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Abstract

The COVID-19 pandemic brought unprecedented changes to various aspects of daily life, profoundly affecting
human mobility. These changes in mobility patterns were not uniform, as numerous factors, including public health
measures, socioeconomic status, and urban infrastructure, influenced them. This study examines human mobility
changes during COVID-19 in San Diego County and New York City, employing Latent Profile Analysis (LPA) and various
network measures to analyze connectivity and socioeconomic status (SES) within these regions. While many COVID-
19 and mobility studies have revealed overall reductions in mobility or changes in mobility patterns, they often fail

to specify ‘where'these changes occur and lack a detailed understanding of the relationship between SES and mobil-
ity changes. This creates a significant research gap in understanding the spatial and socioeconomic dimensions

of mobility changes during the pandemic. This study aims to address this gap by providing a comprehensive analysis
of how mobility patterns varied across different socioeconomic groups during the pandemic. By comparing mobility
patterns before and during the pandemic, we aim to shed light on how this unprecedented event impacted different
communities. Our research contributes to the literature by employing network science to examine COVID-19's impact
on human mobility, integrating SES variables into the analysis of mobility networks. This approach provides a detailed
understanding of how social and economic factors influence movement patterns and urban connectivity, highlight-
ing disparities in mobility and access across different socioeconomic groups. The results identify areas functioning

as hubs or bridges and illustrate how these roles changed during COVID-19, revealing existing societal inequalities.
Specifically, we observed that urban parks and rural areas with national parks became significant mobility hubs dur-
ing the pandemic, while affluent areas with high educational attainment saw a decline in centrality measures, indicat-
ing a shift in urban mobility dynamics and exacerbating pre-existing socioeconomic disparities.
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1 Introduction
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distancing measures, and remote work policies drasti-
cally altered daily routines, leading to significant shifts in
how and where people moved. These changes in mobility
patterns were not uniform; they varied widely depending
on a range of factors, including public health measures
implemented by local authorities, socioeconomic status,
and the existing urban infrastructure (Weill et al., 2020;
Gao et al,, 2020).

Public health measures such as lockdowns and travel
restrictions were implemented to curb the spread of the
virus, resulting in a marked decrease in overall mobility
(Gao et al., 2020). However, these measures did not affect
all populations equally. The pandemic has brought the
issue of urban inequality into sharp focus, disproportion-
ately affecting disadvantaged communities and expos-
ing deep-rooted inequalities in many cities (Cordes and
Castro, 2020; Maroko et al.,, 2020; Sampson and Levy,
2020; Duenas et al., 2021; Marlow et al., 2021; Levy et al.,
2022). Moreover, responses to social distancing differed
by income (Weill et al.,, 2020). People in higher socio-
economic groups often had the flexibility to work from
home and access resources with minimal movement. In
comparison, those in lower socioeconomic groups, who
were more likely to be service workers needing to work
face-to-face, continued to commute and travel, expos-
ing them to more significant risks (Weill et al., 2020).
Urban infrastructure also played a critical role in shaping
mobility patterns during the pandemic. Cities with well-
developed public transportation systems experienced
different mobility shifts than those reliant on private
vehicles (Glaeser et al., 2022). Additionally, the density
and layout of urban areas influenced how people moved
within the city, with some areas seeing more significant
reductions in mobility due to their dependence on public
transit and others remaining relatively unchanged (Shar-
ifi and Khavarian-Garmsir, 2020).

Recent advancements in geospatial data, such as mobile
phone records, GPS traces, and social media posts, have
opened up new possibilities for studying human mobility
(Gao et al., 2013; Prestby et al., 2020; Wang et al., 2022a;
Nilforoshan et al., 2023). These data sources provide
detailed information on the daily movements of indi-
viduals, allowing researchers to analyze the connectivity
between different parts of a city and reveal the underly-
ing spatial and social networks (Bennett and Haining,
1985; Batty, 2009).

While numerous studies have documented overall
reductions in mobility or shifts in movement patterns
during the pandemic, many have not pinpointed the
locations where these changes occurred, nor have they
thoroughly explored the relationship between SES and
mobility changes. This lack of detailed spatial and soci-
oeconomic analysis has created a substantial research

Page 2 of 17

gap, limiting our understanding of how mobility shifts
during the pandemic varied across different communi-
ties and urban landscapes. To address this gap, our study
aims to provide a detailed analysis of how mobility pat-
terns differed among various socioeconomic groups dur-
ing the pandemic. By comparing mobility patterns from
mobile phone data from before and during the pandemic,
we seek to reveal how this unprecedented global event
affected different population segments. Our research
enhances existing knowledge by integrating SES variables
into mobility network analysis, which allows for a more
comprehensive understanding of the interaction between
physical movement and social factors. The findings high-
light specific areas that served as mobility hubs or bridges
and illustrate how these roles evolved during COVID-19,
thereby exposing underlying societal inequalities and dis-
parities. The main research questions guiding this study
are as follows:

+ What are the human mobility networks and hubs
identified through mobile phone data in San Diego
County and New York City?

+ How do they relate to the spatial patterns of socio-
economic status within a city?

+ How did the COVID-19 pandemic affect these
mobility patterns?

By addressing these questions, we aim to enhance our
understanding of urban mobility dynamics and provide
valuable insights for planners and policymakers striving
to create more equitable and inclusive cities.

The remainder of this paper is organized as follows.
The next section reviews the literature on mobility
changes during the COVID-19 pandemic from a net-
work science perspective, focusing on studies that uti-
lize different data sources. Section 3 outlines the study
areas and data sources, while Section 4 details the meth-
ods employed in this research. Section 5 presents the
key findings from our analyses. In Section 6, we discuss
these findings, explore implications for urban planning
and policy, address limitations, and offer suggestions for
future research.

2 Related work

The COVID-19 pandemic profoundly impacted human
mobility, leading to significant reductions in movement,
increased localized activities, notable migration trends
from urban to rural areas, and disruptions in social con-
nectedness. These changes have been studied using
diverse data sources, such as mobile phone data, social
media, census, and migration records, employing a net-
work science perspective to provide in-depth insights
into mobility patterns and urban resilience.
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Lockdown measures in various regions led to marked
reductions in mobility and shifts in localized move-
ments. For instance, Rowe et al. (2023b) used mobile
phone data from Meta-Facebook to construct mobility
networks, revealing significant regional and socioeco-
nomic variations in the UK. Similarly, cellular network
data in Brazil highlighted shifts in traffic patterns
from downtown areas to other locations, demonstrat-
ing variations in mobility across different socioeco-
nomic groups (Ayan et al., 2021). Government-imposed
restrictions, such as stay-at-home orders, social dis-
tancing guidelines, and the closure of nonessential
businesses, aimed to reduce physical interactions and
mitigate the virus’s spread, leading to significant reduc-
tions in human mobility (Gao et al., 2020; Hadjidem-
etriou et al., 2020; Yabe et al., 2020; Noi et al., 2022).
These measures effectively controlled the spread of
COVID-19, especially in the early stages of the out-
break (Wang et al., 2020).

The pandemic also triggered notable urban-to-rural
migration trends globally. In Latin America, mobile
phone location data identified migration patterns driven
by the search for safer living conditions and remote work
opportunities (Rowe et al,, 2023a). In the UK, Twit-
ter data tracked real-time mobility trends, revealing
increased migration from urban to rural areas and pro-
viding timely insights into the long-term impact of the
pandemic on migration (Wang et al., 2022b). In Spain,
administrative population register data identified signifi-
cant migration to rural areas, with diverse demograph-
ics among migrants, including young adults, families,
retirees, and foreign-born populations, particularly from
Latin American countries (Gonzalez-Leonardo et al.,
2022).

Urban resilience and social connectedness were key
areas of study during the pandemic. Mobile phone data
was used to create social networks, showing how these
networks became sparser during lockdowns but gradu-
ally recovered, illustrating the critical role of network
stability in urban resilience (Yao et al., 2023). Addition-
ally, in Mexico City, mobile phone data revealed dispari-
ties in mobility reductions among different SES groups,
emphasizing the exacerbation of existing socioeconomic
disparities (Fontanelli et al, 2022). Vulnerable popu-
lations, including communities of color, low-income
groups, older adults, children, and individuals with pre-
existing health conditions, were more severely impacted
(Coleman et al., 2022; Sheikhattari et al., 2023). Counties
with higher Asian populations saw the most significant
reduction in mobility, while those with higher African
American populations experienced the highest case-
fatality ratios, with initial pronounced racial differences
in human mobility (Hu et al., 2022).
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The ability to stay at home during the pandemic high-
lighted existing disparities. While some individuals could
work remotely, low-income workers, particularly those in
service industries, had to work physically, revealing dis-
parities in adherence to remote work practices (Hadjid-
emetriou et al., 2020). Higher-income regions exhibited
greater reductions in mobility compared to lower-income
regions, which showed less adherence to stay-at-home
orders (Huang et al., 2022). The impact on transporta-
tion-related behaviors and human mobility patterns has
been significant (Huang et al., 2020). Social determinants
of health, including neighborhood environment, access
to healthcare, education, and economic stability, influ-
enced vulnerability to COVID-19, exacerbating exist-
ing disparities and inequities in vulnerable populations
(Bhaskar et al., 2020; Sheikhattari et al., 2023).

Advanced network analysis techniques provided
deeper insights into the pandemic’s impact on global
mobility. Graph embedding techniques, such as the
node2vec algorithm, were employed to analyze global
mobility networks from Meta’s travel pattern data, high-
lighting the significance of high-page rank centrality
countries in controlling infection spread and informing
targeted interventions and resource allocation (Awasthi
etal., 2023).

3 Study area and data

3.1 Study area

The study focuses on two representative metropoli-
tan areas: San Diego County, CA, and New York City,
NY. San Diego County and New York City have diverse
populations with different demographic compositions.
New York City has a larger proportion of Black residents
(23.1%) compared to San Diego County (5.6%), while San
Diego County has a higher proportion of Non-Hispanic
White (43.4% vs. 31.2%) and Hispanic (35.0% vs. 29.0%)
residents. Both areas have substantial Asian populations,
with New York City having a slightly higher proportion
(14.5%) than San Diego County (13.1%) (U.S. Census
Bureau, 2019a). Furthermore, New York City is known
for its high-density urban core and extensive public
transportation system, which supports many pedestrian
commuters and reduces reliance on private vehicles. In
contrast, San Diego County has a more sprawling urban
structure, encompassing both urban and rural areas, with
a higher reliance on private vehicles (Ewing et al., 2016).

3.2 Census data

This study uses data from the 2015-2019 American
Community Survey (ACS) 5-Year Estimates, which were
retrieved via the U.S. Census Bureau’s API using Python.
The ACS is an ongoing survey that provides detailed
information about the demographic, social, economic,
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and housing characteristics of the U.S. population (U.S.
Census Bureau, 2020). The 5-year estimates are derived
from data collected over a 60-month period, offering
more reliable estimates for small geographic areas and
population subgroups compared to the 1-year estimates
(U.S. Census Bureau, 2018).

The socioeconomic variables included in this study are
race, educational attainment, median household income,
home ownership, and population under the poverty line.
These variables provide a comprehensive overview of
the social and economic conditions in the study areas.
Each variable was chosen for its ability to capture criti-
cal aspects of socioeconomic status and their potential
relationship to urban spatial patterns: race highlights
demographic diversity and potential spatial segregation;
educational attainment reflects access to and quality of
education, which can vary spatially; median household
income indicates economic well-being and can influence
residential patterns; home ownership serves as a proxy
for economic stability and investment in specific areas;
and the population under the poverty line identifies the
extent of economic deprivation, which can affect and be
affected by spatial distribution within urban areas.

The spatial unit chosen for this study is the census tract.
Census tracts are small, relatively permanent statistical
subdivisions of a county, designed to be as homogene-
ous as possible with respect to population characteris-
tics, economic status, and living conditions (U.S. Census
Bureau, 2019b). Census tracts generally have a population
size between 1,200 and 8,000 people, with an optimum
size of 4,000 people (U.S. Census Bureau, 2019b). The
geographic size of census tracts varies widely depending
on the density of settlement. In urban areas, census tracts
are often smaller and more compact, while in rural areas,
they may be larger and more spatially dispersed.

3.3 Mobility data

This study utilizes SafeGraph’s Social Distancing Met-
rics dataset from 2019 to 2020 to analyze human mobil-
ity patterns. SafeGraph is a company that aggregates
anonymized location data from various applications to
provide insights into human mobility patterns. The Social
Distancing Metrics dataset is derived from a panel of
GPS pings from anonymous mobile devices, which ena-
bles the observation of movement patterns at various
geographic scales (SafeGraph, 2020). The dataset includes
several metrics that quantify the level of social distancing
and its impact on mobility. These metrics include aggre-
gated daily counts of trips between home census block
groups and destination block groups, the number of
devices staying home, the median distance traveled from
home, the proportion of devices leaving home in a day,
and the average time spent away from home (SafeGraph,
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2020). The data is aggregated at the census block group
level, providing a high level of spatial granularity for ana-
lyzing mobility patterns. SafeGraph provided the Social
Distancing Metrics dataset free of charge to researchers
during the COVID-19 pandemic, and this mobility data
has been widely used in studies investigating the impact
of the pandemic on human mobility and social distanc-
ing practices (Gao et al,, 2020; Marlow et al,, 2021; Li
et al.,, 2022). The large sample size and high spatiotem-
poral resolution of the data make it a valuable resource
for understanding changes in mobility patterns over time
and across different geographic areas.

4 Methodology

Figure 1 illustrates the flowchart for this study. Using
Census data, we conduct a Latent Profile Analysis (LPA)
to classify census tracts based on various socioeconomic
variables. Utilizing human mobility data, we first con-
struct a direct network where nodes represent census
tracts and edges represent spatial interactions or trips
between nodes. Subsequently, we calculate diverse net-
work measures to examine urban spatial structure.

4.1 Node characteristics and Latent Profile Analysis (LPA)

In the constructed network model, which captures
mobility patterns across different areas, the nodes repre-
sent census tracts, with edges indicating the presence of
mobility flows or connections between those geographic
units. Data from the ACS can enhance nodes in such net-
works, meaning each node represents not just a location
but also the demographic and socioeconomic character-
istics of that area. Classifying these nodes, considering all
these variables in unison requires sophisticated methods.
One particularly relevant classification method is LPA.
LPA is a statistical approach used for identifying hidden
or latent profiles or groups within a dataset. Although it
is similar to Latent Class Analysis (LCA), which uses cat-
egorical latent variables, LPA can handle both continuous
and categorical indicators. (Gibson, 1959). In the con-
text of our study, particularly to examine mobility hubs
and the spatial patterns of socioeconomic status, LPA
is employed to cluster nodes (census tracts) that exhibit
similar characteristics. The key advantage of LPA lies in
its ability to classify census tracts based on a combina-
tion of several attributes, rather than just one. This mul-
tifaceted approach allows for a more comprehensive and
representative classification of the census tracts. Moreo-
ver, we chose LPA due to its flexibility and robustness.
LPA does not require pre-specifying the number of clus-
ters, allowing the data to guide the determination of the
number of profiles. Additionally, LPA provides fit indices
that help in evaluating and selecting the optimal model.
Upon comparing the results with those from multivariate
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Fig. 1 The progression from data collection to analysis

clustering in ArcGIS Pro 3.2, LPA produced maps with
more coherent and interpretable profiles. In this study,
seven variables are used for LPA: race (Non-Hispanic
White, Non-Hispanic Black, Hispanic), educational
attainment (percentage of population with a bachelor’s
degree or higher), median household income, home own-
ership (owner), and the percentage of people living below
the poverty line. For race/ethnic variables, we focus on
three groups—White, Black, and Hispanic. These groups
are selected due to their persistent segregation patterns,
as documented in various studies (Reardon, 2016; Pope-
scu et al,, 2018; Fahle et al.,, 2020), which make them
suitable for analyzing distinct socioeconomic and demo-
graphic characteristics. By incorporating race and diverse
socioeconomic factors, LPA provides a nuanced under-
standing of the underlying profiles within the census
tracts, enabling a more accurate and meaningful classifi-
cation of these areas.

4.2 Network measures

In this study, we used a network science perspective to
analyze mobility networks to understand how different
parts of cities are utilized. Network science examines
how nodes (vertices) and edges (connections between
nodes) interact within a network to form patterns, reveal
underlying structures, and influence system behavior.
For comprehensive definitions and concepts, see New-
man (2018). Key network measures used in our analysis
include:

o Degree Centrality: Quantifies a node’s number of
direct connections, identifying key hubs within the
network (Kitsak et al., 2010; Zhang and Luo, 2017). In
directed graphs, this measure is split into in-degree
and out-degree.

+ Eigenvector Centrality: Considers both the quan-
tity and quality of a node’s connections, assessing its
influence within the network (Newman, 2018).

+ DPageRank: Extends centrality measures by consider-
ing the direction and weight of connections and the
entire network structure (Rogers, 2002), crucial for
identifying critical nodes in human mobility net-
works.

+ Closeness Centrality: Measures how close a node is
to all other nodes in the network, indicating acces-
sibility (Okamoto et al., 2008).

+ Betweenness Centrality: Evaluates a node’s role as a
bridge connecting other important nodes, essential
for understanding connectivity within the network
(Freeman et al., 1991).

+ Clustering Coefficient: Indicates the degree to which
nodes’ neighbors are interconnected, reflecting the
network’s local structure (Watts and Strogatz, 1998).

These measures collectively provide a comprehensive
view of the network’s structure and the roles of indi-
vidual nodes within it. This study created a weighted
directed graph and limited Origin-Destination (O-D)
networks at the state level for California and New York.
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Table 1 Summary statistics by class in San Diego County

Variable Class1 Class2 Class3 Class4 Class5
% White 84.47 64.62 92.62 76.75 72.13
% Black 3.76 7.00 0.59 248 8.15

% Hispanic 17.76 51.27 7.80 16.89 22.74
% BA or More 28.00 23.80 38.11 52.71 46.68
% Owner Occupied 4848 46.95 88.48 63.38 22.34
% Below Poverty 15.39 15.18 7.94 6.61 19.61
Level

Median Household 61826.5 620255 1089130 1011540 64734.0
Income

Count 2 298 3 281 44

Table 2 Summary statistics by class in New York City

Variable Class1 Class2 Class3 Class4 Class5
% White 87.00 3236 9442 76.64 27.30
% Black 397 16.45 0.41 3.31 56.74
% Hispanic 851 45.75 561 1244 17.61

% BA or More 30.90 25.69 41.39 64.17 33.20
9% Owner Occupied 4775 2645 85.08 4361 28.75
% Below Poverty Level 1784 2208 440 7.63 2044
Median Household 59802.0 54868.0 97991.0 100667.5 60467.5
Income

Count 36 969 18 502 642

Network measures were calculated monthly throughout
2019, averaged, and then compared to the network meas-
ures for April 2020. The Python library NetworkX was
employed for these calculations.

5 Results

5.1 Unveiling urban typologies: LPA

Tables 1 and 2 present summary statistics by LPA classes
for each variable for San Diego County and New York
City, respectively.

By examining the proportions of each variable for each
class, we labeled each class. The classification of the cen-
sus tracts into five distinct classes based on demographic
and SES variables is articulated as follows:

+ Class 1 (Red): ‘High Proportion White with Low SES!

+ Class 2 (Blue): ‘High Proportion Hispanic with Low
SES.

+ Class 3 (Green): ‘High Proportion White with High
SES - High Homeowners.

+ Class 4 (Purple): ‘High Proportion White with High
SES - High Education Attainment!

+ Class 5 (Orange): ‘High Proportion Black with Low
SES.
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The classification of SES into high and low was done
using relative thresholds. This means that SES levels
were determined based on the distribution of socioeco-
nomic indicators within the dataset, rather than using
fixed absolute values. These LPA classes provide a more
comprehensive understanding of the racial and socio-
economic landscape in the cities studied. By considering
the proportion of racial groups and the associated SES,
the LPA analysis reveals the intersectionality of race and
class in shaping urban spatial patterns. Figures 2 and 3
display the racial distribution (White, Black, and His-
panic) and the results of the LPA analysis for San Diego
County and New York City, respectively. In the racial
distribution maps, the intensity of each color represents
the proportion of the corresponding racial group within
each census tract. Darker shades indicate a higher con-
centration of a particular race, while lighter shades sig-
nify a lower concentration. These maps provide a visual
representation of the spatial segregation patterns in both
areas, highlighting areas where specific racial groups are
more concentrated. The LPA results largely reflect the
racial distribution patterns observed in the correspond-
ing maps. This is more prominent in New York City than
in San Diego County, with the distribution of Hispanics
contributing to Class 2 (Blue), the distribution of Whites
contributing to Class 1 (Red), Class 3 (Green), and Class
4 (Purple), and the distribution of Blacks contributing to
Class 5 (Yellow).

5.2 Changes in network measures during COVID-19
The Kernel Density Estimation (KDE) plots in Figs. 4
and 5 highlight the impact of the COVID-19 lockdown
on urban mobility patterns in San Diego County and
New York City, respectively, through changes in degree
centrality and closeness centrality distributions between
2019 and 2020. In both areas, the distributions for each
centrality measure in 2019 exhibit consistency across
different months from January to June, indicating sta-
ble mobility network structures. In 2020, particularly in
April, represented by a red line in the plots, both areas
experienced notable shifts in centrality distributions to
the left. This shift, signaling a decrease in degree and
closeness centrality values, illustrates a significant reduc-
tion in overall connectivity within the mobility net-
works and a decrease in the efficiency of information or
resource flow. These changes are likely due to the lock-
down measures imposed in response to the pandemic.
Figure 6 illustrates the variation in average network
measures across different LPA classes over time. Over-
all, in April 2020, there was a decline in degree central-
ity, whereas betweenness centrality increased during
the same period. Specifically, in San Diego County, the
clustering coefficient for Class 3 (High Proportion White
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of White population, and (d) LPA Classification result. Darker shades indicate a higher concentration of a particular race, while lighter shades signify

a lower concentration

with High SES - High Homeowners) witnessed a notable
rise, distinct from other classes, suggesting a higher ten-
dency for nodes within this class to cluster together. In
addition, an increase in betweenness centrality may indi-
cate a more significant role for specific nodes in facilitat-
ing communication or connectivity between disparate
parts of the network.

5.3 Uncovering human mobility networks and hubs
Figures 7 and 8 display comparative maps of 2019 and
April 2020 network measures in San Diego County and
New York City, respectively. These figures illustrate the
distribution of various network measures, including Pag-
eRank, eigenvector centrality, closeness centrality, and
betweenness centrality. Each row contains two maps for
a specific network measure: the left-side maps represent
the average for all months in 2019, while the right-side
maps show data for April 2020. The comparison high-
lights the changes in network centrality measures over
time, with darker colors indicating higher values.

In San Diego County, areas with high values in Pag-
eRank and eigenvector centrality in 2019 included the
Marine Corps Base Camp Pendleton, areas hosting
four casinos, Montgomery-Gibbs Executive Airport,

McClellan-Palomar Airport, LEGOLAND, Elfin Forest
Recreational Reserve, San Diego International Airport,
Mission Bay Park, and regions near the border. These
hubs facilitated a large amount of flow and connectiv-
ity. The betweenness centrality map revealed areas that
served as bridges within the network. Some areas con-
sistently appeared dark across all maps, indicating their
simultaneous role as high-mobility areas, hubs, and
bridges.

In April 2020, during the COVID-19 pandemic, certain
areas maintained high values as hubs, while others saw
a reduction. For example, the area with four casinos no
longer served as a hub. In contrast, areas such as the Uni-
versity of California, San Diego, and regions with three
hospitals remained significant on the betweenness map.
Additionally, rural areas in the East, where national parks
are located, showed higher values in all centrality meas-
ures except closeness centrality, indicating increased
mobility in these regions.

In New York City, 2019, data showed that areas with
high centrality in PageRank and eigenvector central-
ity included two airports, the Co-op City, and vari-
ous parts of Manhattan. The betweenness centrality
map indicated that LaGuardia Airport, unlike JFK
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International Airport, served as a bridge, likely due to
its proximity to Manhattan.

By April 2020, Manhattan experienced a reduction
in all four centrality measures—PageRank, eigen-
vector centrality, closeness centrality, and between-
ness centrality—in most areas except Central Park.
In contrast, Central Park, Prospect Park and Zoo,
Botanical Garden, the Co-op city, and a region in the
South Bronx with several parks exhibited a substan-
tial increase in betweenness centrality. These areas
also showed increased values in PageRank and eigen-
vector centrality, indicating their importance as hubs
and bridges during the pandemic. Closeness central-
ity, however, revealed that most dark areas from 2019
had decreased values, appearing brighter in color.
Additionally, LaGuardia Airport no longer served as a
bridge, reflecting shifting mobility dynamics.

5.4 Socioeconomic associations with mobility networks
during COVID-19

Both degree centrality and eigenvector centrality can
reveal areas with higher mobility. The bar graphs in
Fig. 9 show the percentage of nodes per class in the top
100 rankings for degree centrality (top) and eigenvector
centrality (bottom) in San Diego County and New York
City from January to June 2020. The graphs reveal an
intriguing shift in node composition, particularly dur-
ing March and April 2020. This period marks a signifi-
cant downturn in overall mobility due to the stringent
COVID-19 lockdown measures implemented glob-
ally. The graph distinctly illustrates an increase in the
number of nodes classified as belonging to areas char-
acterized by struggling Hispanic (Class 2) and Black
populations (Class 5). Conversely, there is a notice-
able decrease in the number of nodes from affluent,
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predominantly White areas with high education attain-
ment (Class 4) within the same top rankings. This
increase and decrease pattern is observed in both areas.
The examination of the relationship between network
measures and socioeconomic variables reveals insights
into how social and economic factors interact within
human mobility networks (see Fig. 10). This correla-
tion heatmap shows the Pearson correlation coefficient
between network measures (y-axis) and socioeconomic
variables (x-axis). Among the five identified classes,
Class 4, characterized by a high proportion of White
residents coupled with high SES, presents a distinct
pattern in its association with education levels. Spe-
cifically, network measures in this class are correlated
with higher education attainment, such as possessing
a bachelor’s degree or higher. This correlation suggests
that areas within the urban mobility network that serve
as hubs—central nodes with high levels of connectiv-
ity—are more likely to be those with higher levels of
educational attainment among their residents.

6 Discussion and conclusion

6.1 Key results and interpretation

This study examined human mobility networks and
their changes during the COVID-19 pandemic in San
Diego County and New York City using mobile phone
data and census information. The findings provide key
insights into the identified hubs, their relationship
with SES, and the impact of the pandemic on mobility
patterns.

By utilizing mobility data, the analysis revealed sig-
nificant hubs and high-mobility areas in both San Diego
County and New York City. In San Diego, key hubs
included the Marine Corps Base Camp Pendleton, areas
hosting casinos, major airports such as Montgomery-
Gibbs Executive Airport and San Diego International
Airport, Mission Bay Park, and regions near the bor-
der. In New York City, prominent hubs were located
around major airports (JFK and LaGuardia), the Co-op
City, the New York Botanical Garden, and various parts
of Manhattan. These hubs were characterized by high
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connectivity, acting as central points for transporta-
tion and economic activities within the urban mobility
network.

The study’s LPA classification of census tracts revealed
significant correlations between mobility patterns and
socioeconomic status. The examination of the relation-
ship between network measures and socioeconomic
variables provides insights into how social and economic
factors interact within mobility networks. Among the
five identified classes, Class 4, characterized by a high
proportion of White residents coupled with high SES
and high education attainment, presents a distinct pat-
tern in its association with education levels. Specifically,
network measures in this class are correlated with higher
education attainment, such as the possession of a bach-
elor’s degree or higher. This correlation suggests that
areas within the mobility network that serve as hubs—
central nodes with high levels of connectivity—are more
likely to be those with higher levels of educational attain-
ment among their residents. This suggests that in certain
socioeconomic contexts, higher educational attainment
and SES significantly influence urban mobility networks.

Higher education levels often correlate with greater
economic resources, which can influence mobility pat-
terns through increased access to transportation and a
greater range of travel options. Furthermore, areas with
a high concentration of highly educated individuals may
host a variety of economic and social opportunities, such
as employment centers, cultural institutions, and other
amenities that attract a high volume of movement and
connectivity. These findings underscore the role of socio-
economic factors in shaping mobility networks within
Class 4. High SES areas, particularly those with higher
educational attainment, tend to function as significant
hubs within the mobility network.

The COVID-19 pandemic significantly altered mobil-
ity patterns, exacerbating existing inequalities. Higher
SES groups were able to reduce their mobility more effec-
tively, likely due to their ability to work remotely. In con-
trast, lower SES groups, including low-income workers
engaged in face-to-face service jobs, maintained higher
levels of mobility, increasing their exposure to the virus.
This disparity was evident in the top 100 census tracts
with high degree centrality and eigenvector centrality,
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Fig. 6 Changes in network measures (degree centrality, betweenness centrality, and clustering coefficient) in (a) San Diego County and (b) New

York City

where the proportion of nodes increased in Non-White,
economically low SES groups and decreased in affluent,
high education attainment, predominantly White tracts.
The pandemic highlighted the resilience and indispen-
sability of low-income service workers, who continued
their commutes despite the overall reduction in move-
ment, maintaining their presence in the mobility net-
work’s top centrality rankings. These workers, who
disproportionately belong to Non-White groups (Bureau
of Labor Statistics, 2020), had to continue working in
person during the pandemic, despite the general reduc-
tion in movement. Their continued mobility was crucial
to their livelihood and the functioning of essential ser-
vices during the lockdown. Conversely, the decrease in
mobility for affluent, high-education attainment, pre-
dominantly White areas suggests a higher capacity for
remote work and adherence to lockdown measures. This
shift underscores the stark contrast in how different com-
munities experienced and navigated the early days of the
COVID-19 crisis. This analysis reveals the significant
role of socioeconomic and racial factors in urban mobil-
ity patterns, especially under crisis conditions. It under-
scores the importance of considering these factors in
urban planning and policy-making to ensure equitable
access to resources and support for all community seg-
ments, particularly those most adversely affected during
crises.

Understanding the changes in these centrality meas-
ures is crucial for comprehending cities’ resilience and
adaptive capacity, particularly in response to disruptive
events like the COVID-19 pandemic. These shifts in cen-
trality measures can significantly impact urban connec-
tivity, accessibility, and socioeconomic patterns. From
the cases in San Diego County and New York City, we
observed increased mobility in urban parks and rural
areas where national parks are located. This trend under-
scores the shift in public preference towards outdoor rec-
reational spaces during the pandemic, as people sought
safe environments for exercise and leisure activities.
These changes in mobility patterns and the roles of dif-
ferent urban areas highlight how certain areas adapted
to new mobility demands, serving as critical connectors
and hubs amidst widespread changes in urban activity.
By evaluating these changes, urban planners can bet-
ter understand how different areas adapt to crises and
develop strategies to enhance urban resilience and sus-
tainability. This understanding is essential for creating
equitable urban environments that can withstand and
recover from future disruptions.

6.2 Implications for urban planning and policy
The findings of this study have significant implications
for urban planning and policy, particularly in the context
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Fig. 9 Percentage of nodes per class in top 100 rankings for degree centrality (top) and eigenvector centrality (bottom): a San Diego County

and (b) New York City

of future crises like pandemics. By applying a network
science perspective, we mapped network measures and
identified specific areas within cities with high mobil-
ity and their changes during COVID-19. This approach
addresses the research gap where many studies provide
overall mobility changes without focusing on specific
areas within a city.

Urban planners can make informed decisions about
transportation, infrastructure, and resource allocation by
identifying hubs and bridges. Understanding which areas
function as central points for transportation and eco-
nomic activities can help plan more effective and resilient
urban layouts. Our results revealed significant inequali-
ties in mobility patterns during the pandemic, particu-
larly highlighting that remote work was inaccessible for
everyone. Lower SES groups, including low-income
workers engaged in face-to-face service jobs, maintained
higher levels of mobility, increasing their exposure to
the virus. This underscores the need for urban plan-
ning and policy to address these disparities by support-
ing vulnerable populations. Targeted interventions such
as job training programs, affordable housing initiatives,
and enhanced healthcare access can help reduce these
disparities and ensure equitable access to resources and
opportunities.

Investigating the effectiveness of specific policy inter-
ventions aimed at reducing urban inequality and promot-
ing social equity is essential. By evaluating the outcomes
of different strategies, researchers can provide evidence-
based recommendations for creating more inclusive and
resilient urban environments.

Policymakers should implement comprehensive meas-
ures that address the root causes of social inequity,
ensuring that all community segments benefit from
urban infrastructure improvements. The insights gained
from this study are crucial for preparing for future cri-
ses. Urban planners and policymakers can develop
strategies to maintain essential connectivity while mini-
mizing health risks by understanding how mobility pat-
terns change during a pandemic. Ensuring that critical
areas such as parks and open spaces are accessible and
safe can help support public health and well-being during
lockdowns or other restrictive measures.

Understanding human mobility and its changes is cru-
cial for addressing the complex challenges facing cities
today. By leveraging advanced geospatial data and ana-
lytical methods, researchers and policymakers can gain
valuable insights into the interplay between physical and
social factors, informing efforts to create more equita-
ble and resilient urban environments. The COVID-19
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pandemic has underscored the importance of such
efforts, highlighting the need for inclusive urban plan-
ning that considers the needs of all residents.

6.3 Limitations and future work

This study has several limitations. First, the study areas
are limited to San Diego County and New York City.
Each city has unique characteristics that can impact
human mobility, such as city layout, transportation
infrastructure, and demographic composition. Extend-
ing the analysis to other cities would help gain a broader
understanding of mobility patterns across different con-
texts, thereby validating and generalizing the findings.

Additionally, exploring the long-term impacts of the
pandemic on socioeconomic disparities is crucial for
understanding the lasting effects of COVID-19 on cities.
Second, the LPA classified census tracts into five classes
focused primarily on White, Black, and Hispanic popula-
tions in San Diego County and New York City. This focus
excludes other demographic groups, such as Asian com-
munities, whose experiences and segregation dynamics
differ and are less represented in the historical literature
on segregation.

While the study revealed significant inequalities in
mobility changes among these classes, including Asian
and other populations in the analysis may yield different
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results. Future research should incorporate a broader
range of demographic groups to provide a more detailed
understanding of mobility and segregation dynam-
ics. Third, SafeGraph data, based on a sample of mobile
devices, may only partially represent part of the popula-
tion. Certain demographic groups, such as older adults or
those without smartphones, may be underrepresented in
the data. This limitation can affect the generalizability of
the findings. Additionally, a challenge with this dataset is
that it originates from a private company and is no longer
available for further research, limiting the ability to rep-
licate or extend the study using the same data source.
Despite these limitations, SafeGraph’s mobility data
remains valuable for analyzing human mobility patterns
and understanding the spatial dimensions of social dis-
tancing and its impact on communities. Future research
could incorporate additional data sources to validate and
complement the findings based on SafeGraph data.
Future research should explore the dynamic interplay
between mobility patterns and socioeconomic factors.
Longitudinal studies can provide deeper insights into
how urban networks evolve over time and in response
to different crises. Recommendations for urban planning
include fostering community resilience, enhancing public
spaces, and ensuring that all neighborhoods are well-con-
nected and equipped to handle future disruptions.
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