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RESEARCH ARTICLE                       

Disaster vulnerability in road networks: a data-driven 
approach through analyzing network topology and 
movement activity

Danial Alizadeh and Somayeh Dodge 

Department of Geography, University of California Santa Barbara, Santa Barbara, CA, USA 

ABSTRACT 
The rise in natural disasters and climate-induced events, such as 
wildfires, hurricanes, and flooding, has significantly affected urban 
life. These events can disrupt daily activity and flows of individu
als and goods on road and transit networks. To enhance urban 
resilience against disasters, it’s crucial to study and understand 
road network vulnerability, utilizing data-driven insights to inform 
planning and preparedness efforts. The aim of this paper is to 
develop a data-driven exploratory approach to assess vulnerability 
in road networks in response to a disruption. To accomplish this, 
we compare the centrality of road segments before, during, and 
after disaster, considering the network topological structure and 
movement activity as it is observed through large tracking data 
of cellphone traces on the network. The novelty of our approach 
lies in inferring the impact from movement data, instead of 
manually removing links from the network. The results obtained 
from this study suggest that incorporating movement data into 
the assessment of network functionality provides a more realistic 
estimation of the road network vulnerability in response to a 
disruption, compared to solely using network topology.
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1. Introduction

The vulnerability of road networks to disruptions has been a significant concern in 
resilience research (Matisziw and Murray 2009, Furno et al. 2021). Various events, such 
as natural disasters, accidents, or infrastructure failures, can lead to disruptions that 
impact people’s daily lives and access to essential services. For instance, major wild
fires can significantly disrupt road travel for several weeks by prompting safety clo
sures or causing traffic congestion due to widespread evacuations (Fraser et al. 2022). 
Urban resiliency is tightly associated with road network vulnerability (Mattsson and 
Jenelius 2015). That is, when an important road network becomes disabled, the overall 
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functionality of a city can be greatly affected. Therefore, studying and understanding 
the vulnerability of road networks to disasters is crucial, and can provide valuable 
insights for policymakers to enhance urban resilience.

In transportation engineering, a road network is modeled as a graph consisting of a 
set of nodes and links representing intersections and road segments, respectively 
(Jayasinghe et al. 2019). The concept of road network vulnerability is defined as the 
network susceptibility against disruptions that can lead to a reduction in network per
formance or serviceability (Sun et al. 2015, Huang and Loo 2023). Disruptions threaten
ing road networks can be generally divided into two categories, including natural 
disasters (e.g. wildfires, floods, earthquakes) and human-induced disruptions (e.g. ter
rorist attacks, infrastructure failure, traffic crashes) (Testa et al. 2015, Huang and Loo 
2023). Depending on the severity and proximity of a disruption, a single or several 
road network elements (e.g. intersections or road segments) may lose their functional
ity, causing a change in the road network topology and connectivity. As such, one rea
sonable way to quantify the road network vulnerability is to measure the extent to 
which the network topology changes due to a disruption. However, topology alone 
cannot inform us about how movement patterns are impacted on the network in 
response to the disruption.

Centrality measures, including node degree, closeness, and betweenness are com
monly used to quantify network topology. Originating from graph theory, network 
analysis and centrality measures (Freeman et al. 2002) have been applied in many 
fields, such as sociology, biology, computer science, transportation, and communica
tion to assess connectivity and access (Zhang et al. 2011). These measures can be 
used as indicators to assess the importance or prominence of network elements (e.g. 
nodes) with respect to certain criteria. For instance, degree centrality counts the num
ber of connections a node has with its neighboring nodes. A node with a higher 
degree is regarded as more prominent or important, as it’s connected to many other 
nodes in the network. Closeness centrality, on the other hand, measures how close a 
node is to the other nodes. While betweenness centrality counts the number of times 
a node is located on the shortest paths between any pairs of nodes in the network 
(Shi et al. 2019). Among centrality measures, betweenness is recognized as the most 
effective measure in capturing the vulnerability of the road segments (Ahmadzai et al. 
2019). That is, a road segment is considered to be vulnerable if that segment lies on 
many shortest paths. As a result, removal of such road segment affects the connectiv
ity between many nodes, which ultimately disrupts movement on a larger part of the 
network and creates longer detours (Dem�sar et al. 2008). Considering the importance 
of vulnerable road segments, they can be highly susceptible to disruptive events 
(Furno et al. 2021). Therefore, to ensure road network functionality during disruptions, 
it is crucial to proactively identify vulnerable road segments and implement measures 
to safeguard them against disruptions.

In this study, we use betweenness to examine the vulnerability of road networks 
before and after a disruption occurs. In addition to the spatial structure of the roads 
and network topology, we take account of the real movement patterns on the road 
network as observed through cellphone tracking data. We apply this approach to ana
lyze road network vulnerability during a wildfire event in California, assessing how 

2 D. ALIZADEH AND S. DODGE



well the developed methodology can capture the impact of such events on transpor
tation systems. This paper extends the existing literature by integrating both network 
topology and movement patterns to assess the road network vulnerability.

The remainder of this article is structured as follows. Section 2 provides an overview 
of previous work in this area. Section 3 describes the proposed methodology. Sections 
4 and 5 present and discuss the results through a case study, and finally, Section 6
summarizes the findings of this paper.

2. Background

Murray et al. (2008) categorize approaches that are used to assess the vulnerability of 
networks to random and intentional disruptions into four groups: scenario-specific, 
strategy-specific, simulation, and mathematical models. Scenario-specific approaches 
examine how network efficiency might be impacted if, for example, one or several 
network elements (e.g. nodes or edges) become disabled due to a disruption (Suarez 
et al. 2005). In contrast, strategy-specific models are used to assess network vulnerabil
ity against a series of coordinated disruption (e.g. terrorist attacks). In these models, 
network elements are commonly ranked based on their importance, and then 
removed successively. Subsequently, network efficiency is evaluated after the removal 
of each element (Albert et al. 2000). The relative importance of network elements are 
usually obtained from topological analysis of the road networks. There exist many 
feasible scenarios in which the network might be impacted. Considering all the pos
sible scenarios is computationally intense, especially when the network is structurally 
complex or large. Simulation models, however, are used to measure the impacts of 
only a range of possible scenarios on the network vulnerability. For instance, in the 
research conducted by Matisziw et al. (2009), a specific number of nodes are removed 
from the network in each scenario. Subsequently, Origin-Destination (OD) path avail
ability along with network flow are computed to measure network vulnerability 
caused by each scenario. Mathematical models are utilized to identify the scenarios in 
which the network is impacted the most (Church et al. 2004), for example, using flow 
optimization (Matisziw and Murray 2009). In their work, a path is available between 
two nodes only if they are physically connected over the network. However, in reality, 
the availability of a path may also depend on several attributes of road segments, 
including available capacity, traffic volume, transportation cost, and road type. For 
example, while a path may appear physically feasible between two nodes (e.g. two 
intersections), it could surpass its capacity threshold due to high traffic volume, 
thereby making the nodes inaccessible. Therefore, it is vital to develop new models 
capable of incorporating road segment attributes along with network topology. In this 
regard, there are few studies focusing on integrating movement data (e.g. traffic vol
ume, density of vehicles on each road segment), with network topology to strengthen 
their model. For example, Sun et al. (2015) take into account not only the network 
topology but also the passenger flow to measure the vulnerability of Shanghai rail 
transit network. In their study, network efficiency, defined as the sum of the inverse 
values of the shortest paths between each pair of nodes, is utilized as a measure of 
network vulnerability. Huang and Loo (2023) incorporate speed as an example of road 
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attributes into their model. They defined an index called congestion index (CI), taking 
both the actual speed and the speed limit on each road segment into account. There 
is another avenue of research in which the vulnerability of a road network is quanti
fied using accessibility measures. For instance, Papilloud and Keiler (2021) developed 
two modified gravity-based accessibility measures to quantify the vulnerability 
changes caused by a flood. Their modified accessibility index is a function of 
‘populations impacted by the flood’, ‘opportunities’ (e.g. the total number of employ
ment places and schools) in each traffic zone, and the ‘average shortest travel time’. 
Their findings indicate that different spatial scales (e.g. the entire study area or traffic 
zone) produce different vulnerability results. As a measure of vulnerability, Taylor 
(2008) computes variations in accessibility caused by a disruption through subtracting 
the pre-disruption accessibility values from the post-disruption accessibility values. The 
index utilized in their study calculates the accessibility of an individual to an activity 
rather than the accessibility between different locations. Gu et al. (2022) also introduce 
a utility-based accessibility metric to evaluate the vulnerability of a multi-modal trans
portation network (e.g. cars, buses, and metros). Their findings suggest that utility- 
based accessibility metrics outperforms other models in assessing vulnerability, as they 
can incorporate travel choice behavior effectively.

Topology-based network vulnerability assessment approaches often utilize differ
ent measures. For example, Sun et al. (2018) employ several well-known topology 
metrics, such as node degree, betweenness, and the strength to examine the sus
ceptibility of the rail transit network. Testa et al. (2015) utilize several other topo
logical metrics, including average nodal degree, and clustering coefficient to 
measure the vulnerability of the coastal transportation networks against extreme cli
mate events. In their study, nodes and links are randomly eliminated to simulate the 
impact of extreme weather, and model the impacted network. These metrics are 
then computed on both original and impacted network to compare and evaluate 
network vulnerability. In most of existing studies, to re-construct the impacted net
work after the disruption, nodes or links (e.g. intersections or road segments) of the 
network are eliminated from the network either randomly or intentionally. In the 
random approach, a certain number of nodes/links are removed randomly from 
the network to obtain the impacted network. In the intentional removal approach, 
the most important links (e.g. the links with the highest value of betweenness/ 
degree) are removed from the network. These approaches often assess vulnerability 
based on hypothetical scenarios (e.g. potential closures due to flooding). Comparing 
both approaches, Shi et al. (2019) demonstrate that the network can be more sus
ceptible to intentional than random removal of links. Their findings suggest that ran
dom removal of the links may not be an effective approach in assessing network 
vulnerability, where the goal is to identify the worst-case scenarios. Boeing and Ha 
(2024) measure the vulnerability of road networks across different urban areas in the 
world to various types of disruptions (e.g. intentional and random disruptions). In 
their study, road network vulnerability is computed based on two indices, robustness 
and efficiency. Robustness is defined as the proportion of OD pairs that persist fol
lowing each disruption to the network, while efficiency refers to the average inverse 
of the shortest path distance among all OD pairs after the disruption. Their results 
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suggest that networks with higher connectivity, fewer chokepoints, or less circuity 
are less vulnerable to disruptions. Such approaches could be strengthened by incor
porating insights from real movement patterns during disruptions. This helps to gain 
a more holistic estimation of the road network vulnerability. In this paper, we aim 
to advance road network vulnerability analysis through a scenario-specific, and data- 
driven approach that considers both network topology and movement activity on 
the road network before and after a disruption.

3. Methodology

Our proposed data-driven methodology relies on anonymized, opted-in observed GPS 
traces from cellphones and other location aware technologies (LATs) such as smart
watches, wearable fitness trackers, tablets, etc. These data, which are often acquired 
from location intelligence companies (e.g. Spectus, Veraset), are used as an indicator 
of movement activity over the road network, helping to assess changes in road usage 
before and after the occurrence of a disruptive event (e.g. wildfire, hurricane, car 
crash). Using such large and high resolution GPS tracking data, the methodology con
sists of three main processes: First, movement trajectories are pre-processed (e.g. 
through filtering and outlier detection) and assigned to road segments via a map 
matching process to quantify the number of vehicles at each road segment and over 
time. Second, variations in movement activity and potential road closures in response 
to a disruption are quantified from movement data, considering both speed and 
vehicle counts on roads. Third, the vulnerability across the impacted road network is 
analyzed and compared using both network topology and movement activity informa
tion. And finally, a difference map is created to highlight the disparities between out
comes derived solely from network topology and those incorporating both network 
topology and movement data. Figure 1 summarizes the methodology used in this 
study. Each step is described in detail below.

3.1. Map matching

Map matching is a prerequisite process to connect raw trajectory data to the right 
road segments and quantify activity (i.e. trajectory counts) on each road segment. 
There are many approaches to map matching: For examples, Quddus et al. (2007) 
compare different map matching techniques, such as point-to-point matching, point- 
to-curve matching, and probabilistic models. Similarly, Chao et al. (2020) perform sev
eral map matching models to assess the varying effects of different models on the 
map matching outcomes. These comparative analyses suggest that the majority of the 
existing map matching models are time-intensive and error-prune, especially when 
applied to high-frequency and large data sets (Zhu et al. 2022).

In this study, to perform map matching, we consider a commonly-used approach 
incorporating a spatial buffer around each road segment. The number of trajectories 
intersecting each road segment buffer on a given day is then assigned to the respect
ive road segment. To speed up the computation, we employ spatial indexing, which 
helps to efficiently identify candidate geometries that may satisfy the spatial 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



relationship (e.g. intersect, contain, and overlap) being queried (Boeing 2016). That is, 
it reduces the number of geometries that need to be examined for the operation, 
thus speeding up the computation. On the other hand, the state-of-the-art map 
matching models, such as deep-learning models (Feng et al. 2020), mainly require to 
be trained first on a relatively large amount of data, leading to a more computation
ally expensive process (Hu and Lu 2019). It is worth mentioning that any other map 
matching technique can also be incorporated into this step.

3.2. Movement activity variation

To assess changes in movement activity in response to a disruption, it’s essential to 
establish a baseline from which variations are computed. To measure daily variation in 
movement activity on a given road segment, we first define a baseline (as described 
later) for each road segment, and then calculate variations from that baseline. The 
amount of variation from the baseline is then used to infer non-functional road 

Figure 1. An overview of the methodological workflow.
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segments or segments that are heavily impacted during or after the disruption. To 
quantify variations in movement activity, we introduce two indices based on trajectory 
counts and speed, as described in Sections 3.2.1 and 3.2.2.

3.2.1. Quantifying movement activity variation based on trajectory counts
To assess variations in movement activity in terms of road usage, we compute the 
baseline for each road segment (TCi for the ith road segment) by deriving the median 
trajectory count recorded for that segment across the entire study period (e.g. n days), 
using Equation (1). The rationale for selecting the median over other measures, such 
as the mean, is that it is more robust against outliers (Moore and McCabe 1989). The 
daily variation in movement activity for each road segment i is then calculated as the 
ratio of the daily trajectory count (TCði, tjÞ, 1 � j � n days) divided by the baseline 
(Equation 2). In this index, a value of one signifies no deviation from the baseline on a 
specific road segment on the respective day. A value >1 indicates an increase in tra
jectory counts compared to the baseline, whereas a value <1 suggests a decrease in 
movement activity along the segment.

TCi ¼ MedianðTCi, t1 , TCi, t2 , TCi, t3 , . . . , TCi, tn Þ (1) 

Where, TCi represents the median of trajectory counts for the road segment i dur
ing the study period, and TCi, tj denotes the trajectory count on the road segment i on 
day tj 2 ½t1, tn� (i.e. the jth day of the study period).

MVTCði, tjÞ ¼
TCði, tjÞ

TCi
(2) 

Where, MVTCði, tjÞ is movement variation based on trajectory counts on the road seg
ment i on day tj 2 ½t1, tn�:

3.2.2. Quantifying movement activity variation based on speed
To assess the variation of speed on the road network, we consider the median speed 
of trajectories on a specific road segment i during the study period (½t1, tn�) as the 
speed baseline for that segment (e.g. Si in Equation 3). Subsequently, speed variations 
(MVSði, tjÞ), for the road segment i, at time tj, is computed using Equation (4).

Si ¼ MedianðSi, t1 , Si, t2 , Si, t3 , . . . , Si, tn Þ (3) 

Where, Si is the speed baseline for segment i, and tj 2 ½t1, tn� is the jth day during 
the study period.

MVSði, tjÞ ¼
Sði, tnÞ

Si
(4) 

Where, MVSði, tjÞ is the movement variation based on the observed speed on the 
road segment i on day tj 2 ½t1, tn�:

3.2.3. Road closure identification
Using movement trajectory data, road segments that become non-functional due to 
the disruption are identified. To do so, we performed Inter-Quartile Range (IQR) (Tukey 
et al. 1977) on the movement activity variations based on counts and speed for each 
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road segment during our study period. A road segment is identified as non-functional 
on a certain day if both the corresponding movement activity variations based on 
count and speed fall below the lower bound of the box plot (i.e. Q1 − ð1:5 � IQRÞ, 
where Q1 is the value of the first quantile). We incorporate both speed and counts in 
the identification of road closures because a road segment might have a trajectory 
speed below the lower bound of the box plot, while still having trajectory counts 
above the lower bound. This case could indicate traffic congestion rather than road 
closures. Thus, considering solely either counts or speeds is inadequate in identifying 
road closures.

3.3. Vulnerability assessment

3.3.1. Vulnerability assessment of the static network
The spatial structure or topology of a road network can be modeled as a static graph 
consisting of nodes and edges. In this context, ‘static’ denotes that the network’s top
ology remains fixed over time unless a road segment is physically removed. Equation 
(5) quantifies Betweenness Centrality (BC) calculated for edges following Brandes 
(2001, 2008), as a key indicator of vulnerability within such static network. In this 
study, we use the edge betweenness centrality function implemented in the NetworkX 
Python package (Hagberg et al. 2008) to compute the betweenness values for edges.

BCk ¼
X

i, j2V

ShortestPathkði, jÞ
ShortestPathði, jÞ

(5) 

Where, for a network of size N nodes, BCk denotes the betweenness value for the 
edge k, ShortestPathkði, jÞ (i, j 2 ½1, N�) represents the number of shortest paths between 
node i and j passing through edge k, and ShortestPathði, jÞ stands for the total number 
of shortest paths between nodes i and j.

A greater value of BCk indicates that edge k is more frequently positioned along 
the shortest paths within the network, highlighting its higher importance in network 
connectivity. Consequently, any impact on this edge could significantly disrupt the 
accessibility to various network locations and increase the network’s vulnerability.

To assess changes in the vulnerability in an impacted network in response to a dis
ruption, we first identify non-functional roads using movement data, as described in 
Section 3.2, and then eliminate them from the network. The network that is created 
after removing non-functional road segments is called the impacted network. We then 
calculate BC over the impacted network, representing the vulnerability of the static 
network after the impact.

3.3.2. Vulnerability assessment of the dynamic network
Vulnerability assessment of the impacted network can measure road network vulner
ability based only on the network topology (e.g. the vulnerability of the static network 
after the impact). This, however, does not include the actual network usage, and 
therefore, it cannot be a holistic estimation of network vulnerability. To improve this, 
the vulnerability assessment is performed on a ‘dynamic network’ that is created by 
annotating each road segment with the daily density of activity, as formalized in 
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Equation (6).

Densityði, tjÞ
¼

trajsði, tjÞ

lðiÞ
(6) 

Where, Densityði, tjÞ
represents the density on the road segment i at the time interval 

tj, trajsði, tjÞ is the number of trajectories on the road segment i at the time interval of 
tj, and lðiÞ denotes the length of the segment i. tj 2 ½t1, tn� is, for example, a day in the 
study period.

Shortest paths within a network can be obtained with respect to different costs 
(e.g. travel time, travel distance, etc.). For example, when cost is set to represent time, 
the shortest path between nodes a and b seeks to minimize the travel time from a to 
b. In the calculation of BC for the dynamic network, the cost of each road segment is 
set as the inverse of the density value obtained from the number of cellphone trajec
tories observed on that road segment. The BC values derived from the dynamic road 
network are then referred to as the vulnerability of the dynamic network.

3.4. Mapping changes in road network vulnerability and utilization

In the last step, we create a difference map to assess the impact of the disruption on 
the road network vulnerability. The BC derived from the impacted network gives an 
estimation of vulnerability based on network topology and road closures. The BC 
obtained from the dynamic network reflects a more holistic estimation of changes in 
vulnerability based on the observed movement patterns as experienced on the road 
before, during, and after the disruption. To differentiate the vulnerability values from 
the static network and the dynamic network, a difference map is created. In this map, 
the value represented on each road segment is obtained by subtracting the vulner
ability values of the static network from those of the dynamic network. As a result, a 
value of 0 represents no change, while a positive value represents over-utilization of 
those road segments compared to what is expected. A negative value indicates an 
under-utilization of the road segments compared to the expected usage.

4. Case study and results

4.1. Case study and data set

In the United States of America, California exhibits a high level of vulnerability to 
severe natural disasters, including frequent wildfires and floods (Zigner et al. 2022). 
Santa Barbara County in California is not an exception, as it has faced numerous wild
fires throughout its history. Our case study focuses on the Cave Fire in Santa Barbara 
County to demonstrate how our methodology can be used to assess road network 
vulnerability to wildfires in a local region. The Cave Fire, a major wildfire that occurred 
on 25th November 2019, and was contained by 14th December 2019, burned an area 
of 3126 acres. As the Area of Interest (AoI), the road network of Santa Barbara County 
obtained from the OSMnx Python package (Boeing 2017), is depicted in Figure 2. The 
blue lines in this figure illustrate the road network within the AoI, and the red polygon 
highlights the Cave wildfire perimeter. In this study, we only preserved major road 
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segments, including ‘Motorway’, ‘Trunk’, ‘Primary’, ‘Secondary’, and ‘Tertiary’. These road 
types can fully capture the spatial configuration and connectivity between Santa 
Barbara, Lompoc, and Santa Maria cities. Minor road types (e.g. Residential) are 
excluded as they add to the network’s complexity without contributing much in cap
turing the connectivity between the targeted cities. The full descriptions of these road 
types can be found in OpenStreetMap (2024a).

Aggregated Location Based Service data is provided by Cuebiq (Cuebiq 2024), a 
location intelligence platform. Data is collected from anonymized users who have 
opted-in to provide access to their location data anonymously, through a CCPA and 
GDPR-compliant framework. The data set used in this study covers the geographical 
area of Santa Barbara County, starting from 1st November to 30th November 2019. 
This data set contains 1,184,318 trajectories, with an average temporal resolution of 
2 min, and an average accuracy of 10 m.

4.2. Data pre-processing and map matching

We applied map matching on the GPS traces to extract and aggregate daily trajecto
ries on the Santa Barbara road network during the study period. Our initial trajectory 

Figure 2. The study area including the road network of Santa Barbara County (upper map), and 
the city of Santa Barbara (lower right) in California, USA.
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data set contains trajectories from various modes of transportation, including walking, 
biking, driving, or flying. We applied a simple filtering based on speed to distinguish 
between different modes. In this regard, a given trajectory with speed <4 km/h, 
between 4 and 15 km/h, 15 and 80 km/h, and 80 and 200 km/h is classified as walking, 
biking/running, car trip, and train or highway trip, respectively. As depicted in Figure 
3, most trajectories pertain to vehicular movement (car, train/highway, and plane). The 
number of trajectories associated with each mode of transportation is also provided in 
Figure 3.

The focus of this study is on vehicular movement on roads. That is, only vehicular 
trajectories that satisfy the conditions 15km=h � speed � 200km=h, and 100m �

length � 200km are preserved. Implementing the length constraint allows us to filter 
out outliers and obtain high-quality trajectories. The distribution of the trip lengths 
and durations are represented in Figures 4(a,b), respectively. Table 1 presents a sum
mary of trajectory counts at each stage of filtering process.

4.3. Variation in movement activity

Figures 5 and 6 demonstrate the movement activity variation based on trajectory 
count and speed on Monday and Tuesday in the week before the wildfire (18th and 
19th November), and Monday and Tuesday when the fire was active (25th and 26th 
November), and the day after the fire.

A closer look at the movement activity variations reveals that several road seg
ments, in particular parts of the highway HW 154, that are closer to the location of 
the wildfire exhibited significant movement variations in terms of both trajectory 

Figure 3. Modes of transportation included in the underlying trajectory data set.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 11



count and speed compared to the baseline. For example, Figure 5(d) illustrates that 
the trajectory counts had a significant drop one day after the wildfire. Specifically, HW 
154 exhibits a variation of <0.5, meaning that the number of trajectories has 

Figure 4. Distributions of the trajectory lengths and durations in the raw and processed data sets.

Table 1. An overview of trajectory counts after each data processing stage.

Processing stage Initial stage
Trajectory  
� 2 points

15 km=h � speed  
� 200 km=h

100 m �

length � 200 km

Number of trajectories 1,184,318 1,036,525 782,060 779,977

Figure 5. Mobility variation based on trajectory counts on (a) Monday, 18 November 2019, (b) 
Tuesday, 19 November 2019, (c) Monday, 25 November 2019, and (d) Tuesday, 26 November 2019. 
The Cave Fire occurred on the evening of November 25.
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significantly decreased compared to the baseline. Figure 6(d) also implies a substantial 
decrease in trajectory speed for HW 154, with certain areas closer to the wildfire’s 
location displaying a variance of <0.5. This highlights a significant decline in trajectory 
speeds compared to the baseline.

4.4. Vulnerability assessment

Figure 7 illustrates BC values, as an indicator of vulnerability, on each road segment 
without considering any impact. As it can be seen in the figure, road segments that 
connect Santa Barbara to Santa Ynez, and also Santa Ynez to Santa Maria are highly 
vulnerable against disruptions. That is, if these road segments become disabled, the 
movement flows on the network are greatly impacted.

Considering Figures 5(d) and 7, it appears that Highway 154 became disabled dur
ing the Cave Fire. This section of the highway has also high BC value and is identified 
as a highly vulnerable road segment in the static network.

The road closure identification process, presented in Section 3.3.1, is then per
formed on daily trajectory data throughout our study period, from 1st November to 
30th November 2019. We discovered major road closures (highlighted in red in Figure 
8) only on the day following the Cave Fire on November 26. This might be due to the 
fact the Cave Fire occurred in the evening, and therefore mitigation efforts were car
ried out on the subsequent day. In Figure 8, the non-functional and functional road 
segments are indicated with red and gray lines, respectively. As it can be inferred 

Figure 6. Mobility Variation based on speed on (a) Monday, 18 November 2019, (b) Tuesday, 19 
November 2019, (c) Monday, 25 November 2019, and (d) Tuesday, 26 November 2019. The Cave 
Fire occurred on the evening of 25 November.
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from this figure, one primary highway (e.g. HW 154), and several tertiary roads became 
disabled on November 26 as a result of the Cave Fire.

Figure 9 illustrates the BC values over the impacted network on 26 November 2019. 
The BC values over the impacted network are different compared to the static net
work, highlighting the impact of the Cave Fire on the road network vulnerability. For 
instance, the BC values for several road segments, such as HW CA 1, Foxen Canyon 
Road, Alisal Road, Ballard Canynon Road, Harris Grade Road, and a part of HW 101 

Figure 8. Road closures detected on 26 November 2019.

Figure 7. Betweenness centrality (BC) values over the static network, representing the vulnerability 
of the static network.
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exhibit an increase compared to their corresponding values in the static network. This 
implies that when one or several road segments with high BC values become non- 
functional within a network, they can impact the entire network.

Figure 10, visualizes the BC values over the dynamic network on 26 November 
2019, by considering the actual usage of the network as captured in the movement 
data. This figure reveals a shift in vulnerability values obtained from the dynamic net
work compared to those from impacted network. The darker a road segment is, the 

Figure 9. Betweenness centrality (BC) values over the impacted network on 26 November 2019, 
representing the vulnerability of the static network after the impact.

Figure 10. Betweenness centrality (BC) values over the dynamic network on 26 November 2019, 
representing the vulnerability of the dynamic network after the impact.
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higher vulnerability. As illustrated, certain parts of HW 101 exhibit high vulnerability 
across the dynamic network, while they are not identified as highly vulnerable within 
the impacted network (see Figure 9).

The BC values obtained from the impacted road network offer the vulnerability of 
the static network after the impact, indicating our anticipation of the vulnerability of 
the road segments after the removal of certain segments. Conversely, the BC values 
from the dynamic network present the vulnerability of the dynamic network, reflecting 
the actual movement activity observed over the network. To further investigate the 
extent to which the vulnerability values of the dynamic network vary from those in 
the static network, a difference map is created (Figure 11). In this figure, segments in 
red represent the over-utilized roads where the value of vulnerability in the dynamic 
network is greater than those from the static network. That is, these road segments 
are considered even more susceptible against disruptions when movement activity is 
taken into account compared to when the vulnerability is estimated only using net
work topology. Major road segments such as, certain parts of HW 101 are detected as 
the road segments with increased levels of vulnerability when movement data is 
included. The road segments in blue, on the other hand, indicate the under-utilized 
road segments roads in which the value of the vulnerability in the dynamic network is 
less than those from the static network. Several tertiary road segments including Alisal 
Road, Foxen Canyon Road, and Happy Canyon Road are the road segments with a 
decreased level of vulnerability when movement data is involved. Lastly, the road seg
ments in light gray are the roads with no change in vulnerability values when move
ment activity data is incorporated.

To explore the relationship between road vulnerability and the type of road, Figure 
12 classifies the road segments based on their types and vulnerability. The most prom
inent roads in the U.S. system include, ‘Motorway’, ‘Trunk’, ‘Primary’, ‘Secondary’, and 
‘Tertiary’, respectively (OpenStreetMap 2024b). ‘Trunk’ roads are major highways that 
connect large cities. However, they don’t meet the performance requirements to be 

Figure 11. The difference map between static and dynamic vulnerability on 26 November 2019.
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classified as ‘Motorway’ or ‘Primary’. As seen in Figure 12, major roads, such as 
‘Motorway’ and ‘Trunk’ road segments mainly experience an increased level of central
ity when movement activity is considered. Conversely, minor roads, including ‘Primary’, 
‘Secondary’, and ‘Tertiary’ exhibit a decrease in centrality values. That is, incorporating 
movement activity data shows an over-utilization of major roads and hence an 
increased level of vulnerability for these roads as compared to minor roads when a 
disruption occurs. Since our dynamic vulnerability index is a function of individuals’ 
movement during disruptions, this may indicate that during disruptions people tend 
to use major roads more than minor roads, even if the minor roads may offer shorter 
routes compared to the major roads.

5. Discussion

To assess the road network vulnerability before, during, and after a disruption, this 
paper integrates movement data into the static road network to construct a dynamic 
network. The dynamic road network offers a distinct advantage, as it contains informa
tion not only on the spatial structure of the network but also the experienced move
ment activity over the road network, which in turn, results in an improvement in the 
estimation of the road network vulnerability in the event of a disruption. Additionally, 
most existing studies, mainly compare network topology metrics before, during, and 
after a disruption to evaluate the road network vulnerability. In these approaches, to 
obtain the impacted network, nodes (e.g. intersections) or links (e.g. road segments) 
are randomly or intentionally removed, as there is no information or evidence regard
ing their functionality. However, in this work, the non-functional nodes/links are identi
fied using real movement data. Consequently, the computed impacted network is a 

Figure 12. The road network vulnerability classification based on road type.
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more holistic estimation of the road network vulnerability during an actual disruption. 
The results obtained from this study suggest a shift in the road vulnerability values 
during the disruption. That is, certain types of road segments become disabled due to 
the disruption. Our results also indicate that the vulnerability of the road segments 
changes when integrating movement patterns into the network topology-based mod
els. This can provide insights into how road networks function in reality given a dis
ruption. Identifying the vulnerable road segments within a road network and also 
understanding how this vulnerability may change during a disruption helps city plan
ners to fortify the vulnerable road segments and also effectively allocate resources 
during disruptions, ultimately leading to an increase in urban resiliency.

There are several limitations in this study. First, although map matching is not a 
central focus of this study, the results may still be influenced by the chosen map 
matching approach. It is also important to note that there is no prefect model for 
map matching. It is, therefore, a critical need to further study map matching models 
and improve the current methods. Second, although the representativeness of Cuebiq 
data used in this study has been investigated in several studies (Wang et al. 2019, 
Aleta et al. 2020, Nande et al. 2021) with favorable outcomes, the mobile phone data 
may still not fully capture the true traffic patterns across the road network. One pos
sible solution for this could be integrating movement data from other sources (e.g. 
Mapbox, Safegraph, and StreetLight), or in-situ traffic sensors to inform the analysis. 
Additionally, the proposed methodology assumes that mobile tracking data sets are 
available. However, in areas where mobile phone data access is limited or costly, alter
native geospatial datasets that can serve as proxies for individual movement patterns 
may be used. For example, we can use publicly available traffic census count data, 
such as Traffic Volumes and Vehicle Miles Traveled (VMT) from state agencies, such as 
California Department of Transportation (Caltrans 2024). Third, the impacts of disrup
tion on the road network vulnerability depend on both the location, duration, and 
magnitude of the disruption. Consequently, variations in disruption location and mag
nitude can lead to differing outcomes on the road network vulnerability. Simulation- 
based models can play a crucial role in assessing road network vulnerability under 
various scenarios. For instance, by selectively removing different nodes, they can simu
late various disruption locations, and by altering the number of nodes/links removed, 
they can account for differing disruption magnitudes. However, these approaches are 
computationally expensive for complex networks. Thus, it becomes crucial to develop 
models capable of evaluating the vulnerability of complex road networks while consid
ering both the location and magnitude of disruptions. Forth, the selected scale of the 
study can also influence its outcomes. For instance, the effects of a disruption might 
be substantial when examining the road network within a Census Block Group (CBG), 
whereas they may not be noticeable when analyzing the road network within a 
county. Thus, future research should consider developing models that are less sensi
tive to the scale of the study. Fifth, as shown in Boeing and Ha (2024), there is a rela
tionship between network design and network vulnerability. That is, some networks 
are more vulnerable compared to others due to their spatial configuration. Therefore, 
findings from this study focused on the spatial road network of Santa Barbara, may 
not be universally applicable to other urban networks with distinct spatial 
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configurations. However, using any road network, the methodology can identify the 
most vulnerable road segments across the network considering both topology and 
flow of traffic. Incorporating movement data into betweenness centrality assessment 
helps identify the road segments that may be critical for network connectivity during 
disruptions. These segments may not appear vulnerable when assessed solely based 
on network topology. Our approach captures traffic flow in vulnerability assessment, 
revealing, for example, segments that might have lower betweenness centrality values 
but become crucial in network connectivity when real-world traffic patterns are con
sidered. These segments may need spatial attention in evacuation planning or 
resource allocation. Sixth, identifying vulnerable road segments using only between
ness index in areas with many interconnected roads (e.g. city centers) might be chal
lenging. In such areas, many roads might exhibit high betweenness values, 
complicating the identification of the most vulnerable road segment. To address this, 
incorporating other topology indices, such as node degree, clustering coefficient, and 
closeness can help in accurately identifying the most vulnerable road segments. Lastly, 
as mentioned in Section 2, previous studies mainly quantify network vulnerability by 
measuring changes in either network topology or network accessibility indices. While 
topology-based approaches assess the impacts of disruptions on the network’s spatial 
configuration, accessibility-based models evaluate the impacts of disruptions on indi
viduals’ ability to traverse the network and reach important facilities (e.g. hospitals, 
grocery stores, and shelters). Therefore, current network vulnerability approaches can 
be strengthened by combining both topology-based and accessibility-based measures. 
This combination allows for a more holistic understanding of how disruptions affect 
both the network structure and individuals’ satisfactions.

6. Conclusion

This study demonstrates the importance of integrating movement data into static 
road networks for assessing road network vulnerability. Our findings indicate a shift in 
the vulnerability values derived from the dynamic network (e.g. when movement 
activity data is involved) compared to those from the static network. This emphasizes 
the significance of incorporating movement data into the assessment of the road net
work vulnerability. Additionally, our results suggest that, in face of disruptive events, 
individuals tend to use major roads rather than minor roads, even if the minor roads 
offer shorter routes. This may be due to the faster travel speeds on major roads, allow
ing people to choose routes that minimize travel time rather than distance. As future 
research, it would be useful to integrate topology metrics and accessibility indices into 
a comprehensive vulnerability index, providing a more holistic understanding of road 
network vulnerability. Moreover, it is important to investigate the impact of scale on 
the outcomes of the road network vulnerability. The results obtained from this study 
increase our understanding of how the road network vulnerability may change during 
disruptions. It can also be useful for city officials to fortify the vulnerable road seg
ments before disruptions, and effectively allocate resources during disruptions, which 
in turn, leads to an overall improvement in city resilience.
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