec, we
set the output sizes of FC and EFC to dimy; and Nj, respectively, and other operator outputs in the dense
(sparse) branch are linearly projected to dimg (N;). This ensures operator outputs in each branch have the
same dimension and can be added together. This also give the maximum dimensions dim, and N; for the dense
output Y; € RB¥Md and the sparse output Y, € RE¥NsXdims Given a dense or sparse output, a mask in Eq. 4
zeros out the extra dimensions, allowing a flexible selection of building operators’ dimensions.

e Operator. Each block can choose at least one dense (sparse) building operator to transform inputs to a dense

(sparse) output. Each block should maintain at least one operator in the dense (sparse) branch to ensure the

flow of information from inputs to logit. We independently sample building operators in the dense (sparse)

branch to form a validated candidate architecture. In addition, we independently sample dense-sparse mergers
to allow optional dense-to-sparse interaction.

We showcase two model architecture search spaces as examples.

NASRec-Small. We limit the choice of operators within each block to FC, EFC, and Dot-Product and allow any

connectivity between blocks. This provides a similar scale of search space as AutoCTR [33].

NASRec-Full. We enable all building operators, mergers, and connections to construct an aggressive search
space for exploration with minimal human priors. Under the constraint that at least one operator must be

ACM Trans. Recomm. Syst.

Towards Automated Model Design on Recommender Systems «

Any-operator Single-operator Single-operator
Any-connection Single-connection Any-connection
,,,._ORaw Inputs ’___ORaw Inputs’,;.ORaw Inputs

®
®
O
®
@)
O
®
O
®
@)
O
®

©)

®

©)

Yoeeee fooeoe@ H{ooceod

1
1

@BIOCKZ ! ,,,-{:Dslockz
'Y

Fig. 3. Single-operator Any-connection path sampling combines the advantages of the first two sampling strategies.

sampled in both dense and sparse branches, the NASRec-Full search space size is 15" x of NASRec-Small, where
N is the number of choice blocks. This full search space extremely tests the capability of NASRec.

The combination of full dense connectivity search and independent dense/sparse dimension configuration
gives the model architecture search space a large cardinality. NASRec-Full has N = 7 blocks, containing up to
5 x 10 architectures with strong heterogeneity. With minimal human priors and such unconstrained search
space, brutal-force sample-based methods may take enormous time to find a state-of-the-art model.

In addition, we construct the co-design search space as follows:

e DNN Design Space. The DNN design space follows NASRec-Small search space dependent on the compatibility
of building operators on PIM hardware. This includes dense operators like FC and DP, with feature dimensions
ranging from 64 to 1024. We also incorporate sparse operators with dimensions from 16 to 64 and dense-sparse
interaction operators, including FC and FM.

¢ Quantization Design Space. We allow mapping onto all previously mentioned operators, including FC and
EFC layers and FC and EFC projections inside DP and FM, but excluding DP and FM, as they are not a natural
fit for ReRAM. The quantization of weights ranges from 4 to 8 bits.

4 Weight sharing Neural Architecture Search for Recommender Systems

A NASRec supernet simultaneously breeds different subnet models in the aforementioned model and co-design
search space, yet its large cardinality challenges training efficiency and ranking quality. This section proposes a
novel path sampling strategy, Single-operator Any-connection sampling, that combines operator sampling with a
good connection sampling coverage. We further observe the operator imbalance phenomenon induced by some
over-parameterized operators and tackle this issue by operator-balancing interaction to improve supernet ranking.
Finally, we employ post-training fine-tuning to alleviate weight co-adaptation and utilize regularized evolution to
obtain the best subnet. We also provide insights that effectively explore the best recommender models.

ACM Trans. Recomm. Syst.

T. Zhang et al.

4.1 Single-operator Any-Connection Sampling

During supernet training, a drop-out-like approach is adopted where, at each mini-batch, a subnet is sampled
and trained. The goal is to train subnets that can well predict the performance of models under weight sharing.
The sampling strategy used is critical to achieve this goal. Three path sampling strategies have been explored,
and Single-operator Any-Connection sampling is the most effective among them:

Single-operator Single-connection strategy: This path sampling strategy, which has its roots in Computer
Vision, uniformly samples a single dense and sparse operator in each choice block and a single connection as
input to a block. While this strategy is efficient because it trains only a small subnet at a time, it encourages
only chain-like formulations of models without extra connectivity patterns, leading to slower convergence, poor
performance, and inaccurate ranking of models.

Any-operator Any-connection Strategy: This sampling strategy increases the coverage of sub-architectures
of the supernet during subnet training by uniformly sampling an arbitrary number of dense and sparse operators
in each choice block and an arbitrary number of connections to aggregate different block outputs. However,
training efficiency is poor when training large subnets sampled in this way. Moreover, the co-adaptation of
multiple operators within a choice block may affect the independent evaluation of subnets and lead to poor
ranking quality.

Single-operator Any-connection: This path sampling strategy combines the strengths of the first two strategies.
It samples a single dense and a single sparse operator in each choice block while allowing the sampling of an
arbitrary number of connections to aggregate outputs from different choice blocks. The key insight behind this
strategy is to separate the sampling of parametric operators to avoid weight co-adaptation while allowing the
sampling of non-parametric connections to gain good coverage of the search space.

Here, dashed connections and operators denote a sampled path in the supernet. Compared to Any-operator
Any-connection sampling, single-operator Any-connection sampling achieves higher training efficiency: the
reduced number of sampled operators reduces the training cost by up to 1.5X. In addition, Single-operator
Any-connection samples medium-sized networks more frequently. These medium-sized networks achieve the
best trade-off between model size and performance, as shown in Table 5.

4.2 Operator-Balancing Interaction Modules

Recommender systems involve multi-modality data with an indefinite number of inputs, such as many sparse
inputs. We define operator imbalance as the imbalance of the number of weights between operators within a
block. In weight-sharing NAS, operator imbalance may cause supernet training to favor operators with more
weights. This will offset the gains due to poor ranking correlations of subnets: the subnet performance in the
supernet may deviate from its ground-truth performance when trained from scratch. Within the NASRec search
space, we identify that such an issue is strongly related to the Dot-Product operator and provide mitigation to
address such operator imbalance.

Given N; sparse embeddings, a Dot-Product block produces N2/2 pairwise interactions as a quadratic function
on the number of sparse embeddings. As detailed in Section 3.1, the supernet requires a linear projection layer
(i.e., FC) to match the output dimensions of operators within each choice block. Typically, this leads to an extra
(N? - dimg/2) trainable weights for Dot-Products.

However, the weight consumption of such a projection layer is large, given many sparse embeddings. For
example, given N; = 448 and dimy = 512 in a 7-block NASRec supernet, the projection layer induces over 50M
parameters in the NASRec supernet, which has a similar scale of parameter consumption with sparse embedding
layers. Such tremendous weight parameterization is a quadratic function of the number of sparse inputs Nj,
yet other building operators have much fewer weights. For example, the number of trainable weights in EFC
is a linear function of the sparse inputs N;. As a result, the over-parameterization in Dot-Product leads to an

ACM Trans. Recomm. Syst.

Towards Automated Model Design on Recommender Systems

. N Inputs

0 Q0
/ ﬁ N[/ 2dim,] Params

Il ©0 @@z m.:

X

ig ~ dimy Interactions

.2
dimg Params (@ @I Sparse Features

@ @ Dense Features

O ‘ @ din. Units | €Y Interactions

Fig. 4. Operator-balancing interaction ensures linear parameter consumption and balance building operators.

increased convergence rate for the Dot-Product operator and consequently favors parameter-consuming subnets
with a high concentration of Dot-Product operations, as we observed. In addition, the ignorance of heterogeneous
operators other than Dot-Product provides a poor ranking of subnets, leading to sub-optimal performance on
recommender systems.

We insert a simple EFC as a projection layer before the Dot-Product to mitigate such over-parameterization
demonstrated in Figure 4. Our intuition is projecting the number of sparse embeddings in Dot-Product to
[v2dimg], such that the following Dot-Product operator produces approximately dimgy outputs that later require
a minimal projection layer to match the dimension. As such, the Dot-Product operator consumes at most (dim? +
N;[V2dimy]) trainable weights and ensures a linear growth of parameter consumption with the number of sparse
EFC N;. Thus, we balance the interaction operators to allow a similar convergence rate for all building operators.
We evaluate the training efficiency and ranking quality for supernets trained with/without operator-balancing
interaction. Results demonstrate that operator-balancing interaction achieves 0.11 Kendall’s 7 improvement while
reducing the search cost from 4 GPU hours to only 1.5 GPU hours.

4.3 Post-training Fine-tuning

Although dropout-like subnet training can effectively reduce the adaptation of weights for a specific subnet during
supernet training, it may fail when weights should not be shared across certain subnets, leading to inaccurate

Table 2. Effects of post-training fine-tuning on different path sampling strategies on NASRec-Full. We demonstrate Pearson’s
p and Kendall’s 7 over 100 random subnets on Criteo.

. No Fine-tunin Fine-tunin,
Path Sampling Strategy Pearson’s p Kendagll’s 7 | Pearson’s p Kenﬁall’s T
Any-operator Any-connection 0.37 0.28 0.46 0.43
Single-operator Single-connection 0.05 0.02 0.43 0.29
Single-operator Any-connection 0.46 0.43 0.57 0.43

ACM Trans. Recomm. Syst.

T. Zhang et al.

subnet performance predictions by the supernet. To address this issue, we propose a post-training fine-tuning
technique that re-adapts the weights of each standalone subnet back to its specific configuration after supernet
training. This helps to re-calibrate the corrupted weights during supernet training while training other subnets.
In practice, fine-tuning only the last fully connected layer on the target dataset for a few training steps (e.g., 0.5K)
is sufficient. This novel post-training fine-tuning technique comes with only marginal additional search cost and
significantly boosts the ranking of subnets by addressing the underlying weight adaptation issue. As a result, this
technique provides a better chance to discover better models for recommender systems.

Table 2 demonstrates the improvement of post-training fine-tuning on different path sampling strategies.
Surprisingly, post-training fine-tuning achieves decent ranking quality improvement under Single-operator
Single-connection and Any-operator Any-connection path sampling strategy. This is because subnets under
these strategies do not usually converge well in the supernet: they either suffer from poor supernet coverage or
poor convergence induced by co-adaptation. The fine-tuning process releases their potential and approaches
their real performance on the target dataset. Remarkably, the Single-operator Any-connection path sampling
strategy cooperates well with post-training fine-tuning and achieves the global optimal Pearson’s p and Kendall’s
7 ranking correlation among different approaches, with at least 0.14 Pearson’s p and Kendall’s 7 improvement on
NASRec-Full search space over Single-operator Single-connection sampling with fine-tuning.

4.4 Evolutionary Search on Best Models

We utilize regularized evolution [27] to obtain the best child subnet in NASRec search space, including NASRec
Small and NASRec-Full. Here, we first introduce a single mutation of a hierarchical genotype with the following
sequence of actions in one of the choice blocks:

e Re-sample the dimension of one dense building operator.

e Re-sample the dimension of one sparse building operator.

e Re-sample one dense building operator.

e Re-sample one sparse building operator.

e Re-sample its connection to other choice blocks.

e Re-sample the choice of dense-to-sparse/sparse-to-dense merger that enables the communication between
dense/sparse outputs.

5 Experiments

We first show the detailed configuration that NASRec employs during the architecture search, model selection, and
final evaluation. Then, we demonstrate empirical evaluations on three popular recommender system benchmarks
for Click-Through Rates (CTR) prediction: Criteo!, Avazu? and KDD Cup 20123. All three datasets are pre-
processed in the same fashion as AutoCTR [33]. We release our implementation framework in NASRec. On
Criteo/Avazu/KDD Cup, we observe +/- 0.0002 as the standard deviation between each run and treat 0.001 as the
level of significant improvement.

We show the statistics of each CTR benchmark in Table 3.

Here, we observe that Criteo has the most dense (sparse) features and thus is the most complex and challenging
benchmark. Avazu contains only dense features, thus requiring fewer interactions between dense outputs in each
choice block. KDD has the least number of features and the most data, making it a relatively easier benchmark to
train and evaluate.

Uhttps://www.kaggle.com/c/criteo-display-ad-challenge
2https://www.kaggle.com/c/avazu-ctr-prediction/data
3https://www.kaggle.com/c/kddcup2012-track2/data

ACM Trans. Recomm. Syst.

https://github.com/facebookresearch/NasRec

Towards Automated Model Design on Recommender Systems «

Table 3. Statistics of different CTR benchmarks.

Benchmark | # Dense | # Sparse | # Samples (M)
Criteo 13 26 45.84
Avazu 0 23 40.42

KDD 3 10 149.64

5.1 Search Configuration
We first demonstrate the detailed configuration of NASRec-Full search space as follows:

e Connection Search Components. We utilize N = 7 blocks in our NASRec search space. This allows a fair
comparison with recent NAS methods [33]. All choice blocks can arbitrarily connect to previous choice blocks
or raw features.

e Operator Search Components. In each choice block, our search space contains 6 distinct building operators,
including 4 dense building operators: FC, Gating, Sum, and Dot-Product, and 2 distinct sparse building operators,
EFC and Attention. The dense-sparse merger option is fully explored.

e Dimension Search Components. For each dense building operator, the dense output dimension can be
chosen from {16, 32, 64, 128, 256, 512, 768, 1024}. The sparse output dimension can be chosen from {16, 32, 48,
64} for each sparse building operator.

e Quantization Search Components. For each dense/sparse building operator, we perform weight/activation
quantization of 4/8 bits for each building operator. This provides 16384 extra search complexity fora N =7
block search space.

In NASRec-Small, we employ the same settings except that we use only 2 dense building operators: FC, Dot-
Product, and 1 sparse building operator: EFC. Then, we illustrate some techniques for brewing the NASRec
supernet, including the configuration of embedding, supernet warm-up, and supernet training settings.

e Capped Embedding Table. We cap the maximum embedding table size to 0.5M during supernet training
for search efficiency. During the final evaluation, we maintain the full embedding table to retrieve the best
performance, i.e., 540M parameters in DLRM [26] on Criteo to ensure a fair comparison.

e Supernet Warm-up. The supernet may collapse at initial training phases due to the varying sampled paths
and uninitialized embedding layers. To mitigate the supernet’s initial collapse, we randomly sample the full
supernet at the initial 1/5 of the training steps, with a probability p that linearly decays from 1 to 0. This
provides dimension warm-up, operator warm-up [4], and connection warm-up for the supernet with minimal
impact on the quality of sampled paths.

o Supernet Training Settings. We insert layer normalization [1] into each building operator to stabilize supernet
training. Our choice of hyperparameters is robust over different NASRec search spaces and recommender
system benchmarks. We train the supernet for only one epoch with Adagrad optimizer, an initial learning rate
of 0.12, and a cosine learning rate schedule [24] on target recommender system benchmarks.

Finally, we present the details of regularized evolution and model selection strategies over NASRec search
spaces.

¢ Regularized Evolution. Despite the large size of NASRec-Full and NASRec-small, we employ an efficient
configuration of regularized evolution to seek the optimal subnets from the supernet. Specifically, we maintain
a population of 128 architectures and run regularized evolution for 240 iterations. In each iteration, we first
pick up the best architecture from 64 sampled architectures from the population as the parent architecture and
generate 8 child architectures to update the population.

ACM Trans. Recomm. Syst.

T. Zhang et al.

Table 4. Performance of NASRec on General CTR Predictions Tasks.

Method Criteo Avazu KDD Cup 2012 | Search Cost
LogLoss AUC | LogLoss AUC |LogLoss AUC (GPU days)
DLRM [26] 0.4436 0.8085 0.3814 0.7766 0.1523 0.8004 -
xDeepFM [21] 04418 0.8052 - - - - -
Hand-crafted Arts Autolnt+ [34] 0.4427 0.8090 | 0.3813 0.7772 | 0.1523 0.8002 -
DeepFM [16] 0.4432 0.8086 0.3816 0.7767 0.1529 0.7974 -
DNAS [20] 0.4442 - - - - - -
PROFIT [13] 0.4427 0.8095 0.3735 0.7883 - - ~0.5
AutoCTR [33] 0.4413 0.8104 0.3800 0.7791 0.1520 0.8011 ~0.75
NAS-crafted Arts | Random Search @ NASRec-Small | 0.4411 0.8105 0.3748 0.7885 0.1500 0.8123 1.0
Random Search @ NASRec-Full 0.4418 0.8098 0.3767 0.7853 0.1509 0.8071 1.0
AutoML @ NASRec-Small 0.4399 0.8118 0.3747 0.7887 0.1495 0.8135 ~0.25
AutoML @ NASRec-Full 0.4408 0.8107 | 0.3737 0.7903 | 0.1491 0.8154 ~0.3

e Model Selection. We follow the evaluation protocols in AutoCTR [33] and split each target dataset into 3 sets:
training (80%), validation (10%), and testing (10%). During the weight-sharing neural architecture search, we
train the supernet on the training set and select the top 15 subnets on the validation set. We train the top 15
models from scratch and select the best subnet, NASRecNet, as the final architecture. We perform light tuning
on the learning rate of the best subnet within range (0.1, 0.2) and demonstrate the best learning rate setting on
the open-source repository4.

5.2 Recommender System Benchmark Results

We train our AutoML-crafted models from scratch on three classic recommender system benchmarks and compare
the performance of models that NASRec crafts on three general recommender system benchmarks. In Table 4, we
report the evaluation results of our end-to-end crafted models and a random search baseline, which randomly
samples and trains models in our NASRec search space.

State-of-the-art Performance. Even within an aggressively large NASRec-Full search space, our crafted models
achieve record-breaking performance over hand-crafted CTR models [16, 21, 26] with minimal human priors
as shown in Table 4. Compared with Autolnt [34], the hand-crafted model that fabricates feature interactions
with delicate engineering efforts, our crafted model achieves ~0.003 Log Loss reduction on Criteo, ~0.007 Log
Loss reduction on Avazu, and ~0.003 Log Loss reduction on KDD Cup 2012, with minimal human expertise and
interventions.

Next, we compare our crafted models to the more recent NAS-crafted models. Compared to AutoCTR [33],
NASRecNet achieves the state-of-the-art (SOTA) Log Loss, and AUC on all three recommender system benchmarks.
With the same scale of search space as AutoCTR (i.e., NASRec-Small search space), our crafted model yields 0.001
Log Loss reduction on Criteo, 0.005 Log Loss reduction on Avazu, and 0.003 Log Loss reduction on KDD Cup
2012. Compared to DNAS [20] and PROFIT [13], which only focuses on configuring part of the architectures,
such as dense connectivity, our crafted model achieves at least ~ 0.002 Log Loss reduction on Criteo, justifying
the significance of full architecture search on recommender systems.

By extending NASRec to an extremely large NASRec-Full search space, our crafted model further improves
its result on Avazu and outperforms PROFIT by ~ 0.002 AUC improvement with on-par Log Loss, justifying
the design of NASRec-Full with aggressively large cardinality and minimal human priors. On Criteo and KDD

4https://github.com/facebookresearch/NasRec

ACM Trans. Recomm. Syst.

Towards Automated Model Design on Recommender Systems

Table 5. Model Complexity Analysis.

Log Loss FLOPS(M)
Method Criteo Avazu KDD | Criteo Avazu KDD
DLRM 0.4436 0.3814 0.1523 26.92 18.29 25.84
DeepFM 0.4432 0.3816 0.1529 | 22.74 22.50 21.66
Autolnt+ 0.4427 0.3813 0.1523 | 18.33 1749 14.88
AutoCTR 0.4413 0.3800 0.1520 12.31 7.12 3.02
AutoML @ NASRec-Small | 0.4399 0.3747 0.1495 2.20 3.08 3.48
AutoML @ NASRec-Full 0.4408 0.3737 0.1491 1.45 1.87 1.09

Cup 2012, NASRec maintains the edge in discovering state-of-the-art CTR models compared to existing NAS
methods [13, 20, 33].

Efficient Search within a Versatile Search Space. Despite a larger NASRec search space that presents more
challenges to fully explore, NASRec achieves at least 1.7x searching efficiency compared to state-of-the-art
efficient NAS methods [13, 33] with significant Log Loss improvement on all three benchmarks. This is greatly
attributed to the efficiency of Weight-Sharing NAS on heterogeneous operators and multi-modality data.

We observe that a compact NASRec-Small search space produces strong random search baselines, while a

larger NASRec-Full search space has a weaker baseline. A limited search budget makes it more challenging to
discover promising models within a large search space. Yet, the scalable WS-NAS tackles the exploration of
full NASRec-Full search space thanks to the broad coverage of the supernet. With an effective Single-Operator
Any-connection path sampling strategy, WS-NAS improves the quality of discovered models on Criteo and
discovers a better model on Avazu and KDD Cup 2012 than the NASRec-Small search space.
Co-design Evaluation. Following the aforementioned search procedures on NASRec search space, we further
enable quantization design space and inherit the same configurations, including dense/sparse building operator
choices, hyperparameters, and regularized evolution configurations. Instead of searching on NASRec-Full search
space, we use NASRec-Small search space as all of the included building operators are PIM-compatible. We model
buffers using CACTI [2] at 32nm. We use the same ReRAM parameters as modeled in MNSIM2.0 [49] to obtain
the area, latency, and power consumption parameters of the ReRAM crossbars. We build an in-house simulator to
simulate the performance. The co-exploration process and performance simulation are performed in Intel Xeon
Gold 6254 processors. We use NVIDIA A5000 devices to speed up the co-exploration. We perform quantitative
simulation using Criteo dataset features, i.e., 13 integer dense features and 26 categorical sparse features. Our
simulation results demonstrate a 1.5x speedup for the empirically handcrafted ReRAM design and a 1.1x speedup
for RecNMP [18] under the NASRec-Small search space. Additionally, the searched design shows 1.8 and 5.2%
energy efficiency compared to the empirical design and RecNMP. We will use the investigation and discovery of
the NASRec-Full search space in future work.

5.3 Discussion

In this section, we analyze the complexity of our crafted models and demonstrate the impact of our proposed
techniques for mitigating ranking disorders and improving the quality of searched models.
Model Complexity Analysis. We compare the complexity of our crafted models with that of SOTA hand-crafted
and NAS models. We collect all baselines from AutoCTR [33] and compare performance versus the number of
Floating-point Operations (FLOPs) in Table 5.

We profile all FLOPS of our crafted models using FvCore [29]. Even without any FLOPs constraints, our crafted
models outperform existing models efficiently. Despite achieving lower Log Loss, our crafted models reduce

ACM Trans. Recomm. Syst.

« T.Zhanget al.

Table 6. Effects of different training techniques on NASRecNet, evaluated on Criteo.

Method Log Loss | FLOPS(M)
Baseline (Single-operator Any-connection + Fine-tuning) | 0.4408 1.45
Single-operator Single-connection + Fine-tuning 0.4417 1.78
Any-operator Any-connection + Fine-tuning 0.4413 2.04
Single-operator Any-connection, NO Fine-tuning 0.4410 3.62

FLOPS by 8.5times, 3.8times, and 2.8times on Criteo, Avazu, and KDD Cup 2012 benchmarks. One possible reason
is using operator-balancing interaction modules, which project the sparse inputs to a smaller dimension before
carrying out cross-term feature interaction. This leads to significantly lower computation costs, contributing to
compact yet high-performing recommender models.

Effects of Path Sampling & Fine-tuning. We discuss the path sampling and fine-tuning techniques in Section
4.2 and demonstrate the empirical evaluation of these techniques on the quality of searched models in Table
6. The results show that (1) the importance of path sampling far outweighs the importance of fine-tuning in
deciding the quality of searched models, and (2) a higher Kendall’s 7 that correctly ranks subnets in NASRec
search space (i.e., Table 6) indicates a consistent improvement on searched models.

6 Ablation Studies

In this section, we provide more details regarding NASRec, including (1) the visualization and insight of searched
architectures, (2) an ad-hoc structured pruning of AutoML-crafted models for enhanced model efficiency on
Criteo/Avazu, and (3) the details on subnet sampling and ranking.

6.1 Model Visualization

We visualize the models searched within the NASRec-Small/NASRec-Full search space on three CTR benchmarks:
Criteo, Avazu, and KDD.

Avazu: NASRec-Small | etatalv ettt ket 1 Avazu: NASRec-Full |
3.08M, 0.3747 | | d/s=512/32 (1.87M, 0.3737) 1 d/s=768/16
1 |
| i

-7

S 7
d/s=128/64

I g Ay d/s=768/48
dfs=128/16 3 i AV it A
L p

- - 's 1 :
i
‘4 L 4 i
T — ~ [!
| (. Iy o
: japs=sigie (AL (IRl |
r d/s=768/16
e 7 A d/s=512/48 |
!) R
_— - -
dfs=1024/48 d/s=768, i
i
i
S e 2
[l A a == = = =
! I
i_ ____________ | B Dense/sparse Block d/s=32/483 I Dense/Sparse Block
____________ - d R
d/S=512/54 ! dfs Dense/Sparse Dimension 1 /S Dense/Sparse Dimension

* Dense-Sparse Merger

{ Dense-Sparse Merger
= P & [MIM unused Dense/Sparse Block|

[Unused Dense/Sparse Block

Fig. 5. Best NASRec models discovered on Avazu.

Avazu. Figure 5 depicts the detailed structures of the best architecture within the NASRec-Small/NASRec-Full
search space. Here, a striped blue (red) block indicates an unused dense (sparse) block in the final architecture,

ACM Trans. Recomm. Syst.

Towards Automated Model Design on Recommender Systems

and a bold connection indicates the same source input for a dense operator with two inputs (i.e., Sigmoid Gating
and Sum).

As the Avazu benchmark only contains sparse features, the interaction and extraction of dense representations
are less important. For example, the best model within NASRec-Full search space only contains one operator (i.e.,
Sigmoid Gating) that solely processes dense representations, yet with more Dot-Product (DP) and Attention (Attn)
blocks that interact with the sparse representations. Within the NASRec-Small search space, FC layers process
dense representations more frequently after interacting with the sparse representations in the Dot-Product block.
Yet, processing dense features requires slightly more fully connected blocks than the self-attention mechanism
adopted in the NASRec-Full search space.

c;-;;-’:w ’N£::;;-Small i_____---i’lsf}??‘!/-si? CFZ?M ‘N(::Zg;-Fulli_ ________________ E d/s=128/48

| " ! Rl A\ g b - __

‘ /‘- [[Tl
____________ / I
‘ o k=768/16

N R \
N \h d/s=16/48 .‘A e
_______ } > 768/32

I Dense/Sparse Block
dfs Dense/Sparse Dimension
' Dense-Sparse Merger

I Dense/sparse Block
________ d/s Dense/Sparse Dimension

* Dense-Sparse Merger
[T Unused Dense/Sparse Block [Unused Dense/sparse Block

Fig. 6. Best NASRec models discovered on Criteo.

Criteo. Figure 6 depicts the detailed structures of the best architecture within the NASRec-Small/NASRec-Full
search space. Here, a striped blue (red) block indicates an unused dense (sparse) block in the final architecture,
and a bold connection indicates the same source input for a dense operator with two inputs (i.e., Sigmoid Gating
and Sum).

Criteo contains the richest set of dense (sparse) features and, thus, is the most complex in architectural
fabrication. We observe that dense connectivity is highly appreciated within both NASRec-Small and NASRec-
Full search space, indicating that feature fusion significantly impacts the log loss on complex benchmarks. In
addition, self-gating on raw, dense features (i.e., block one @ NASRec-Full) is considered an important motif in
interacting features. Similar patterns can also be observed in the best architecture searched on KDD benchmarks.

Due to the complexity of Criteo and NASRec-Full search blocks, the best-searched architecture does not use all

seven blocks-in the search space. Some of the blocks are not utilized in the final architecture. For example, the
best architecture searched within NASRec-Full contains only four valid blocks. We leave this as a future work to
improve supernet training so that deeper architectures can be discovered in a more scalable fashion.
KDD. Figure 7 depicts the detailed structures of the best architecture within the NASRec-Small/NASRec-Full
search space. Here, a striped blue (red) block indicates an unused dense (sparse) block in the final architecture,
and a bold connection indicates the same source input for a dense operator with two inputs (i.e., Sigmoid Gating
and Sum). Similar to what we found on Criteo, the searched architecture within NASRec-Full has more building
operators yet less dense connectivity.

ACM Trans. Recomm. Syst.

« T.Zhanget al.

As KDD is a simpler benchmark with fewer dense (sparse) features, the architecture searched is simpler,
especially within the NASRec search space. Similar self-gating on dense inputs is still important in designing a

better architecture.

In the end, we summarize our observations on three unique benchmarks as follows:

Benchmark Complexity Decides Architecture Complexity. The choice of a benchmark decides the
complexity of the final architecture. The more complex a benchmark is, the more complicated a searched model
is in dense connectivity and operator heterogeneity.

Search Space Decides Connectivity. The best architecture searched within NASRec-Full on all three CTR
benchmarks contains more operator heterogeneity and less dense connectivity. Yet, the reduced dense connec-
tivity between different choice blocks helps reduce FLOPs consumption of searched models, leading to less
complexity and better model efficiency. This also shows that the search for building operators may outweigh
the importance of the search for dense connectivity when crafting an efficient CTR model.

e Attention Has a Huge Impact. Attention blocks are rarely studied in the existing literature on recommender
systems. The architectures searched on NASRec-Full search space justify the effectiveness of the attention
mechanism on aggregating dense (sparse) features. For example, the first block in the best architecture always
adopts an attention layer to interact raw, sparse inputs. The stacking of attention blocks is also observed in
searched architectures to demonstrate high-order interaction between dense (sparse) features.

Self-Gating Is a Useful Motif. Self-gating indicates a pairwise gating operator with identical dense inputs. On
both Criteo/KDD benchmarks, self-gating is discovered to process raw, dense inputs and provide higher-quality
dense projections. On Avazu, with no dense input features, self-gating is discovered to combine a higher-level
dense representation for better prediction results.

6.2 Pruning NASRec via Lottery Ticket

Recommender systems face unique challenges due to the heterogeneity, uncertainty, and multi-modality of
data. It is challenging to apply existing pruning techniques'[6, 15, 19] and maintain performance on compressed
recommender models. For example, existing pruning methods require the training of recommender models for
several passes, leading to severe performance degradation and instability [48] due to overfitting. Our methodology

KDD: NASRec-Small
3.48M, 0.1495)
d/s=768/64

KDD: NASRec-Full
d/s=1oz4/4si ecTu
I

Y
| (1.09M, 0.1491)

i d/s=128/48
,,,,,,,,,,,, ! 1

I Dense/Sparse Block

ACM Trans. Recomm. Syst.

dfs Dense/Sparse Dimension
7 Dense-Sparse Merger
[Unused Dense/Sparse Block

Fig. 7. Best NASRec models discovered on KDD.

I Dense/Sparse Block
d/s Dense/Sparse Dimension

* Dense-Sparse Merger
[T Unused Dense/Sparse Block

Towards Automated Model Design on Recommender Systems «

Table 7. Pruning “Model” on general CTR Prediction Tasks.

Model Mask-Based Pruning Magnitude-Based Pruning
Log Loss | MFLOPs (Percentage) | Log Loss | MFLOPs (Percentage)
Model 0.4408 1.45 (100%) 0.4408 1.45 (100%)
Criteo | Model+Pruning (T=5) | 0.4402 0.78 (54%) 0.4405 0.78 (54%)
Model+Pruning (T=3) | 0.4403 1.01 (69%) 0.4406 1.01(69%)
Model+Pruning (T=1) | 0.4402 1.37 (94%) 0.4406 1.37 (94%)
Model 0.3737 1.87 (100%) 0.3737 1.87 (100%)
Avagy | Model+Pruning (T=5) | 03742 0.88 (47%) 0.3748 0.88 (47%)
Model+Pruning (T=3) | 0.3741 1.23 (66%) 0.3746 1.23 (66%)
Model+Pruning (T=1) | 0.3741 1.58 (84%) 0.3744 1.58 (84%)

is inspired by the Lottery Ticket Hypothesis [12] that learns a smaller sub-architecture (i.e., winning tickets)
without involving multi-pass training. Our methodology includes mask generation and structured pruning.
Mask Generation. We design a mask generation process to mask out zero weights in the original weight matrix
Worig- We generate a mask matrix M using a 2-layer MLP for each weight matrix. The 2-layer MLP inputs the
original weight matrix Wy;5. The first MLP layer employs a ReLU activation function, and the second MLP layer
uses a sigmoid activation. The formulation is as follows:

M = (W, - ReLU(W; - Woyig))s ()

where Woig is the original weight matrix, W;/W, denotes the weights of the first/second layers of the MLP, and -
denotes matrix multiplication. The first layer projects the weight matrix to a higher dimensional space to extract
a rich representation. The second layer projects this high latent dimension back to the original dimensionality of
the weight matrix. The final mask M is obtained through element-wise multiplication with the weight matrix:

Whasked = M © ‘/Vorig~ (6)

Here, © denotes element-wise multiplication.

Structured Pruning. We conduct iterative structured pruning by applying lottery tickets on recommender
models to generate masks M and zero out unmasked weights. We initialize the original weight mask as M(%,
with all mask values set to 1. The overall iterative structured pruning takes T iterations. Within each iteration ¢,
we train a backbone model with the learned lottery ticket M~V from scratch and zero out 20% of the lowest
values in M~ to derive a new mask M(*)..

Experimental Evaluation. We apply the structure above pruning methodology to the NASRec model searched
within the NASRec search space, which contains various building operators. We apply the pruning methodology on
all building blocks covering FC/EFC/DP modules on dense/sparse building operators and dense-to-sparse/sparse-
to-dense mergers. We use “Model” to represent AutoML models crafted under NASRec-Full search space, with
baseline results presented in Table 4. We showcase our evaluation of the Criteo/Avazu dataset in Table 7,
demonstrating that our pruning method effectively reduces FLOPs without significant degradation in loss.
Specifically, our approach reduces 53% / 46% FLOPs on NASRec models on the Criteo/Avazu benchmark without
incurring noticeable log loss. In some cases, combining lottery tickets with recommender models shows some
gains (e.g., “Model” on Criteo), indicating potential model redundancy in existing searched models and possible
headroom for improvement.

ACM Trans. Recomm. Syst.

« T.Zhanget al.

Criteo Avazu KDD Cup 2012
13 dense features 0 dense features 3 dense features
26 sparse features 23 sparse features 10 sparse features

0'00.442 0.444 0.446 0.448 7 0.383 0.384 0.385 0.386 0.0

0.156 0.157
Log Loss Log Loss Log Loss

[] NASRec-Small [NASRec-Full

Fig. 8. CDF of log loss on CTR benchmarks.

6.3 Subnet Sampling Details

In Section 4, we sample 100 subnets within NASRec-Full search space on Criteo benchmark, with a more balanced
and efficient setting on dimension search components: the dense output dimension can choose from {32, 64, 128,
256, 512}, and the sparse output dimension can choose from {16, 32, 64}. All subnets are trained on the Criteo
benchmark with a batch size of 1024 and a learning rate of 0.12.

We plot the Cumulative Distribution Function (CDF) of sampled subnets on all three benchmarks in Table 8.
For the top 50% architectures evaluated on NASRec-Full supernet, we report a Kendall’s 7 of 0.24 for the Criteo
benchmark, showing a clear improvement in ranking top-performing architectures over the random search (0.0).
In future work, we propose establishing a CTR benchmark for NAS to increase the statistical significance of
evaluated ranking coefficients and better facilitate the research in accurately ranking different architectures.

7 Conclusion

In this paper, we introduce a novel paradigm for fully enabling Automated Machine Learning (AutoML) in full-
stack recommender model design, leveraging Weight Sharing Neural Architecture Search (WS-NAS) under diverse
data modalities and architectures. We construct a large supernet that encompasses the entire architecture search
space, incorporating versatile building blocks and dense connection operators to minimize human intervention in
automated architecture design for recommender systems. To address the scalability and heterogeneity challenges
inherent in large-scale NASRec search spaces, we propose a series of techniques to enhance training efficiency and
mitigate ranking disorders. We achieve state-of-the-art performance on three prominent recommender system
benchmarks, showcasing promising prospects for a full architecture search and motivating further research
towards fully automated architecture fabrication with minimal human priors. Moreover, we suggest opportunities
for co-designing models and inference hardware and unlock the potential to perform ad-hoc structure pruning
on AutoML-crafted models to achieve improved performance.

Acknowledgment. Yiran Chen’s work is partially supported by the following grants: NSF-2120333, NSF-2112562,
NSF-1937435, NSF-2140247 and ARO W911NF-19-2-0107. Feng’s work is partially supported by the following
grant: NSF CAREER-2048044. We also thank Maxim Naumov, Jeff Hwang, and Colin Taylor in Meta Platforms,
Inc., for their help with this project.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).

ACM Trans. Recomm. Syst.

(2]

(10]

(11]

Towards Automated Model Design on Recommender Systems

Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee, and Vaishnav Srinivas. 2017. CACTI 7: New Tools for
Interconnect Exploration in Innovative Off-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2 (2017), 14:1-14:25.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. 2018. Understanding and simplifying one-shot
architecture search. In International Conference on Machine Learning. PMLR, 550-559.

Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kindermans, and Quoc V Le. 2020. Can weight sharing
outperform random architecture search? an investigation with tunas. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 14323-14332.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2019. Once-for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791 (2019).

Ben Carterette and Rosie Jones. 2007. Evaluating search engines by modeling the relationship between relevance and clicks. Advances
in neural information processing systems 20 (2007).

Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019. Behavior sequence transformer for e-commerce recommendation
in alibaba. In Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. 1-4.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei
Chai, Mustafa Ispir, et al. 2016. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for
recommender systems. 7-10.

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In Proceedings of the 10th
ACM conference on recommender systems. 191-198.

Wei Deng, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, and Guang Lin. 2021. DeepLight: Deep lightweight feature interactions
for accelerating CTR predictions in ad serving. In Proceedings of the 14th ACM international conference on Web search and data mining.
922-930.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929 (2020).

[12] Jonathan Frankle and Michael Carbin. 2018. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint

(13]
(14]
(15]
16]

(17]

(18]

(19]

[20]

arXiv:1803.03635 (2018).

Chen Gao, Yinfeng Li, Quanming Yao, Depeng Jin, and Yong Li. 2021. Progressive Feature Interaction Search for Deep Sparse Network.
Advances in Neural Information Processing Systems 34 (2021).

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Modularized transfomer-based ranking framework. arXiv preprint arXiv:2004.13313
(2020).

Guibing Guo, Jie Zhang, and Neil Yorke-Smith. 2015. Trustsvd: Collaborative filtering with both the explicit and implicit influence of
user trust and of item ratings. In Proceedings of the AAAI conference on artificial intelligence, Vol. 29.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: a factorization-machine based neural network
for CTR prediction. arXiv preprint arXiv:1703.04247 (2017).

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014.
Practical lessons from predicting clicks on ads at facebook. In Proceedings of the eighth international workshop on data mining for online
advertising. 1-9.

Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark Hempstead, Brandon Reagen, Xuan Zhang, David Brooks, Vikas
Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim
Naumov, Martin Schatz, Mikhail Smelyanskiy, and Xiaodong Wang. 2019. RecNMP: Accelerating Personalized Recommendation with
Near-Memory Processing. arXiv:1912.12953 [cs.DC]

Dominik Kowald, Subhash Chandra Pujari, and Elisabeth Lex. 2017. Temporal effects on hashtag reuse in twitter: A cognitive-inspired
hashtag recommendation approach. In Proceedings of the 26th International Conference on World Wide Web. 1401-1410.

Ravi Krishna, Aravind Kalaiah, Bichen Wu, Maxim Naumov, Dheevatsa Mudigere, Misha Smelyanskiy, and Kurt Keutzer. 2021. Differen-
tiable NAS Framework and Application to Ads CTR Prediction. arXiv preprint arXiv:2110.14812 (2021).

[21] Jianxun Lian, Xiachuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun. 2018. xdeepfm: Combining explicit and

[22]

(23]
[24]

implicit feature interactions for recommender systems. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining. 1754-1763.

Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen Zhuang, and Zhenguo Li. 2019. Darts+: Improved
differentiable architecture search with early stopping. arXiv preprint arXiv:1909.06035 (2019).

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018).

Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016).

[25] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J] Crowley. 2021. Neural architecture search without training. In International conference

on machine learning. PMLR, 7588-7598.

ACM Trans. Recomm. Syst.

https://arxiv.org/abs/1912.12953

(35]

(36]
(37]
(38]
(39]
(40]

[41]

(42]
(43]
[44]
(45]

[46]

[47]

(48]

T. Zhang et al.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091 (2019).

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized evolution for image classifier architecture search. In
Proceedings of the aaai conference on artificial intelligence, Vol. 33. 4780-4789.

Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2011. Fast context-aware recommendations with
factorization machines. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information
Retrieval. 635-644.

Facebook Research. 2022. fvcore. https://github.com/facebookresearch/fvcore.

Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting clicks: estimating the click-through rate for new ads. In
Proceedings of the 16th international conference on World Wide Web. 521-530.

Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016. Deep crossing: Web-scale modeling without manually
crafted combinatorial features. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining.
255-262.

David So, Quoc Le, and Chen Liang. 2019. The evolved transformer. In International Conference on Machine Learning. PMLR, 5877-5886.

Qingquan Song, Dehua Cheng, Hanning Zhou, Jiyan Yang, Yuandong Tian, and Xia Hu. 2020. Towards automated neural interaction
discovery for click-through rate prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 945-955.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang. 2019. Autoint: Automatic feature
interaction learning via self-attentive neural networks. In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 1161-1170.

Hanbo Sun, Zhenhua Zhu, Chenyu Wang, Xuefei Ning, Guohao Dai, Huazhong Yang, and Yu Wang. 2023. Gibbon: An Efficient
Co-Exploration Framework of NN Model and Processing-In-Memory Architecture. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
42, 11 (2023), 4075-4089. https://doi.org/10.1109/TCAD.2023.3262201

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. Advances in neural information processing systems 30 (2017).

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. 2020. Hat: Hardware-aware transformers
for efficient natural language processing. arXiv preprint arXiv:2005.14187 (2020).

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network for ad click predictions. In Proceedings of the ADKDD’17.
1-7.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. 2021. DCN V2: Improved deep & cross
network and practical lessons for web-scale learning to rank systems. In Proceedings of the Web Conference 2021. 1785-1797.

Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, and Song Han. 2020. APQ: Joint Search for Nerwork Architecture, Pruning and
Quantization Policy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Yitu Wang, Zhenhua Zhu, Fan Chen, Mingyuan Ma, Guohao Dai, Yu Wang, Hai Li, and Yiran Chen. 2021. Rerec: In-reram acceleration
with access-aware mapping for personalized recommendation. In 2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 1-9.

Zhiqiang Wang, Qingyun She, and Junlin Zhang. 2021. MaskNet: introducing feature-wise multiplication to CTR ranking models by
instance-guided mask. arXiv preprint arXiv:2102.07619 (2021).

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans. 2020. Neural predictor for neural architecture
search. In European Conference on Computer Vision. Springer, 660-676.

Yachen Yan and Liubo Li. 2023. xDeeplnt: a hybrid architecture for modeling the vector-wise and bit-wise feature interactions. arXiv
preprint arXiv:2301.01089 (2023).

Xiaoxuan Yang et al. 2022. Research progress on memristor: From synapses to computing systems. IEEE Transactions on Circuits and
Systems I: Regular Papers 69, 5 (2022), 1845-1857.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming
Pang, and Quoc Le. 2020. Bignas: Scaling up neural architecture search with big single-stage models. In European Conference on Computer
Vision. Springer, 702-717.

Tunhou Zhang, Dehua Cheng, Yuchen He, Zhengxing Chen, Xiaoliang Dai, Liang Xiong, Feng Yan, Hai Li, Yiran Chen, and Wei Wen.
2023. NASRec: weight sharing neural architecture search for recommender systems. In Proceedings of the ACM Web Conference 2023.
1199-1207.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep
interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery
& data mining. 1059-1068.

ACM Trans. Recomm. Syst.

https://github.com/facebookresearch/fvcore
https://doi.org/10.1109/TCAD.2023.3262201

Towards Automated Model Design on Recommender Systems

[49] Zhenhua Zhu, Hanbo Sun, Kaizhong Qiu, Lixue Xia, Gokul Krishnan, Guohao Dai, Dimin Niu, Xiaoming Chen, Xiaobo Sharon Hu, Yu
Cao, Yuan Xie, Yu Wang, and Huazhong Yang. 2020. MNSIM 2.0: A Behavior-Level Modeling Tool for Memristor-based Neuromorphic
Computing Systems. In GLSVLSI "20: Great Lakes Symposium on VLSI 2020, Virtual Event, China, September 7-9, 2020, Tinoosh Mohsenin,
Weisheng Zhao, Yiran Chen, and Onur Mutlu (Eds.). ACM, 83-88.

[50] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition. 8697-8710.

Received 4 December 2023; revised 28 October 2024; accepted 30 October 2024

ACM Trans. Recomm. Syst.

	Abstract
	1 Introduction
	2 Related Work
	3 Hierarchical Search Space for Model and Co-design
	3.1 Model Architecture Search Space
	3.2 Co-design Model Architecture and Hardware
	3.3 Search Components

	4 Weight sharing Neural Architecture Search for Recommender Systems
	4.1 Single-operator Any-Connection Sampling
	4.2 Operator-Balancing Interaction Modules
	4.3 Post-training Fine-tuning
	4.4 Evolutionary Search on Best Models

	5 Experiments
	5.1 Search Configuration
	5.2 Recommender System Benchmark Results
	5.3 Discussion

	6 Ablation Studies
	6.1 Model Visualization
	6.2 Pruning NASRec via Lottery Ticket
	6.3 Subnet Sampling Details

	7 Conclusion
	References

