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The increasing popularity of deep learning models has created new opportunities for developing AI-based recommender

systems. Designing recommender systems using deep neural networks requires careful architecture design, and further

optimization demands extensive co-design eforts on jointly optimizing model architecture and hardware. Design automation,

such as Automated Machine Learning (AutoML), is necessary to fully exploit the potential of recommender model design,

including model choices and model-hardware co-design strategies. We introduce a novel paradigm that utilizes weight sharing

to explore abundant solution spaces. Our paradigm creates a large supernet to search for optimal architectures and co-design

strategies to address the challenges of data multi-modality and heterogeneity in the recommendation domain. From a model

perspective, the supernet includes a variety of operators, dense connectivity, and dimension search options. From a co-design

perspective, it encompasses versatile Processing-In-Memory (PIM) conigurations to produce hardware-eicient models.

Our solution space’s scale, heterogeneity, and complexity pose several challenges, which we address by proposing various

techniques for training and evaluating the supernet. Our crafted models show promising results on three Click-Through

Rates (CTR) prediction benchmarks, outperforming both manually designed and AutoML-crafted models with state-of-the-art
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performance when focusing solely on architecture search. From a co-design perspective, we achieve 2× FLOPs eiciency, 1.8×
energy eiciency, and 1.5× performance improvements in recommender models.

1 Introduction

Recommender systems, which are widely used in search engines and social media platforms [6, 19] to optimize
Click-Through Rates (CTR), rely on deep learning-basedmodels [9, 15, 26] that incorporatemulti-modality features.
However, these models present challenges in feature interaction modeling and neural network optimization due
to the heterogeneity of the features. Finding a good backbone model with appropriate priors on multi-modality
features is standard practice, but it requires signiicant manual eforts [8, 16, 17, 21, 26, 28, 30, 31] and is limited
by available resources.
Automated Machine Learning (AutoML) techniques, such as Weight-Sharing Neural Architecture Search

(WS-NAS) [5, 23, 46], have shown promise in optimizing the design of eicient models for recommender systems
without human intervention. NAS seeks the best architecture choice within an abundant solution space, with
versatile search strategies [20, 25, 50] and evaluation strategies of models. However, these techniques face unique
challenges due to the multi-modality and heterogeneity of data and architecture in recommendation systems
compared to vision models. One challenge is that the inputs to building blocks in recommendation systems
are multi-modal and generate 2D and 3D tensors, whereas vision models have homogeneous 3D tensors [5,
37] as inputs. Additionally, while state-of-the-art NAS in vision converges to searching size conigurations,
recommendation models are heterogeneous, with each stage using a diferent building block. Furthermore,
recommendation models use a variety of heterogenous operators, such as Fully-Connected layer [8], Dot-
Product [26], Multi-Head Attention [34], and Factorization Machine [16, 21]. In contrast, vision models mainly
use homogenous convolutional operators and backbone search on design motifs [5, 46], such as layer width,
layer depth, and kernel size. These challenges are further complicated by co-design tasks such as mixed-precision
quantization search, which can worsen the quality of the product driven by AutoML. Overall, there is a need for
more efective AutoML techniques that can handle the unique challenges of data multi-modality and architecture
heterogeneity in recommendation systems.
Due to the challenges above, the study of AutoML in recommender systems is limited. For example, search

spaces in AutoCTR [33] and DNAS [20] follow the design principle of human-crafted DLRM [26], and they only
include Fully-Connected layer and Dot-Product as searchable operators. They also heavily rely on manually
crafted operators, such as Factorization Machine [33] or feature interaction module [13] in the search space
to increase architecture heterogeneity. Moreover, existing works sufer from huge computation costs [33] or
challenging bi-level optimization [20]. Thus, they only employ narrow design spaces (sometimes with strong
human priors [13]) to craft architectures, discouraging diversiied feature interactions and harming the quality of
crafted models.
We propose a full-stack solution paradigm to fully enable Neural Architecture and Parameter Search via

WS-NAS under data modality and architecture heterogeneity. We ofer end-to-end solutions on model design

Table 1. Comparison of our approach vs. existing AutoML methods for recommender systems, from a model perspective.

Method
Building Dense Full arch Co-design Criteo

Operators? Connectivity? Search? Support? Log Loss

DNAS [20] FC, Dot-Product ✓ 0.4442
PROFIT [13] FC, FM 0.4427
AutoCTR [33] FC, Dot-Product, FM, EFC ✓ ✓ 0.4413

Ours
FC, Gating, Sum, Attention,

✓ ✓ ✓ 0.4399
Dot-Product, FM, EFC
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and hardware co-design strategies. From a model perspective, we summarize the advancement of our proposed
paradigm over other NAS approaches in Table 1. We achieve this by building a supernet incorporating much more
heterogeneous operators than previous works, including a Fully Connected (FC) layer, Gate, Sum, Dot-Product,
Self-Attention, and Embedded Fully Connected (EFC) layer. In the supernet, we densely connect a cascade of
blocks, each including all operators as options. As dense connectivity allows any block to take in any raw feature
embeddings and intermediate tensors, the supernet is not limited by any particular data modality. Such supernet
design minimizes the encoding of human priors [47], supporting the nature of data modality and architecture
heterogeneity in recommenders and covering models beyond popular recommendation models such as Wide &
Deep [8], DeepFM [16], DLRM [26], AutoCTR [33], DNAS [20], and PROFIT [13]. Our approach also supports
the co-design of model and hardware (e.g., Processing-In-Memory architecture [45]), providing headroom for
improvement when deploying recommender models in reality. The ad-hoc analysis of structured pruning on our
crafted models further expands the opportunity to improve the eiciency of recommender models.

The supernet essentially forms a search space.We obtain amodel by zeroing out some operators and connections
in the supernet; that is, a subnet of the supernet is equivalent to a model. All subnets share weights from the same
supernet called Weight Sharing NAS (WS-NAS). To eiciently search models/subnets in the search space, we
advance one-shot approaches [5, 46] to the recommendation domain. We propose Single-operator Any-connection
sampling to decouple operator selections and increase connection coverage, operator-balancing interaction blocks
to train subnets in the supernet fairly, and post-training ine-tuning to reduce weight co-adaptation. These
approaches enable a better training eiciency and ranking of subnet models in the supernet, resulting in ∼0.001
log loss reduction of searchedmodels on full NASRec search space.We further apply the search onmodel-hardware
co-design and study ad hoc structured pruning, unlocking extra beneits in the eiciency of recommender models.
From a model perspective, we evaluate our AutoML-crafted models on three popular CTR benchmarks and

demonstrate signiicant improvements compared to hand-crafted and NAS-crafted models. Remarkably, our
approach advances the state-of-the-art with log loss reduction of ∼ 0.001 and ∼ 0.003 on Criteo and KDD Cup
2012, respectively. On Avazu, our approach advances the state-of-the-art PROFIT [13] with AUC improvement of
∼ 0.002 and on-par log loss while outperforming PROFIT [13] on Criteo by ∼0.003 log loss reduction. Thanks to
the eicient weight-sharing mechanism, our approach only needs to train a single supernet, greatly reducing
the search cost. From a co-design perspective, we ofer a detailed analysis to exploit the potential of our crafted
models and uncover 1.5× theoretical speedup on discovered models. The ad-hoc structured pruning achieves
∼2× FLOPs saving without harming log loss and AUC on recommender benchmarks.

We demonstrate the outline of our manuscript as follows. Section 2 introduces the related work in recommender
systems. Section 3 elaborates on the search space from both the model and co-design perspectives. In Section
4, we propose the search methodology and demonstrate the main technologies. In Section 5, we evaluate our
crafted models on 3 CTR benchmarks, demonstrating state-of-the-art performance and uncovering theoretical
eiciency gain from model-hardware co-design. In Section 6, we provide ablation studies and discussions to
better understand our system and methodologies, including structured pruning to advance the model eiciency.
In Section 7, we present our conclusion. We summarize our major contributions below.

• We propose a new paradigm to scale up the automated design of recommender systems from both the model
and co-design perspectives. NASRec establishes a lexible supernet (search space) with minimal human priors,
overcoming data modality and architecture heterogeneity challenges in the recommendation domain.

• We advance weight-sharing NAS to the recommendation domain by introducing single-operator any-connection
sampling, operator-balancing interaction modules, and post-training ine-tuning.

• From a model perspective, our crafted models outperform hand-crafted and AutoML-crafted models with a
smaller search cost.

ACM Trans. Recomm. Syst.
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• From a co-design perspective, we explore various choices to co-design model architecture with Processing-In-
Memory hardware, demonstrating signiicant speed-up headroom.

2 Related Work

Deep learning based recommender systems. Machine-based recommender systems, such as those predicting
Click-Through Rates (CTR), have been extensively studied using various approaches like Logistic Regression [30],
Gradient-Boosting Decision Trees [17], Wide & Deep Neural Networks [8], crossing networks [31], Factorization
Machines [16, 21], Dot-Product [26], and gating mechanisms [38, 39, 44]. Additionally, researchers have explored
eicient feature interactions via feature-wise multiplications [42] and sparsiications [10] to develop lightweight
recommender systems. However, these methods require signiicant manual eforts and may result in suboptimal
performance due to limited resource availability and constrained design choices. Our work introduces a novel
paradigm for learning efective recommender models, including novel model architecture search space and
efective model hardware co-design via Processing-In-Memory hardware and mixed-precision quantization.
AutoML and NAS. Automated Machine Learning (AutoML) has gained signiicant popularity in automating the
design of Deep Neural Networks across various applications such as Computer Vision [5, 23, 40, 43, 50], Natural
Language Processing [32, 37], and Recommendation Systems [13, 20, 33]. Neural Architecture Search (NAS),
especially Weight-Sharing Neural Architecture Search (WS-NAS) [5, 37], has recently garnered attention due to
its ability to train a supernet representing the entire search space directly on target tasks and eiciently evaluate
subnets with shared supernet weights. However, applying WS-NAS to recommender systems is challenging
because these systems involve heterogeneous architectures dedicated to interacting with multi-modality data,
requiring more lexible search spaces and efective supernet training algorithms. These challenges lead to
co-adaptation [3] and operator-imbalance problems [22] in WS-NAS, resulting in lower rank correlation for
distinguishing models. To address these issues, our work introduces a series of technical solutions: single-operator
any-connection sampling, operator-balancing interaction modules, and post-training ine-tuning to address these
challenges. In addition, our work considers both joint architecture-hardware search and ad-hoc mixed-precision
exploration to enhance discovered models, providing novel perspectives and insights on recommender system
model designs.
Software-hardware Co-design. Classic software-hardware co-design works mainly focus on the joint op-
timization of the model architecture and hardware execution throughput [5, 37]. In this work, we explore
Processing-in-memory (PIM) architectures and discuss the co-design of recommender models with PIM architec-
tures for real-world applications, and connect PIM optimization with model compression techniques such as
pruning and quantization. PIM uses crossbar-based structures in advanced memory technologies such as Resistive
Random-Access Memory (ReRAM) [45]. Prior research in this ield [41] has explored using PIM’s inherent parallel
processing capabilities to enhance the performance of recommender systems. However, many of these studies
have not fully addressed the unique challenges posed by PIM-based recommender systems, such as uneven
cache access patterns, ineicient mapping strategies, and sub-optimal heuristic-based design methodologies.
Further exploration in this ield [35] reveals that varying conigurations of PIMÐsuch as the size of crossbars, the
precision of Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs), and the resolution
of crossbarsÐcan signiicantly inluence key performance metrics like accuracy and energy consumption. Our
work incorporates the optimization of PIM design into model architecture search and demonstrates the initiative
to craft hardware-friendly models for recommendation and user personalization.

ACM Trans. Recomm. Syst.
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Block 1

Block 2

Block 3

Block 7

Dense Ops Sparse Ops

Dense Input Sparse Input
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Block

Dense Input Sparse Input

Input
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Fig. 1. NASRec search space enables a full architecture search on dense connectivity of blocks, dense/sparse operators, and
mergers that fuse dense/sparse representations.

3 Hierarchical Search Space for Model and Co-design

We irst introduce the hierarchical search space design dedicated to architecture search from a model perspective.
We propose our resolutions to craft more hardware-friendly models from a co-design perspective. This comple-
ments our vision to start AutoML research and realize an end-to-end recommender model design paradigm for
social good.

3.1 Model Architecture Search Space

Thus, we irst demonstrate the model architecture space design by revisiting NASRec [47]. The lexibility of
search space is the key to supporting data modality and architecture heterogeneity in recommender systems.
The major manual process in designing the search space is simply collecting common operators used in existing
approaches [16, 21, 26, 33, 38, 39]. Beyond that, we further incorporate the prevailing Transformer Encoder [36]
into the search space for better lexibility and higher potential in searched architectures, thanks to its dominance
in applications such as ViT [11] for image recognition, Transformer [36] for natural language processing, and its
emerging exploration in recommender systems [7, 14].

In recommender systems, we deine a dense input as �� ∈ R
�×���� which is a 2D tensor from either raw dense

features or generated by operators, such as FC, Gating, Sum, and Dot-Product. A sparse input �� ∈ R
�×��×���� is

a 3D tensor of sparse embeddings either generated by raw sparse/categorical features or by operators such as
EFC and self-attention. Similarly, a dense or sparse output (i.e., �� or �� ) is respectively deined as a 2D or 3D
tensor produced via corresponding building blocks/operators. In NASRec, all sparse inputs and outputs share the
same ���� , which equals to the dimension of raw sparse embeddings. Accordingly, we deine a dense (sparse)
operator as one that produces a dense (sparse) output. In NASRec, dense operators include FC, Gating, Sum, and
Dot-Product, which form the łdense branchž; sparse operators include EFC and self-attention, which form the
łsparse branchž.

A candidate architecture in NASRec search space is a stack of � choice blocks, followed by a inal FC layer to
compute the inal logit. Each choice block admits an arbitrary number of multi-modality inputs, each of which is

ACM Trans. Recomm. Syst.
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� = (�� , �� ) from a previous block or raw inputs, and produces a multi-modality output � = (�� , �� ) of both a
dense tensor �� and a sparse tensor �� via internal building operators. Within each choice block, we can sample
operators for search.
We construct a supernet representing the NASRec search space; see Figure ??. The supernet subsumes all

possible candidate models/subnets and performs weight sharing among subnets to train them simultaneously. We
formally deine the NASRec supernet S as a tuple of connections C, operators O, and dimensions D as follows:
S = (C,D,O) over all � choice blocks. Speciically, the operators: O = [� (1) , ...,� (� ) ] enumerates the set of
building operators from choice block 1 to � . The connections: C = [� (1) , ...,� (� ) ] contains the connectivity
< �, � > between choice block � and choice block � . The dimension: D = [� (1) , ..., � (� ) ] contains the dimension
settings from choice block 1 to � .

A subnet ������� = (O������ , C������ ,D������ ) in the supernet S represents a model in NASRec search space.
A block uses addition to aggregate the outputs of sampled operators in each branch (i.e., łdense branchž or
łsparse branchž). When the operator output dimensions do not match, we apply zero masking to mask the extra
dimension. A block uses concatenation ������ to aggregate the outputs from sampled connections. Given a
sampled subnet ������� , the input �

(� ) to choice block � is computed as follows given a list of previous block

outputs {� (1) , ..., � (�−1) } and the sampled connections �
(� )
������

:

�
(� )
�

= �������−1
�=1 [� (� )

�
· 1

<�,�>∈� (� )
������

], (1)

�
(� )
� = �������−1

�=1 [� (� )
� · 1

<�,�>∈� (� )
������

] . (2)

Here, 1� is 1 when � is true otherwise 0.

A building operator � ∈ �
(� )
������

transforms the concatenated input � (� ) into an intermediate output with a

sampled dimension �
(� )
������

. This is achieved by applying a mask function on the last dimension for dense output

and the middle dimension for sparse output. For example, a dense output �
(� )
�

is obtained as follows:

�
(� )
�

=

︁

�∈O
1
�∈O (� )

������

·���� (� (� (� )
�

), � (� )
������,�

). (3)

where

���� (� ,�) =
{

�:,� , if � < �

0, Otherwise.
. (4)

Next, we clarify the set of dense/sparse building operators as follows:

• Fully-Connected (FC) layer.The connected layer is the backbone of DNNmodels for recommender systems [8]
that extracts dense representations. FC is applied on 2D dense inputs, and followed by a ReLU activation.

• Sigmoid Gating (SG) layer. We follow the intuition in [7, 39] and employ a dense building operator, Sigmoid
Gating, to enhance the potential of the search space. Given two dense inputs��1 ∈ R

�×����1 and��2 ∈ R
�×����2 ,

Sigmoid Gating interacts these two inputs as follows: �� (��1, ��2) = ������� (�� (��1)) ∗��2. If the dimensions
of two dense inputs do not match, zero padding is applied to the input with the lower dimension.

• Sum layer. This dense building operator adds two dense inputs: ��1 ∈ R
�×����1 , ��2 ∈ R

�×����2 and merges
two features from diferent levels of the recommender system models by simply performing ���(��1, ��2) =
��1 + ��2. Like Sigmoid Gating, zero padding is applied on the input with a lower dimension.

• Dot-Product (DP) layer.We leverage Dot-Product to grasp the interactions among multi-modality inputs
via a pairwise inner product. Dot-Product can take dense and/or sparse inputs and produce a dense output.
After being sent to the łdense branch,ž these sparse inputs can later use the dense operators to learn better
representations and interactions. Given a dense input �� ∈ R

�×���� and a sparse input �� ∈ R
�×��×���� ,

ACM Trans. Recomm. Syst.
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a Dot-Product irst concatenate them as � = ������ [�� , �� ], and then performs pair-wise inner products:
�� (�� , �� ) = ���� (��� ). ���� is irst projected to ���� if they do not match.

• Embedded Fully-Connected (EFC) layer. An EFC layer is a sparse building operator that applies FC along
the middle dimension. Speciically, an EFC with weights� ∈ R

���×���� transforms an input �� ∈ R
�×���×����

to �� ∈ R
�×����×����

• Attention (Attn) layer. Attention layer is a sparse building operator that utilizes the Multi-Head Attention
(MHA)mechanism to learn theweighting of sparse inputs and better exploit their interaction in recommendation
systems. Here, We apply Transformer Encoder on a given sparse input �� ∈ R

�×��×���� , with identical queries,
keys, and values.

We observe that the aforementioned set of building operators provides opportunities for the sparse inputs to
transform into the łdense branchž. Yet, these operators do not permit a transformation of dense inputs towards
the łsparse branchž. To address this limitation, we introduce "dense-sparse merger" allow dense/sparse outputs
to merge into the łsparse/dense branch optionallyž. Dense-sparse merger contains two major components.

• "Dense-to-sparse" merger. This merger irst projects the dense outputs�� using an FC layer, then uses a reshape
layer to reshape the projection into a 3D sparse tensor. The reshaped 3D tensor is merged into the sparse
output via concatenation.

• "Sparse-to-dense" merger. This merger employs a Factorization Machine (FM) [16] to convert the sparse output
into a dense representation and then add the dense representation to the dense output.

Beyond the rich choices of building operators and mergers, each choice block can receive inputs from any
preceding choice blocks, and raw input features. This involves exploring any connectivity among choice blocks
and raw inputs, extending the wiring heterogeneity for search.

3.2 Co-design Model Architecture and Hardware

Next, we consider further enhancing the co-design of model architecture and hardware, speciically, Figure
2 illustrates an overview of PIM hardware design, representing a signiicant innovation in computing. These
designs apply analog voltages to each Word Line (WL), initiating a process where these voltages are multiplied by
the conductance present in each row. This multiplication adheres to the principles of Ohm’s Law. Following this,
the currents produced from this multiplication are combined along each column according to Kirchhof’s Current
Law. At the end of each Bit Line (BL), specialized circuitry interprets these aggregated currents to facilitate
complex Matrix-Vector Multiplication (MVM) functions within the memory array.

As such, we propose integrating ReRAM-related parameters into the search space from a co-design perspective.
This enables simultaneous and eicient co-exploration of the recommender system model architecture and the
Processing-In-Memory (PIM) architecture. We map the building above operators onto the crossbars with minimal
efort for straightforward evaluation. Operators like EmbedFC, FC, and the dense-to-sparse merger are intrinsically
MVM and follow the mapping protocol outlined in the background section. DP and sparse-to-dense-merger (i.e.,
Factorization Machine [16]), not ideal for PIM, are assigned to the digital functional unit instead.

Our vision adopts mixed-precision search as a preliminary study for PIM hardware co-design, such as crossbar
optimization and Resistive Random-Access Memory (ReRAM) optimization. This is because quantization provides
headroom analysis in ReRAM design towards hardware metrics such as digital-to-analog converter (DAC)
resolution, Memristor precision, analog-to-digital converter (ADC) resolution, etc. We provide theoretical analysis
and demonstrate the simulation results on hardware, providing concrete guidance on the theoretical headroom
of co-designing software and hardware for recommender models.

ACM Trans. Recomm. Syst.
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Fig. 2. Operation principle of ReRAM-based in-memory computing.

3.3 Search Components

In the NASRec search space dedicated to model architectures, we search for each choice block’s connectivity,
operator dimensions, and building operators. We illustrate the three key search components as follows:

• Connection.We place no restrictions on the number of connections a choice block can receive: each block
can choose inputs from an arbitrary number of preceding blocks and raw inputs. Speciically, the n-th choice
block can connect to any previous � − 1 choice blocks and the raw dense (sparse) features. The outputs from
all preceding blocks are concatenated as inputs for dense (sparse) building blocks. We separately concatenate
the dense (sparse) outputs from preceding blocks.

• Dimension. In a choice block, diferent operators may produce diferent tensor dimensions. In NASRec, we
set the output sizes of FC and EFC to ���� and �� , respectively, and other operator outputs in the dense
(sparse) branch are linearly projected to ���� (�� ). This ensures operator outputs in each branch have the
same dimension and can be added together. This also give the maximum dimensions ���� and �� for the dense
output �� ∈ R

�×���� and the sparse output �� ∈ R
�×��×���� . Given a dense or sparse output, a mask in Eq. 4

zeros out the extra dimensions, allowing a lexible selection of building operators’ dimensions.
• Operator. Each block can choose at least one dense (sparse) building operator to transform inputs to a dense
(sparse) output. Each block should maintain at least one operator in the dense (sparse) branch to ensure the
low of information from inputs to logit. We independently sample building operators in the dense (sparse)
branch to form a validated candidate architecture. In addition, we independently sample dense-sparse mergers
to allow optional dense-to-sparse interaction.

We showcase two model architecture search spaces as examples.

• NASRec-Small. We limit the choice of operators within each block to FC, EFC, and Dot-Product and allow any
connectivity between blocks. This provides a similar scale of search space as AutoCTR [33].

• NASRec-Full. We enable all building operators, mergers, and connections to construct an aggressive search
space for exploration with minimal human priors. Under the constraint that at least one operator must be
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Fig. 3. Single-operator Any-connection path sampling combines the advantages of the first two sampling strategies.

sampled in both dense and sparse branches, the NASRec-Full search space size is 15�× of NASRec-Small, where
� is the number of choice blocks. This full search space extremely tests the capability of NASRec.

The combination of full dense connectivity search and independent dense/sparse dimension coniguration
gives the model architecture search space a large cardinality. NASRec-Full has � = 7 blocks, containing up to
5 × 1033 architectures with strong heterogeneity. With minimal human priors and such unconstrained search
space, brutal-force sample-based methods may take enormous time to ind a state-of-the-art model.
In addition, we construct the co-design search space as follows:

• DNNDesign Space. The DNN design space follows NASRec-Small search space dependent on the compatibility
of building operators on PIM hardware. This includes dense operators like FC and DP, with feature dimensions
ranging from 64 to 1024. We also incorporate sparse operators with dimensions from 16 to 64 and dense-sparse
interaction operators, including FC and FM.

• Quantization Design Space.We allow mapping onto all previously mentioned operators, including FC and
EFC layers and FC and EFC projections inside DP and FM, but excluding DP and FM, as they are not a natural
it for ReRAM. The quantization of weights ranges from 4 to 8 bits.

4 Weight sharing Neural Architecture Search for Recommender Systems

A NASRec supernet simultaneously breeds diferent subnet models in the aforementioned model and co-design
search space, yet its large cardinality challenges training eiciency and ranking quality. This section proposes a
novel path sampling strategy, Single-operator Any-connection sampling, that combines operator sampling with a
good connection sampling coverage. We further observe the operator imbalance phenomenon induced by some
over-parameterized operators and tackle this issue by operator-balancing interaction to improve supernet ranking.
Finally, we employ post-training ine-tuning to alleviate weight co-adaptation and utilize regularized evolution to
obtain the best subnet. We also provide insights that efectively explore the best recommender models.
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4.1 Single-operator Any-Connection Sampling

During supernet training, a drop-out-like approach is adopted where, at each mini-batch, a subnet is sampled
and trained. The goal is to train subnets that can well predict the performance of models under weight sharing.
The sampling strategy used is critical to achieve this goal. Three path sampling strategies have been explored,
and Single-operator Any-Connection sampling is the most efective among them:
Single-operator Single-connection strategy: This path sampling strategy, which has its roots in Computer
Vision, uniformly samples a single dense and sparse operator in each choice block and a single connection as
input to a block. While this strategy is eicient because it trains only a small subnet at a time, it encourages
only chain-like formulations of models without extra connectivity patterns, leading to slower convergence, poor
performance, and inaccurate ranking of models.
Any-operator Any-connection Strategy: This sampling strategy increases the coverage of sub-architectures
of the supernet during subnet training by uniformly sampling an arbitrary number of dense and sparse operators
in each choice block and an arbitrary number of connections to aggregate diferent block outputs. However,
training eiciency is poor when training large subnets sampled in this way. Moreover, the co-adaptation of
multiple operators within a choice block may afect the independent evaluation of subnets and lead to poor
ranking quality.
Single-operator Any-connection: This path sampling strategy combines the strengths of the irst two strategies.
It samples a single dense and a single sparse operator in each choice block while allowing the sampling of an
arbitrary number of connections to aggregate outputs from diferent choice blocks. The key insight behind this
strategy is to separate the sampling of parametric operators to avoid weight co-adaptation while allowing the
sampling of non-parametric connections to gain good coverage of the search space.
Here, dashed connections and operators denote a sampled path in the supernet. Compared to Any-operator

Any-connection sampling, single-operator Any-connection sampling achieves higher training eiciency: the
reduced number of sampled operators reduces the training cost by up to 1.5×. In addition, Single-operator
Any-connection samples medium-sized networks more frequently. These medium-sized networks achieve the
best trade-of between model size and performance, as shown in Table 5.

4.2 Operator-Balancing Interaction Modules

Recommender systems involve multi-modality data with an indeinite number of inputs, such as many sparse
inputs. We deine operator imbalance as the imbalance of the number of weights between operators within a
block. In weight-sharing NAS, operator imbalance may cause supernet training to favor operators with more
weights. This will ofset the gains due to poor ranking correlations of subnets: the subnet performance in the
supernet may deviate from its ground-truth performance when trained from scratch. Within the NASRec search
space, we identify that such an issue is strongly related to the Dot-Product operator and provide mitigation to
address such operator imbalance.

Given �� sparse embeddings, a Dot-Product block produces � 2
� /2 pairwise interactions as a quadratic function

on the number of sparse embeddings. As detailed in Section 3.1, the supernet requires a linear projection layer
(i.e., FC) to match the output dimensions of operators within each choice block. Typically, this leads to an extra
(� 2

� · ����/2) trainable weights for Dot-Products.
However, the weight consumption of such a projection layer is large, given many sparse embeddings. For

example, given �� = 448 and ���� = 512 in a 7-block NASRec supernet, the projection layer induces over 50�
parameters in the NASRec supernet, which has a similar scale of parameter consumption with sparse embedding
layers. Such tremendous weight parameterization is a quadratic function of the number of sparse inputs �� ,
yet other building operators have much fewer weights. For example, the number of trainable weights in EFC
is a linear function of the sparse inputs �� . As a result, the over-parameterization in Dot-Product leads to an
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Fig. 4. Operator-balancing interaction ensures linear parameter consumption and balance building operators.

increased convergence rate for the Dot-Product operator and consequently favors parameter-consuming subnets
with a high concentration of Dot-Product operations, as we observed. In addition, the ignorance of heterogeneous
operators other than Dot-Product provides a poor ranking of subnets, leading to sub-optimal performance on
recommender systems.
We insert a simple EFC as a projection layer before the Dot-Product to mitigate such over-parameterization

demonstrated in Figure 4. Our intuition is projecting the number of sparse embeddings in Dot-Product to

[
√
2���� ], such that the following Dot-Product operator produces approximately ���� outputs that later require

a minimal projection layer to match the dimension. As such, the Dot-Product operator consumes at most (���2
�
+

�� [
√
2���� ]) trainable weights and ensures a linear growth of parameter consumption with the number of sparse

EFC �� . Thus, we balance the interaction operators to allow a similar convergence rate for all building operators.
We evaluate the training eiciency and ranking quality for supernets trained with/without operator-balancing
interaction. Results demonstrate that operator-balancing interaction achieves 0.11 Kendall’s � improvement while
reducing the search cost from 4 GPU hours to only 1.5 GPU hours.

4.3 Post-training Fine-tuning

Although dropout-like subnet training can efectively reduce the adaptation of weights for a speciic subnet during
supernet training, it may fail when weights should not be shared across certain subnets, leading to inaccurate

Table 2. Efects of post-training fine-tuning on diferent path sampling strategies on NASRec-Full. We demonstrate Pearson’s
� and Kendall’s � over 100 random subnets on Criteo.

Path Sampling Strategy
No Fine-tuning Fine-tuning

Pearson’s � Kendall’s � Pearson’s � Kendall’s �

Any-operator Any-connection 0.37 0.28 0.46 0.43
Single-operator Single-connection 0.05 0.02 0.43 0.29
Single-operator Any-connection 0.46 0.43 0.57 0.43
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subnet performance predictions by the supernet. To address this issue, we propose a post-training ine-tuning
technique that re-adapts the weights of each standalone subnet back to its speciic coniguration after supernet
training. This helps to re-calibrate the corrupted weights during supernet training while training other subnets.
In practice, ine-tuning only the last fully connected layer on the target dataset for a few training steps (e.g., 0.5K)
is suicient. This novel post-training ine-tuning technique comes with only marginal additional search cost and
signiicantly boosts the ranking of subnets by addressing the underlying weight adaptation issue. As a result, this
technique provides a better chance to discover better models for recommender systems.
Table 2 demonstrates the improvement of post-training ine-tuning on diferent path sampling strategies.

Surprisingly, post-training ine-tuning achieves decent ranking quality improvement under Single-operator
Single-connection and Any-operator Any-connection path sampling strategy. This is because subnets under
these strategies do not usually converge well in the supernet: they either sufer from poor supernet coverage or
poor convergence induced by co-adaptation. The ine-tuning process releases their potential and approaches
their real performance on the target dataset. Remarkably, the Single-operator Any-connection path sampling
strategy cooperates well with post-training ine-tuning and achieves the global optimal Pearson’s � and Kendall’s
� ranking correlation among diferent approaches, with at least 0.14 Pearson’s � and Kendall’s � improvement on
NASRec-Full search space over Single-operator Single-connection sampling with ine-tuning.

4.4 Evolutionary Search on Best Models

We utilize regularized evolution [27] to obtain the best child subnet in NASRec search space, including NASRec
Small and NASRec-Full. Here, we irst introduce a single mutation of a hierarchical genotype with the following
sequence of actions in one of the choice blocks:

• Re-sample the dimension of one dense building operator.
• Re-sample the dimension of one sparse building operator.
• Re-sample one dense building operator.
• Re-sample one sparse building operator.
• Re-sample its connection to other choice blocks.
• Re-sample the choice of dense-to-sparse/sparse-to-dense merger that enables the communication between
dense/sparse outputs.

5 Experiments

We irst show the detailed coniguration that NASRec employs during the architecture search, model selection, and
inal evaluation. Then, we demonstrate empirical evaluations on three popular recommender system benchmarks
for Click-Through Rates (CTR) prediction: Criteo1, Avazu2 and KDD Cup 20123. All three datasets are pre-
processed in the same fashion as AutoCTR [33]. We release our implementation framework in NASRec. On
Criteo/Avazu/KDD Cup, we observe +/- 0.0002 as the standard deviation between each run and treat 0.001 as the
level of signiicant improvement.
We show the statistics of each CTR benchmark in Table 3.
Here, we observe that Criteo has the most dense (sparse) features and thus is the most complex and challenging

benchmark. Avazu contains only dense features, thus requiring fewer interactions between dense outputs in each
choice block. KDD has the least number of features and the most data, making it a relatively easier benchmark to
train and evaluate.

1https://www.kaggle.com/c/criteo-display-ad-challenge
2https://www.kaggle.com/c/avazu-ctr-prediction/data
3https://www.kaggle.com/c/kddcup2012-track2/data
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Table 3. Statistics of diferent CTR benchmarks.

Benchmark # Dense # Sparse # Samples (M)

Criteo 13 26 45.84
Avazu 0 23 40.42
KDD 3 10 149.64

5.1 Search Configuration

We irst demonstrate the detailed coniguration of NASRec-Full search space as follows:

• Connection Search Components.We utilize � = 7 blocks in our NASRec search space. This allows a fair
comparison with recent NAS methods [33]. All choice blocks can arbitrarily connect to previous choice blocks
or raw features.

• Operator Search Components. In each choice block, our search space contains 6 distinct building operators,
including 4 dense building operators: FC, Gating, Sum, and Dot-Product, and 2 distinct sparse building operators,
EFC and Attention. The dense-sparse merger option is fully explored.

• Dimension Search Components. For each dense building operator, the dense output dimension can be
chosen from {16, 32, 64, 128, 256, 512, 768, 1024}. The sparse output dimension can be chosen from {16, 32, 48,
64} for each sparse building operator.

• Quantization Search Components. For each dense/sparse building operator, we perform weight/activation
quantization of 4/8 bits for each building operator. This provides 16384 extra search complexity for a � = 7
block search space.

In NASRec-Small, we employ the same settings except that we use only 2 dense building operators: FC, Dot-
Product, and 1 sparse building operator: EFC. Then, we illustrate some techniques for brewing the NASRec
supernet, including the coniguration of embedding, supernet warm-up, and supernet training settings.

• Capped Embedding Table. We cap the maximum embedding table size to 0.5M during supernet training
for search eiciency. During the inal evaluation, we maintain the full embedding table to retrieve the best
performance, i.e., 540M parameters in DLRM [26] on Criteo to ensure a fair comparison.

• Supernet Warm-up. The supernet may collapse at initial training phases due to the varying sampled paths
and uninitialized embedding layers. To mitigate the supernet’s initial collapse, we randomly sample the full
supernet at the initial 1/5 of the training steps, with a probability � that linearly decays from 1 to 0. This
provides dimension warm-up, operator warm-up [4], and connection warm-up for the supernet with minimal
impact on the quality of sampled paths.

• Supernet Training Settings.We insert layer normalization [1] into each building operator to stabilize supernet
training. Our choice of hyperparameters is robust over diferent NASRec search spaces and recommender
system benchmarks. We train the supernet for only one epoch with Adagrad optimizer, an initial learning rate
of 0.12, and a cosine learning rate schedule [24] on target recommender system benchmarks.

Finally, we present the details of regularized evolution and model selection strategies over NASRec search
spaces.

• Regularized Evolution. Despite the large size of NASRec-Full and NASRec-small, we employ an eicient
coniguration of regularized evolution to seek the optimal subnets from the supernet. Speciically, we maintain
a population of 128 architectures and run regularized evolution for 240 iterations. In each iteration, we irst
pick up the best architecture from 64 sampled architectures from the population as the parent architecture and
generate 8 child architectures to update the population.
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Table 4. Performance of NASRec on General CTR Predictions Tasks.

Method
Criteo Avazu KDD Cup 2012 Search Cost

Log Loss AUC Log Loss AUC Log Loss AUC (GPU days)

Hand-crafted Arts

DLRM [26] 0.4436 0.8085 0.3814 0.7766 0.1523 0.8004 -
xDeepFM [21] 0.4418 0.8052 - - - - -
AutoInt+ [34] 0.4427 0.8090 0.3813 0.7772 0.1523 0.8002 -
DeepFM [16] 0.4432 0.8086 0.3816 0.7767 0.1529 0.7974 -

NAS-crafted Arts

DNAS [20] 0.4442 - - - - - -
PROFIT [13] 0.4427 0.8095 0.3735 0.7883 - - ∼0.5
AutoCTR [33] 0.4413 0.8104 0.3800 0.7791 0.1520 0.8011 ∼0.75

Random Search @ NASRec-Small 0.4411 0.8105 0.3748 0.7885 0.1500 0.8123 1.0
Random Search @ NASRec-Full 0.4418 0.8098 0.3767 0.7853 0.1509 0.8071 1.0

AutoML @ NASRec-Small 0.4399 0.8118 0.3747 0.7887 0.1495 0.8135 ∼0.25
AutoML @ NASRec-Full 0.4408 0.8107 0.3737 0.7903 0.1491 0.8154 ∼0.3

• Model Selection.We follow the evaluation protocols in AutoCTR [33] and split each target dataset into 3 sets:
training (80%), validation (10%), and testing (10%). During the weight-sharing neural architecture search, we
train the supernet on the training set and select the top 15 subnets on the validation set. We train the top 15
models from scratch and select the best subnet, NASRecNet, as the inal architecture. We perform light tuning
on the learning rate of the best subnet within range (0.1, 0.2) and demonstrate the best learning rate setting on
the open-source repository4.

5.2 Recommender System Benchmark Results

We train our AutoML-crafted models from scratch on three classic recommender system benchmarks and compare
the performance of models that NASRec crafts on three general recommender system benchmarks. In Table 4, we
report the evaluation results of our end-to-end crafted models and a random search baseline, which randomly
samples and trains models in our NASRec search space.
State-of-the-art Performance. Even within an aggressively large NASRec-Full search space, our crafted models
achieve record-breaking performance over hand-crafted CTR models [16, 21, 26] with minimal human priors
as shown in Table 4. Compared with AutoInt [34], the hand-crafted model that fabricates feature interactions
with delicate engineering eforts, our crafted model achieves ∼0.003 Log Loss reduction on Criteo, ∼0.007 Log
Loss reduction on Avazu, and ∼0.003 Log Loss reduction on KDD Cup 2012, with minimal human expertise and
interventions.
Next, we compare our crafted models to the more recent NAS-crafted models. Compared to AutoCTR [33],

NASRecNet achieves the state-of-the-art (SOTA) Log Loss, and AUC on all three recommender system benchmarks.
With the same scale of search space as AutoCTR (i.e., NASRec-Small search space), our crafted model yields 0.001
Log Loss reduction on Criteo, 0.005 Log Loss reduction on Avazu, and 0.003 Log Loss reduction on KDD Cup
2012. Compared to DNAS [20] and PROFIT [13], which only focuses on coniguring part of the architectures,
such as dense connectivity, our crafted model achieves at least ∼ 0.002 Log Loss reduction on Criteo, justifying
the signiicance of full architecture search on recommender systems.
By extending NASRec to an extremely large NASRec-Full search space, our crafted model further improves

its result on Avazu and outperforms PROFIT by ∼ 0.002 AUC improvement with on-par Log Loss, justifying
the design of NASRec-Full with aggressively large cardinality and minimal human priors. On Criteo and KDD

4https://github.com/facebookresearch/NasRec
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Table 5. Model Complexity Analysis.

Method
Log Loss FLOPS(M)

Criteo Avazu KDD Criteo Avazu KDD

DLRM 0.4436 0.3814 0.1523 26.92 18.29 25.84
DeepFM 0.4432 0.3816 0.1529 22.74 22.50 21.66
AutoInt+ 0.4427 0.3813 0.1523 18.33 17.49 14.88

AutoCTR 0.4413 0.3800 0.1520 12.31 7.12 3.02
AutoML @ NASRec-Small 0.4399 0.3747 0.1495 2.20 3.08 3.48
AutoML @ NASRec-Full 0.4408 0.3737 0.1491 1.45 1.87 1.09

Cup 2012, NASRec maintains the edge in discovering state-of-the-art CTR models compared to existing NAS
methods [13, 20, 33].
Eicient Search within a Versatile Search Space. Despite a larger NASRec search space that presents more
challenges to fully explore, NASRec achieves at least 1.7× searching eiciency compared to state-of-the-art
eicient NAS methods [13, 33] with signiicant Log Loss improvement on all three benchmarks. This is greatly
attributed to the eiciency of Weight-Sharing NAS on heterogeneous operators and multi-modality data.
We observe that a compact NASRec-Small search space produces strong random search baselines, while a

larger NASRec-Full search space has a weaker baseline. A limited search budget makes it more challenging to
discover promising models within a large search space. Yet, the scalable WS-NAS tackles the exploration of
full NASRec-Full search space thanks to the broad coverage of the supernet. With an efective Single-Operator
Any-connection path sampling strategy, WS-NAS improves the quality of discovered models on Criteo and
discovers a better model on Avazu and KDD Cup 2012 than the NASRec-Small search space.
Co-design Evaluation. Following the aforementioned search procedures on NASRec search space, we further
enable quantization design space and inherit the same conigurations, including dense/sparse building operator
choices, hyperparameters, and regularized evolution conigurations. Instead of searching on NASRec-Full search
space, we use NASRec-Small search space as all of the included building operators are PIM-compatible. We model
bufers using CACTI [2] at 32nm. We use the same ReRAM parameters as modeled in MNSIM2.0 [49] to obtain
the area, latency, and power consumption parameters of the ReRAM crossbars. We build an in-house simulator to
simulate the performance. The co-exploration process and performance simulation are performed in Intel Xeon
Gold 6254 processors. We use NVIDIA A5000 devices to speed up the co-exploration. We perform quantitative
simulation using Criteo dataset features, i.e., 13 integer dense features and 26 categorical sparse features. Our
simulation results demonstrate a 1.5× speedup for the empirically handcrafted ReRAM design and a 1.1× speedup
for RecNMP [18] under the NASRec-Small search space. Additionally, the searched design shows 1.8× and 5.2×
energy eiciency compared to the empirical design and RecNMP. We will use the investigation and discovery of
the NASRec-Full search space in future work.

5.3 Discussion

In this section, we analyze the complexity of our crafted models and demonstrate the impact of our proposed
techniques for mitigating ranking disorders and improving the quality of searched models.
Model Complexity Analysis.We compare the complexity of our crafted models with that of SOTA hand-crafted
and NAS models. We collect all baselines from AutoCTR [33] and compare performance versus the number of
Floating-point Operations (FLOPs) in Table 5.

We proile all FLOPS of our crafted models using FvCore [29]. Even without any FLOPs constraints, our crafted
models outperform existing models eiciently. Despite achieving lower Log Loss, our crafted models reduce
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Table 6. Efects of diferent training techniques on NASRecNet, evaluated on Criteo.

Method Log Loss FLOPS(M)

Baseline (Single-operator Any-connection + Fine-tuning) 0.4408 1.45
Single-operator Single-connection + Fine-tuning 0.4417 1.78
Any-operator Any-connection + Fine-tuning 0.4413 2.04

Single-operator Any-connection, NO Fine-tuning 0.4410 3.62

FLOPS by 8.5����� , 3.8����� , and 2.8����� on Criteo, Avazu, and KDD Cup 2012 benchmarks. One possible reason
is using operator-balancing interaction modules, which project the sparse inputs to a smaller dimension before
carrying out cross-term feature interaction. This leads to signiicantly lower computation costs, contributing to
compact yet high-performing recommender models.
Efects of Path Sampling & Fine-tuning. We discuss the path sampling and ine-tuning techniques in Section
4.2 and demonstrate the empirical evaluation of these techniques on the quality of searched models in Table
6. The results show that (1) the importance of path sampling far outweighs the importance of ine-tuning in
deciding the quality of searched models, and (2) a higher Kendall’s � that correctly ranks subnets in NASRec
search space (i.e., Table 6) indicates a consistent improvement on searched models.

6 Ablation Studies

In this section, we provide more details regarding NASRec, including (1) the visualization and insight of searched
architectures, (2) an ad-hoc structured pruning of AutoML-crafted models for enhanced model eiciency on
Criteo/Avazu, and (3) the details on subnet sampling and ranking.

6.1 Model Visualization

We visualize the models searched within the NASRec-Small/NASRec-Full search space on three CTR benchmarks:
Criteo, Avazu, and KDD.

Fig. 5. Best NASRec models discovered on Avazu.

Avazu. Figure 5 depicts the detailed structures of the best architecture within the NASRec-Small/NASRec-Full
search space. Here, a striped blue (red) block indicates an unused dense (sparse) block in the inal architecture,
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and a bold connection indicates the same source input for a dense operator with two inputs (i.e., Sigmoid Gating
and Sum).

As the Avazu benchmark only contains sparse features, the interaction and extraction of dense representations
are less important. For example, the best model within NASRec-Full search space only contains one operator (i.e.,
Sigmoid Gating) that solely processes dense representations, yet with more Dot-Product (DP) and Attention (Attn)
blocks that interact with the sparse representations. Within the NASRec-Small search space, FC layers process
dense representations more frequently after interacting with the sparse representations in the Dot-Product block.
Yet, processing dense features requires slightly more fully connected blocks than the self-attention mechanism
adopted in the NASRec-Full search space.

Fig. 6. Best NASRec models discovered on Criteo.

Criteo. Figure 6 depicts the detailed structures of the best architecture within the NASRec-Small/NASRec-Full
search space. Here, a striped blue (red) block indicates an unused dense (sparse) block in the inal architecture,
and a bold connection indicates the same source input for a dense operator with two inputs (i.e., Sigmoid Gating
and Sum).
Criteo contains the richest set of dense (sparse) features and, thus, is the most complex in architectural

fabrication. We observe that dense connectivity is highly appreciated within both NASRec-Small and NASRec-
Full search space, indicating that feature fusion signiicantly impacts the log loss on complex benchmarks. In
addition, self-gating on raw, dense features (i.e., block one @ NASRec-Full) is considered an important motif in
interacting features. Similar patterns can also be observed in the best architecture searched on KDD benchmarks.

Due to the complexity of Criteo and NASRec-Full search blocks, the best-searched architecture does not use all
seven blocks in the search space. Some of the blocks are not utilized in the inal architecture. For example, the
best architecture searched within NASRec-Full contains only four valid blocks. We leave this as a future work to
improve supernet training so that deeper architectures can be discovered in a more scalable fashion.
KDD. Figure 7 depicts the detailed structures of the best architecture within the NASRec-Small/NASRec-Full
search space. Here, a striped blue (red) block indicates an unused dense (sparse) block in the inal architecture,
and a bold connection indicates the same source input for a dense operator with two inputs (i.e., Sigmoid Gating
and Sum). Similar to what we found on Criteo, the searched architecture within NASRec-Full has more building
operators yet less dense connectivity.

ACM Trans. Recomm. Syst.



• T. Zhang et al.

As KDD is a simpler benchmark with fewer dense (sparse) features, the architecture searched is simpler,
especially within the NASRec search space. Similar self-gating on dense inputs is still important in designing a
better architecture.
In the end, we summarize our observations on three unique benchmarks as follows:

• Benchmark Complexity Decides Architecture Complexity. The choice of a benchmark decides the
complexity of the inal architecture. The more complex a benchmark is, the more complicated a searched model
is in dense connectivity and operator heterogeneity.

• Search Space Decides Connectivity. The best architecture searched within NASRec-Full on all three CTR
benchmarks contains more operator heterogeneity and less dense connectivity. Yet, the reduced dense connec-
tivity between diferent choice blocks helps reduce FLOPs consumption of searched models, leading to less
complexity and better model eiciency. This also shows that the search for building operators may outweigh
the importance of the search for dense connectivity when crafting an eicient CTR model.

• Attention Has a Huge Impact. Attention blocks are rarely studied in the existing literature on recommender
systems. The architectures searched on NASRec-Full search space justify the efectiveness of the attention
mechanism on aggregating dense (sparse) features. For example, the irst block in the best architecture always
adopts an attention layer to interact raw, sparse inputs. The stacking of attention blocks is also observed in
searched architectures to demonstrate high-order interaction between dense (sparse) features.

• Self-Gating Is a Useful Motif. Self-gating indicates a pairwise gating operator with identical dense inputs. On
both Criteo/KDD benchmarks, self-gating is discovered to process raw, dense inputs and provide higher-quality
dense projections. On Avazu, with no dense input features, self-gating is discovered to combine a higher-level
dense representation for better prediction results.

6.2 Pruning NASRec via Lotery Ticket

Recommender systems face unique challenges due to the heterogeneity, uncertainty, and multi-modality of
data. It is challenging to apply existing pruning techniques [6, 15, 19] and maintain performance on compressed
recommender models. For example, existing pruning methods require the training of recommender models for
several passes, leading to severe performance degradation and instability [48] due to overitting. Our methodology

Fig. 7. Best NASRec models discovered on KDD.
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Table 7. Pruning łModelž on general CTR Prediction Tasks.

Model
Mask-Based Pruning Magnitude-Based Pruning

Log Loss ↓ MFLOPs (Percentage) Log Loss ↓ MFLOPs (Percentage)

Criteo

Model 0.4408 1.45 (100%) 0.4408 1.45 (100%)
Model+Pruning (T=5) 0.4402 0.78 (54%) 0.4405 0.78 (54%)
Model+Pruning (T=3) 0.4403 1.01 (69%) 0.4406 1.01(69%)
Model+Pruning (T=1) 0.4402 1.37 (94%) 0.4406 1.37 (94%)

Avazu

Model 0.3737 1.87 (100%) 0.3737 1.87 (100%)
Model+Pruning (T=5) 0.3742 0.88 (47%) 0.3748 0.88 (47%)
Model+Pruning (T=3) 0.3741 1.23 (66%) 0.3746 1.23 (66%)
Model+Pruning (T=1) 0.3741 1.58 (84%) 0.3744 1.58 (84%)

is inspired by the Lottery Ticket Hypothesis [12] that learns a smaller sub-architecture (i.e., winning tickets)
without involving multi-pass training. Our methodology includesmask generation and structured pruning.
Mask Generation. We design a mask generation process to mask out zero weights in the original weight matrix
�����. We generate a mask matrix� using a 2-layer MLP for each weight matrix. The 2-layer MLP inputs the
original weight matrix����� . The irst MLP layer employs a ReLU activation function, and the second MLP layer
uses a sigmoid activation. The formulation is as follows:

� = � (�2 · ReLU(�1 ·�orig)), (5)

where�orig is the original weight matrix,�1/�2 denotes the weights of the irst/second layers of the MLP, and ·
denotes matrix multiplication. The irst layer projects the weight matrix to a higher dimensional space to extract
a rich representation. The second layer projects this high latent dimension back to the original dimensionality of
the weight matrix. The inal mask� is obtained through element-wise multiplication with the weight matrix:

�masked = � ⊙�orig. (6)

Here, ⊙ denotes element-wise multiplication.
Structured Pruning. We conduct iterative structured pruning by applying lottery tickets on recommender
models to generate masks � and zero out unmasked weights. We initialize the original weight mask as � (0) ,
with all mask values set to 1. The overall iterative structured pruning takes � iterations. Within each iteration � ,
we train a backbone model with the learned lottery ticket� (�−1) from scratch and zero out 20% of the lowest
values in� (�−1) to derive a new mask� (� ) ..
Experimental Evaluation. We apply the structure above pruning methodology to the NASRec model searched
within the NASRec search space, which contains various building operators.We apply the pruningmethodology on
all building blocks covering FC/EFC/DP modules on dense/sparse building operators and dense-to-sparse/sparse-
to-dense mergers. We use łModelž to represent AutoML models crafted under NASRec-Full search space, with
baseline results presented in Table 4. We showcase our evaluation of the Criteo/Avazu dataset in Table 7,
demonstrating that our pruning method efectively reduces FLOPs without signiicant degradation in loss.
Speciically, our approach reduces 53% / 46% FLOPs on NASRec models on the Criteo/Avazu benchmark without
incurring noticeable log loss. In some cases, combining lottery tickets with recommender models shows some
gains (e.g., łModelž on Criteo), indicating potential model redundancy in existing searched models and possible
headroom for improvement.
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Fig. 8. CDF of log loss on CTR benchmarks.

6.3 Subnet Sampling Details

In Section 4, we sample 100 subnets within NASRec-Full search space on Criteo benchmark, with a more balanced
and eicient setting on dimension search components: the dense output dimension can choose from {32, 64, 128,
256, 512}, and the sparse output dimension can choose from {16, 32, 64}. All subnets are trained on the Criteo
benchmark with a batch size of 1024 and a learning rate of 0.12.
We plot the Cumulative Distribution Function (CDF) of sampled subnets on all three benchmarks in Table 8.

For the top 50% architectures evaluated on NASRec-Full supernet, we report a Kendall’s � of 0.24 for the Criteo
benchmark, showing a clear improvement in ranking top-performing architectures over the random search (0.0).
In future work, we propose establishing a CTR benchmark for NAS to increase the statistical signiicance of
evaluated ranking coeicients and better facilitate the research in accurately ranking diferent architectures.

7 Conclusion

In this paper, we introduce a novel paradigm for fully enabling Automated Machine Learning (AutoML) in full-
stack recommender model design, leveragingWeight Sharing Neural Architecture Search (WS-NAS) under diverse
data modalities and architectures. We construct a large supernet that encompasses the entire architecture search
space, incorporating versatile building blocks and dense connection operators to minimize human intervention in
automated architecture design for recommender systems. To address the scalability and heterogeneity challenges
inherent in large-scale NASRec search spaces, we propose a series of techniques to enhance training eiciency and
mitigate ranking disorders. We achieve state-of-the-art performance on three prominent recommender system
benchmarks, showcasing promising prospects for a full architecture search and motivating further research
towards fully automated architecture fabrication with minimal human priors. Moreover, we suggest opportunities
for co-designing models and inference hardware and unlock the potential to perform ad-hoc structure pruning
on AutoML-crafted models to achieve improved performance.
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