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Abstract 

The COVID-19 pandemic brought unprecedented changes to various aspects of daily life, profoundly affecting 
human mobility. These changes in mobility patterns were not uniform, as numerous factors, including public health 
measures, socioeconomic status, and urban infrastructure, influenced them. This study examines human mobility 
changes during COVID-19 in San Diego County and New York City, employing Latent Profile Analysis (LPA) and various 
network measures to analyze connectivity and socioeconomic status (SES) within these regions. While many COVID-
19 and mobility studies have revealed overall reductions in mobility or changes in mobility patterns, they often fail 
to specify ’where’ these changes occur and lack a detailed understanding of the relationship between SES and mobil‑
ity changes. This creates a significant research gap in understanding the spatial and socioeconomic dimensions 
of mobility changes during the pandemic. This study aims to address this gap by providing a comprehensive analysis 
of how mobility patterns varied across different socioeconomic groups during the pandemic. By comparing mobility 
patterns before and during the pandemic, we aim to shed light on how this unprecedented event impacted different 
communities. Our research contributes to the literature by employing network science to examine COVID-19’s impact 
on human mobility, integrating SES variables into the analysis of mobility networks. This approach provides a detailed 
understanding of how social and economic factors influence movement patterns and urban connectivity, highlight‑
ing disparities in mobility and access across different socioeconomic groups. The results identify areas functioning 
as hubs or bridges and illustrate how these roles changed during COVID-19, revealing existing societal inequalities. 
Specifically, we observed that urban parks and rural areas with national parks became significant mobility hubs dur‑
ing the pandemic, while affluent areas with high educational attainment saw a decline in centrality measures, indicat‑
ing a shift in urban mobility dynamics and exacerbating pre-existing socioeconomic disparities.
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1  Introduction
On January 30, 2020, the World Health Organiza-
tion (WHO) declared the COVID-19 outbreak a ’Pub-
lic Health Emergency of International Concern,’ and on 
March 11, 2020, it was officially classified as a pandemic 
(WHO, 2020). This global health crisis significantly 
impacted people’s mobility choices, bringing unprec-
edented changes to various aspects of daily life and pro-
foundly affecting human mobility. Lockdowns, social 
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distancing measures, and remote work policies drasti-
cally altered daily routines, leading to significant shifts in 
how and where people moved. These changes in mobility 
patterns were not uniform; they varied widely depending 
on a range of factors, including public health measures 
implemented by local authorities, socioeconomic status, 
and the existing urban infrastructure (Weill et al., 2020; 
Gao et al., 2020).

Public health measures such as lockdowns and travel 
restrictions were implemented to curb the spread of the 
virus, resulting in a marked decrease in overall mobility 
(Gao et al., 2020). However, these measures did not affect 
all populations equally. The pandemic has brought the 
issue of urban inequality into sharp focus, disproportion-
ately affecting disadvantaged communities and expos-
ing deep-rooted inequalities in many cities (Cordes and 
Castro, 2020; Maroko et  al., 2020; Sampson and Levy, 
2020; Duenas et al., 2021; Marlow et al., 2021; Levy et al., 
2022). Moreover, responses to social distancing differed 
by income (Weill et  al., 2020). People in higher socio-
economic groups often had the flexibility to work from 
home and access resources with minimal movement. In 
comparison, those in lower socioeconomic groups, who 
were more likely to be service workers needing to work 
face-to-face, continued to commute and travel, expos-
ing them to more significant risks (Weill et  al., 2020). 
Urban infrastructure also played a critical role in shaping 
mobility patterns during the pandemic. Cities with well-
developed public transportation systems experienced 
different mobility shifts than those reliant on private 
vehicles (Glaeser et  al., 2022). Additionally, the density 
and layout of urban areas influenced how people moved 
within the city, with some areas seeing more significant 
reductions in mobility due to their dependence on public 
transit and others remaining relatively unchanged (Shar-
ifi and Khavarian-Garmsir, 2020).

Recent advancements in geospatial data, such as mobile 
phone records, GPS traces, and social media posts, have 
opened up new possibilities for studying human mobility 
(Gao et al., 2013; Prestby et al., 2020; Wang et al., 2022a; 
Nilforoshan et  al., 2023). These data sources provide 
detailed information on the daily movements of indi-
viduals, allowing researchers to analyze the connectivity 
between different parts of a city and reveal the underly-
ing spatial and social networks (Bennett and Haining, 
1985; Batty, 2009).

While numerous studies have documented overall 
reductions in mobility or shifts in movement patterns 
during the pandemic, many have not pinpointed the 
locations where these changes occurred, nor have they 
thoroughly explored the relationship between SES and 
mobility changes. This lack of detailed spatial and soci-
oeconomic analysis has created a substantial research 

gap, limiting our understanding of how mobility shifts 
during the pandemic varied across different communi-
ties and urban landscapes. To address this gap, our study 
aims to provide a detailed analysis of how mobility pat-
terns differed among various socioeconomic groups dur-
ing the pandemic. By comparing mobility patterns from 
mobile phone data from before and during the pandemic, 
we seek to reveal how this unprecedented global event 
affected different population segments. Our research 
enhances existing knowledge by integrating SES variables 
into mobility network analysis, which allows for a more 
comprehensive understanding of the interaction between 
physical movement and social factors. The findings high-
light specific areas that served as mobility hubs or bridges 
and illustrate how these roles evolved during COVID-19, 
thereby exposing underlying societal inequalities and dis-
parities. The main research questions guiding this study 
are as follows:

•	 What are the human mobility networks and hubs 
identified through mobile phone data in San Diego 
County and New York City?

•	 How do they relate to the spatial patterns of socio-
economic status within a city?

•	 How did the COVID-19 pandemic affect these 
mobility patterns?

By addressing these questions, we aim to enhance our 
understanding of urban mobility dynamics and provide 
valuable insights for planners and policymakers striving 
to create more equitable and inclusive cities.

The remainder of this paper is organized as follows. 
The next section reviews the literature on mobility 
changes during the COVID-19 pandemic from a net-
work science perspective, focusing on studies that uti-
lize different data sources. Section  3 outlines the study 
areas and data sources, while Section 4 details the meth-
ods employed in this research. Section  5 presents the 
key findings from our analyses. In Section 6, we discuss 
these findings, explore implications for urban planning 
and policy, address limitations, and offer suggestions for 
future research.

2 � Related work
The COVID-19 pandemic profoundly impacted human 
mobility, leading to significant reductions in movement, 
increased localized activities, notable migration trends 
from urban to rural areas, and disruptions in social con-
nectedness. These changes have been studied using 
diverse data sources, such as mobile phone data, social 
media, census, and migration records, employing a net-
work science perspective to provide in-depth insights 
into mobility patterns and urban resilience.
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Lockdown measures in various regions led to marked 
reductions in mobility and shifts in localized move-
ments. For instance, Rowe et  al. (2023b) used mobile 
phone data from Meta-Facebook to construct mobility 
networks, revealing significant regional and socioeco-
nomic variations in the UK. Similarly, cellular network 
data in Brazil highlighted shifts in traffic patterns 
from downtown areas to other locations, demonstrat-
ing variations in mobility across different socioeco-
nomic groups (Ayan et al., 2021). Government-imposed 
restrictions, such as stay-at-home orders, social dis-
tancing guidelines, and the closure of nonessential 
businesses, aimed to reduce physical interactions and 
mitigate the virus’s spread, leading to significant reduc-
tions in human mobility (Gao et  al., 2020; Hadjidem-
etriou et  al., 2020; Yabe et  al., 2020; Noi et  al., 2022). 
These measures effectively controlled the spread of 
COVID-19, especially in the early stages of the out-
break (Wang et al., 2020).

The pandemic also triggered notable urban-to-rural 
migration trends globally. In Latin America, mobile 
phone location data identified migration patterns driven 
by the search for safer living conditions and remote work 
opportunities (Rowe et  al., 2023a). In the UK, Twit-
ter data tracked real-time mobility trends, revealing 
increased migration from urban to rural areas and pro-
viding timely insights into the long-term impact of the 
pandemic on migration (Wang et  al., 2022b). In Spain, 
administrative population register data identified signifi-
cant migration to rural areas, with diverse demograph-
ics among migrants, including young adults, families, 
retirees, and foreign-born populations, particularly from 
Latin American countries (Gonzalez-Leonardo et  al., 
2022).

Urban resilience and social connectedness were key 
areas of study during the pandemic. Mobile phone data 
was used to create social networks, showing how these 
networks became sparser during lockdowns but gradu-
ally recovered, illustrating the critical role of network 
stability in urban resilience (Yao et  al., 2023). Addition-
ally, in Mexico City, mobile phone data revealed dispari-
ties in mobility reductions among different SES groups, 
emphasizing the exacerbation of existing socioeconomic 
disparities (Fontanelli et  al., 2022). Vulnerable popu-
lations, including communities of color, low-income 
groups, older adults, children, and individuals with pre-
existing health conditions, were more severely impacted 
(Coleman et al., 2022; Sheikhattari et al., 2023). Counties 
with higher Asian populations saw the most significant 
reduction in mobility, while those with higher African 
American populations experienced the highest case-
fatality ratios, with initial pronounced racial differences 
in human mobility (Hu et al., 2022).

The ability to stay at home during the pandemic high-
lighted existing disparities. While some individuals could 
work remotely, low-income workers, particularly those in 
service industries, had to work physically, revealing dis-
parities in adherence to remote work practices (Hadjid-
emetriou et  al., 2020). Higher-income regions exhibited 
greater reductions in mobility compared to lower-income 
regions, which showed less adherence to stay-at-home 
orders (Huang et  al., 2022). The impact on transporta-
tion-related behaviors and human mobility patterns has 
been significant (Huang et al., 2020). Social determinants 
of health, including neighborhood environment, access 
to healthcare, education, and economic stability, influ-
enced vulnerability to COVID-19, exacerbating exist-
ing disparities and inequities in vulnerable populations 
(Bhaskar et al., 2020; Sheikhattari et al., 2023).

Advanced network analysis techniques provided 
deeper insights into the pandemic’s impact on global 
mobility. Graph embedding techniques, such as the 
node2vec algorithm, were employed to analyze global 
mobility networks from Meta’s travel pattern data, high-
lighting the significance of high-page rank centrality 
countries in controlling infection spread and informing 
targeted interventions and resource allocation (Awasthi 
et al., 2023).

3 � Study area and data
3.1 � Study area
The study focuses on two representative metropoli-
tan areas: San Diego County, CA, and New York City, 
NY. San Diego County and New York City have diverse 
populations with different demographic compositions. 
New York City has a larger proportion of Black residents 
(23.1%) compared to San Diego County (5.6%), while San 
Diego County has a higher proportion of Non-Hispanic 
White (43.4% vs. 31.2%) and Hispanic (35.0% vs. 29.0%) 
residents. Both areas have substantial Asian populations, 
with New York City having a slightly higher proportion 
(14.5%) than San Diego County (13.1%) (U.S. Census 
Bureau, 2019a). Furthermore, New York City is known 
for its high-density urban core and extensive public 
transportation system, which supports many pedestrian 
commuters and reduces reliance on private vehicles. In 
contrast, San Diego County has a more sprawling urban 
structure, encompassing both urban and rural areas, with 
a higher reliance on private vehicles (Ewing et al., 2016).

3.2 � Census data
This study uses data from the 2015-2019 American 
Community Survey (ACS) 5-Year Estimates, which were 
retrieved via the U.S. Census Bureau’s API using Python. 
The ACS is an ongoing survey that provides detailed 
information about the demographic, social, economic, 
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and housing characteristics of the U.S. population (U.S. 
Census Bureau, 2020). The 5-year estimates are derived 
from data collected over a 60-month period, offering 
more reliable estimates for small geographic areas and 
population subgroups compared to the 1-year estimates 
(U.S. Census Bureau, 2018).

The socioeconomic variables included in this study are 
race, educational attainment, median household income, 
home ownership, and population under the poverty line. 
These variables provide a comprehensive overview of 
the social and economic conditions in the study areas. 
Each variable was chosen for its ability to capture criti-
cal aspects of socioeconomic status and their potential 
relationship to urban spatial patterns: race highlights 
demographic diversity and potential spatial segregation; 
educational attainment reflects access to and quality of 
education, which can vary spatially; median household 
income indicates economic well-being and can influence 
residential patterns; home ownership serves as a proxy 
for economic stability and investment in specific areas; 
and the population under the poverty line identifies the 
extent of economic deprivation, which can affect and be 
affected by spatial distribution within urban areas.

The spatial unit chosen for this study is the census tract. 
Census tracts are small, relatively permanent statistical 
subdivisions of a county, designed to be as homogene-
ous as possible with respect to population characteris-
tics, economic status, and living conditions (U.S. Census 
Bureau, 2019b). Census tracts generally have a population 
size between 1,200 and 8,000 people, with an optimum 
size of 4,000 people (U.S. Census Bureau, 2019b). The 
geographic size of census tracts varies widely depending 
on the density of settlement. In urban areas, census tracts 
are often smaller and more compact, while in rural areas, 
they may be larger and more spatially dispersed.

3.3 � Mobility data
This study utilizes SafeGraph’s Social Distancing Met-
rics dataset from 2019 to 2020 to analyze human mobil-
ity patterns. SafeGraph is a company that aggregates 
anonymized location data from various applications to 
provide insights into human mobility patterns. The Social 
Distancing Metrics dataset is derived from a panel of 
GPS pings from anonymous mobile devices, which ena-
bles the observation of movement patterns at various 
geographic scales (SafeGraph, 2020). The dataset includes 
several metrics that quantify the level of social distancing 
and its impact on mobility. These metrics include aggre-
gated daily counts of trips between home census block 
groups and destination block groups, the number of 
devices staying home, the median distance traveled from 
home, the proportion of devices leaving home in a day, 
and the average time spent away from home (SafeGraph, 

2020). The data is aggregated at the census block group 
level, providing a high level of spatial granularity for ana-
lyzing mobility patterns. SafeGraph provided the Social 
Distancing Metrics dataset free of charge to researchers 
during the COVID-19 pandemic, and this mobility data 
has been widely used in studies investigating the impact 
of the pandemic on human mobility and social distanc-
ing practices (Gao et  al., 2020; Marlow et  al., 2021; Li 
et  al., 2022). The large sample size and high spatiotem-
poral resolution of the data make it a valuable resource 
for understanding changes in mobility patterns over time 
and across different geographic areas.

4 � Methodology
Figure  1 illustrates the flowchart for this study. Using 
Census data, we conduct a Latent Profile Analysis (LPA) 
to classify census tracts based on various socioeconomic 
variables. Utilizing human mobility data, we first con-
struct a direct network where nodes represent census 
tracts and edges represent spatial interactions or trips 
between nodes. Subsequently, we calculate diverse net-
work measures to examine urban spatial structure.

4.1 � Node characteristics and Latent Profile Analysis (LPA)
In the constructed network model, which captures 
mobility patterns across different areas, the nodes repre-
sent census tracts, with edges indicating the presence of 
mobility flows or connections between those geographic 
units. Data from the ACS can enhance nodes in such net-
works, meaning each node represents not just a location 
but also the demographic and socioeconomic character-
istics of that area. Classifying these nodes, considering all 
these variables in unison requires sophisticated methods. 
One particularly relevant classification method is LPA. 
LPA is a statistical approach used for identifying hidden 
or latent profiles or groups within a dataset. Although it 
is similar to Latent Class Analysis (LCA), which uses cat-
egorical latent variables, LPA can handle both continuous 
and categorical indicators. (Gibson, 1959). In the con-
text of our study, particularly to examine mobility hubs 
and the spatial patterns of socioeconomic status, LPA 
is employed to cluster nodes (census tracts) that exhibit 
similar characteristics. The key advantage of LPA lies in 
its ability to classify census tracts based on a combina-
tion of several attributes, rather than just one. This mul-
tifaceted approach allows for a more comprehensive and 
representative classification of the census tracts. Moreo-
ver, we chose LPA due to its flexibility and robustness. 
LPA does not require pre-specifying the number of clus-
ters, allowing the data to guide the determination of the 
number of profiles. Additionally, LPA provides fit indices 
that help in evaluating and selecting the optimal model. 
Upon comparing the results with those from multivariate 
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clustering in ArcGIS Pro 3.2, LPA produced maps with 
more coherent and interpretable profiles. In this study, 
seven variables are used for LPA: race (Non-Hispanic 
White, Non-Hispanic Black, Hispanic), educational 
attainment (percentage of population with a bachelor’s 
degree or higher), median household income, home own-
ership (owner), and the percentage of people living below 
the poverty line. For race/ethnic variables, we focus on 
three groups—White, Black, and Hispanic. These groups 
are selected due to their persistent segregation patterns, 
as documented in various studies (Reardon, 2016; Pope-
scu et  al., 2018; Fahle et  al., 2020), which make them 
suitable for analyzing distinct socioeconomic and demo-
graphic characteristics. By incorporating race and diverse 
socioeconomic factors, LPA provides a nuanced under-
standing of the underlying profiles within the census 
tracts, enabling a more accurate and meaningful classifi-
cation of these areas.

4.2 � Network measures
In this study, we used a network science perspective to 
analyze mobility networks to understand how different 
parts of cities are utilized. Network science examines 
how nodes (vertices) and edges (connections between 
nodes) interact within a network to form patterns, reveal 
underlying structures, and influence system behavior. 
For comprehensive definitions and concepts, see New-
man (2018). Key network measures used in our analysis 
include:

•	 Degree Centrality: Quantifies a node’s number of 
direct connections, identifying key hubs within the 
network (Kitsak et al., 2010; Zhang and Luo, 2017). In 
directed graphs, this measure is split into in-degree 
and out-degree.

•	 Eigenvector Centrality: Considers both the quan-
tity and quality of a node’s connections, assessing its 
influence within the network (Newman, 2018).

•	 PageRank: Extends centrality measures by consider-
ing the direction and weight of connections and the 
entire network structure  (Rogers, 2002), crucial for 
identifying critical nodes in human mobility net-
works.

•	 Closeness Centrality: Measures how close a node is 
to all other nodes in the network, indicating acces-
sibility (Okamoto et al., 2008).

•	 Betweenness Centrality: Evaluates a node’s role as a 
bridge connecting other important nodes, essential 
for understanding connectivity within the network 
(Freeman et al., 1991).

•	 Clustering Coefficient: Indicates the degree to which 
nodes’ neighbors are interconnected, reflecting the 
network’s local structure (Watts and Strogatz, 1998).

These measures collectively provide a comprehensive 
view of the network’s structure and the roles of indi-
vidual nodes within it. This study created a weighted 
directed graph and limited Origin-Destination (O-D) 
networks at the state level for California and New York. 

Fig. 1  The progression from data collection to analysis
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Network measures were calculated monthly throughout 
2019, averaged, and then compared to the network meas-
ures for April 2020. The Python library NetworkX was 
employed for these calculations.

5 � Results
5.1 � Unveiling urban typologies: LPA
Tables 1 and 2 present summary statistics by LPA classes 
for each variable for San Diego County and New York 
City, respectively.

By examining the proportions of each variable for each 
class, we labeled each class. The classification of the cen-
sus tracts into five distinct classes based on demographic 
and SES variables is articulated as follows:

•	 Class 1 (Red): ‘High Proportion White with Low SES’.
•	 Class 2 (Blue): ‘High Proportion Hispanic with Low 

SES’.
•	 Class 3 (Green): ‘High Proportion White with High 

SES - High Homeowners’.
•	 Class 4 (Purple): ‘High Proportion White with High 

SES - High Education Attainment’.
•	 Class 5 (Orange): ‘High Proportion Black with Low 

SES’.

The classification of SES into high and low was done 
using relative thresholds. This means that SES levels 
were determined based on the distribution of socioeco-
nomic indicators within the dataset, rather than using 
fixed absolute values. These LPA classes provide a more 
comprehensive understanding of the racial and socio-
economic landscape in the cities studied. By considering 
the proportion of racial groups and the associated SES, 
the LPA analysis reveals the intersectionality of race and 
class in shaping urban spatial patterns. Figures  2 and 3 
display the racial distribution (White, Black, and His-
panic) and the results of the LPA analysis for San Diego 
County and New York City, respectively. In the racial 
distribution maps, the intensity of each color represents 
the proportion of the corresponding racial group within 
each census tract. Darker shades indicate a higher con-
centration of a particular race, while lighter shades sig-
nify a lower concentration. These maps provide a visual 
representation of the spatial segregation patterns in both 
areas, highlighting areas where specific racial groups are 
more concentrated. The LPA results largely reflect the 
racial distribution patterns observed in the correspond-
ing maps. This is more prominent in New York City than 
in San Diego County, with the distribution of Hispanics 
contributing to Class 2 (Blue), the distribution of Whites 
contributing to Class 1 (Red), Class 3 (Green), and Class 
4 (Purple), and the distribution of Blacks contributing to 
Class 5 (Yellow).

5.2 � Changes in network measures during COVID‑19
The Kernel Density Estimation (KDE) plots in Figs.  4 
and 5 highlight the impact of the COVID-19 lockdown 
on urban mobility patterns in San Diego County and 
New York City, respectively, through changes in degree 
centrality and closeness centrality distributions between 
2019 and 2020. In both areas, the distributions for each 
centrality measure in 2019 exhibit consistency across 
different months from January to June, indicating sta-
ble mobility network structures. In 2020, particularly in 
April, represented by a red line in the plots, both areas 
experienced notable shifts in centrality distributions to 
the left. This shift, signaling a decrease in degree and 
closeness centrality values, illustrates a significant reduc-
tion in overall connectivity within the mobility net-
works and a decrease in the efficiency of information or 
resource flow. These changes are likely due to the lock-
down measures imposed in response to the pandemic.

Figure  6 illustrates the variation in average network 
measures across different LPA classes over time. Over-
all, in April 2020, there was a decline in degree central-
ity, whereas betweenness centrality increased during 
the same period. Specifically, in San Diego County, the 
clustering coefficient for Class 3 (High Proportion White 

Table 1  Summary statistics by class in San Diego County

Variable Class 1 Class 2 Class 3 Class 4 Class 5

% White 84.47 64.62 92.62 76.75 72.13

% Black 3.76 7.00 0.59 2.48 8.15

% Hispanic 17.76 51.27 7.80 16.89 22.74

% BA or More 28.00 23.80 38.11 52.71 46.68

% Owner Occupied 48.48 46.95 88.48 63.38 22.34

% Below Poverty 
Level

15.39 15.18 7.94 6.61 19.61

Median Household 
Income

61826.5 62025.5 108913.0 101154.0 64734.0

Count 2 298 3 281 44

Table 2  Summary statistics by class in New York City

Variable Class 1 Class 2 Class 3 Class 4 Class 5

% White 87.00 32.36 94.42 76.64 27.30

% Black 3.97 16.45 0.41 3.31 56.74

% Hispanic 8.51 45.75 5.61 12.44 17.61

% BA or More 30.90 25.69 41.39 64.17 33.20

% Owner Occupied 47.75 26.45 85.08 43.61 28.75

% Below Poverty Level 17.84 22.08 4.40 7.63 20.44

Median Household 
Income

59802.0 54868.0 97991.0 100667.5 60467.5

Count 36 969 18 502 642
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with High SES - High Homeowners) witnessed a notable 
rise, distinct from other classes, suggesting a higher ten-
dency for nodes within this class to cluster together. In 
addition, an increase in betweenness centrality may indi-
cate a more significant role for specific nodes in facilitat-
ing communication or connectivity between disparate 
parts of the network.

5.3 � Uncovering human mobility networks and hubs
Figures  7 and 8 display comparative maps of 2019 and 
April 2020 network measures in San Diego County and 
New York City, respectively. These figures illustrate the 
distribution of various network measures, including Pag-
eRank, eigenvector centrality, closeness centrality, and 
betweenness centrality. Each row contains two maps for 
a specific network measure: the left-side maps represent 
the average for all months in 2019, while the right-side 
maps show data for April 2020. The comparison high-
lights the changes in network centrality measures over 
time, with darker colors indicating higher values.

In San Diego County, areas with high values in Pag-
eRank and eigenvector centrality in 2019 included the 
Marine Corps Base Camp Pendleton, areas hosting 
four casinos, Montgomery-Gibbs Executive Airport, 

McClellan-Palomar Airport, LEGOLAND, Elfin Forest 
Recreational Reserve, San Diego International Airport, 
Mission Bay Park, and regions near the border. These 
hubs facilitated a large amount of flow and connectiv-
ity. The betweenness centrality map revealed areas that 
served as bridges within the network. Some areas con-
sistently appeared dark across all maps, indicating their 
simultaneous role as high-mobility areas, hubs, and 
bridges.

In April 2020, during the COVID-19 pandemic, certain 
areas maintained high values as hubs, while others saw 
a reduction. For example, the area with four casinos no 
longer served as a hub. In contrast, areas such as the Uni-
versity of California, San Diego, and regions with three 
hospitals remained significant on the betweenness map. 
Additionally, rural areas in the East, where national parks 
are located, showed higher values in all centrality meas-
ures except closeness centrality, indicating increased 
mobility in these regions.

In New York City, 2019, data showed that areas with 
high centrality in PageRank and eigenvector central-
ity included two airports, the Co-op City, and vari-
ous parts of Manhattan. The betweenness centrality 
map indicated that LaGuardia Airport, unlike JFK 

Fig. 2  Distribution of Race and LPA class in San Diego County. a Percentage of Black population, b Percentage of Hispanic population, c Percentage 
of White population, and (d) LPA Classification result. Darker shades indicate a higher concentration of a particular race, while lighter shades signify 
a lower concentration
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International Airport, served as a bridge, likely due to 
its proximity to Manhattan.

By April 2020, Manhattan experienced a reduction 
in all four centrality measures—PageRank, eigen-
vector centrality, closeness centrality, and between-
ness centrality—in most areas except Central Park. 
In contrast, Central Park, Prospect Park and Zoo, 
Botanical Garden, the Co-op city, and a region in the 
South Bronx with several parks exhibited a substan-
tial increase in betweenness centrality. These areas 
also showed increased values in PageRank and eigen-
vector centrality, indicating their importance as hubs 
and bridges during the pandemic. Closeness central-
ity, however, revealed that most dark areas from 2019 
had decreased values, appearing brighter in color. 
Additionally, LaGuardia Airport no longer served as a 
bridge, reflecting shifting mobility dynamics.

5.4 � Socioeconomic associations with mobility networks 
during COVID‑19

Both degree centrality and eigenvector centrality can 
reveal areas with higher mobility. The bar graphs in 
Fig. 9 show the percentage of nodes per class in the top 
100 rankings for degree centrality (top) and eigenvector 
centrality (bottom) in San Diego County and New York 
City from January to June 2020. The graphs reveal an 
intriguing shift in node composition, particularly dur-
ing March and April 2020. This period marks a signifi-
cant downturn in overall mobility due to the stringent 
COVID-19 lockdown measures implemented glob-
ally. The graph distinctly illustrates an increase in the 
number of nodes classified as belonging to areas char-
acterized by struggling Hispanic (Class 2) and Black 
populations (Class 5). Conversely, there is a notice-
able decrease in the number of nodes from affluent, 

Fig. 3  Distribution of Race and LPA class in New York City. a Percentage of Black population, b Percentage of Hispanic population, c Percentage 
of White population, and (d) LPA Classification result. Darker shades indicate a higher concentration of a particular race, while lighter shades signify 
a lower concentration
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predominantly White areas with high education attain-
ment (Class 4) within the same top rankings. This 
increase and decrease pattern is observed in both areas.

The examination of the relationship between network 
measures and socioeconomic variables reveals insights 
into how social and economic factors interact within 
human mobility networks (see Fig.  10). This correla-
tion heatmap shows the Pearson correlation coefficient 
between network measures (y-axis) and socioeconomic 
variables (x-axis). Among the five identified classes, 
Class 4, characterized by a high proportion of White 
residents coupled with high SES, presents a distinct 
pattern in its association with education levels. Spe-
cifically, network measures in this class are correlated 
with higher education attainment, such as possessing 
a bachelor’s degree or higher. This correlation suggests 
that areas within the urban mobility network that serve 
as hubs—central nodes with high levels of connectiv-
ity—are more likely to be those with higher levels of 
educational attainment among their residents.

6 � Discussion and conclusion
6.1 � Key results and interpretation
This study examined human mobility networks and 
their changes during the COVID-19 pandemic in San 
Diego County and New York City using mobile phone 
data and census information. The findings provide key 
insights into the identified hubs, their relationship 
with SES, and the impact of the pandemic on mobility 
patterns.

By utilizing mobility data, the analysis revealed sig-
nificant hubs and high-mobility areas in both San Diego 
County and New York City. In San Diego, key hubs 
included the Marine Corps Base Camp Pendleton, areas 
hosting casinos, major airports such as Montgomery-
Gibbs Executive Airport and San Diego International 
Airport, Mission Bay Park, and regions near the bor-
der. In New York City, prominent hubs were located 
around major airports (JFK and LaGuardia), the Co-op 
City, the New York Botanical Garden, and various parts 
of Manhattan. These hubs were characterized by high 

Fig. 4  Degree and closeness centrality distributions in San Diego County: a Degree Centrality, 2019; b Degree Centrality, 2020; c Closeness 
Centrality, 2019; d Closeness Centrality, 2020
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connectivity, acting as central points for transporta-
tion and economic activities within the urban mobility 
network.

The study’s LPA classification of census tracts revealed 
significant correlations between mobility patterns and 
socioeconomic status. The examination of the relation-
ship between network measures and socioeconomic 
variables provides insights into how social and economic 
factors interact within mobility networks. Among the 
five identified classes, Class 4, characterized by a high 
proportion of White residents coupled with high SES 
and high education attainment, presents a distinct pat-
tern in its association with education levels. Specifically, 
network measures in this class are correlated with higher 
education attainment, such as the possession of a bach-
elor’s degree or higher. This correlation suggests that 
areas within the mobility network that serve as hubs—
central nodes with high levels of connectivity—are more 
likely to be those with higher levels of educational attain-
ment among their residents. This suggests that in certain 
socioeconomic contexts, higher educational attainment 
and SES significantly influence urban mobility networks. 

Higher education levels often correlate with greater 
economic resources, which can influence mobility pat-
terns through increased access to transportation and a 
greater range of travel options. Furthermore, areas with 
a high concentration of highly educated individuals may 
host a variety of economic and social opportunities, such 
as employment centers, cultural institutions, and other 
amenities that attract a high volume of movement and 
connectivity. These findings underscore the role of socio-
economic factors in shaping mobility networks within 
Class 4. High SES areas, particularly those with higher 
educational attainment, tend to function as significant 
hubs within the mobility network.

The COVID-19 pandemic significantly altered mobil-
ity patterns, exacerbating existing inequalities. Higher 
SES groups were able to reduce their mobility more effec-
tively, likely due to their ability to work remotely. In con-
trast, lower SES groups, including low-income workers 
engaged in face-to-face service jobs, maintained higher 
levels of mobility, increasing their exposure to the virus. 
This disparity was evident in the top 100 census tracts 
with high degree centrality and eigenvector centrality, 

Fig. 5  Degree and closeness centrality distributions in New York City: a Degree Centrality, 2019; b Degree Centrality, 2020; c Closeness Centrality, 
2019; d Closeness Centrality, 2020
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where the proportion of nodes increased in Non-White, 
economically low SES groups and decreased in affluent, 
high education attainment, predominantly White tracts. 
The pandemic highlighted the resilience and indispen-
sability of low-income service workers, who continued 
their commutes despite the overall reduction in move-
ment, maintaining their presence in the mobility net-
work’s top centrality rankings. These workers, who 
disproportionately belong to Non-White groups (Bureau 
of Labor Statistics, 2020), had to continue working in 
person during the pandemic, despite the general reduc-
tion in movement. Their continued mobility was crucial 
to their livelihood and the functioning of essential ser-
vices during the lockdown. Conversely, the decrease in 
mobility for affluent, high-education attainment, pre-
dominantly White areas suggests a higher capacity for 
remote work and adherence to lockdown measures. This 
shift underscores the stark contrast in how different com-
munities experienced and navigated the early days of the 
COVID-19 crisis. This analysis reveals the significant 
role of socioeconomic and racial factors in urban mobil-
ity patterns, especially under crisis conditions. It under-
scores the importance of considering these factors in 
urban planning and policy-making to ensure equitable 
access to resources and support for all community seg-
ments, particularly those most adversely affected during 
crises.

Understanding the changes in these centrality meas-
ures is crucial for comprehending cities’ resilience and 
adaptive capacity, particularly in response to disruptive 
events like the COVID-19 pandemic. These shifts in cen-
trality measures can significantly impact urban connec-
tivity, accessibility, and socioeconomic patterns. From 
the cases in San Diego County and New York City, we 
observed increased mobility in urban parks and rural 
areas where national parks are located. This trend under-
scores the shift in public preference towards outdoor rec-
reational spaces during the pandemic, as people sought 
safe environments for exercise and leisure activities. 
These changes in mobility patterns and the roles of dif-
ferent urban areas highlight how certain areas adapted 
to new mobility demands, serving as critical connectors 
and hubs amidst widespread changes in urban activity. 
By evaluating these changes, urban planners can bet-
ter understand how different areas adapt to crises and 
develop strategies to enhance urban resilience and sus-
tainability. This understanding is essential for creating 
equitable urban environments that can withstand and 
recover from future disruptions.

6.2 � Implications for urban planning and policy
The findings of this study have significant implications 
for urban planning and policy, particularly in the context 

Fig. 6  Changes in network measures (degree centrality, betweenness centrality, and clustering coefficient) in (a) San Diego County and (b) New 
York City
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Fig. 7  Comparative maps of network measures for 2019 and April 2020 in San Diego County. Each row shows two maps for a specific network 
measure: PageRank, Eigenvector Centrality, Closeness Centrality, and Betweenness Centrality. The left maps (a, c, e, g) represent the average values 
for all months in 2019, while the right maps (b, d, f, h) depict the values for April 2020. This comparison highlights the changes in network centrality 
measures before and during the COVID-19 pandemic
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Fig. 8  Comparative maps of network measures for 2019 and April 2020 in New York City. Each row shows two maps for a specific network measure: 
PageRank, Eigenvector Centrality, Closeness Centrality, and Betweenness Centrality. The left maps (a, c, e, g) represent the average values for all 
months in 2019, while the right maps (b, d, f, h) depict the values for April 2020. This comparison highlights the changes in network centrality 
measures before and during the COVID-19 pandemic
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of future crises like pandemics. By applying a network 
science perspective, we mapped network measures and 
identified specific areas within cities with high mobil-
ity and their changes during COVID-19. This approach 
addresses the research gap where many studies provide 
overall mobility changes without focusing on specific 
areas within a city.

Urban planners can make informed decisions about 
transportation, infrastructure, and resource allocation by 
identifying hubs and bridges. Understanding which areas 
function as central points for transportation and eco-
nomic activities can help plan more effective and resilient 
urban layouts. Our results revealed significant inequali-
ties in mobility patterns during the pandemic, particu-
larly highlighting that remote work was inaccessible for 
everyone. Lower SES groups, including low-income 
workers engaged in face-to-face service jobs, maintained 
higher levels of mobility, increasing their exposure to 
the virus. This underscores the need for urban plan-
ning and policy to address these disparities by support-
ing vulnerable populations. Targeted interventions such 
as job training programs, affordable housing initiatives, 
and enhanced healthcare access can help reduce these 
disparities and ensure equitable access to resources and 
opportunities.

Investigating the effectiveness of specific policy inter-
ventions aimed at reducing urban inequality and promot-
ing social equity is essential. By evaluating the outcomes 
of different strategies, researchers can provide evidence-
based recommendations for creating more inclusive and 
resilient urban environments.

Policymakers should implement comprehensive meas-
ures that address the root causes of social inequity, 
ensuring that all community segments benefit from 
urban infrastructure improvements. The insights gained 
from this study are crucial for preparing for future cri-
ses. Urban planners and policymakers can develop 
strategies to maintain essential connectivity while mini-
mizing health risks by understanding how mobility pat-
terns change during a pandemic. Ensuring that critical 
areas such as parks and open spaces are accessible and 
safe can help support public health and well-being during 
lockdowns or other restrictive measures.

Understanding human mobility and its changes is cru-
cial for addressing the complex challenges facing cities 
today. By leveraging advanced geospatial data and ana-
lytical methods, researchers and policymakers can gain 
valuable insights into the interplay between physical and 
social factors, informing efforts to create more equita-
ble and resilient urban environments. The COVID-19 

Fig. 9  Percentage of nodes per class in top 100 rankings for degree centrality (top) and eigenvector centrality (bottom): a San Diego County 
and (b) New York City
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pandemic has underscored the importance of such 
efforts, highlighting the need for inclusive urban plan-
ning that considers the needs of all residents.

6.3 � Limitations and future work
This study has several limitations. First, the study areas 
are limited to San Diego County and New York City. 
Each city has unique characteristics that can impact 
human mobility, such as city layout, transportation 
infrastructure, and demographic composition. Extend-
ing the analysis to other cities would help gain a broader 
understanding of mobility patterns across different con-
texts, thereby validating and generalizing the findings. 

Additionally, exploring the long-term impacts of the 
pandemic on socioeconomic disparities is crucial for 
understanding the lasting effects of COVID-19 on cities. 
Second, the LPA classified census tracts into five classes 
focused primarily on White, Black, and Hispanic popula-
tions in San Diego County and New York City. This focus 
excludes other demographic groups, such as Asian com-
munities, whose experiences and segregation dynamics 
differ and are less represented in the historical literature 
on segregation.

While the study revealed significant inequalities in 
mobility changes among these classes, including Asian 
and other populations in the analysis may yield different 

Fig. 10  Heatmap of Pearson correlation coefficient matrix: Network Measures and Socioeconomic Variables for Class 4 (High Proportion White 
and High SES - High Education Attainment) in New York City. The y-axis represents network measures, while the x-axis represents socioeconomic 
variables. Red indicates a positive correlation, while blue signifies a negative correlation
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results. Future research should incorporate a broader 
range of demographic groups to provide a more detailed 
understanding of mobility and segregation dynam-
ics. Third, SafeGraph data, based on a sample of mobile 
devices, may only partially represent part of the popula-
tion. Certain demographic groups, such as older adults or 
those without smartphones, may be underrepresented in 
the data. This limitation can affect the generalizability of 
the findings. Additionally, a challenge with this dataset is 
that it originates from a private company and is no longer 
available for further research, limiting the ability to rep-
licate or extend the study using the same data source. 
Despite these limitations, SafeGraph’s mobility data 
remains valuable for analyzing human mobility patterns 
and understanding the spatial dimensions of social dis-
tancing and its impact on communities. Future research 
could incorporate additional data sources to validate and 
complement the findings based on SafeGraph data.

Future research should explore the dynamic interplay 
between mobility patterns and socioeconomic factors. 
Longitudinal studies can provide deeper insights into 
how urban networks evolve over time and in response 
to different crises. Recommendations for urban planning 
include fostering community resilience, enhancing public 
spaces, and ensuring that all neighborhoods are well-con-
nected and equipped to handle future disruptions.
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