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Abstract

Housing policies address the human dimensions of increasing urban
density, but their energy and sustainability implications are hard to
measure due to challenges with siloed civic data. This is especially
critical when evaluating policies targeting low- and moderate-income
(LMI) households. For example, a major challenge to achieving national
energy efficiency goals has been participation by LMI households. Stan-
dalone energy efficiency policies, like information-based programs and
weatherisation assistance, tend to attract affluent, informed house-
holds or suffer from low participation rates. In this article, we provide
evidence that federal housing policies, specifically community devel-
opment block grants, accelerate energy efficiency participation from
LMI households, including renters and multifamily residents. We con-
duct record linkage on 5.9M observations of housing program par-
ticipation and utility consumption to quantify the hidden benefits
of locally administered housing block grants in a typical entitle-
ment community in the U.S. Southeast. We provide long-run evi-
dence across 16,680 properties that housing policies generate 5-11%
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energy savings as spillover benefits to economically burdened house-
holds not conventionally targeted for energy efficiency participation.

Keywords: housing, energy efficiency, civic data science, sustainability, equity

For several decades, U.S. housing investment policies, such as community1

development block grants, have distributed more than $5.8B per year in public2

assistance to distressed communities. [1]. Block grants offer flexible mecha-3

nisms that preserve local control over and prioritisation of administered public4

funds. However, evidence that these policies effectively serve low-and-moderate5

income (LMI) households has been unclear. A fundamental challenge in quan-6

tifying these program’s benefits is that the civic data needed for impact7

evaluation is often siloed across city information systems.8

Block grants administered by the U.S. Department of Housing and Urban9

Development (HUD) address the human dimensions of increasing urban den-10

sity and land use. More generally, these housing policies can be important11

mediating strategies in scenarios of human a”uence and environmental impact12

[2], including estimates of building energy use or resource consumption at var-13

ious geographic scales [3, 4]. This notion of housing as a driver of resource14

consumption is important as renewed federalism debates over public funds15

for housing assistance also affect modelling assumptions about sustainable16

urban growth, social equity, and climate resilience. Yet, despite over three17

decades of programmatic evidence and evaluation, the energy and sustainabil-18

ity outcomes of HUD-funded programs have been largely missing from public19

decision-making (Supplementary Note 1). Consequently, the analysis of sus-20

tainability trade-offs or sustainability co-benefits from housing investment has21

been invisible to the policy process.22

A hurdle for policymakers is that the community benefits of these programs23

are often hard to measure. Scholars have suggested dedicated funds be set24

aside to develop more sophisticated, holistic approaches for impact evaluation25

[5]. A principal limitation for evaluators is usually structural. For example,26

the disaggregated data required to rigorously evaluate the benefits of these27

programs, such as energy, water, or resource use, are often inaccessible across28

information systems or city bureaucracies. Other performance data reported29

to HUD are commonly in the form of community surveys or self-reported infor-30

mation from program participants. However, due to the limited availability31

of contemporaneous data from non-participants, which are necessary to con-32

struct credible reference groups for evaluation, obtaining consistent, reliable33

estimates of program impacts for block grants is rare.34

In this article, we describe a multi-year effort on the use of open data in the35

public sector. We linked siloed data on energy consumption and housing pro-36

gram participation. Using an open data hub, we created an automated housing37

registry to process large datasets from over a dozen independently adminis-38

tered databases and multiple city departments (Supplementary Note 2). This39
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process of combining and standardising records from relational databases is40

referred to in the data science community as data fusion [6]. The housing reg-41

istry’s capabilities include access to open data with geographic information42

systems (GIS) mapping, and a community engagement analytics platform.43

Importantly, the registry links housing and utility consumption records at the44

property-address level. These records are more granular than common eval-45

uation studies at the parcel- or county-scale, which typically do not permit46

analyses of individual household behaviour.47

We investigated long-term sustainability outcomes for two of the largest48

HUD-administered block grants, the Community Development Block Grant49

(CDBG) entitlement program and the HOME Investment Partnerships50

(HOME) program (Supplementary Note 3). We analysed 16 years of evi-51

dence (2004-2019) from the City of Albany, GA, a typical, small-to-mid-sized52

entitlement community in the U.S. Southeast. The data include 5.9 million53

monthly observations of participating and non-participating households. We54

asked whether HUD-administered block grants, which fund housing capital55

improvements, could generate hidden spillover benefits to private citizens56

through energy savings. In quantifying possible spillover benefits of housing57

assistance, we investigated potential policy innovation to use housing program58

targeting as an entry strategy to include LMI communities often left out of59

energy conservation upgrades. Although the connection between block grant60

programs and energy efficiency might not be immediately obvious, we found61

that home upgrades and rehabilitation greatly affect household resource con-62

sumption. We document that housing programs can increase energy efficiency63

in LMI communities, including households with a lower awareness of or interest64

in energy efficiency.65

Block grants for LMI households66

Program “targeting” is a central tenet of U.S. federal housing policies but cre-67

ates fundamental challenges for research and evaluation. HUD-administrated68

block grants are mean-tested policies that distribute targeted federal resources69

to state and local officials to build more resilient communities [1]. A key fea-70

ture of the block grant funding mechanism is that cities have decentralised71

authority over these funds.72

Advocates for block grants praise the program’s flexibility. They suggest73

that local public administrators will seek the most efficient and cost-effective74

means to deliver program services as those officials have better information75

about community needs. Local administrators are also presumed to be more76

“visible” and, thus, can be held more accountable by citizens versus federal77

administrators [1, 7]. However, critics argue that block grants have too much78

flexibility. For example, grantees can redirect program targeting away from79

individuals with the greatest need or shift program services with long-term80

payoffs in favour of short-term initiatives with less impact.81
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When local governments receive federal grants, it often stimulates higher82

levels of spending than theory would predict from local revenues, a phe-83

nomenon known as the “flypaper effect” [8, 9]. Nevertheless, debates persist84

about whether increased expenditures lead to higher levels of public service85

provision, especially within LMI communities [10, 11]. In the context of block86

grants and housing, scholars have argued that the actual value of block grant87

funding tends to diminish over time [12]. As a result, block grant programs88

have been criticised for gradually decreasing services to the neediest or most89

vulnerable populations [5, 13, 14]. CDBG and HOME programs reduce capital90

and information barriers for entitlement communities to be able to access and91

receive governmental assistance. However, it remains an open question whether92

income-qualified households meaningfully participate in and benefit from these93

federal funds. We, therefore, investigated whether a broader range of co-94

benefits from housing assistance, such as energy savings and other unmeasured95

sustainability benefits, might be generated by housing block grants.96

The energy-relevant program activities under CDBG include energy effi-97

ciency projects, rental rehabilitation, and emergency repairs, i.e., roof replace-98

ments, heating, ventilation, and air conditioning (HVAC), electrical, plumbing,99

and other repairs that bring structures up to current building codes. Under100

HOME grants, the relevant program activities include the rehabilitation of101

owner-occupied housing units, acquisition, rehabilitation, or construction of102

rental units as affordable housing for low-income individuals, and tenant-based103

rental assistance. For a more detailed list of CDBG and HOME activities and104

program rules, see refs. [1, 15].105

Our field site, Albany, GA, is 74% Black or African American, and its106

poverty rate is 30.8%—nearly triple the U.S. national average (Supplemen-107

tary Discussion). Albany is ideally suited for formula targeting under block108

grant eligibility rules due to its population size, ageing housing stock, and high109

poverty rate. Based on the city’s data, we calculated the average household110

energy consumption in Albany as 13,255 kilowatt-hours (kWh) p.a., making111

it an important population of interest. This is nearly 25% higher than the112

U.S. national average (10,649 kWh) [16]. For a review of causes and correlates113

of household energy burden in low-income communities, see ref. [17]. Given114

the high energy and cost burdens, we could expect to observe substantial115

improvements from policy intervention.116

Results and discussion117

Program targeting118

We evaluated the household characteristics of program participants in Albany119

to assess evidence of program targeting. The most common housing problems120

include cost-burdening, crowding, and substandard housing (e.g. lacking com-121

plete plumbing, kitchen facilities, or weatherisation) [18]. The city has 7,985122

LMI renter households and 2,232 LMI owner households that spend more123
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than 30% of their monthly income on housing costs, including utilities (Sup-124

plementary Note 4). Given this high share of cost-burdened households, it is125

understandable that the demand for housing assistance far exceeds the avail-126

able funds with long waiting lists of income-qualified applicants. In Fig. 1,127

we show the spatial distribution of 549 HUD-funded housing projects across128

16,680 properties participating in either CDBG or HOME by census tract.129

While there are funded activities across all six city wards, a high proportion130

of participating properties are also located within Federal Opportunity Zones131

(Fig. 1).132

Although energy intensity is not a consideration in targeting or eligibility133

criteria, we found that participating households who received HOME or CDBG134

funds are heavily concentrated in areas with high poverty rates and where135

energy burdens are prevalent (Fig. 1). Out of 10,127 households at 80% AMI136

or below, 5,714 have a severe cost burden (4,440 renters and 1,274 owners);137

these households comprise a significant share, 38% of LMI households [18]. In138

these tracts, the ratio of median electricity bill charges to median income is139

8-12%—higher than the national threshold (Fig. 1). This type of evidence has140

previously been hard to discover given the persistent data silos and lack of141

researcher access to integrated utility data for evaluation. Next, we compared142

program targeting under federal housing rules to more conventional policies143

targeting energy efficiency.144

Prior work has shown that self-selection into energy efficiency programs145

generally has low take-up rates among LMI households, even when energy effi-146

ciency services are subsidised or free [19, 20]. Given the upfront investment,147

administrative, or coordination costs necessary to achieve large-scale savings,148

dedicated energy efficiency programs can actually have negative rates of return149

[20]. Further, when standalone energy efficiency policies are not means-tested,150

they also tend to attract participation in higher-income areas [21]. This situa-151

tion raises questions about inframarginal participation—whether participants152

would have invested in energy efficiency without public subsidies or benefits153

[22]. Yet, although not all activities covered under HOME and CDBG may be154

relevant for energy conservation, we argue that program targeting under hous-155

ing block grant rules could be a favourable alternative to standalone energy156

efficiency policies that are not necessarily means-tested or have a low service157

take-up. This is because the housing program selection process simultane-158

ously attracts the most energy-intensive and energy-burdened households in159

situations where the demand for services is also strong.160

Surprisingly, we found that housing policies can accelerate participation161

in energy efficiency among capital-constrained homeowners or renters, even in162

cases where participants were not initially motivated by energy conversation163

measures. For example, one resident said, “When they put the roof on it was164

like night and day. I could feel the warmth of the house.” In the next section,165

we quantify the realised energy savings within targeted LMI communities.166
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Energy savings from housing programs167

We estimated the long-run energy savings in kWh per sq.ft. for participating168

properties in CDBG and HOME programs. These spillover energy savings can169

be conceptualised as a bonus in program performance beyond core housing pro-170

gram objectives. To calculate energy savings, we implemented several matching171

models with regression adjustment to construct suitable statistical reference172

groups pre- and post- program participation. To mitigate observational bias,173

we used algorithmic matching procedures with a genetic search algorithm [23]174

to achieve covariate balance between treated and counterfactual observations.175

We also implemented staggered difference-in-differences (DID) estimators that176

mitigate potential biases of two-way fixed effects with heterogeneous effects177

(Materials and Methods). For transparency in protocols, we report the bias178

reduction in Fig. 2 and note that in staggered DID models without matching,179

the energy savings can be understated (Supplementary Table 1). We report180

the most conservative estimates, robust to various matching procedures and181

estimators (for more, see Materials and Methods).182

HUD-funded housing projects in Albany, GA, generated statistically sig-183

nificant monthly average energy savings of 5-11% for participating households184

as compared to multivariate matched properties with similar characteristics185

(Table 1). For the subset of energy-relevant projects estimated by stag-186

gered difference-in-differences estimators (i.e., Energy Efficiency, Emergency187

Repairs, and Homeowner Rehabilitation), we report energy savings of 11-14%188

after correcting for potential estimation biases due to treatment effect het-189

erogeneity under staggered participation (Table 1 and Supplementary Table190

2). We note that point estimates can be higher when considering staggered191

designs. While there is year-to-year variability in performance depending on192

the mix of implemented projects, the energy savings for housing participants193

are relatively stable across years, with increasing performance in the last 2194

years of the study period (Supplementary Fig. 1).195

Overall, HUD-funded block grants in Albany, GA reduced electricity use196

by 4.72 million kWh over the study period. The reduction in non-baseload197

emissions is equivalent to 3.70 million pounds of coal not being burned or the198

carbon sequestered by 3,695 acres of forest (Supplementary Note 5). These199

long-term savings are remarkable, given that energy efficiency is not an explicit200

criterion for these policies.201

Participating properties in the CDBG program achieved monthly savings202

of 6-14% (Supplementary Table 1, 95% CI). Emergency repairs, where house-203

holds could elect for one critical repair (e.g., HVAC), comprised of 248 projects,204

generated 6% energy savings. Albany’s CDBG-funded Energy Efficiency pro-205

gram, offering new insulation and windows, comprised of 62 projects, generated206

about 13% energy savings. The largest savings came from the CDBG-funded207

Rental Rehabilitation program, which focuses on structural upgrades (e.g.,208

roof) to city-owned rental properties, comprised of 22 projects, generated 32%209

energy savings. This performance is consistent with the high savings associated210
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with major building upgrades reported in voluntary and information-based211

programs [21, 24, 25].212

The HOME portfolio had more mixed results. On the one hand, Home-213

owner Rehabilitation, which provided households with a full range of repairs,214

comprising of 29 projects, generated around 11% energy savings. HOME had215

a larger share of projects not relevant to energy savings (e.g., Tenant Based216

Rental Assistance). Unsurprisingly, these 160 unrelated HOME projects were217

associated with a 15% increase in energy consumption. Therefore, we found218

evidence of energy savings across a broad portfolio of CDBG projects and, to219

a more limited extent, HOME projects.220

To further contextualise savings from the HUD-funded CDBG programs,221

we translated the lower and upper range of estimated energy savings (e.g., 6%222

for Emergency Repairs and 32% for Rental Rehabilitation) to dollar amounts223

using an average monthly electricity bill in Albany, GA ($125). When annu-224

alised, housing participants saved anywhere from $75 to $482 in direct kWh225

charges. According to the Bureau of Labor Statistics consumer price index226

(CPI) [26], these savings are equivalent to nearly two months of groceries for227

households in the region (Supplementary Table 3).228

Housing spillovers versus energy conservation programs229

We evaluated how meaningful these savings are in comparison with dedi-230

cated energy efficiency programs reported in the literature. First, we compared231

the magnitude of energy savings for both non-LMI- and LMI-targeted pro-232

grams and found that housing spillovers meet or exceed the reported energy233

savings from standalone programs. For example, Gillingham et al. (2018)234

reported savings from 0% to 25% for a broad range of interventions involving235

capital upgrades [24]. Savings from behavioural and information-based inter-236

ventions also range from 0% to 20%, depending on the intervention type and237

methodology [27–30].238

We found that energy savings from housing program spillovers (which239

range from 6% to 32%, Supplementary Table 1) are generally consistent with240

and sometimes exceed previous reports for non-LMI targeted interventions.241

In another review, Benartzi et al. (2017) reported energy savings of 0.9% to242

8.2% for non-LMI targeted informational nudges for energy conservation [31].243

Although energy savings from capital improvements often generate substan-244

tially larger savings, we acknowledge that information and behavioural nudges245

can also offer other benefits. For example, treatment effects from information-246

based interventions can persist for years after the treatments are discontinued247

[32, 33]; or they can generate conservation spillovers from one form of resource248

consumption to another. Reported cases include water to energy savings [34];249

waste sorting to waste reduction [35]; or hot water savings to space heating250

conservation [36]. We acknowledge that energy savings may not be the only251

important outcome measure for program evaluation.252
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Additionally, we benchmarked the energy savings from housing spillovers253

to standalone energy efficiency programs where LMI households were the prin-254

cipal recipients of the energy savings. Studies of standalone energy efficiency255

programs geared toward LMI households, like the Weatherization Assistance256

Program (WAP), Low-Energy Efficiency Plus (LEEP-Plus), and Energy Sav-257

ings Assistance Program (ESAP), have reported energy savings in the range258

of 2% to 7%, albeit with challenges in program uptake [20, 37, 38]. There-259

fore, given the range of treatment effects in this study, we found that housing260

spillovers are competitive with and occasionally exceed the energy savings from261

standalone energy efficiency programs targeting LMI communities.262

Comparatively, housing spillovers are also meaningful in effectively reaching263

a broader range of LMI households versus standalone programs. This is because264

LMI households in need of home repairs are generally a larger subset of the265

population than those actively seeking specialized energy efficiency support.266

Notably, the majority of grantees are simultaneously concentrated in areas with267

high poverty rates and, surprisingly, high energy consumption which has been268

previously unknown (Fig. 1). We believe this profile is notable as it differs from269

descriptions of low LMI participation in dedicated energy efficiency programs270

[20, 37].271

Cost-effective comparisons272

Although energy savings is not the intended aim of CDBG and HOME block273

grants, we calculated cost-effectiveness ratios in kWh saved per dollar spent for274

four energy-relevant housing programs: Emergency Repairs, Energy Efficiency,275

and Rental Rehabilitation (under CDBG) and Homeowner Rehabilitation276

(under HOME). Because of our unique partnership with City of Albany pub-277

lic administrators, we were able to access program and administrative costs278

at the project level. The fiscal period for which we had access to the costs is279

October 2007 to May 2018, spanning 11 years. We noted that such long-term280

evaluations of block grant outcomes have been uncommon [5]. For details on281

cost-effectiveness calculations, see Materials and Methods. Within CDBG, we282

report cost-effectiveness ratios of 83.5 kWh/$ for Rental Rehabilitation, 10.8283

kWh/$ for Energy Efficiency, and 3.7 kWh/$ for Emergency Repairs. Within284

the HOME program, we report the cost-effectiveness ratio of 0.8 kWh/$ for285

Homeowner Rehabilitation.286

Further, we benchmarked the cost-effectiveness ratios (in $2021) of housing287

spillovers against reported estimates from dedicated energy efficiency pro-288

grams. We considered recent meta-reviews [24, 31] and other highly cited289

studies published in the last 20 years. In Fig. 3, we provide a comparison,290

beginning with standalone Capital Upgrades programs, which include both291

LMI- and non-LMI-targeted programs. We also compared housing spillovers to292

non-LMI targeted programs including Information & Behavioral Programs and293

Rebates & Financial Incentives. We found that housing spillovers from Rental294

Rehabilitation in the CDBG program are nearly 2.9 times more cost-effective295

than common Capital Upgrades programs, such as utility-based retrofitting296
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(i.e., 29.0 kWh/$) [17]. As the Rental Rehabilitation funds upgrades in city-297

owned properties, we learned that Rental Rehabilitation is revenue generating298

(unlike non-city owned properties in homeowner rehabilitation). Therefore, the299

cost-effectiveness ratio is substantially higher because administrators can also300

leverage program income to re-invest in additional upgrades. We consider split301

incentives issues within rental rehabilitation in the Supplementary Discussion.302

Spillovers from Emergency Repairs and other block grant programs are also303

within the reported cost-effectiveness ratios from dedicated programs that tar-304

get LMI communities, including WAP, LEEP-Plus, and ESAP [17, 20, 38].305

Similarly, we find that cost-effectiveness ratios from housing spillovers are also306

competitive with non-LMI-targeted Capital Upgrades programs, such as build-307

ing labels and building codes (i.e., ranging from 21.3 to 4.7 kWh/$) [21, 39, 40]308

(Fig. 3).309

As expected, the cost-effectiveness ratios of housing spillovers are less310

favourable than those estimated for Information & Behavioural programs311

[27, 28, 32, 33, 41, 42] (i.e., ranging from 64.3 to 0.1 kWh/$ (Fig. 3), which312

do not typically involve capital upgrades. We also compared cost-effectiveness313

ratios in this study to Rebates & Financial Incentives, such as appliance314

replacement (refrigerator, heat pump), electricity bill credits, other rebates315

(i.e., ranging from 29.3 to 0.4 kWh/$) [43–48]. In contrast to nudge inter-316

ventions, we find that the cost-effectiveness ratios in this study are generally317

competitive with Rebates & Financial incentives (Fig. 3). This is intriguing318

since direct monetary incentives for energy efficiency, unless restricted by pro-319

gram rules, do not generally target LMI communities. Although outside the320

scope of this paper, we did back-of-the-envelope calculations of the implied321

internal rates of return for housing program spillovers for interested readers322

(Supplementary Note 8) [49]. Over the study period, the implied internal rates323

of return are about 40% and higher. Many dedicated energy efficiency pro-324

grams, like weatherisation, have reported variable rates of return as low as325

3% to over 100% [20, 30]. For further discussion of rates of return in energy326

efficiency program evaluation, see refs. [50–58].327

In summary, whether a comparable program is LMI-targeted or not, we328

found that the cost-effectiveness ratios from housing spillovers are generally329

competitive with dedicated energy efficiency programs across a broad range of330

intervention types.331

Evidence of program uptake332

To further understand the drivers of performance in CDBG and HOME pro-333

gram administration, we conducted semi-structured interviews with public334

administrators and residents (see Supplementary Discussion). Engaging with335

public administrators and residents allowed us to compare program uptake336

for dedicated energy efficiency programs with the uptake for housing pro-337

grams. This is important because program uptake has been a critical barrier338

to accelerating energy efficiency participation in LMI communities. Through339

our interviews, we found evidence of persistent barriers contributing to low340
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program uptake in dedicated energy efficiency programs and strong drivers of341

program uptake within housing.342

We know from the literature that barriers to uptake of residential energy343

efficiency programs can typically include: 1) capital, resource, and liquidity344

constraints; 2) information barriers and behavioural or cognitive biases; and345

3) transaction and process costs [24]. We found evidence for many of these346

same barriers in Albany, GA, including a less-documented barrier: 4) local347

mistrust of government. First, evidence of low take-up of energy efficiency pro-348

grams is commonly due to a lack of capital and other resources. According349

to the housing program director, most applicants in Albany, GA, are “elderly350

and on fixed incomes.” A resident shared, “The [financial] barrier is having351

those resources to conserve.” Another resident stated, “... a lot of my fellow352

homeowners cannot afford homeowners insurance, without which you cannot353

get weatherization and stuff.” Second, when asked why more residents were354

not participating in the programs, a resident proffered that they “don’t under-355

stand and don’t get the information right.” Another said, “I don’t know what356

type of appliance would be available to say, this will help you decrease your357

electricity.” Third, evidence of process and transaction costs came up in sev-358

eral interviews. For program participation to occur, public administrators for359

the City of Albany must “see a lot of customers”; work “24/7”; always be “on360

call”; and put in “110 or more percent.” One resident shared, “[The adminis-361

trators] have funds available for Energy Assistance, but they take you through362

so much to get whatever they’re going to give you. If they’re going to help363

you, you’ll be so burned out because it takes so much.” While we confirmed364

that high-involvement processes might be necessary on the local level, addi-365

tional transaction costs limit the scalability of and so increase the uptake of366

dedicated energy efficiency programs.367

A fourth barrier, local mistrust of government, has been discussed in the368

public management literature for a broad range of services, but less so for369

energy efficiency [59–61]. Public administrators in Albany are aware of this370

issue. For example, one official shared, “It’s hard to convince people to do371

energy efficiency and let folks into their homes.” According to some public372

administrators, certain residents have “... perceptions that [the city govern-373

ment is] going to put a lien on [their property].” They say, “The mistrust is374

enormous” and that residents “don’t believe [city administrators are] doing375

what it is they say they’re doing.” Evidence from our interviews demonstrates376

that mistrust of local government service delivery, in addition to capital con-377

straints, cognitive biases, and transaction costs (among others), may also limit378

energy efficiency program uptake in LMI communities.379

In contrast, housing programs have high demand and participation. These380

programs attract a broad range of eligible participants from LMI households.381

According to the City of Albany’s 5-Year Consolidated Plan, “Over 2,000382

families are on waiting lists for a total of just 1,117 public housing units, and383

the occupancy rate for existing units is virtually 100%” [18]. This evidence384

of high take-up of public housing assistance — nearly twice the availability385
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— reveals the broad reach of the city’s housing programs’ HUD block grants386

in our study. Stakeholder meetings conducted by the city revealed that ‘high387

utility costs may be a common issue for low income, disabled, senior, and388

minority households living in older and less energy efficient homes’. These389

households comprise the vast majority of entitlement grantees in Albany, GA.390

Other stakeholders testified that “while households may be able to afford their391

homes, units may lack appliances or are in need of significant repairs” [18].392

Reports of high utility costs and the need for housing repairs confirm the393

high complementarity between energy efficiency and housing program uptake.394

Residents’ interviews further illustrate the potential impacts. “You’re talking395

about [sic] putting... money toward buying food and groceries versus paying396

utility bills; so [the housing policies] can have a big impact,” said one resident.397

Another stated, “I only get $1,200 a month, and my utilities is $4 almost $5398

[hundred], and my mortgage is $765.” Such resident feedback confirms that399

the policies can have an impact in financially struggling households regardless400

of awareness of or interest in energy efficiency measures. Considering that401

housing policies have strong demand, we conclude that expansions in housing402

program participation can lead to strong energy and sustainability co-benefits403

for a broader range of LMI households.404

Dedicated energy efficiency policies tend to attract a”uent and informed405

households, but suffer from low participation rates among LMI households [37].406

We found substantial energy savings from housing program spillovers in situa-407

tions where demand for services is also strong. These sustainability co-benefits408

have remained largely hidden from program evaluation and policy decision-409

making due to widespread data silos at the city scale. Through data innovation410

in record-linkage procedures, we have been able to uncover previously unmea-411

sured energy savings impacting low-and-moderate income communities. For412

a family facing trade-offs between essential household needs, the quantified413

energy savings can make a dramatic difference: nearly two months of groceries.414

For the community writ large, the energy co-benefits accelerate long-term par-415

ticipation from households facing structural and persistent barriers to energy416

efficiency. We argue that energy and sustainability-oriented outcomes should417

be further integrated into federal housing program evaluation criteria, and we418

expect that doing so will uncover a multitude of other hard-to-measure social419

benefits.420

Materials and methods421

Data and program details422

Administrators in the City of Albany, GA have used open data tools to respond423

to local demands for greater transparency and accountability in the delivery of424

public services. These open data initiatives are becoming increasingly common425

among similar sized cities across the U.S. For the current study, the city pro-426

vided data access to 5.9M housing-related open data records from more than 12427

city departments. The dataset included monthly electricity consumption for all428
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residential properties in Albany, GA, from 2004 to 2019. After we linked hous-429

ing and energy consumption data by property identifiers, we obtained a proper430

subset of 2,931,406 panel observations covering 16,680 residential properties.431

Out of nearly 20 programs funded under HOME and CDBG, we focused432

the analysis on programs directly related to household energy use. These433

are Energy Efficiency, Emergency Repairs, Homeowner Rehabilitation, and434

Rental Rehabilitation. These energy-relevant projects comprise 65% of the435

whole project portfolio during the analysis period from 2004-2019. Emergency436

Repairs for example constituted a significant share of the total housing portfo-437

lio, and it represented more than 30% of all treated properties in our analysis.438

Programs unrelated to energy use, such as Tenant Based Rental Assistance or439

New Construction, in which rental support can travel with the individual and440

not necessarily the housing unit, were used for falsification (placebo) testing.441

The unit of analysis is the property address (we use property address and442

household interchangeably). The dependent variable used for analysis is the443

monthly electricity consumption in kWh per square foot. We log-transformed444

the dependent variable and multiplied by 100 for ease of interpreting the445

estimated coefficients directly as a percentage change. The policy indicator446

variable was coded as 1 for months in which CDBG or HOME projects started447

and continued to be active and 0 otherwise before a project’s implementation.448

The policy indicator variable for properties that never received treatment and449

were thus available for counterfactual analysis was coded as 0 for all the peri-450

ods. Given the large dataset of counterfactual, non-treated observations, we451

mitigated selection bias by matching households based on similar baseline elec-452

tricity usage and household characteristics within the same city [21, 42]. We453

combined matching models for bias reduction and covariate balance with stag-454

gered difference-in-differences or two-way fixed effects estimators for estimation455

efficiency. For more details, see Supplementary Note 10.456

To evaluate the characteristics of treated and control units, we com-457

piled data from the 2019 5-year American Community Survey [62] and the458

Dougherty County Tax Assessor’s database of property records. This dataset459

included important property, demographic, and neighborhood characteristics460

known to affect household energy consumption. The most important pre-461

treatment property-level characteristics include the average monthly baseline462

energy consumption (in kWh per month per household), property size (in463

square feet), property age (in years), number of bedrooms, number of bath-464

rooms. Demographic and neighborhood characteristics include the household465

median income (in dollars), share of female head of household (in percent-466

age), the share of Black or African American population (in percentage), and467

alternative economic measures at the tract level such as the share of the pop-468

ulation below poverty level (in percentage), share of the households with gross469

rent more than 35% of household income (in percentage), and the population470

on SNAP (in percentage). These physical and demographic characteristics are471
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widely used in the building energy efficiency literature as matching or condi-472

tioning variables to reduce imbalance between treated and control properties473

[21, 63].474

To mitigate the effect of possible unobservables on energy use, we included475

the fair market property value as a proxy for other potentially unobserved476

quality attributes [64]. Because property values could be influenced by hous-477

ing program criteria with the explanatory variable, we conducted additional478

analyses to show the main results with and without the property value as a479

conditioning variable to check for any potential biasing effect. Excluding prop-480

erty value in the conditioning variables generated somewhat higher treatment481

effects by 10% to 19% (Supplementary Table 4). However, given possible unob-482

served factors related to housing stock quality, we included the property value483

in our models and reported the more conservative estimates. We also conducted484

additional robustness checks with an expanded set of testing variables related485

to age, homeownership, and disability status to confirm bias reduction across486

further occupant characteristics. To mitigate other time-varying factors related487

to outdoor ambient temperatures on energy demand, we also included archival488

weather station data from the National Oceanic and Atmospheric Administra-489

tion (NOAA) to adjust for seasonal heating and cooling degree-days [65]. We490

used data for the nearest weather station in Albany, which is located 4 miles491

from downtown Albany at the Southwest Georgia regional airport.492

Selection bias and protocols for bias reduction493

As expected in impact evaluation studies with voluntary programs, we found494

evidence of strong self-selection bias. Prior to implementing the matching mod-495

els, the treated and non-treated properties had large differences in observable496

property characteristics. Descriptive statistics revealed statistically significant497

differences across key testing variables (Supplementary Table 5). For exam-498

ple, participating properties receiving HUD funding are about 30% smaller in499

square footage and have almost two times lower property values (Supplemen-500

tary Table 5), which characterises the profile of units that typically receive501

federal housing assistance. For further pre-treatment comparisons across other502

conditioning variables, including demographic and neighborhood features, see503

Supplementary Table 5. Fig. 2 shows a summary of the pre- and post-matching504

differences and covariate balance between treated and non-treated properties505

expressed as standardised percent bias (Supplementary Note 9).506

Matching algorithms507

Prior to analysis by difference-in-differences, we implemented multivariate508

matching procedures as a pre-processing step to construct statistical refer-509

ence groups for analysis and to mitigate observational bias. Prior research510

in building energy efficiency has demonstrated significant performance gains511

in large datasets, particularly with the availability of high-performance com-512

puting resources [21]. We implemented algorithmic matching procedures with513
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genetic matching, which automatically finds the optimal solution and fitness514

parameters that achieve maximum covariate balance [23, 66]. Genetic matching515

automates the process of covariate-balancing under various objective functions516

such as maximizing p-values or minimizing standardised mean differences in517

empirical quantile-quantile (EQQ) distances across all matching variables.518

We used matching protocols “with replacement” that allowed us to preserve519

a larger sample size while not exceeding the ratio of controls over treated520

units that degrade performance. We ran the Genmatch script with all possible521

ratios of treated to control observations in the range from up 1 to 100. This522

grid search resulted in a local optimum at a ratio of 19:1, meaning that up523

to 19 untreated properties weighted on their characteristics were available to524

each of the treated units for comparison. To fine-tune the ratio parameter,525

we implemented a rule-based optimisation procedure that (i) maximized the526

average reduction in standardised mean differences, and (ii) minimized the527

number of pruned observations in the counterfactual [66]. Supplementary Fig.528

2 shows the sensitivity of the standardised mean differences to changes in the529

ratio parameter for genetic matching, while Supplementary Fig. 3 shows the530

sensitivity of standardised mean differences to changes in observations pruned531

for the same values of the ratio parameter. Given the extended run times for532

genetic matching, we used multiple cores on a high performance computing533

cluster to reduce computation time.534

To benchmark our matching results, we conducted propensity score match-535

ing (PSM). We found a local optimum for bias reduction at a ratio of 21:1 of536

non-treated to treated units. In Supplementary Fig. 4, we show the sensitiv-537

ity of standardised mean differences to changes in the ratio parameter, while538

Supplementary Fig. 5 shows shows the sensitivity of standardised mean differ-539

ences to changes in observations pruned for the same values of the treated to540

untreated ratio.541

Our best-performing model was genetic matching, which achieved an542

average and median bias reduction of 91% and 93%, respectively. This is signif-543

icantly better than the 78% average and 84% median bias reduction achieved544

with propensity score matching across our conditioning and testing variables545

in Fig. 2. One limitation of propensity score models is that they might require546

a researcher’s discretion in the selection of parameters of interest [67]. For547

this reason, we favored use of the automated methods with genetic matching,548

which also achieves better bias reduction in this application.549

Balance-Size Matching Frontier550

To provide additional evidence on the comparative performance of the match-551

ing models, we implemented the Matching Frontier technique by King, Lucas,552

and Nielsen [68], which allows us to estimate the theoretical limit to jointly553

maximise covariate balance and sample size. We used a specialised R package554

that allows for synchronous optimisation of covariate balance and sample size555

(for details, see the Code Availability Statement). These results are presented556

in Supplementary Fig. 6. Genetic matching achieves a larger bias reduction,557
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but it also produces a lower absolute loss imbalance (L1) compared to the PSM558

approach. These findings confirm that genetic matching is more efficient and559

gets closer to the balance/sample size frontier. The genetic matching proce-560

dures weakly dominate PSM matching across the key conditioning and testing561

variables. Therefore, given the richness of the current dataset, we were able562

to confirm that genetic matching is the preferred matching algorithm for this563

domain of building energy efficiency, as introduced in ref. [21].564

Sensitivity of matching procedures to unobservables565

We conducted Rosenbaum’s sensitivity analysis using protocols described in566

refs. [69, 70]. We calculated the critical value of the sensitivity parameter Γ,567

which captures the level of influence an unobserved confounder should need568

to affect the monthly kWh/sqft outcome in order to change our inference. We569

estimated the changes in p-values or significance levels based on different values570

of Γ from 1 to 3 with a step size of 0.05. The critical gamma value is 1.45, where571

the confidence interval includes zero (Supplementary Table 6). This means572

that an unobserved covariate would have to change the energy intensity (in573

kWh/sqft) of participating households by approximately 45% before changing574

our inference at the 90% confidence level.575

Although there could be other selection processes or time-varying unob-576

servables not captured in our conditioning and testing variables, we believe577

it is unlikely because an unobserved confounder would have to exceed our578

threshold of 45% on the impact on the outcome variable in kWh/sqft.579

Estimating treatment effects580

To estimate causal program impacts, we analysed the panel data using 16581

years of monthly energy consumption records (in kWh/sqft) with and without582

matching. We used a two-way fixed effects estimator (TWFE) with standard583

errors clustered at the property address level, as reported in Table 1, as well584

as staggered difference-in-differences estimators. We provide additional details585

on the policy indicator in Supplementary Note 10. The reported treatment586

effects are robust to various levels of one-way and two-way clustering options587

(Supplementary Table 7).588

To address potential estimation biases due to treatment effect hetero-589

geneity in the presence of staggered program adoption [71], we implemented590

staggered DiD estimators [72, 73]. We implemented two alternative protocols.591

The first approach in Callaway & Sant’Anna (2021) [72] uses not-yet-treated592

observations in a given period as counterfactual, while the second approach593

in Chaisemartin & D’Haultfoeuille (2020) [73] calculates the average treat-594

ment effect among switchers. We note that not every HUD-funded project in595

our study is subject to staggered adoption, which means that concerns about596

potential estimation biases with fixed effects estimators apply only to a sub-597

set of the studied projects. In Table 1, we report the results for three out598

of four energy-related projects that had staggered participation based on the599
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project start date (e.g., Energy Efficiency, Emergency Repairs, and Homeowner600

Rehabilitation).601

Supplementary Fig. 1 compares the dynamic DiD treatment effects with602

TWFE estimators after matching. Although, there is some divergence in603

the dynamic treatment effect estimates in the later periods after more than604

10 years or 40 quarters of performance data, we found that the staggered605

DiD treatment effect estimates were broadly consistent and within the 95%606

confidence intervals of each other for nearly all years in the study period607

(Supplementary Table 2). For interested readers, in Supplementary Fig. 7, we608

also provide evidence of parallel trends for years prior to the start of hous-609

ing projects and program data collection. Importantly, given the quality of610

the data, we note that we do not rely on cross-sectional results for statistical611

significance, and we are able to measure year-to-year impacts using multiple612

approaches with matching prior to estimation of the event study (Supplemen-613

tary Fig. 1). Due to covariate imbalances, the coupling of matching with DiD614

estimators was preferred such that covariates of never-treated units match615

treated units. Recent econometric literature also points to the merits of match-616

ing prior to DID analysis [74, 75]. For a more general discussion of design issues617

to staggered DiD approaches, see refs. [71, 76–78].618

Placebo tests and other robustness checks619

We implemented placebo tests in multiple ways to confirm the validity of our620

technical approach. First, we implemented a placebo test by analyzing treated621

properties prior to any HUD investment from 2004 to 2007, where no effects622

are logically possible. We found treatment effects not statistically different623

from zero with two-way fixed effects and in models with and without matching624

as shown in our main results in Table 1. As an additional falsification test, we625

considered funded CDBG and HOME projects not directly related to energy626

consumption, such as Tenant Based Rental Assistance or New Construction,627

to test for the direction of treatment effects. As shown in Supplementary Table628

1, we found positive treatment effects up to 15% for non-energy projects with629

and without matching as expected.630

Another potential concern in treatment effect estimation is the uncertainty631

of the exact date ranges of project completion. This could introduce a source632

of measurement error, even as the benefits of capital improvements (HVAC633

unit, window sealing, roof repairs, etc.) persist. Following ref. [30], we tested634

additional specifications by dropping observations where the treatment sta-635

tus is uncertain. Of 549 treated projects, we excluded 43 projects tagged as636

“incomplete” (7.8% of treated projects). We confirmed that results with and637

without incomplete projects are all within the reported 95% confidence inter-638

vals under our three main specifications (Supplementary Table 8). This is639

expected given that the share of “incomplete projects” in the sample is rela-640

tively small compared to the overall number of the studied projects. Access641

to project status, tracked by the program administrators and subsequently642
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shared with the researchers, indicates minimal uncertainty in the date-range643

as a possible source of evaluation error.644

Cost-effectiveness645

To calculate the cost-effectiveness ratios, we considered the total kWh saved646

across all program years divided by the total cost, which includes program plus647

administrative costs. We used the most conservative treatment effect estimates648

(i.e., genetic matching with two-way fixed effects), which provide a lower bound649

on the cost-effectiveness ratios. The program costs are the direct entitlement650

(EN) funds, and administrative (AD) costs are the share of indirect costs as651

reported to HUD, excluding program income (Supplementary Note 7). For this652

analysis, we did not consider other indirect costs, such as the social cost of653

carbon.654

Administrator interviews and community engagement655

To understand the localised administrative drivers of the CDBG and HOME656

programs, we conducted 10 semi-structured interviews with public administra-657

tors, including the City of Albany’s Manager’s Office, DCED—which manages658

the HUD projects and funding, Technology and Communications, and Util-659

ity Operations departments. We also conducted 40 semi-structured interviews660

with Albany residents to assess the program effectiveness in the field. Of the 40661

interviewees, 24 received a CDBG or HOME treatment at some point during662

the project period, and 16 did not receive the treatment. Participants in the663

Emergency Repairs program made up 55% of all interviewees and 92% of all664

treated households. All interviews were conducted via phone from May 2020665

— August 2020. We recruited resident interviewees in several ways: cold called666

DCED lists of past participants; mailed 927 postcards to past participants,667

which included contact information and a link to an online form to sign up for668

the interviews; circulated a press release and social media posts via the city’s669

communications office (from which we received two press articles); and sent670

personalised hand-addressed letters to 15 past HOME participants. All inter-671

viewees gave their informed consent for research purposes; personal data was672

anonymised and saved separately from interview recordings and transcripts.673

Data availability674

The anonymized data have been deposited in human and machine-readable675

format to Dataverse: https://doi.org/10.7910/DVN/SF1DRW [79]. Additional676

data related to CDBG and HOME funded projects is available at the Albany677

Open Data GeoHub: https://geohub.albanyga.gov [80].678

Code availability679

All computer code needed to replicate the findings in this study have been680

deposited to Zenodo: https://doi.org/10.5281/zenodo.5684354 [81].681

https://doi.org/10.7910/DVN/SF1DRW
https://geohub.albanyga.gov
https://doi.org/10.5281/zenodo.5684354
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Table 1 Long-run energy savings from housing programs, 2004-2019.

Genetic Matching
TWFE Staggered DiD Ratio:

No. of Estimate Estimate Controls/ No. of
Projects (S.E.) (S.E.) Treated Observations

All HUD-funded 549 -5.03** — 9.30 986,450
Projects (1.90)

HUD-funded 359 -8.32*** -10.99*** 15.05 952,149
Projects with (1.88) (3.20)
Staggered Adoption

Placebo Test 359 -0.89 0.26 15.05 952,149
Pre-Treatment (2.07) (5.66)

Notes: *p < 0.05; **p < 0.01; ***p < 0.001. Standard errors are clustered at the household

level by property ID. The dependent variable is the monthly electricity consumption in

kilowatt-hour per square foot, which has been log-transformed and multiplied by 100 for

interpretability as a percentage change. In this table, project savings are calculated by two-

way fixed effects and staggered difference-in-differences using Callaway & Sant’Anna [72].

The estimates incorporate a genetic algorithm for bias reduction across a range of

property, demographics, and neighbourhood characteristics. The projects with staggered

adoption include Energy Efficiency, Emergency Repairs, Homeowner Rehabilitation.

Additional program estimates are provided in Supplementary Tables 1 and 2.
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Housing Participants' Energy Consumption and Poverty Level

Households in CDBG & HOME Programs 
(LMI > 90%), between 2004-2019
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Fig. 1 Housing policies target households with higher energy burdens.
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Population on SNAP
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Female Head of the Household

Median Income

Assessment Property Value

Market Property Value*

Property Age*

Property Size* 

No. Beds* 

No. Baths*

Average Baseline Consumption*

−50 50 100

Bias Reduction from Matching Procedures

0

Standardized Percent Bias

Before

After 

Genetic Matching
90.6% bias reduction

After

Property Characteristics

Demographic Characteristics

Neighborhood Characteristics

0

0 

0
0

0

0
0

0

0

0

0
0

0

0

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Before 0 

PSM
77.8% bias reduction

0

Fig. 2 Matching algorithms reduce observational bias.
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Fig. 3 Cost-effectiveness of housing spillovers versus standalone energy effi-
ciency programs.
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Fig.1 Housing policies target households with higher energy bur-721

dens.722

This figure shows the locations of 549 CDBG and HOME participating house-723

holds in U.S. Census tracts within the City of Albany, GA. The households724

receiving federal assistance are generally concentrated in areas with relatively725

higher electricity consumption per square foot and/or higher poverty rate,726

including many in Albany’s federally designated Opportunity Zones. Over 90%727

of participating households are at or below 80% of the Area Median Income,728

which provides evidence of the effective program targeting for energy efficiency.729

Fig.2 Matching algorithms reduce observational bias.730

This figure shows the relative performance of genetic matching and propen-731

sity score matching (PSM) in standardised percent bias. The key conditioning732

and testing variables shown include property, demographic, and neighbor-733

hood characteristics. The conditioning variables are identified with asterisks734

and include observable property characteristics (average baseline consump-735

tion, property size and age, number of beds and baths). To mitigate the effect736

of possible unobservables on energy use, the market value of the property737

was added to the set of matching variables as a proxy for unobserved quality738

attributes. Genetic matching achieved 90.6% bias reduction while propensity739

score matching achieved 77.8% bias reduction; therefore, the remaining bias740

in standardised percent bias is -9.6% and -22.2%, respectively. Although both741

methods substantially reduce median bias and offer a high degree of covariate742

balance, the genetic matching algorithm is preferred over PSM.743

Fig.3 Cost-effectiveness of housing spillovers versus standalone744

energy efficiency programs.745

This figure provides a comparison of cost effectiveness ratios in kWh saved per746

dollar for housing spillovers in this study with other dedicated energy efficiency747

programs. This includes peer-reviewed point estimates for the most common748

interventions including Capital Upgrades; Information & Behavioral Nudges;749

and Rebates & Financial Incentives. Values for Allcott, 2011 [32]; Arimura et750

al., 2012 [44]; Asensio & Delmas, 2015 [28]; and Ito, 2015 [47], were derived751

from Benartzi et al., 2017 [31]. Values for Alberini & Towe, 2015 [42]; Alberini752

et al., 2016 [46]; Ayres et al., 2012 [41]; Davis et al., 2014 [45]; and Novan et al.,753

2022 [39], were derived from Gillingham et al., 2018 [24]. Values for Allcott &754

Mullainathan, [27]; Brown et al., 2020 (Residential with participant costs) [17];755

Fowlie et al., 2018 [20]; Giraudet et al., 2018 [48]; Hancevic & Sandoval, 2022756

[37]; and Zivin & Novan, 2016 [38], were derived from information reported in757

those studies. Values are exact and have been scaled to $2021 U.S.758
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Supplementary notes

Supplementary note 1

One exception is the HUD-administered Disaster Recovery block grant pro-
gram, which provides resources to help communities recover after Presiden-
tially declared natural disasters.

Supplementary note 2

We used deterministic, rule-based procedures to join data records based on
entities that may or may not share a common identifier. This included several
indexing methods, e.g., exact matching and stepwise linkage, which allowed
us to standardise formats, achieve entity resolution, and de-duplicate records
for storage efficiency. A key technical hurdle was the fact that data entry
from HUD’s nationwide Integrated Disbursement and Information System
(IDIS) was often not digitised in spreadsheets (not in database format),
and project names and address records were in non-standard and sometimes
inconsistent formats. This prompted our cross-sector public-private-academic
collaboration.

Supplementary note 3

The CDBG entitlement program is authorised under Title I of the Housing
and Community Development Act of 1974, Public Law 93-383 (42 U.S.C.
5301 et seq.). The HOME program is authorised under Title II of the
Cranston-Gonzalez National Affordable Housing Act (42 U.S.C. 12701 et seq.).
Regulations are at 24 CFR part 92.

Supplementary note 4

Detailed HOME and CDBG participation and community statistics are
available in the City of Albany, GA 2016-2021 Consolidated Plan. Inter-
active public statistics have been deposited to: https://storymaps.arcgis.
com/stories/e9990189ea00432089286ffeb636d3fd and https://albanyga-albgis.
opendata.arcgis.com

Supplementary note 5

To establish the CO2e equivalencies for the monthly energy savings, we
used emissions factors from the EPA Greenhouse Gas Equivalencies Calcula-
tor: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator for
a total of 4,716,398.45 kWh saved.

Supplementary note 6

The U.S. Department of the Treasury and the Internal Revenue Service (IRS)
have designated Opportunity Zones in 18 States as of 2018, including 260

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
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census tracts in the State of Georgia, where poverty rates are greater than
20 percent. Economic investment in opportunity zones receives special tax
advantages such as deferments and capital gains tax incentives for investors.
Qualified opportunity zones retain their designation for 10 years.

Supplementary note 7

The Cost-Effectiveness (CE) ratio was calculated for all participating square
feet for project i in month j, and time period of expenditures k as follows,
where ATE is the average treatment effect for the project group, d is the
time period of savings. Total costs include the program costs (PC), excluding
program income, and administrative costs (AC) by the project as reported to
HUD.

CEijk =
ATE

∑n
i=1

∑m
i=jsqftij dij∑n

i=1

∑p
k=1(PCik +ACik)

The energy-relevant programs make up 361 of the 549 projects in the sample.
For the cost-effectiveness analysis, we do not consider the 188 projects (160 in
HOME and 28 in CDBG) unrelated to energy savings.

Supplementary note 8

For the back-of-the-envelope internal rate of return calculations, we assumed
the lifetime savings equals the total fixed costs for each program. We also
assumed a 30-year lifetime for installed energy efficiency technologies and held
electricity rates and savings at constant 2021 levels.

Supplementary note 9

According to Rosenbaum and Rubin [1], the standardised percent bias (SB)
is defined as:

SB = 100× Xtreat −Xcontrol√
(S2

treat + S2
control)/2

where Xtreat and S2
treat are the mean and the variance of the treatment group,

while Xcontrol and S2
control are the mean and the variance of the control group.

Supplementary note 10

In our basic specification, we deployed a two-stage analysis to determine the
causal effects of program participation. In the first stage, we implemented mul-
tivariate matching procedures to construct reasonable counterfactuals and to
mitigate observational bias across conditioning variables. In the second stage,
we implemented the usual two-way fixed effect estimator. For project i at the
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time period t, the two-way fixed effects (TWFE) regression model is:

log

(
kWh

sqft

)

it

= βFEDit +ΘWt + εi + γt + εit

We regress the logarithm of monthly electricity loads in kilowatt-hour per

square foot log
(

kWh
sqft

)

it
on a treatment dummy variable Dit coded as 1 for

months in which CDBG or HOME projects started and stays treated until
the end of the whole period of analysis, and 0 otherwise, before a project’s
implementation; the policy indicator variable for properties that never received
treatment and were available for counterfactual analysis was coded as 0 for
all the periods; and βFE represents the TWFE estimator. We also account
for time-varying weather controls (Wt represents the vectors of heating and
cooling degree-days), time-invariant property characteristics, and time-fixed
effects (εi and γt, respectively).
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Supplementary discussion

Comparison to other US cities. According to WalletHub research,
Albany, GA, scores similarly to other 24 cities across the U.S. on the five follow-
ing dimensions: affordability, economic health, education and health, quality of
life and safety [2]. Considering 43 relevant metrics across 1,322 cities, Albany,
GA, is ranked close to Camden, NJ; Fort Hood, TX; Pine Bluff, AR; and
Wasco, CA. On affordability, including median household income, cost of liv-
ing, homeownership rate, housing costs, and share of households with severe
housing cost burden, it is also similar to Goldsboro, NC; Greenville, MS; and
Monroe, LA. To further evaluate our field site, we compared Albany, GA,
to national and regional averages with respect to population characteristics,
housing stock, and electricity consumption.

Population characteristics. Our sample population consists of residential
single- and multi-family households, both homeowners and renters. Similar to
many small-to-medium-sized urban areas, as of 2019, Albany’s population is
flat to declining [3]. According to American Community Survey 5-Year Data,
2015-2019 [4], the total population in Albany is 72,130, with the average house-
hold size of 2.42 being comparable to the national average of 2.62, and 74.35%
of the population is Black or African American. The median household income
in Albany is $36,615, whereas the national median household income is $62,843
[4].

Housing stock. Aside from population characteristics provided by the U.S.
Census Bureau, HUD programs take into account the age and condition of the
housing stock of program recipients [5]. The median home value in Albany is
$99,800, which reflects a blighted housing stock, as described by community
members and leaders [4]. On average, Albany’s housing stock of our study
population is over 50 years old, which is higher than the national average; this
property age is similar to nearly 15% of the total number of housing units
across the U.S. [6].

Electricity consumption. Given the characteristics of Albany’s popula-
tion and housing stock, from a sustainability perspective, energy conservation
strategies are especially relevant and needed. Based on the data received from
the city, we estimated the average energy consumption in Albany to be 13,255
kWh per year per household, which is higher than the national average of
10,649 kWh per year per household [7]. We found that participating households
also face high energy burdens. For example, eight of the 27 U.S. Census tracts
in our sample population are considered to have “unaffordable” energy bur-
dens: spending above 6-10% of household income on electricity, as documented
in refs. [8–10].

Administrator selection. Some may wonder whether heads of households
or landlords who are better informed or connected to administrative person-
nel gain disproportionate access to block grant funds, a source of potential
unobservable bias. Based on interviews with City of Albany administrators,
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we assessed selection and decision-making processes for block grant disburse-
ment. In summary, we found little evidence of administrator selection bias for
three likely reasons. (1) According to public officials, program management is
subject to audits and oversight at both the federal and local levels in order
to “...make sure there was consistency in expenditures as well as regulatory
requirements.” Accountability is also achieved through community participa-
tion, including public hearings, which serve to fulfill federal requirements for
citizen input. (2) Administrators report their e”orts to reach more people with
information about available funding, such as going to town halls to “...talk
to them about how to make their homes more energy efficient for all resi-
dents not just senior citizens.” We subsequently learned that most recipients
of block grant funds are over the age of 62, an often overlooked demographic
in dedicated energy efficiency campaigns. (3) Despite “word-of-mouth” being
a common mechanism for sharing information in Albany, we learned that the
administrators reach a substantial share (about half) of the eligible popula-
tion. One administrator said, “For everyone who [knows about the program],
you talk to someone who doesn’t know about it.”

Addressing Split Incentives. Many LMI households include renters in
single or multi-family units. We know that if tenants pay for their own utilities,
they have the incentive to conserve energy to reduce bills, but may face capital
constraints or other barriers to invest in home upgrades. If landlords pay for
the utilities for their rental properties, landlords cannot easily benefit from
bill savings in individual units, so they may choose to delay or refrain from
investing in home upgrades. This disconnect, commonly referred to as a split-
incentives problem, is well-known in the residential sector [11]. It has been
estimated that policy support to address split incentives, particularly among
LMI renter populations, could save low-income residents between $4 and $11
billion dollars per year [12]. For example, one Albany resident shared, “... And
then you rent a house in the city. And you have only three bedrooms and one
bath, and your bill is close to $500. When you turn on your AC, all the air is
going up through the roof and out the window sills. Because the landlord is not
making sure his property is weatherized, [it] sucks money out of the community
and is bleeding us dry.” According to the City of Albany’s 5-year consolidated
plan, “substandard housing conditions in [sic] a”ordable units may make them
unsafe or may lead to exceptionally high utility costs, negating savings in rent
as compared to a more expensive unit elsewhere” [13].

LMI renters often face high energy costs when lack of weatherization, aging
appliances or other efficiency measures in their rental units are dilapidated. Of
note was the magnitude of the 32% energy savings for renters in city-owned
properties in the Rental Rehabilitation program, which is at the high end or
exceeds the performance of capital upgrades and incentive programs in resi-
dential and commercial buildings [14, 15]. In conversation with a Community
Development Manager within the City of Albany’s Department of Commu-
nity and Economic Development, we learned that occupants in all city-owned
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properties pay their own utility bills under tenant-paid contracts. For exam-
ple, “they have customers calling all the time with extremely large ... bills, the
landlord won’t fix it. They think the [resident] is supposed to [fix] it.” Prior
studies have shown that under tenant-paid contracts, households can have
substantially lower consumption, particularly in response to temperature fluc-
tuations [16]; however, barriers remain for low-income residents in city-owned
properties.

As multifamily households (e.g., Apartment; Condominium; Duplex,
Triplex, Quadplex) represent only 4.5% of participants in our study, we
acknowledge that there is limited potential for renters to benefit from policy
options such as contractual interventions, i.e., shifting lease contracts from
owner-paid to tenant-paid contracts [17] or establishing green leases in which
the cost of capital improvements are offset by increased rent to tenants [12].
We also know that when owners pay for utilities, they tend to command higher
rent prices [18], which puts even more pressure on LMI energy e”ciency partic-
ipation. Regulatory interventions such as building codes, and other financing
options, are designed to address barriers related to split incentives, but gener-
ally do not focus on specific principal-agent problems faced by LMI households
in practice. For instance, one city o”cial informed us that “tenants can fill out
[the application for public assistance] but landlord must give approval.”

Overall, our findings illustrate that housing policies in Albany, GA, which
also fund structural upgrades in multifamily homes can meaningfully address
split incentive investment barriers, which simultaneously benefit LMI renters
with some of the highest energy and cost burdens nationally.

Insights from administrators and residents. In addition to evidence
related to program uptake, our interviews with Albany, GA, administra-
tors and residents revealed three additional findings. First, we learned that
public administrators communicate a shared commitment to their fellow res-
idents through a deep public service motivation [19, 20]. We also observed
that City administrators often shared several characteristics and values with
the residents they serve. The representative bureaucracy literature in public
administration often argues that that administrative personnel who reflect the
community served can actively represent the interests of particular groups,
which translates into substantive benefits for those represented [21–23]. For
example, HUD requires at least 70% of CDBG funding to be allotted to
LMI households, defined as 80% of the area median income (AMI) or below.
However, o”cials in Albany’s Department of Community and Economic Devel-
opment (DCED), which manages HUD funds in Albany, exceed the minimum
targeting set forth by HUD, reporting that over 90% of their portfolio goes to
LMI households.

Second, we found that the city of Albany’s bureaucratic structure enabled
centralised decision-making over data ownership and access by having a Chief
Information O”cer jointly overseeing city and county data initiatives. This
structure allowed for organisational agility in which information technology
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(IT) resources were centrally allocated to address data silos and data integra-
tion challenges across departments. Scholars have argued that such integrated
access to data can uniquely address public pressure for information and greater
transparency of public investments [24–26].

Third, from our resident interviews, we also uncovered some evidence of
diverging perceptions about household energy use among participants. For
example, one resident said, “What I do know is that the electricity bill is still
over $200 a month and that’s what it was before the [new] AC unit. So, I
didn’t see a change in my bill.” Issues surrounding information provision and
estimating resource use in the residential sector are well-documented [27–31].
Additional research is needed to understand potential perception gaps among
residents regarding neighbourhood improvements.

Additional quotes from interviews.

• On shared commitment: When asked what was the most important
aspect of their job, one administrator answered, “. . . ensuring the most
vulnerable populations have access to these funds and can partake in its ben-
efits”. A resident said that “I really do appreciate Albany. A lot of changes
have been made, and I see us growing; and that’s good also.” When asked
what motivates going to work everyday, an administrator said that it was
“supporting the community you live and were born in.” Another said that
“we’re in this together, we must work together.”

• On bureaucratic structure: An administrator said that “We’re IT for
the city and the county...it’s a group of us, who are cross-sectional, not all
of them work for the technology department. But, our goal is to identify
situations like [siloed housing and utility data] and then bring that group
of people together; and see, is it possible to solve that problem with tech-
nology?” When asked how open data hubs facilitate interactions within a
department, an administrator said that “Not so much within my depart-
ment, but between us and other departments...This is a similar problem [that
other cities across the US have;] a lot of departments, even though they’re a
part of a whole city, they work in silos; so a project that one department has
really has a profound effect on a different department. But those 2 depart-
ments really don’t know what’s going on between the 2. So what we’re using
the [Open Data] Hub for... is a way to visualise what’s happening around
our city, and allow other people to see into some projects and some data
that they never really access to before.”

• On consumer perceptions: An administrator said that “...energy use
and disproportionate percentages of income [are] being spent on energy for
people in poverty, but how do you fix that? That is the big debate.” A
resident said that “Very concerned. Living on a $1500 income a month, and
you’re talking about the mortgage, light bill, personal items, that’s pretty
tight. That your light bill’s over $200 a month, they’re much concerned
about it. I have to help my mom some months financially.” Another resident
said that “We paid $1500 in three months during the summer months. It
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was $500+ every month. And we had to try to come up with it. Because
we can’t operate without lights and electricity. But it’s tough for retired
people and people on social security but it was a blessing that I have a little
retirement.”
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Supplementary Fig. 1 Comparison of matching models with TWFE and
staggered DiD estimators.

The figure compares the staggered DiD treatment effects with TWFE estima-
tors after matching. The staggered DiD estimates suggest larger savings than
more conservative TWFE approach. At the same time, both estimates are
generally consistent with each other as the upper and lower confidence inter-
vals largely overlap. The upper and lower colour-coded lines represent 95%
confidence intervals.
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Supplementary Fig. 2 Bias reduction after genetic matching.
This figure plots the average percent reduction in standardised mean differences
as a function of the matching ratio parameter. The optimal ratio of controls over
treated households balances the need for saturation of potential counterfactuals with
computational efficiency. The optimal ratio was found at 19:1 and depicted as an
orange line.
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Supplementary Fig. 3 Bias reduction after genetic matching.
This figure plots the average percent reduction in standardised mean differences as
a function of the number of observations pruned, derived from the optimal ratio of
controls over treated households. The optimal ratio balances the need for saturation
of potential counterfactuals with computational efficiency. The optimal ratio was
found at 19:1 and the correspondent number of observations pruned is depicted as
an orange line.
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Supplementary Fig. 4 Bias reduction after propensity score matching.
This figure plots the average percent reduction in standardised mean differences
as a function of the matching ratio parameter. The optimal ratio of controls over
treated households balances the need for saturation of potential counterfactuals with
computational efficiency. The optimal ratio was found at 21:1 and depicted as a blue
line.
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Supplementary Fig. 5 Bias reduction after propensity score matching.
This figure plots the average percent reduction in standardised mean differences as
a function of the number of observations pruned, derived from the optimal ratio of
controls over treated households. The optimal ratio balances the need for saturation
of potential counterfactuals with computational efficiency. The optimal ratio was
found at 21:1 and the correspondent number of observations pruned is depicted as a
blue line.



14

0 5000 10000 15000

0.
1

0.
2

0.
3

0.
4

0.
5

Number of Observations Pruned

A
bs

ol
ut

e 
Lo

ss
 F

un
ct

io
n

Matching frontier

Propensity Score Matching Genetic Matching

Supplementary Fig. 6 Matching frontier.
This figure shows the matching frontier along the results of propensity score and
genetic matching (visualised in blue and orange, respectively) and support the
evidence that genetic matching outperforms propensity score matching.



15

0.8

0.9

1.0

1.1

5 10 15 20 25 30 35 40 45 50 55 60
Quarter

Q
ua

rte
rly

 C
on

su
m

pt
io

n,
 K

W
h/

sq
ft

Households

Treated

Untreated

Supplementary Fig. 7 Treated vs. untreated household trends.
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a visual guide for respective projects with the shaded areas representing mean values
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Supplementary Table 1 Monthly energy savings by project, 2004-2019.

Genetic Matching PS Matching Without
Ratio: Ratio: Matching

No. of Estimate Controls/ Estimate Controls/ Estimate
Projects (S.E.) Treated (S.E.) Treated (S.E.)

HUD-funded 549 -5.03** 9.30 -5.49** 11.33 -4.32*

Projects (1.90) (1.89) (1.86)

CDBG 349 -9.92*** 14.62 -10.34*** 17.83 -9.15***

Projects (2.07) (2.07) (2.04)

Energy 62 -12.93** 82.31 -13.24*** 100.34 -11.79**

Efficiency (4.30) (4.29) (4.28)

Emergency 268 -6.24** 20.58 -6.69** 25.09 -5.52**

Repairs (2.20) (2.19) (2.18)

Rental 22 -31.96* 231.95 -32.37* 282.77 -31.84*

Rehabilitation (16.18) (16.18) (16.17)

HOME 200 6.38 25.52 5.79 31.11 6.94
Projects (3.73) (3.72) (3.70)

Homeowner 29 -10.46* 175.97 -10.74* 214.52 -9.30
Rehabilitation (5.13) (5.13) (5.12)

Non-Energy 160 15.13*** 31.89 14.42*** 38.88 15.53***

Projects (4.03) (4.02) (4.00)

Placebo Tests -2.55 9.30 -2.33 11.33 0.63
Pre-Treatment (1.81) (1.80) (1.76)
Treated Households 549 549 549
Control Households 5,103 6,221 16,131
No. of Observations 986,450 1,170,647 2,931,406

Notes: *p < 0.0; **p < 0.01; ***p < 0.001. Standard errors are clustered at the household level

by property ID. The dependent variable is the monthly electricity consumption in kilowatt-hour

per square foot, which has been log-transformed and multiplied by 100 for interpretability as

a percentage change. In this table, project savings are calculated using a two-way fixed effects

estimator with and without matching procedures. Models without matching and bias reduction

result in lower saving estimates. The non-energy projects include New Construction and

Tenant Based Rental Assistance. The placebo tests for participating projects in the pre-

treatment period indicate effects not significantly different from zero with all methods.
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Supplementary Table 3 Annualised savings equivalencies using April 2021
Consumer Price Index (CPI).

Item and Group Monthly Savings per Savings per
Expenditure 5% ATE 32% ATE

Food $269.43 28% 179%
Household Furnishings and Operations $128.85 58% 374%
Apparel $127.23 59% 379%
Private Transportation $224.10 34% 215%
Professional Services $383.73 20% 126%
Recreation $125.20 60% 385%
Education and Communication $137.00 55% 352%
Durables $115.30 65% 418%

Note: For food expenditure, the annualised savings for a household range from nearly

one-third of a month (28%) up to almost two month (179%) for a basked of goods.
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Supplementary Table 4 Matching analysis with and without property value.

With Property Value Without Property Value No. of Observations

All HUD-funded -5.49** -5.59** 1,170,647
Projects (PSM) (1.89) (1.89)

All HUD-funded -5.03** -5.99** 986,450
Projects (GenMatch) (1.90) (1.90)

Notes: *p < 0.05; **p < 0.01; ***p < 0.001. Standard errors are clustered at the household

level by property ID. The dependent variable is the monthly electricity consumption in

kilowatt-hour per square foot, which has been log-transformed and multiplied by 100

for interpretability as a percentage change. Data analysis was done using a two-way

fixed effects estimator.
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Supplementary Table 6 Rosenbaum’s sensitivity analysis for unobserved
confounders.

Gamma (Γ) CI+ (upper bound) CI- (lower bound)

1.35 -0.180004 -0.011615
1.40 -0.189627 -0.001678
1.45 -0.19889 0.007922
1.50 -0.207817 0.017204

Notes: α = 0.10. 95,689 matched pairs are based on nearest neighbor

propensity score matching. At a critical Γ of 1.45, the difference

between upper and lower bounds of the CIs includes zero.
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Supplementary Table 7 TWFE estimates with different clustering.

Spatial Clusters Temporal Clusters Genetic Matching

One-way Clustering 16,680 — -5.03**

(property level) (1.90)

Two-way Clustering 16,680 16 -5.03**

(property & year) (1.94)

Two-way Clustering 16,680 185 -5.03**

(property & month) (1.98)

Notes: *p < 0.05; **p < 0.01; ***p < 0.001. Total number of observations is 986,450.

The dependent variable is the monthly electricity consumption in kilowatt-hour per

square foot, which has been log-transformed and multiplied by 100 for interpretability

as a percentage change. Data analysis was done using a two-way fixed effects estimator.
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Supplementary Table 8 TWFE estimates with and without incomplete projects.

Genetic Matching PS Matching Without Matching

With Incompletes -5.03** -5.49** -4.32*

(1.90) (1.89) (1.86)

Without Incompletes -5.38** -5.22** -4.29*

(1.93) (1.93) (1.90)

No. of Observations 986,450 1,170,647 2,931,406

Notes: *p < 0.05; **p < 0.01; ***p < 0.001. Standard errors are clustered at the household

level by property ID. The dependent variable is the monthly electricity consumption in

kilowatt-hour per square foot, which has been log-transformed and multiplied by 100 for

interpretability as a percentage change.Data analysis was done using a two-way fixed

effects estimator.
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