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ABSTRACT ARTICLE HISTORY

The rise in natural disasters and climate-induced events, such as Received 7 March 2024

wildfires, hurricanes, and flooding, has significantly affected urban ~ Accepted 25 September 2024

life. These events can disrupt daily activity and flows of individu-

als and goods on road and transit networks. To enhance urban  KEYWORDS

resilience against disasters, it's crucial to study and understand ~ Data-driven movement

road network vulnerability, utilizing data-driven insights to inform analysis; network centr_a_ht)f;
X . ~ . road network vulnerability;

planning and preparedness efforts. The aim of this paper is to urban resiliency; complex

develop a data-driven exploratory approach to assess vulnerability network theory

in road networks in response to a disruption. To accomplish this,

we compare the centrality of road segments before, during, and

after disaster, considering the network topological structure and

movement activity as it is observed through large tracking data

of cellphone traces on the network. The novelty of our approach

lies in inferring the impact from movement data, instead of

manually removing links from the network. The results obtained

from this study suggest that incorporating movement data into

the assessment of network functionality provides a more realistic

estimation of the road network vulnerability in response to a

disruption, compared to solely using network topology.

1. Introduction

The vulnerability of road networks to disruptions has been a significant concern in
resilience research (Matisziw and Murray 2009, Furno et al. 2021). Various events, such
as natural disasters, accidents, or infrastructure failures, can lead to disruptions that
impact people’s daily lives and access to essential services. For instance, major wild-
fires can significantly disrupt road travel for several weeks by prompting safety clo-
sures or causing traffic congestion due to widespread evacuations (Fraser et al. 2022).
Urban resiliency is tightly associated with road network vulnerability (Mattsson and
Jenelius 2015). That is, when an important road network becomes disabled, the overall
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functionality of a city can be greatly affected. Therefore, studying and understanding
the vulnerability of road networks to disasters is crucial, and can provide valuable
insights for policymakers to enhance urban resilience.

In transportation engineering, a road network is modeled as a graph consisting of a
set of nodes and links representing intersections and road segments, respectively
(Jayasinghe et al. 2019). The concept of road network vulnerability is defined as the
network susceptibility against disruptions that can lead to a reduction in network per-
formance or serviceability (Sun et al. 2015, Huang and Loo 2023). Disruptions threaten-
ing road networks can be generally divided into two categories, including natural
disasters (e.g. wildfires, floods, earthquakes) and human-induced disruptions (e.g. ter-
rorist attacks, infrastructure failure, traffic crashes) (Testa et al. 2015, Huang and Loo
2023). Depending on the severity and proximity of a disruption, a single or several
road network elements (e.g. intersections or road segments) may lose their functional-
ity, causing a change in the road network topology and connectivity. As such, one rea-
sonable way to quantify the road network vulnerability is to measure the extent to
which the network topology changes due to a disruption. However, topology alone
cannot inform us about how movement patterns are impacted on the network in
response to the disruption.

Centrality measures, including node degree, closeness, and betweenness are com-
monly used to quantify network topology. Originating from graph theory, network
analysis and centrality measures (Freeman et al. 2002) have been applied in many
fields, such as sociology, biology, computer science, transportation, and communica-
tion to assess connectivity and access (Zhang et al. 2011). These measures can be
used as indicators to assess the importance or prominence of network elements (e.g.
nodes) with respect to certain criteria. For instance, degree centrality counts the num-
ber of connections a node has with its neighboring nodes. A node with a higher
degree is regarded as more prominent or important, as it's connected to many other
nodes in the network. Closeness centrality, on the other hand, measures how close a
node is to the other nodes. While betweenness centrality counts the number of times
a node is located on the shortest paths between any pairs of nodes in the network
(Shi et al. 2019). Among centrality measures, betweenness is recognized as the most
effective measure in capturing the vulnerability of the road segments (Ahmadzai et al.
2019). That is, a road segment is considered to be vulnerable if that segment lies on
many shortest paths. As a result, removal of such road segment affects the connectiv-
ity between many nodes, which ultimately disrupts movement on a larger part of the
network and creates longer detours (Demsar et al. 2008). Considering the importance
of vulnerable road segments, they can be highly susceptible to disruptive events
(Furno et al. 2021). Therefore, to ensure road network functionality during disruptions,
it is crucial to proactively identify vulnerable road segments and implement measures
to safeguard them against disruptions.

In this study, we use betweenness to examine the vulnerability of road networks
before and after a disruption occurs. In addition to the spatial structure of the roads
and network topology, we take account of the real movement patterns on the road
network as observed through cellphone tracking data. We apply this approach to ana-
lyze road network vulnerability during a wildfire event in California, assessing how
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well the developed methodology can capture the impact of such events on transpor-
tation systems. This paper extends the existing literature by integrating both network
topology and movement patterns to assess the road network vulnerability.

The remainder of this article is structured as follows. Section 2 provides an overview
of previous work in this area. Section 3 describes the proposed methodology. Sections
4 and 5 present and discuss the results through a case study, and finally, Section 6
summarizes the findings of this paper.

2. Background

Murray et al. (2008) categorize approaches that are used to assess the vulnerability of
networks to random and intentional disruptions into four groups: scenario-specific,
strategy-specific, simulation, and mathematical models. Scenario-specific approaches
examine how network efficiency might be impacted if, for example, one or several
network elements (e.g. nodes or edges) become disabled due to a disruption (Suarez
et al. 2005). In contrast, strategy-specific models are used to assess network vulnerabil-
ity against a series of coordinated disruption (e.g. terrorist attacks). In these models,
network elements are commonly ranked based on their importance, and then
removed successively. Subsequently, network efficiency is evaluated after the removal
of each element (Albert et al. 2000). The relative importance of network elements are
usually obtained from topological analysis of the road networks. There exist many
feasible scenarios in which the network might be impacted. Considering all the pos-
sible scenarios is computationally intense, especially when the network is structurally
complex or large. Simulation models, however, are used to measure the impacts of
only a range of possible scenarios on the network vulnerability. For instance, in the
research conducted by Matisziw et al. (2009), a specific number of nodes are removed
from the network in each scenario. Subsequently, Origin-Destination (OD) path avail-
ability along with network flow are computed to measure network vulnerability
caused by each scenario. Mathematical models are utilized to identify the scenarios in
which the network is impacted the most (Church et al. 2004), for example, using flow
optimization (Matisziw and Murray 2009). In their work, a path is available between
two nodes only if they are physically connected over the network. However, in reality,
the availability of a path may also depend on several attributes of road segments,
including available capacity, traffic volume, transportation cost, and road type. For
example, while a path may appear physically feasible between two nodes (e.g. two
intersections), it could surpass its capacity threshold due to high traffic volume,
thereby making the nodes inaccessible. Therefore, it is vital to develop new models
capable of incorporating road segment attributes along with network topology. In this
regard, there are few studies focusing on integrating movement data (e.g. traffic vol-
ume, density of vehicles on each road segment), with network topology to strengthen
their model. For example, Sun et al. (2015) take into account not only the network
topology but also the passenger flow to measure the vulnerability of Shanghai rail
transit network. In their study, network efficiency, defined as the sum of the inverse
values of the shortest paths between each pair of nodes, is utilized as a measure of
network vulnerability. Huang and Loo (2023) incorporate speed as an example of road
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attributes into their model. They defined an index called congestion index (Cl), taking
both the actual speed and the speed limit on each road segment into account. There
is another avenue of research in which the vulnerability of a road network is quanti-
fied using accessibility measures. For instance, Papilloud and Keiler (2021) developed
two modified gravity-based accessibility measures to quantify the vulnerability
changes caused by a flood. Their modified accessibility index is a function of
‘populations impacted by the flood’, ‘opportunities’ (e.g. the total number of employ-
ment places and schools) in each traffic zone, and the ‘average shortest travel time’'.
Their findings indicate that different spatial scales (e.g. the entire study area or traffic
zone) produce different vulnerability results. As a measure of vulnerability, Taylor
(2008) computes variations in accessibility caused by a disruption through subtracting
the pre-disruption accessibility values from the post-disruption accessibility values. The
index utilized in their study calculates the accessibility of an individual to an activity
rather than the accessibility between different locations. Gu et al. (2022) also introduce
a utility-based accessibility metric to evaluate the vulnerability of a multi-modal trans-
portation network (e.g. cars, buses, and metros). Their findings suggest that utility-
based accessibility metrics outperforms other models in assessing vulnerability, as they
can incorporate travel choice behavior effectively.

Topology-based network vulnerability assessment approaches often utilize differ-
ent measures. For example, Sun et al. (2018) employ several well-known topology
metrics, such as node degree, betweenness, and the strength to examine the sus-
ceptibility of the rail transit network. Testa et al. (2015) utilize several other topo-
logical metrics, including average nodal degree, and clustering coefficient to
measure the vulnerability of the coastal transportation networks against extreme cli-
mate events. In their study, nodes and links are randomly eliminated to simulate the
impact of extreme weather, and model the impacted network. These metrics are
then computed on both original and impacted network to compare and evaluate
network vulnerability. In most of existing studies, to re-construct the impacted net-
work after the disruption, nodes or links (e.g. intersections or road segments) of the
network are eliminated from the network either randomly or intentionally. In the
random approach, a certain number of nodes/links are removed randomly from
the network to obtain the impacted network. In the intentional removal approach,
the most important links (e.g. the links with the highest value of betweenness/
degree) are removed from the network. These approaches often assess vulnerability
based on hypothetical scenarios (e.g. potential closures due to flooding). Comparing
both approaches, Shi et al. (2019) demonstrate that the network can be more sus-
ceptible to intentional than random removal of links. Their findings suggest that ran-
dom removal of the links may not be an effective approach in assessing network
vulnerability, where the goal is to identify the worst-case scenarios. Boeing and Ha
(2024) measure the vulnerability of road networks across different urban areas in the
world to various types of disruptions (e.g. intentional and random disruptions). In
their study, road network vulnerability is computed based on two indices, robustness
and efficiency. Robustness is defined as the proportion of OD pairs that persist fol-
lowing each disruption to the network, while efficiency refers to the average inverse
of the shortest path distance among all OD pairs after the disruption. Their results
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suggest that networks with higher connectivity, fewer chokepoints, or less circuity
are less vulnerable to disruptions. Such approaches could be strengthened by incor-
porating insights from real movement patterns during disruptions. This helps to gain
a more holistic estimation of the road network vulnerability. In this paper, we aim
to advance road network vulnerability analysis through a scenario-specific, and data-
driven approach that considers both network topology and movement activity on
the road network before and after a disruption.

3. Methodology

Our proposed data-driven methodology relies on anonymized, opted-in observed GPS
traces from cellphones and other location aware technologies (LATs) such as smart-
watches, wearable fitness trackers, tablets, etc. These data, which are often acquired
from location intelligence companies (e.g. Spectus, Veraset), are used as an indicator
of movement activity over the road network, helping to assess changes in road usage
before and after the occurrence of a disruptive event (e.g. wildfire, hurricane, car
crash). Using such large and high resolution GPS tracking data, the methodology con-
sists of three main processes: First, movement trajectories are pre-processed (e.g.
through filtering and outlier detection) and assigned to road segments via a map
matching process to quantify the number of vehicles at each road segment and over
time. Second, variations in movement activity and potential road closures in response
to a disruption are quantified from movement data, considering both speed and
vehicle counts on roads. Third, the vulnerability across the impacted road network is
analyzed and compared using both network topology and movement activity informa-
tion. And finally, a difference map is created to highlight the disparities between out-
comes derived solely from network topology and those incorporating both network
topology and movement data. Figure 1 summarizes the methodology used in this
study. Each step is described in detail below.

3.1. Map matching

Map matching is a prerequisite process to connect raw trajectory data to the right
road segments and quantify activity (i.e. trajectory counts) on each road segment.
There are many approaches to map matching: For examples, Quddus et al. (2007)
compare different map matching techniques, such as point-to-point matching, point-
to-curve matching, and probabilistic models. Similarly, Chao et al. (2020) perform sev-
eral map matching models to assess the varying effects of different models on the
map matching outcomes. These comparative analyses suggest that the majority of the
existing map matching models are time-intensive and error-prune, especially when
applied to high-frequency and large data sets (Zhu et al. 2022).

In this study, to perform map matching, we consider a commonly-used approach
incorporating a spatial buffer around each road segment. The number of trajectories
intersecting each road segment buffer on a given day is then assigned to the respect-
ive road segment. To speed up the computation, we employ spatial indexing, which
helps to efficiently identify candidate geometries that may satisfy the spatial
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Figure 1. An overview of the methodological workflow.

relationship (e.g. intersect, contain, and overlap) being queried (Boeing 2016). That is,
it reduces the number of geometries that need to be examined for the operation,
thus speeding up the computation. On the other hand, the state-of-the-art map
matching models, such as deep-learning models (Feng et al. 2020), mainly require to
be trained first on a relatively large amount of data, leading to a more computation-
ally expensive process (Hu and Lu 2019). It is worth mentioning that any other map
matching technique can also be incorporated into this step.

3.2. Movement activity variation

To assess changes in movement activity in response to a disruption, it's essential to
establish a baseline from which variations are computed. To measure daily variation in
movement activity on a given road segment, we first define a baseline (as described
later) for each road segment, and then calculate variations from that baseline. The
amount of variation from the baseline is then used to infer non-functional road
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segments or segments that are heavily impacted during or after the disruption. To
quantify variations in movement activity, we introduce two indices based on trajectory
counts and speed, as described in Sections 3.2.1 and 3.2.2.

3.2.1. Quantifying movement activity variation based on trajectory counts

To assess variations in movement activity in terms of road usage, we compute the
baseline for each road segment (TC; for the ith road segment) by deriving the median
trajectory count recorded for that segment across the entire study period (e.g. n days),
using Equation (1). The rationale for selecting the median over other measures, such
as the mean, is that it is more robust against outliers (Moore and McCabe 1989). The
daily variation in movement activity for each road segment i is then calculated as the
ratio of the daily trajectory count (TC<,~,tj>, 1 <j < n days) divided by the baseline
(Equation 2). In this index, a value of one signifies no deviation from the baseline on a
specific road segment on the respective day. A value >1 indicates an increase in tra-
jectory counts compared to the baseline, whereas a value <1 suggests a decrease in
movement activity along the segment.

TC,' - Median(TC,',t1, TC," tyr TC," t3r - TC,', tn) (1)

Where, TC; represents the median of trajectory counts for the road segment i dur-
ing the study period, and TC; ; denotes the trajectory count on the road segment i on
day t; € [t1,t,] (i.e. the jth day of the study period).
TCipy

MVTC(L 4) — TC:
1

(2)

Where, MV7c;) is movement variation based on trajectory counts on the road seg-
ment i on day t; € [ty, t,].

3.2.2. Quantifying movement activity variation based on speed

To assess the variation of speed on the road network, we consider the median speed
of trajectories on a specific road segment i during the study period ([t;,t,]) as the
speed baseline for that segment (e.g. S; in Equation 3). Subsequently, speed variations
(/\/IVs(,»,rj)), for the road segment j, at time t;, is computed using Equation (4).

Si = Median(si, tyr Si, tzlsi, t3r - - I‘Si, tn) (3)

Where, S; is the speed baseline for segment i, and t; € [t;,t,] is the jth day during
the study period.

5(1, th)

3 (4)

MVs(i,y) =
Where, MV is the movement variation based on the observed speed on the
road segment i on day t; € [t1,t,].

3.2.3. Road closure identification

Using movement trajectory data, road segments that become non-functional due to
the disruption are identified. To do so, we performed Inter-Quartile Range (IQR) (Tukey
et al. 1977) on the movement activity variations based on counts and speed for each
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road segment during our study period. A road segment is identified as non-functional
on a certain day if both the corresponding movement activity variations based on
count and speed fall below the lower bound of the box plot (i.e. Q1 — (1.5 x IQR),
where Q1 is the value of the first quantile). We incorporate both speed and counts in
the identification of road closures because a road segment might have a trajectory
speed below the lower bound of the box plot, while still having trajectory counts
above the lower bound. This case could indicate traffic congestion rather than road
closures. Thus, considering solely either counts or speeds is inadequate in identifying
road closures.

3.3. Vulnerability assessment

3.3.1. Vulnerability assessment of the static network

The spatial structure or topology of a road network can be modeled as a static graph
consisting of nodes and edges. In this context, ‘static’ denotes that the network’s top-
ology remains fixed over time unless a road segment is physically removed. Equation
(5) quantifies Betweenness Centrality (BC) calculated for edges following Brandes
(2001, 2008), as a key indicator of vulnerability within such static network. In this
study, we use the edge betweenness centrality function implemented in the NetworkX
Python package (Hagberg et al. 2008) to compute the betweenness values for edges.

ShortestPathy(i, j)

BG = ShortestPath(i,j)

ijev

(5)

Where, for a network of size N nodes, BC, denotes the betweenness value for the
edge k, ShortestPathy(i,j) (i,j € [1,N]) represents the number of shortest paths between
node i and j passing through edge k, and ShortestPath(i,j) stands for the total number
of shortest paths between nodes i and j.

A greater value of BCy indicates that edge k is more frequently positioned along
the shortest paths within the network, highlighting its higher importance in network
connectivity. Consequently, any impact on this edge could significantly disrupt the
accessibility to various network locations and increase the network’s vulnerability.

To assess changes in the vulnerability in an impacted network in response to a dis-
ruption, we first identify non-functional roads using movement data, as described in
Section 3.2, and then eliminate them from the network. The network that is created
after removing non-functional road segments is called the impacted network. We then
calculate BC over the impacted network, representing the vulnerability of the static
network after the impact.

3.3.2. Vulnerability assessment of the dynamic network

Vulnerability assessment of the impacted network can measure road network vulner-
ability based only on the network topology (e.g. the vulnerability of the static network
after the impact). This, however, does not include the actual network usage, and
therefore, it cannot be a holistic estimation of network vulnerability. To improve this,
the vulnerability assessment is performed on a ‘dynamic network’ that is created by
annotating each road segment with the daily density of activity, as formalized in
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Equation (6).
Density(,,rj )y = trajlsﬂ (6)
(i)

Where, Density; ) represents the density on the road segment i at the time interval
tj, trajs,y) is the number of trajectories on the road segment i at the time interval of
t, and I(,-) denotes the length of the segment i. t; € [t;, t,] is, for example, a day in the
study period.

Shortest paths within a network can be obtained with respect to different costs
(e.g. travel time, travel distance, etc.). For example, when cost is set to represent time,
the shortest path between nodes a and b seeks to minimize the travel time from a to
b. In the calculation of BC for the dynamic network, the cost of each road segment is
set as the inverse of the density value obtained from the number of cellphone trajec-
tories observed on that road segment. The BC values derived from the dynamic road
network are then referred to as the vulnerability of the dynamic network.

3.4. Mapping changes in road network vulnerability and utilization

In the last step, we create a difference map to assess the impact of the disruption on
the road network vulnerability. The BC derived from the impacted network gives an
estimation of vulnerability based on network topology and road closures. The BC
obtained from the dynamic network reflects a more holistic estimation of changes in
vulnerability based on the observed movement patterns as experienced on the road
before, during, and after the disruption. To differentiate the vulnerability values from
the static network and the dynamic network, a difference map is created. In this map,
the value represented on each road segment is obtained by subtracting the vulner-
ability values of the static network from those of the dynamic network. As a result, a
value of 0 represents no change, while a positive value represents over-utilization of
those road segments compared to what is expected. A negative value indicates an
under-utilization of the road segments compared to the expected usage.

4, Case study and results
4.1. Case study and data set

In the United States of America, California exhibits a high level of vulnerability to
severe natural disasters, including frequent wildfires and floods (Zigner et al. 2022).
Santa Barbara County in California is not an exception, as it has faced numerous wild-
fires throughout its history. Our case study focuses on the Cave Fire in Santa Barbara
County to demonstrate how our methodology can be used to assess road network
vulnerability to wildfires in a local region. The Cave Fire, a major wildfire that occurred
on 25th November 2019, and was contained by 14th December 2019, burned an area
of 3126 acres. As the Area of Interest (Aol), the road network of Santa Barbara County
obtained from the OSMnx Python package (Boeing 2017), is depicted in Figure 2. The
blue lines in this figure illustrate the road network within the Aol, and the red polygon
highlights the Cave wildfire perimeter. In this study, we only preserved major road
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Figure 2. The study area including the road network of Santa Barbara County (upper map), and
the city of Santa Barbara (lower right) in California, USA.

segments, including ‘Motorway’, ‘Trunk’, ‘Primary’, ‘Secondary’, and ‘Tertiary’. These road
types can fully capture the spatial configuration and connectivity between Santa
Barbara, Lompoc, and Santa Maria cities. Minor road types (e.g. Residential) are
excluded as they add to the network’s complexity without contributing much in cap-
turing the connectivity between the targeted cities. The full descriptions of these road
types can be found in OpenStreetMap (2024a).

Aggregated Location Based Service data is provided by Cuebiq (Cuebiq 2024), a
location intelligence platform. Data is collected from anonymized users who have
opted-in to provide access to their location data anonymously, through a CCPA and
GDPR-compliant framework. The data set used in this study covers the geographical
area of Santa Barbara County, starting from 1st November to 30th November 2019.
This data set contains 1,184,318 trajectories, with an average temporal resolution of
2min, and an average accuracy of 10 m.

4.2. Data pre-processing and map matching

We applied map matching on the GPS traces to extract and aggregate daily trajecto-
ries on the Santa Barbara road network during the study period. Our initial trajectory



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 1

N =41503 F plane
(>200 km/h)
= | train/highway
" N = 268238 (80~200 km/h)
—
S . [ car
g N=513822 I (15_80 km/h)
g : > | bike/run
3 T T - N = 130104 (4~15 km/h)
£ 7 ‘;qﬁ; T R
kel
[} .
0}
Q
)
é walking
g N = 82858 < kmm)
10m 10|0m lklm 10||<m lodkm 1006km

length of trajectory

Figure 3. Modes of transportation included in the underlying trajectory data set.

data set contains trajectories from various modes of transportation, including walking,
biking, driving, or flying. We applied a simple filtering based on speed to distinguish
between different modes. In this regard, a given trajectory with speed <4km/h,
between 4 and 15km/h, 15 and 80 km/h, and 80 and 200 km/h is classified as walking,
biking/running, car trip, and train or highway trip, respectively. As depicted in Figure
3, most trajectories pertain to vehicular movement (car, train/highway, and plane). The
number of trajectories associated with each mode of transportation is also provided in
Figure 3.

The focus of this study is on vehicular movement on roads. That is, only vehicular
trajectories that satisfy the conditions 15km/h < speed < 200km/h, and 100m <
length < 200km are preserved. Implementing the length constraint allows us to filter
out outliers and obtain high-quality trajectories. The distribution of the trip lengths
and durations are represented in Figures 4(a,b), respectively. Table 1 presents a sum-
mary of trajectory counts at each stage of filtering process.

4.3. Variation in movement activity

Figures 5 and 6 demonstrate the movement activity variation based on trajectory
count and speed on Monday and Tuesday in the week before the wildfire (18th and
19th November), and Monday and Tuesday when the fire was active (25th and 26th
November), and the day after the fire.

A closer look at the movement activity variations reveals that several road seg-
ments, in particular parts of the highway HW 154, that are closer to the location of
the wildfire exhibited significant movement variations in terms of both trajectory
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Figure 4. Distributions of the trajectory lengths and durations in the raw and processed data sets.

Table 1. An overview of trajectory counts after each data processing stage.

Trajectory 15 km/h < speed 100 m <
Processing stage Initial stage >~ 2 points <200 km/h length < 200 km
Number of trajectories 1,184,318 1,036,525 782,060 779,977
(a) (b)

Mobility Variation Mobility Variation
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Figure 5. Mobility variation based on trajectory counts on (a) Monday, 18 November 2019, (b)
Tuesday, 19 November 2019, (c) Monday, 25 November 2019, and (d) Tuesday, 26 November 2019.
The Cave Fire occurred on the evening of November 25.

count and speed compared to the baseline. For example, Figure 5(d) illustrates that
the trajectory counts had a significant drop one day after the wildfire. Specifically, HW
154 exhibits a variation of <0.5, meaning that the number of trajectories has
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Figure 6. Mobility Variation based on speed on (a) Monday, 18 November 2019, (b) Tuesday, 19
November 2019, (c) Monday, 25 November 2019, and (d) Tuesday, 26 November 2019. The Cave
Fire occurred on the evening of 25 November.

significantly decreased compared to the baseline. Figure 6(d) also implies a substantial
decrease in trajectory speed for HW 154, with certain areas closer to the wildfire’s
location displaying a variance of <0.5. This highlights a significant decline in trajectory
speeds compared to the baseline.

4.4. Vulnerability assessment

Figure 7 illustrates BC values, as an indicator of vulnerability, on each road segment
without considering any impact. As it can be seen in the figure, road segments that
connect Santa Barbara to Santa Ynez, and also Santa Ynez to Santa Maria are highly
vulnerable against disruptions. That is, if these road segments become disabled, the
movement flows on the network are greatly impacted.

Considering Figures 5(d) and 7, it appears that Highway 154 became disabled dur-
ing the Cave Fire. This section of the highway has also high BC value and is identified
as a highly vulnerable road segment in the static network.

The road closure identification process, presented in Section 3.3.1, is then per-
formed on daily trajectory data throughout our study period, from 1st November to
30th November 2019. We discovered major road closures (highlighted in red in Figure
8) only on the day following the Cave Fire on November 26. This might be due to the
fact the Cave Fire occurred in the evening, and therefore mitigation efforts were car-
ried out on the subsequent day. In Figure 8, the non-functional and functional road
segments are indicated with red and gray lines, respectively. As it can be inferred
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Figure 7. Betweenness centrality (BC) values over the static network, representing the vulnerability
of the static network.
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Figure 8. Road closures detected on 26 November 2019.

from this figure, one primary highway (e.g. HW 154), and several tertiary roads became
disabled on November 26 as a result of the Cave Fire.

Figure 9 illustrates the BC values over the impacted network on 26 November 2019.
The BC values over the impacted network are different compared to the static net-
work, highlighting the impact of the Cave Fire on the road network vulnerability. For
instance, the BC values for several road segments, such as HW CA 1, Foxen Canyon
Road, Alisal Road, Ballard Canynon Road, Harris Grade Road, and a part of HW 101



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 15

Foxen Canyon Rd

VANDENBERG
‘AIR FORCE
SANTA

BASE
BARBARA

feGraph, FAO, METI/NASA, USGS, Bureau of f Land Managemen

BC Values

0.00 - 0.20
—0.21 - 0.40
— 0.41 - 0.60
—0.61-0.80
—0.81 - 1.00

Closed Road

Segments

o Ignition Point

HW 101 /S
ise! »d o
N Al {
A HW 101 S 31
Isla Vista Sant ara
? N 2 40 Kilometers m—

EPA, NPS, USFWS

Figure 9. Betweenness centrality (BC) values over the impacted network on 26 November 2019,

representing the vulnerability of the static network after the impact.
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Figure 10. Betweenness centrality (BC) values over the dynamic network on 26 November 2019,
representing the vulnerability of the dynamic network after the impact.

exhibit an increase compared to their corresponding values in the static network. This
implies that when one or several road segments with high BC values become non-
functional within a network, they can impact the entire network.

Figure 10, visualizes the BC values over the dynamic network on 26 November
2019, by considering the actual usage of the network as captured in the movement
data. This figure reveals a shift in vulnerability values obtained from the dynamic net-
work compared to those from impacted network. The darker a road segment is, the
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Figure 11. The difference map between static and dynamic vulnerability on 26 November 2019.

higher vulnerability. As illustrated, certain parts of HW 101 exhibit high vulnerability
across the dynamic network, while they are not identified as highly vulnerable within
the impacted network (see Figure 9).

The BC values obtained from the impacted road network offer the vulnerability of
the static network after the impact, indicating our anticipation of the vulnerability of
the road segments after the removal of certain segments. Conversely, the BC values
from the dynamic network present the vulnerability of the dynamic network, reflecting
the actual movement activity observed over the network. To further investigate the
extent to which the vulnerability values of the dynamic network vary from those in
the static network, a difference map is created (Figure 11). In this figure, segments in
red represent the over-utilized roads where the value of vulnerability in the dynamic
network is greater than those from the static network. That is, these road segments
are considered even more susceptible against disruptions when movement activity is
taken into account compared to when the vulnerability is estimated only using net-
work topology. Major road segments such as, certain parts of HW 101 are detected as
the road segments with increased levels of vulnerability when movement data is
included. The road segments in blue, on the other hand, indicate the under-utilized
road segments roads in which the value of the vulnerability in the dynamic network is
less than those from the static network. Several tertiary road segments including Alisal
Road, Foxen Canyon Road, and Happy Canyon Road are the road segments with a
decreased level of vulnerability when movement data is involved. Lastly, the road seg-
ments in light gray are the roads with no change in vulnerability values when move-
ment activity data is incorporated.

To explore the relationship between road vulnerability and the type of road, Figure
12 classifies the road segments based on their types and vulnerability. The most prom-
inent roads in the U.S. system include, ‘Motorway’, ‘Trunk’, ‘Primary’, ‘Secondary’, and
‘Tertiary’, respectively (OpenStreetMap 2024b). ‘Trunk’ roads are major highways that
connect large cities. However, they don't meet the performance requirements to be
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Figure 12. The road network vulnerability classification based on road type.

classified as ‘Motorway’ or ‘Primary’. As seen in Figure 12, major roads, such as
‘Motorway’ and ‘Trunk’ road segments mainly experience an increased level of central-
ity when movement activity is considered. Conversely, minor roads, including ‘Primary’,
‘Secondary’, and ‘Tertiary’ exhibit a decrease in centrality values. That is, incorporating
movement activity data shows an over-utilization of major roads and hence an
increased level of vulnerability for these roads as compared to minor roads when a
disruption occurs. Since our dynamic vulnerability index is a function of individuals’
movement during disruptions, this may indicate that during disruptions people tend
to use major roads more than minor roads, even if the minor roads may offer shorter
routes compared to the major roads.

5. Discussion

To assess the road network vulnerability before, during, and after a disruption, this
paper integrates movement data into the static road network to construct a dynamic
network. The dynamic road network offers a distinct advantage, as it contains informa-
tion not only on the spatial structure of the network but also the experienced move-
ment activity over the road network, which in turn, results in an improvement in the
estimation of the road network vulnerability in the event of a disruption. Additionally,
most existing studies, mainly compare network topology metrics before, during, and
after a disruption to evaluate the road network vulnerability. In these approaches, to
obtain the impacted network, nodes (e.g. intersections) or links (e.g. road segments)
are randomly or intentionally removed, as there is no information or evidence regard-
ing their functionality. However, in this work, the non-functional nodes/links are identi-
fied using real movement data. Consequently, the computed impacted network is a
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more holistic estimation of the road network vulnerability during an actual disruption.
The results obtained from this study suggest a shift in the road vulnerability values
during the disruption. That is, certain types of road segments become disabled due to
the disruption. Our results also indicate that the vulnerability of the road segments
changes when integrating movement patterns into the network topology-based mod-
els. This can provide insights into how road networks function in reality given a dis-
ruption. Identifying the vulnerable road segments within a road network and also
understanding how this vulnerability may change during a disruption helps city plan-
ners to fortify the vulnerable road segments and also effectively allocate resources
during disruptions, ultimately leading to an increase in urban resiliency.

There are several limitations in this study. First, although map matching is not a
central focus of this study, the results may still be influenced by the chosen map
matching approach. It is also important to note that there is no prefect model for
map matching. It is, therefore, a critical need to further study map matching models
and improve the current methods. Second, although the representativeness of Cuebiq
data used in this study has been investigated in several studies (Wang et al. 2019,
Aleta et al. 2020, Nande et al. 2021) with favorable outcomes, the mobile phone data
may still not fully capture the true traffic patterns across the road network. One pos-
sible solution for this could be integrating movement data from other sources (e.g.
Mapbox, Safegraph, and Streetlight), or in-situ traffic sensors to inform the analysis.
Additionally, the proposed methodology assumes that mobile tracking data sets are
available. However, in areas where mobile phone data access is limited or costly, alter-
native geospatial datasets that can serve as proxies for individual movement patterns
may be used. For example, we can use publicly available traffic census count data,
such as Traffic Volumes and Vehicle Miles Traveled (VMT) from state agencies, such as
California Department of Transportation (Caltrans 2024). Third, the impacts of disrup-
tion on the road network vulnerability depend on both the location, duration, and
magnitude of the disruption. Consequently, variations in disruption location and mag-
nitude can lead to differing outcomes on the road network vulnerability. Simulation-
based models can play a crucial role in assessing road network vulnerability under
various scenarios. For instance, by selectively removing different nodes, they can simu-
late various disruption locations, and by altering the number of nodes/links removed,
they can account for differing disruption magnitudes. However, these approaches are
computationally expensive for complex networks. Thus, it becomes crucial to develop
models capable of evaluating the vulnerability of complex road networks while consid-
ering both the location and magnitude of disruptions. Forth, the selected scale of the
study can also influence its outcomes. For instance, the effects of a disruption might
be substantial when examining the road network within a Census Block Group (CBG),
whereas they may not be noticeable when analyzing the road network within a
county. Thus, future research should consider developing models that are less sensi-
tive to the scale of the study. Fifth, as shown in Boeing and Ha (2024), there is a rela-
tionship between network design and network vulnerability. That is, some networks
are more vulnerable compared to others due to their spatial configuration. Therefore,
findings from this study focused on the spatial road network of Santa Barbara, may
not be wuniversally applicable to other urban networks with distinct spatial



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 19

configurations. However, using any road network, the methodology can identify the
most vulnerable road segments across the network considering both topology and
flow of traffic. Incorporating movement data into betweenness centrality assessment
helps identify the road segments that may be critical for network connectivity during
disruptions. These segments may not appear vulnerable when assessed solely based
on network topology. Our approach captures traffic flow in vulnerability assessment,
revealing, for example, segments that might have lower betweenness centrality values
but become crucial in network connectivity when real-world traffic patterns are con-
sidered. These segments may need spatial attention in evacuation planning or
resource allocation. Sixth, identifying vulnerable road segments using only between-
ness index in areas with many interconnected roads (e.g. city centers) might be chal-
lenging. In such areas, many roads might exhibit high betweenness values,
complicating the identification of the most vulnerable road segment. To address this,
incorporating other topology indices, such as node degree, clustering coefficient, and
closeness can help in accurately identifying the most vulnerable road segments. Lastly,
as mentioned in Section 2, previous studies mainly quantify network vulnerability by
measuring changes in either network topology or network accessibility indices. While
topology-based approaches assess the impacts of disruptions on the network’s spatial
configuration, accessibility-based models evaluate the impacts of disruptions on indi-
viduals’ ability to traverse the network and reach important facilities (e.g. hospitals,
grocery stores, and shelters). Therefore, current network vulnerability approaches can
be strengthened by combining both topology-based and accessibility-based measures.
This combination allows for a more holistic understanding of how disruptions affect
both the network structure and individuals’ satisfactions.

6. Conclusion

This study demonstrates the importance of integrating movement data into static
road networks for assessing road network vulnerability. Our findings indicate a shift in
the vulnerability values derived from the dynamic network (e.g. when movement
activity data is involved) compared to those from the static network. This emphasizes
the significance of incorporating movement data into the assessment of the road net-
work vulnerability. Additionally, our results suggest that, in face of disruptive events,
individuals tend to use major roads rather than minor roads, even if the minor roads
offer shorter routes. This may be due to the faster travel speeds on major roads, allow-
ing people to choose routes that minimize travel time rather than distance. As future
research, it would be useful to integrate topology metrics and accessibility indices into
a comprehensive vulnerability index, providing a more holistic understanding of road
network vulnerability. Moreover, it is important to investigate the impact of scale on
the outcomes of the road network vulnerability. The results obtained from this study
increase our understanding of how the road network vulnerability may change during
disruptions. It can also be useful for city officials to fortify the vulnerable road seg-
ments before disruptions, and effectively allocate resources during disruptions, which
in turn, leads to an overall improvement in city resilience.
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