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Abstract

Housing policies address the human dimensions of increasing urban
density, but their energy and sustainability implications are hard to
measure due to challenges with siloed civic data. This is especially
critical when evaluating policies targeting low- and moderate-income
(LMI) households. For example, a major challenge to achieving national
energy efficiency goals has been participation by LMI households. Stan-
dalone energy efficiency policies, like information-based programs and
weatherisation assistance, tend to attract affluent, informed house-
holds or suffer from low participation rates. In this article, we provide
evidence that federal housing policies, specifically community devel-
opment block grants, accelerate energy efficiency participation from
LMI households, including renters and multifamily residents. We con-
duct record linkage on 5.9M observations of housing program par-
ticipation and utility consumption to quantify the hidden benefits
of locally administered housing block grants in a typical entitle-
ment community in the U.S. Southeast. We provide long-run evi-
dence across 16,680 properties that housing policies generate 5-11%
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energy savings as spillover benefits to economically burdened house-
holds not conventionally targeted for energy efficiency participation.

Keywords: housing, energy efficiency, civic data science, sustainability, equity

For several decades, U.S. housing investment policies, such as community
development block grants, have distributed more than $5.8B per year in public
assistance to distressed communities. [1]. Block grants offer flexible mecha-
nisms that preserve local control over and prioritisation of administered public
funds. However, evidence that these policies effectively serve low-and-moderate
income (LMI) households has been unclear. A fundamental challenge in quan-
tifying these program’s benefits is that the civic data needed for impact
evaluation is often siloed across city information systems.

Block grants administered by the U.S. Department of Housing and Urban
Development (HUD) address the human dimensions of increasing urban den-
sity and land use. More generally, these housing policies can be important
mediating strategies in scenarios of human affluence and environmental impact
[2], including estimates of building energy use or resource consumption at var-
ious geographic scales [3, 4]. This notion of housing as a driver of resource
consumption is important as renewed federalism debates over public funds
for housing assistance also affect modelling assumptions about sustainable
urban growth, social equity, and climate resilience. Yet, despite over three
decades of programmatic evidence and evaluation, the energy and sustainabil-
ity outcomes of HUD-funded programs have been largely missing from public
decision-making (Supplementary Note 1). Consequently, the analysis of sus-
tainability trade-offs or sustainability co-benefits from housing investment has
been invisible to the policy process.

A hurdle for policymakers is that the community benefits of these programs
are often hard to measure. Scholars have suggested dedicated funds be set
aside to develop more sophisticated, holistic approaches for impact evaluation
[5]. A principal limitation for evaluators is usually structural. For example,
the disaggregated data required to rigorously evaluate the benefits of these
programs, such as energy, water, or resource use, are often inaccessible across
information systems or city bureaucracies. Other performance data reported
to HUD are commonly in the form of community surveys or self-reported infor-
mation from program participants. However, due to the limited availability
of contemporaneous data from non-participants, which are necessary to con-
struct credible reference groups for evaluation, obtaining consistent, reliable
estimates of program impacts for block grants is rare.

In this article, we describe a multi-year effort on the use of open data in the
public sector. We linked siloed data on energy consumption and housing pro-
gram participation. Using an open data hub, we created an automated housing
registry to process large datasets from over a dozen independently adminis-
tered databases and multiple city departments (Supplementary Note 2). This
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process of combining and standardising records from relational databases is
referred to in the data science community as data fusion [6]. The housing reg-
istry’s capabilities include access to open data with geographic information
systems (GIS) mapping, and a community engagement analytics platform.
Importantly, the registry links housing and utility consumption records at the
property-address level. These records are more granular than common eval-
uation studies at the parcel- or county-scale, which typically do not permit
analyses of individual household behaviour.

We investigated long-term sustainability outcomes for two of the largest
HUD-administered block grants, the Community Development Block Grant
(CDBG) entitlement program and the HOME Investment Partnerships
(HOME) program (Supplementary Note 3). We analysed 16 years of evi-
dence (2004-2019) from the City of Albany, GA, a typical, small-to-mid-sized
entitlement community in the U.S. Southeast. The data include 5.9 million
monthly observations of participating and non-participating households. We
asked whether HUD-administered block grants, which fund housing capital
improvements, could generate hidden spillover benefits to private citizens
through energy savings. In quantifying possible spillover benefits of housing
assistance, we investigated potential policy innovation to use housing program
targeting as an entry strategy to include LMI communities often left out of
energy conservation upgrades. Although the connection between block grant
programs and energy efficiency might not be immediately obvious, we found
that home upgrades and rehabilitation greatly affect household resource con-
sumption. We document that housing programs can increase energy efficiency
in LMI communities, including households with a lower awareness of or interest
in energy efficiency.

Block grants for LMI households

Program “targeting” is a central tenet of U.S. federal housing policies but cre-
ates fundamental challenges for research and evaluation. HUD-administrated
block grants are mean-tested policies that distribute targeted federal resources
to state and local officials to build more resilient communities [1]. A key fea-
ture of the block grant funding mechanism is that cities have decentralised
authority over these funds.

Advocates for block grants praise the program’s flexibility. They suggest
that local public administrators will seek the most efficient and cost-effective
means to deliver program services as those officials have better information
about community needs. Local administrators are also presumed to be more
“visible” and, thus, can be held more accountable by citizens versus federal
administrators [1, 7]. However, critics argue that block grants have too much
flexibility. For example, grantees can redirect program targeting away from
individuals with the greatest need or shift program services with long-term
payoffs in favour of short-term initiatives with less impact.
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When local governments receive federal grants, it often stimulates higher
levels of spending than theory would predict from local revenues, a phe-
nomenon known as the “flypaper effect” [8, 9]. Nevertheless, debates persist
about whether increased expenditures lead to higher levels of public service
provision, especially within LMI communities [10, 11]. In the context of block
grants and housing, scholars have argued that the actual value of block grant
funding tends to diminish over time [12]. As a result, block grant programs
have been criticised for gradually decreasing services to the neediest or most
vulnerable populations [5, 13, 14]. CDBG and HOME programs reduce capital
and information barriers for entitlement communities to be able to access and
receive governmental assistance. However, it remains an open question whether
income-qualified households meaningfully participate in and benefit from these
federal funds. We, therefore, investigated whether a broader range of co-
benefits from housing assistance, such as energy savings and other unmeasured
sustainability benefits, might be generated by housing block grants.

The energy-relevant program activities under CDBG include energy effi-
ciency projects, rental rehabilitation, and emergency repairs, i.e., roof replace-
ments, heating, ventilation, and air conditioning (HVAC), electrical, plumbing,
and other repairs that bring structures up to current building codes. Under
HOME grants, the relevant program activities include the rehabilitation of
owner-occupied housing units, acquisition, rehabilitation, or construction of
rental units as affordable housing for low-income individuals, and tenant-based
rental assistance. For a more detailed list of CDBG and HOME activities and
program rules, see refs. [1, 15].

Our field site, Albany, GA, is 74% Black or African American, and its
poverty rate is 30.8%—mearly triple the U.S. national average (Supplemen-
tary Discussion). Albany is ideally suited for formula targeting under block
grant eligibility rules due to its population size, ageing housing stock, and high
poverty rate. Based on the city’s data, we calculated the average household
energy consumption in Albany as 13,255 kilowatt-hours (kWh) p.a., making
it an important population of interest. This is nearly 25% higher than the
U.S. national average (10,649 kWh) [16]. For a review of causes and correlates
of household energy burden in low-income communities, see ref. [17]. Given
the high energy and cost burdens, we could expect to observe substantial
improvements from policy intervention.

Results and discussion

Program targeting

We evaluated the household characteristics of program participants in Albany
to assess evidence of program targeting. The most common housing problems
include cost-burdening, crowding, and substandard housing (e.g. lacking com-
plete plumbing, kitchen facilities, or weatherisation) [18]. The city has 7,985
LMI renter households and 2,232 LMI owner households that spend more
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than 30% of their monthly income on housing costs, including utilities (Sup-
plementary Note 4). Given this high share of cost-burdened households, it is
understandable that the demand for housing assistance far exceeds the avail-
able funds with long waiting lists of income-qualified applicants. In Fig. 1,
we show the spatial distribution of 549 HUD-funded housing projects across
16,680 properties participating in either CDBG or HOME by census tract.
While there are funded activities across all six city wards, a high proportion
of participating properties are also located within Federal Opportunity Zones
(Fig. 1).

Although energy intensity is not a consideration in targeting or eligibility
criteria, we found that participating households who received HOME or CDBG
funds are heavily concentrated in areas with high poverty rates and where
energy burdens are prevalent (Fig. 1). Out of 10,127 households at 80% AMI
or below, 5,714 have a severe cost burden (4,440 renters and 1,274 owners);
these households comprise a significant share, 38% of LMI households [18]. In
these tracts, the ratio of median electricity bill charges to median income is
8-12%—higher than the national threshold (Fig. 1). This type of evidence has
previously been hard to discover given the persistent data silos and lack of
researcher access to integrated utility data for evaluation. Next, we compared
program targeting under federal housing rules to more conventional policies
targeting energy efficiency.

Prior work has shown that self-selection into energy efficiency programs
generally has low take-up rates among LMI households, even when energy effi-
ciency services are subsidised or free [19, 20]. Given the upfront investment,
administrative, or coordination costs necessary to achieve large-scale savings,
dedicated energy efficiency programs can actually have negative rates of return
[20]. Further, when standalone energy efficiency policies are not means-tested,
they also tend to attract participation in higher-income areas [21]. This situa-
tion raises questions about inframarginal participation—whether participants
would have invested in energy efficiency without public subsidies or benefits
[22]. Yet, although not all activities covered under HOME and CDBG may be
relevant for energy conservation, we argue that program targeting under hous-
ing block grant rules could be a favourable alternative to standalone energy
efficiency policies that are not necessarily means-tested or have a low service
take-up. This is because the housing program selection process simultane-
ously attracts the most energy-intensive and energy-burdened households in
situations where the demand for services is also strong.

Surprisingly, we found that housing policies can accelerate participation
in energy efficiency among capital-constrained homeowners or renters, even in
cases where participants were not initially motivated by energy conversation
measures. For example, one resident said, “When they put the roof on it was
like night and day. I could feel the warmth of the house.” In the next section,
we quantify the realised energy savings within targeted LMI communities.
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6

Energy savings from housing programs

We estimated the long-run energy savings in kWh per sq.ft. for participating
properties in CDBG and HOME programs. These spillover energy savings can
be conceptualised as a bonus in program performance beyond core housing pro-
gram objectives. To calculate energy savings, we implemented several matching
models with regression adjustment to construct suitable statistical reference
groups pre- and post- program participation. To mitigate observational bias,
we used algorithmic matching procedures with a genetic search algorithm [23]
to achieve covariate balance between treated and counterfactual observations.
We also implemented staggered difference-in-differences (DID) estimators that
mitigate potential biases of two-way fixed effects with heterogeneous effects
(Materials and Methods). For transparency in protocols, we report the bias
reduction in Fig. 2 and note that in staggered DID models without matching,
the energy savings can be understated (Supplementary Table 1). We report
the most conservative estimates, robust to various matching procedures and
estimators (for more, see Materials and Methods).

HUD-funded housing projects in Albany, GA, generated statistically sig-
nificant monthly average energy savings of 5-11% for participating households
as compared to multivariate matched properties with similar characteristics
(Table 1). For the subset of energy-relevant projects estimated by stag-
gered difference-in-differences estimators (i.e., Energy Efficiency, Emergency
Repairs, and Homeowner Rehabilitation), we report energy savings of 11-14%
after correcting for potential estimation biases due to treatment effect het-
erogeneity under staggered participation (Table 1 and Supplementary Table
2). We note that point estimates can be higher when considering staggered
designs. While there is year-to-year variability in performance depending on
the mix of implemented projects, the energy savings for housing participants
are relatively stable across years, with increasing performance in the last 2
years of the study period (Supplementary Fig. 1).

Overall, HUD-funded block grants in Albany, GA reduced electricity use
by 4.72 million kWh over the study period. The reduction in non-baseload
emissions is equivalent to 3.70 million pounds of coal not being burned or the
carbon sequestered by 3,695 acres of forest (Supplementary Note 5). These
long-term savings are remarkable, given that energy efficiency is not an explicit
criterion for these policies.

Participating properties in the CDBG program achieved monthly savings
of 6-14% (Supplementary Table 1, 95% CI). Emergency repairs, where house-
holds could elect for one critical repair (e.g., HVAC), comprised of 248 projects,
generated 6% energy savings. Albany’s CDBG-funded Energy Efficiency pro-
gram, offering new insulation and windows, comprised of 62 projects, generated
about 13% energy savings. The largest savings came from the CDBG-funded
Rental Rehabilitation program, which focuses on structural upgrades (e.g.,
roof) to city-owned rental properties, comprised of 22 projects, generated 32%
energy savings. This performance is consistent with the high savings associated
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with major building upgrades reported in voluntary and information-based
programs [21, 24, 25].

The HOME portfolio had more mixed results. On the one hand, Home-
owner Rehabilitation, which provided households with a full range of repairs,
comprising of 29 projects, generated around 11% energy savings. HOME had
a larger share of projects not relevant to energy savings (e.g., Tenant Based
Rental Assistance). Unsurprisingly, these 160 unrelated HOME projects were
associated with a 15% increase in energy consumption. Therefore, we found
evidence of energy savings across a broad portfolio of CDBG projects and, to
a more limited extent, HOME projects.

To further contextualise savings from the HUD-funded CDBG programs,
we translated the lower and upper range of estimated energy savings (e.g., 6%
for Emergency Repairs and 32% for Rental Rehabilitation) to dollar amounts
using an average monthly electricity bill in Albany, GA ($125). When annu-
alised, housing participants saved anywhere from $75 to $482 in direct kWh
charges. According to the Bureau of Labor Statistics consumer price index
(CPI) [26], these savings are equivalent to nearly two months of groceries for
households in the region (Supplementary Table 3).

Housing spillovers versus energy conservation programs

We evaluated how meaningful these savings are in comparison with dedi-
cated energy efficiency programs reported in the literature. First, we compared
the magnitude of energy savings for both non-LMI- and LMI-targeted pro-
grams and found that housing spillovers meet or exceed the reported energy
savings from standalone programs. For example, Gillingham et al. (2018)
reported savings from 0% to 25% for a broad range of interventions involving
capital upgrades [24]. Savings from behavioural and information-based inter-
ventions also range from 0% to 20%, depending on the intervention type and
methodology [27-30].

We found that energy savings from housing program spillovers (which
range from 6% to 32%, Supplementary Table 1) are generally consistent with
and sometimes exceed previous reports for non-LMI targeted interventions.
In another review, Benartzi et al. (2017) reported energy savings of 0.9% to
8.2% for non-LMI targeted informational nudges for energy conservation [31].
Although energy savings from capital improvements often generate substan-
tially larger savings, we acknowledge that information and behavioural nudges
can also offer other benefits. For example, treatment effects from information-
based interventions can persist for years after the treatments are discontinued
[32, 33]; or they can generate conservation spillovers from one form of resource
consumption to another. Reported cases include water to energy savings [34];
waste sorting to waste reduction [35]; or hot water savings to space heating
conservation [36]. We acknowledge that energy savings may not be the only
important outcome measure for program evaluation.
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Additionally, we benchmarked the energy savings from housing spillovers
to standalone energy efficiency programs where LMI households were the prin-
cipal recipients of the energy savings. Studies of standalone energy efficiency
programs geared toward LMI households, like the Weatherization Assistance
Program (WAP), Low-Energy Efficiency Plus (LEEP-Plus), and Energy Sav-
ings Assistance Program (ESAP), have reported energy savings in the range
of 2% to 7%, albeit with challenges in program uptake [20, 37, 38]. There-
fore, given the range of treatment effects in this study, we found that housing
spillovers are competitive with and occasionally exceed the energy savings from
standalone energy efficiency programs targeting LMI communities.

Comparatively, housing spillovers are also meaningful in effectively reaching
a broader range of LMI households versus standalone programs. This is because
LMI households in need of home repairs are generally a larger subset of the
population than those actively seeking specialized energy efficiency support.
Notably, the majority of grantees are simultaneously concentrated in areas with
high poverty rates and, surprisingly, high energy consumption which has been
previously unknown (Fig. 1). We believe this profile is notable as it differs from
descriptions of low LMI participation in dedicated energy efficiency programs
[20, 37].

Cost-effective comparisons

Although energy savings is not the intended aim of CDBG and HOME block
grants, we calculated cost-effectiveness ratios in kWh saved per dollar spent for
four energy-relevant housing programs: Emergency Repairs, Energy Efficiency,
and Rental Rehabilitation (under CDBG) and Homeowner Rehabilitation
(under HOME). Because of our unique partnership with City of Albany pub-
lic administrators, we were able to access program and administrative costs
at the project level. The fiscal period for which we had access to the costs is
October 2007 to May 2018, spanning 11 years. We noted that such long-term
evaluations of block grant outcomes have been uncommon [5]. For details on
cost-effectiveness calculations, see Materials and Methods. Within CDBG, we
report cost-effectiveness ratios of 83.5 kWh/$ for Rental Rehabilitation, 10.8
kWh/$ for Energy Efficiency, and 3.7 kWh/$ for Emergency Repairs. Within
the HOME program, we report the cost-effectiveness ratio of 0.8 kWh/$ for
Homeowner Rehabilitation.

Further, we benchmarked the cost-effectiveness ratios (in $2021) of housing
spillovers against reported estimates from dedicated energy efficiency pro-
grams. We considered recent meta-reviews [24, 31] and other highly cited
studies published in the last 20 years. In Fig. 3, we provide a comparison,
beginning with standalone Capital Upgrades programs, which include both
LMI- and non-LMI-targeted programs. We also compared housing spillovers to
non-LMI targeted programs including Information & Behavioral Programs and
Rebates & Financial Incentives. We found that housing spillovers from Rental
Rehabilitation in the CDBG program are nearly 2.9 times more cost-effective
than common Capital Upgrades programs, such as utility-based retrofitting
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(i.e., 29.0 kWh/$) [17]. As the Rental Rehabilitation funds upgrades in city-
owned properties, we learned that Rental Rehabilitation is revenue generating
(unlike non-city owned properties in homeowner rehabilitation). Therefore, the
cost-effectiveness ratio is substantially higher because administrators can also
leverage program income to re-invest in additional upgrades. We consider split
incentives issues within rental rehabilitation in the Supplementary Discussion.
Spillovers from Emergency Repairs and other block grant programs are also
within the reported cost-effectiveness ratios from dedicated programs that tar-
get LMI communities, including WAP, LEEP-Plus, and ESAP [17, 20, 38].
Similarly, we find that cost-effectiveness ratios from housing spillovers are also
competitive with non-LMI-targeted Capital Upgrades programs, such as build-
ing labels and building codes (i.e., ranging from 21.3 to 4.7 kWh/$) [21, 39, 40]
(Fig. 3).

As expected, the cost-effectiveness ratios of housing spillovers are less
favourable than those estimated for Information & Behavioural programs
[27, 28, 32, 33, 41, 42] (i.e., ranging from 64.3 to 0.1 kWh/$ (Fig. 3), which
do not typically involve capital upgrades. We also compared cost-effectiveness
ratios in this study to Rebates & Financial Incentives, such as appliance
replacement (refrigerator, heat pump), electricity bill credits, other rebates
(i.e., ranging from 29.3 to 0.4 kWh/$) [43-48]. In contrast to nudge inter-
ventions, we find that the cost-effectiveness ratios in this study are generally
competitive with Rebates & Financial incentives (Fig. 3). This is intriguing
since direct monetary incentives for energy efficiency, unless restricted by pro-
gram rules, do not generally target LMI communities. Although outside the
scope of this paper, we did back-of-the-envelope calculations of the implied
internal rates of return for housing program spillovers for interested readers
(Supplementary Note 8) [49]. Over the study period, the implied internal rates
of return are about 40% and higher. Many dedicated energy efficiency pro-
grams, like weatherisation, have reported variable rates of return as low as
3% to over 100% [20, 30]. For further discussion of rates of return in energy
efficiency program evaluation, see refs. [50-58].

In summary, whether a comparable program is LMI-targeted or not, we
found that the cost-effectiveness ratios from housing spillovers are generally
competitive with dedicated energy efficiency programs across a broad range of
intervention types.

Evidence of program uptake

To further understand the drivers of performance in CDBG and HOME pro-
gram administration, we conducted semi-structured interviews with public
administrators and residents (see Supplementary Discussion). Engaging with
public administrators and residents allowed us to compare program uptake
for dedicated energy efficiency programs with the uptake for housing pro-
grams. This is important because program uptake has been a critical barrier
to accelerating energy efficiency participation in LMI communities. Through
our interviews, we found evidence of persistent barriers contributing to low
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program uptake in dedicated energy efficiency programs and strong drivers of
program uptake within housing.

We know from the literature that barriers to uptake of residential energy
efficiency programs can typically include: 1) capital, resource, and liquidity
constraints; 2) information barriers and behavioural or cognitive biases; and
3) transaction and process costs [24]. We found evidence for many of these
same barriers in Albany, GA, including a less-documented barrier: 4) local
mistrust of government. First, evidence of low take-up of energy efficiency pro-
grams is commonly due to a lack of capital and other resources. According
to the housing program director, most applicants in Albany, GA, are “elderly
and on fixed incomes.” A resident shared, “The [financial] barrier is having
those resources to conserve.” Another resident stated, “... a lot of my fellow
homeowners cannot afford homeowners insurance, without which you cannot
get weatherization and stuff.” Second, when asked why more residents were
not participating in the programs, a resident proffered that they “don’t under-
stand and don’t get the information right.” Another said, “I don’t know what
type of appliance would be available to say, this will help you decrease your
electricity.” Third, evidence of process and transaction costs came up in sev-
eral interviews. For program participation to occur, public administrators for
the City of Albany must “see a lot of customers”; work “24/7”; always be “on
call”; and put in “110 or more percent.” One resident shared, “[The adminis-
trators| have funds available for Energy Assistance, but they take you through
so much to get whatever they’re going to give you. If they're going to help
you, you’ll be so burned out because it takes so much.” While we confirmed
that high-involvement processes might be necessary on the local level, addi-
tional transaction costs limit the scalability of and so increase the uptake of
dedicated energy efficiency programs.

A fourth barrier, local mistrust of government, has been discussed in the
public management literature for a broad range of services, but less so for
energy efficiency [59-61]. Public administrators in Albany are aware of this
issue. For example, one official shared, “It’s hard to convince people to do
energy efficiency and let folks into their homes.” According to some public
administrators, certain residents have “... perceptions that [the city govern-
ment is] going to put a lien on [their property].” They say, “The mistrust is
enormous” and that residents “don’t believe [city administrators are] doing
what it is they say they’re doing.” Evidence from our interviews demonstrates
that mistrust of local government service delivery, in addition to capital con-
straints, cognitive biases, and transaction costs (among others), may also limit
energy efficiency program uptake in LMI communities.

In contrast, housing programs have high demand and participation. These
programs attract a broad range of eligible participants from LMI households.
According to the City of Albany’s 5-Year Consolidated Plan, “Over 2,000
families are on waiting lists for a total of just 1,117 public housing units, and
the occupancy rate for existing units is virtually 100%” [18]. This evidence
of high take-up of public housing assistance — nearly twice the availability
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— reveals the broad reach of the city’s housing programs’ HUD block grants
in our study. Stakeholder meetings conducted by the city revealed that ‘high
utility costs may be a common issue for low income, disabled, senior, and
minority households living in older and less energy efficient homes’. These
households comprise the vast majority of entitlement grantees in Albany, GA.
Other stakeholders testified that “while households may be able to afford their
homes, units may lack appliances or are in need of significant repairs” [18].
Reports of high utility costs and the need for housing repairs confirm the
high complementarity between energy efficiency and housing program uptake.
Residents’ interviews further illustrate the potential impacts. “You're talking
about [sic] putting... money toward buying food and groceries versus paying
utility bills; so [the housing policies| can have a big impact,” said one resident.
Another stated, “I only get $1,200 a month, and my utilities is $4 almost $5
[hundred], and my mortgage is $765.” Such resident feedback confirms that
the policies can have an impact in financially struggling households regardless
of awareness of or interest in energy efficiency measures. Considering that
housing policies have strong demand, we conclude that expansions in housing
program participation can lead to strong energy and sustainability co-benefits
for a broader range of LMI households.

Dedicated energy efficiency policies tend to attract affluent and informed
households, but suffer from low participation rates among LMI households [37].
We found substantial energy savings from housing program spillovers in situa-
tions where demand for services is also strong. These sustainability co-benefits
have remained largely hidden from program evaluation and policy decision-
making due to widespread data silos at the city scale. Through data innovation
in record-linkage procedures, we have been able to uncover previously unmea-
sured energy savings impacting low-and-moderate income communities. For
a family facing trade-offs between essential household needs, the quantified
energy savings can make a dramatic difference: nearly two months of groceries.
For the community writ large, the energy co-benefits accelerate long-term par-
ticipation from households facing structural and persistent barriers to energy
efficiency. We argue that energy and sustainability-oriented outcomes should
be further integrated into federal housing program evaluation criteria, and we
expect that doing so will uncover a multitude of other hard-to-measure social
benefits.

Materials and methods

Data and program details

Administrators in the City of Albany, GA have used open data tools to respond
to local demands for greater transparency and accountability in the delivery of
public services. These open data initiatives are becoming increasingly common
among similar sized cities across the U.S. For the current study, the city pro-
vided data access to 5.9M housing-related open data records from more than 12
city departments. The dataset included monthly electricity consumption for all
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residential properties in Albany, GA, from 2004 to 2019. After we linked hous-
ing and energy consumption data by property identifiers, we obtained a proper
subset of 2,931,406 panel observations covering 16,680 residential properties.

Out of nearly 20 programs funded under HOME and CDBG, we focused
the analysis on programs directly related to household energy use. These
are Energy Efficiency, Emergency Repairs, Homeowner Rehabilitation, and
Rental Rehabilitation. These energy-relevant projects comprise 65% of the
whole project portfolio during the analysis period from 2004-2019. Emergency
Repairs for example constituted a significant share of the total housing portfo-
lio, and it represented more than 30% of all treated properties in our analysis.
Programs unrelated to energy use, such as Tenant Based Rental Assistance or
New Construction, in which rental support can travel with the individual and
not necessarily the housing unit, were used for falsification (placebo) testing.

The unit of analysis is the property address (we use property address and
household interchangeably). The dependent variable used for analysis is the
monthly electricity consumption in kWh per square foot. We log-transformed
the dependent variable and multiplied by 100 for ease of interpreting the
estimated coefficients directly as a percentage change. The policy indicator
variable was coded as 1 for months in which CDBG or HOME projects started
and continued to be active and 0 otherwise before a project’s implementation.
The policy indicator variable for properties that never received treatment and
were thus available for counterfactual analysis was coded as 0 for all the peri-
ods. Given the large dataset of counterfactual, non-treated observations, we
mitigated selection bias by matching households based on similar baseline elec-
tricity usage and household characteristics within the same city [21, 42]. We
combined matching models for bias reduction and covariate balance with stag-
gered difference-in-differences or two-way fixed effects estimators for estimation
efficiency. For more details, see Supplementary Note 10.

To evaluate the characteristics of treated and control units, we com-
piled data from the 2019 5-year American Community Survey [62] and the
Dougherty County Tax Assessor’s database of property records. This dataset
included important property, demographic, and neighborhood characteristics
known to affect household energy consumption. The most important pre-
treatment property-level characteristics include the average monthly baseline
energy consumption (in kWh per month per household), property size (in
square feet), property age (in years), number of bedrooms, number of bath-
rooms. Demographic and neighborhood characteristics include the household
median income (in dollars), share of female head of household (in percent-
age), the share of Black or African American population (in percentage), and
alternative economic measures at the tract level such as the share of the pop-
ulation below poverty level (in percentage), share of the households with gross
rent more than 35% of household income (in percentage), and the population
on SNAP (in percentage). These physical and demographic characteristics are
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widely used in the building energy efficiency literature as matching or condi-
tioning variables to reduce imbalance between treated and control properties
[21, 63].

To mitigate the effect of possible unobservables on energy use, we included
the fair market property value as a proxy for other potentially unobserved
quality attributes [64]. Because property values could be influenced by hous-
ing program criteria with the explanatory variable, we conducted additional
analyses to show the main results with and without the property value as a
conditioning variable to check for any potential biasing effect. Excluding prop-
erty value in the conditioning variables generated somewhat higher treatment
effects by 10% to 19% (Supplementary Table 4). However, given possible unob-
served factors related to housing stock quality, we included the property value
in our models and reported the more conservative estimates. We also conducted
additional robustness checks with an expanded set of testing variables related
to age, homeownership, and disability status to confirm bias reduction across
further occupant characteristics. To mitigate other time-varying factors related
to outdoor ambient temperatures on energy demand, we also included archival
weather station data from the National Oceanic and Atmospheric Administra-
tion (NOAA) to adjust for seasonal heating and cooling degree-days [65]. We
used data for the nearest weather station in Albany, which is located 4 miles
from downtown Albany at the Southwest Georgia regional airport.

Selection bias and protocols for bias reduction

As expected in impact evaluation studies with voluntary programs, we found
evidence of strong self-selection bias. Prior to implementing the matching mod-
els, the treated and non-treated properties had large differences in observable
property characteristics. Descriptive statistics revealed statistically significant
differences across key testing variables (Supplementary Table 5). For exam-
ple, participating properties receiving HUD funding are about 30% smaller in
square footage and have almost two times lower property values (Supplemen-
tary Table 5), which characterises the profile of units that typically receive
federal housing assistance. For further pre-treatment comparisons across other
conditioning variables, including demographic and neighborhood features, see
Supplementary Table 5. Fig. 2 shows a summary of the pre- and post-matching
differences and covariate balance between treated and non-treated properties
expressed as standardised percent bias (Supplementary Note 9).

Matching algorithms

Prior to analysis by difference-in-differences, we implemented multivariate
matching procedures as a pre-processing step to construct statistical refer-
ence groups for analysis and to mitigate observational bias. Prior research
in building energy efficiency has demonstrated significant performance gains
in large datasets, particularly with the availability of high-performance com-
puting resources [21]. We implemented algorithmic matching procedures with
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genetic matching, which automatically finds the optimal solution and fitness
parameters that achieve maximum covariate balance [23, 66]. Genetic matching
automates the process of covariate-balancing under various objective functions
such as maximizing p-values or minimizing standardised mean differences in
empirical quantile-quantile (EQQ) distances across all matching variables.

We used matching protocols “with replacement” that allowed us to preserve
a larger sample size while not exceeding the ratio of controls over treated
units that degrade performance. We ran the Genmatch script with all possible
ratios of treated to control observations in the range from up 1 to 100. This
grid search resulted in a local optimum at a ratio of 19:1, meaning that up
to 19 untreated properties weighted on their characteristics were available to
each of the treated units for comparison. To fine-tune the ratio parameter,
we implemented a rule-based optimisation procedure that (i) maximized the
average reduction in standardised mean differences, and (ii) minimized the
number of pruned observations in the counterfactual [66]. Supplementary Fig.
2 shows the sensitivity of the standardised mean differences to changes in the
ratio parameter for genetic matching, while Supplementary Fig. 3 shows the
sensitivity of standardised mean differences to changes in observations pruned
for the same values of the ratio parameter. Given the extended run times for
genetic matching, we used multiple cores on a high performance computing
cluster to reduce computation time.

To benchmark our matching results, we conducted propensity score match-
ing (PSM). We found a local optimum for bias reduction at a ratio of 21:1 of
non-treated to treated units. In Supplementary Fig. 4, we show the sensitiv-
ity of standardised mean differences to changes in the ratio parameter, while
Supplementary Fig. 5 shows shows the sensitivity of standardised mean differ-
ences to changes in observations pruned for the same values of the treated to
untreated ratio.

Our best-performing model was genetic matching, which achieved an
average and median bias reduction of 91% and 93%, respectively. This is signif-
icantly better than the 78% average and 84% median bias reduction achieved
with propensity score matching across our conditioning and testing variables
in Fig. 2. One limitation of propensity score models is that they might require
a researcher’s discretion in the selection of parameters of interest [67]. For
this reason, we favored use of the automated methods with genetic matching,
which also achieves better bias reduction in this application.

Balance-Size Matching Frontier

To provide additional evidence on the comparative performance of the match-
ing models, we implemented the Matching Frontier technique by King, Lucas,
and Nielsen [68], which allows us to estimate the theoretical limit to jointly
maximise covariate balance and sample size. We used a specialised R package
that allows for synchronous optimisation of covariate balance and sample size
(for details, see the Code Availability Statement). These results are presented
in Supplementary Fig. 6. Genetic matching achieves a larger bias reduction,
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but it also produces a lower absolute loss imbalance (L1) compared to the PSM
approach. These findings confirm that genetic matching is more efficient and
gets closer to the balance/sample size frontier. The genetic matching proce-
dures weakly dominate PSM matching across the key conditioning and testing
variables. Therefore, given the richness of the current dataset, we were able
to confirm that genetic matching is the preferred matching algorithm for this
domain of building energy efficiency, as introduced in ref. [21].

Sensitivity of matching procedures to unobservables

We conducted Rosenbaum’s sensitivity analysis using protocols described in
refs. [69, 70]. We calculated the critical value of the sensitivity parameter I,
which captures the level of influence an unobserved confounder should need
to affect the monthly kWh/sqft outcome in order to change our inference. We
estimated the changes in p-values or significance levels based on different values
of I" from 1 to 3 with a step size of 0.05. The critical gamma value is 1.45, where
the confidence interval includes zero (Supplementary Table 6). This means
that an unobserved covariate would have to change the energy intensity (in
kWh/sqft) of participating households by approximately 45% before changing
our inference at the 90% confidence level.

Although there could be other selection processes or time-varying unob-
servables not captured in our conditioning and testing variables, we believe
it is unlikely because an unobserved confounder would have to exceed our
threshold of 45% on the impact on the outcome variable in kWh/sqft.

Estimating treatment effects

To estimate causal program impacts, we analysed the panel data using 16
years of monthly energy consumption records (in kWh/sqft) with and without
matching. We used a two-way fixed effects estimator (TWFE) with standard
errors clustered at the property address level, as reported in Table 1, as well
as staggered difference-in-differences estimators. We provide additional details
on the policy indicator in Supplementary Note 10. The reported treatment
effects are robust to various levels of one-way and two-way clustering options
(Supplementary Table 7).

To address potential estimation biases due to treatment effect hetero-
geneity in the presence of staggered program adoption [71], we implemented
staggered DiD estimators [72, 73]. We implemented two alternative protocols.
The first approach in Callaway & Sant’Anna (2021) [72] uses not-yet-treated
observations in a given period as counterfactual, while the second approach
in Chaisemartin & D’Haultfoeuille (2020) [73] calculates the average treat-
ment effect among switchers. We note that not every HUD-funded project in
our study is subject to staggered adoption, which means that concerns about
potential estimation biases with fixed effects estimators apply only to a sub-
set of the studied projects. In Table 1, we report the results for three out
of four energy-related projects that had staggered participation based on the
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project start date (e.g., Energy Efficiency, Emergency Repairs, and Homeowner
Rehabilitation).

Supplementary Fig. 1 compares the dynamic DiD treatment effects with
TWFE estimators after matching. Although, there is some divergence in
the dynamic treatment effect estimates in the later periods after more than
10 years or 40 quarters of performance data, we found that the staggered
DiD treatment effect estimates were broadly consistent and within the 95%
confidence intervals of each other for nearly all years in the study period
(Supplementary Table 2). For interested readers, in Supplementary Fig. 7, we
also provide evidence of parallel trends for years prior to the start of hous-
ing projects and program data collection. Importantly, given the quality of
the data, we note that we do not rely on cross-sectional results for statistical
significance, and we are able to measure year-to-year impacts using multiple
approaches with matching prior to estimation of the event study (Supplemen-
tary Fig. 1). Due to covariate imbalances, the coupling of matching with DiD
estimators was preferred such that covariates of never-treated units match
treated units. Recent econometric literature also points to the merits of match-
ing prior to DID analysis [74, 75]. For a more general discussion of design issues
to staggered DiD approaches, see refs. [71, 76-78].

Placebo tests and other robustness checks

We implemented placebo tests in multiple ways to confirm the validity of our
technical approach. First, we implemented a placebo test by analyzing treated
properties prior to any HUD investment from 2004 to 2007, where no effects
are logically possible. We found treatment effects not statistically different
from zero with two-way fixed effects and in models with and without matching
as shown in our main results in Table 1. As an additional falsification test, we
considered funded CDBG and HOME projects not directly related to energy
consumption, such as Tenant Based Rental Assistance or New Construction,
to test for the direction of treatment effects. As shown in Supplementary Table
1, we found positive treatment effects up to 15% for non-energy projects with
and without matching as expected.

Another potential concern in treatment effect estimation is the uncertainty
of the exact date ranges of project completion. This could introduce a source
of measurement error, even as the benefits of capital improvements (HVAC
unit, window sealing, roof repairs, etc.) persist. Following ref. [30], we tested
additional specifications by dropping observations where the treatment sta-
tus is uncertain. Of 549 treated projects, we excluded 43 projects tagged as
“incomplete” (7.8% of treated projects). We confirmed that results with and
without incomplete projects are all within the reported 95% confidence inter-
vals under our three main specifications (Supplementary Table 8). This is
expected given that the share of “incomplete projects” in the sample is rela-
tively small compared to the overall number of the studied projects. Access
to project status, tracked by the program administrators and subsequently
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shared with the researchers, indicates minimal uncertainty in the date-range
as a possible source of evaluation error.

Cost-effectiveness

To calculate the cost-effectiveness ratios, we considered the total kWh saved
across all program years divided by the total cost, which includes program plus
administrative costs. We used the most conservative treatment effect estimates
(i.e., genetic matching with two-way fixed effects), which provide a lower bound
on the cost-effectiveness ratios. The program costs are the direct entitlement
(EN) funds, and administrative (AD) costs are the share of indirect costs as
reported to HUD, excluding program income (Supplementary Note 7). For this
analysis, we did not consider other indirect costs, such as the social cost of
carbon.

Administrator interviews and community engagement

To understand the localised administrative drivers of the CDBG and HOME
programs, we conducted 10 semi-structured interviews with public administra-
tors, including the City of Albany’s Manager’s Office, DCED — which manages
the HUD projects and funding, Technology and Communications, and Util-
ity Operations departments. We also conducted 40 semi-structured interviews
with Albany residents to assess the program effectiveness in the field. Of the 40
interviewees, 24 received a CDBG or HOME treatment at some point during
the project period, and 16 did not receive the treatment. Participants in the
Emergency Repairs program made up 55% of all interviewees and 92% of all
treated households. All interviews were conducted via phone from May 2020
— August 2020. We recruited resident interviewees in several ways: cold called
DCED lists of past participants; mailed 927 postcards to past participants,
which included contact information and a link to an online form to sign up for
the interviews; circulated a press release and social media posts via the city’s
communications office (from which we received two press articles); and sent
personalised hand-addressed letters to 15 past HOME participants. All inter-
viewees gave their informed consent for research purposes; personal data was
anonymised and saved separately from interview recordings and transcripts.

Data availability

The anonymized data have been deposited in human and machine-readable
format to Dataverse: https://doi.org/10.7910/DVN/SF1DRW [79]. Additional
data related to CDBG and HOME funded projects is available at the Albany
Open Data GeoHub: https://geohub.albanyga.gov [80].

Code availability

All computer code needed to replicate the findings in this study have been
deposited to Zenodo: https://doi.org/10.5281/zenodo.5684354 [81].
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Table 1 Long-run energy savings from housing programs, 2004-2019.

Genetic Matching
TWFE Staggered DiD Ratio:

No. of Estimate Estimate Controls/ No. of
Projects (S.E.) (S.E.) Treated Observations

All HUD-funded 549 -5.03"" 9.30 986,450
Projects (1.90)
HUD-funded 359 -8.32""* -10.99"** 15.05 952,149
Projects with (1.88) (3.20)
Staggered Adoption
Placebo Test 359 -0.89 0.26 15.05 952,149
Pre-Treatment (2.07) (5.66)

Notes: *p < 0.05; **p < 0.01; ***p < 0.001. Standard errors are clustered at the household
level by property ID. The dependent variable is the monthly electricity consumption in
kilowatt-hour per square foot, which has been log-transformed and multiplied by 100 for
interpretability as a percentage change. In this table, project savings are calculated by two-
way fized effects and staggered difference-in-differences using Callaway & Sant’Anna [72].
The estimates incorporate a genetic algorithm for bias reduction across a range of
property, demographics, and neighbourhood characteristics. The projects with staggered
adoption include Energy Efficiency, Emergency Repairs, Homeowner Rehabilitation.
Additional program estimates are provided in Supplementary Tables 1 and 2.
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Fig. 1 Housing policies target households with higher energy burdens.



Property Characteristics

Bias Reduction from Matching Procedures

Average Baseline Consumption* o '.
e 0}
Property Size ° b Genetic Matching PSM
90.6% bias reduction  77.8% bias reduction
No. Beds* o
oe Before O Before O
No. Baths O . After . After .

Property Age* o e

o o

Market Property Value* e °

o .

Assessment Property Value ° :

Demographic Characteristics
Median Income o .
- L]
Female Head of the Household °
. o
. e Black Population hd ©
Neighborhood Characteristics . ©
Population below Poverty Level ° o
. )
Gross Rent more than 35% of Household Incomes .' O)
Population on SNAP h <
. 0
-50 0 50 100

Standardized Percent Bias

Fig. 2 Matching algorithms reduce observational bias.
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Fig. 3 Cost-effectiveness of housing spillovers versus standalone energy effi-
ciency programs.
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Fig.1 Housing policies target households with higher energy bur-
dens.
This figure shows the locations of 549 CDBG and HOME participating house-
holds in U.S. Census tracts within the City of Albany, GA. The households
receiving federal assistance are generally concentrated in areas with relatively
higher electricity consumption per square foot and/or higher poverty rate,
including many in Albany’s federally designated Opportunity Zones. Over 90%
of participating households are at or below 80% of the Area Median Income,
which provides evidence of the effective program targeting for energy efficiency.

Fig.2 Matching algorithms reduce observational bias.
This figure shows the relative performance of genetic matching and propen-
sity score matching (PSM) in standardised percent bias. The key conditioning
and testing variables shown include property, demographic, and neighbor-
hood characteristics. The conditioning variables are identified with asterisks
and include observable property characteristics (average baseline consump-
tion, property size and age, number of beds and baths). To mitigate the effect
of possible unobservables on energy use, the market value of the property
was added to the set of matching variables as a proxy for unobserved quality
attributes. Genetic matching achieved 90.6% bias reduction while propensity
score matching achieved 77.8% bias reduction; therefore, the remaining bias
in standardised percent bias is -9.6% and -22.2%, respectively. Although both
methods substantially reduce median bias and offer a high degree of covariate
balance, the genetic matching algorithm is preferred over PSM.

Fig.3 Cost-effectiveness of housing spillovers versus standalone
energy efficiency programs.
This figure provides a comparison of cost effectiveness ratios in kWh saved per
dollar for housing spillovers in this study with other dedicated energy efficiency
programs. This includes peer-reviewed point estimates for the most common
interventions including Capital Upgrades; Information & Behavioral Nudges;
and Rebates & Financial Incentives. Values for Allcott, 2011 [32]; Arimura et
al., 2012 [44]; Asensio & Delmas, 2015 [28]; and Ito, 2015 [47], were derived
from Benartzi et al., 2017 [31]. Values for Alberini & Towe, 2015 [42]; Alberini
et al., 2016 [46]; Ayres et al., 2012 [41]; Davis et al., 2014 [45]; and Novan et al.,
2022 [39], were derived from Gillingham et al., 2018 [24]. Values for Allcott &
Mullainathan, [27]; Brown et al., 2020 (Residential with participant costs) [17];
Fowlie et al., 2018 [20]; Giraudet et al., 2018 [48]; Hancevic & Sandoval, 2022
[37]; and Zivin & Novan, 2016 [38], were derived from information reported in
those studies. Values are exact and have been scaled to $2021 U.S.
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Supplementary notes

Supplementary note 1

One exception is the HUD-administered Disaster Recovery block grant pro-
gram, which provides resources to help communities recover after Presiden-
tially declared natural disasters.

Supplementary note 2

We used deterministic, rule-based procedures to join data records based on
entities that may or may not share a common identifier. This included several
indexing methods, e.g., exact matching and stepwise linkage, which allowed
us to standardise formats, achieve entity resolution, and de-duplicate records
for storage efficiency. A key technical hurdle was the fact that data entry
from HUD’s nationwide Integrated Disbursement and Information System
(IDIS) was often not digitised in spreadsheets (not in database format),
and project names and address records were in non-standard and sometimes
inconsistent formats. This prompted our cross-sector public-private-academic
collaboration.

Supplementary note 3

The CDBG entitlement program is authorised under Title I of the Housing
and Community Development Act of 1974, Public Law 93-383 (42 U.S.C.
5301 et seq.). The HOME program is authorised under Title II of the
Cranston-Gonzalez National Affordable Housing Act (42 U.S.C. 12701 et seq.).
Regulations are at 24 CFR part 92.

Supplementary note 4

Detailed HOME and CDBG participation and community statistics are
available in the City of Albany, GA 2016-2021 Consolidated Plan. Inter-
active public statistics have been deposited to: https://storymaps.arcgis.
com/stories/e€9990189¢a00432089286{feb636d3fd and https://albanyga-albgis.
opendata.arcgis.com

Supplementary note 5

To establish the COs. equivalencies for the monthly energy savings, we
used emissions factors from the EPA Greenhouse Gas Equivalencies Calcula-
tor: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator for
a total of 4,716,398.45 kWh saved.

Supplementary note 6

The U.S. Department of the Treasury and the Internal Revenue Service (IRS)
have designated Opportunity Zones in 18 States as of 2018, including 260


https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

census tracts in the State of Georgia, where poverty rates are greater than
20 percent. Economic investment in opportunity zones receives special tax
advantages such as deferments and capital gains tax incentives for investors.
Qualified opportunity zones retain their designation for 10 years.

Supplementary note 7

The Cost-Effectiveness (CE) ratio was calculated for all participating square
feet for project ¢ in month j, and time period of expenditures k as follows,
where ATE is the average treatment effect for the project group, d is the
time period of savings. Total costs include the program costs (PC'), excluding
program income, and administrative costs (AC') by the project as reported to
HUD.

ATE Z?:lZQjSthij di;

CEij = =
" S onq (PCix + ACyy)

The energy-relevant programs make up 361 of the 549 projects in the sample.
For the cost-effectiveness analysis, we do not consider the 188 projects (160 in
HOME and 28 in CDBG) unrelated to energy savings.

Supplementary note 8

For the back-of-the-envelope internal rate of return calculations, we assumed
the lifetime savings equals the total fixed costs for each program. We also
assumed a 30-year lifetime for installed energy efficiency technologies and held
electricity rates and savings at constant 2021 levels.

Supplementary note 9

According to Rosenbaum and Rubin [1], the standardised percent bias (SB)
is defined as:
Xtreat - Xcontrol

\/(St%“eat + Sgontrol)/2
2

where Xpeqr and S, are the mean and the variance of the treatment group,

while X contror and Sf,ontml are the mean and the variance of the control group.

SB =100 x

Supplementary note 10

In our basic specification, we deployed a two-stage analysis to determine the
causal effects of program participation. In the first stage, we implemented mul-
tivariate matching procedures to construct reasonable counterfactuals and to
mitigate observational bias across conditioning variables. In the second stage,
we implemented the usual two-way fixed effect estimator. For project i at the



time period ¢, the two-way fixed effects (TWFE) regression model is:

kW h
log < ) =B"EDy + OW + oy + v +eit
sqft )

We regress the logarithm of monthly electricity loads in kilowatt-hour per
EWh
sqft
months in which CDBG or HOME projects started and stays treated until
the end of the whole period of analysis, and 0 otherwise, before a project’s
implementation; the policy indicator variable for properties that never received
treatment and were available for counterfactual analysis was coded as 0 for
all the periods; and BFF represents the TWFE estimator. We also account
for time-varying weather controls (W; represents the vectors of heating and
cooling degree-days), time-invariant property characteristics, and time-fixed
effects (a; and ~, respectively).

square foot log ( ) on a treatment dummy variable D;; coded as 1 for
it
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Supplementary discussion

Comparison to other US cities. According to WalletHub research,
Albany, GA, scores similarly to other 24 cities across the U.S. on the five follow-
ing dimensions: affordability, economic health, education and health, quality of
life and safety [2]. Considering 43 relevant metrics across 1,322 cities, Albany,
GA, is ranked close to Camden, NJ; Fort Hood, TX; Pine Bluff, AR; and
Wasco, CA. On affordability, including median household income, cost of liv-
ing, homeownership rate, housing costs, and share of households with severe
housing cost burden, it is also similar to Goldsboro, NC; Greenville, MS; and
Monroe, LA. To further evaluate our field site, we compared Albany, GA,
to national and regional averages with respect to population characteristics,
housing stock, and electricity consumption.

Population characteristics. Our sample population consists of residential
single- and multi-family households, both homeowners and renters. Similar to
many small-to-medium-sized urban areas, as of 2019, Albany’s population is
flat to declining [3]. According to American Community Survey 5-Year Data,
2015-2019 [4], the total population in Albany is 72,130, with the average house-
hold size of 2.42 being comparable to the national average of 2.62, and 74.35%
of the population is Black or African American. The median household income
in Albany is $36,615, whereas the national median household income is $62,843
[4].

Housing stock. Aside from population characteristics provided by the U.S.
Census Bureau, HUD programs take into account the age and condition of the
housing stock of program recipients [5]. The median home value in Albany is
$99,800, which reflects a blighted housing stock, as described by community
members and leaders [4]. On average, Albany’s housing stock of our study
population is over 50 years old, which is higher than the national average; this
property age is similar to nearly 15% of the total number of housing units
across the U.S. [6].

Electricity consumption. Given the characteristics of Albany’s popula-
tion and housing stock, from a sustainability perspective, energy conservation
strategies are especially relevant and needed. Based on the data received from
the city, we estimated the average energy consumption in Albany to be 13,255
kWh per year per household, which is higher than the national average of
10,649 kWh per year per household [7]. We found that participating households
also face high energy burdens. For example, eight of the 27 U.S. Census tracts
in our sample population are considered to have “unaffordable” energy bur-
dens: spending above 6-10% of household income on electricity, as documented
in refs. [8-10].

Administrator selection. Some may wonder whether heads of households
or landlords who are better informed or connected to administrative person-
nel gain disproportionate access to block grant funds, a source of potential
unobservable bias. Based on interviews with City of Albany administrators,



we assessed selection and decision-making processes for block grant disburse-
ment. In summary, we found little evidence of administrator selection bias for
three likely reasons. (1) According to public officials, program management is
subject to audits and oversight at both the federal and local levels in order
to “...make sure there was consistency in expenditures as well as regulatory
requirements.” Accountability is also achieved through community participa-
tion, including public hearings, which serve to fulfill federal requirements for
citizen input. (2) Administrators report their efforts to reach more people with
information about available funding, such as going to town halls to “...talk
to them about how to make their homes more energy efficient for all resi-
dents not just senior citizens.” We subsequently learned that most recipients
of block grant funds are over the age of 62, an often overlooked demographic
in dedicated energy efficiency campaigns. (3) Despite “word-of-mouth” being
a common mechanism for sharing information in Albany, we learned that the
administrators reach a substantial share (about half) of the eligible popula-
tion. One administrator said, “For everyone who [knows about the program],
you talk to someone who doesn’t know about it.”

Addressing Split Incentives. Many LMI households include renters in
single or multi-family units. We know that if tenants pay for their own utilities,
they have the incentive to conserve energy to reduce bills, but may face capital
constraints or other barriers to invest in home upgrades. If landlords pay for
the utilities for their rental properties, landlords cannot easily benefit from
bill savings in individual units, so they may choose to delay or refrain from
investing in home upgrades. This disconnect, commonly referred to as a split-
incentives problem, is well-known in the residential sector [11]. It has been
estimated that policy support to address split incentives, particularly among
LMI renter populations, could save low-income residents between $4 and $11
billion dollars per year [12]. For example, one Albany resident shared, “... And
then you rent a house in the city. And you have only three bedrooms and one
bath, and your bill is close to $500. When you turn on your AC, all the air is
going up through the roof and out the window sills. Because the landlord is not
making sure his property is weatherized, [it] sucks money out of the community
and is bleeding us dry.” According to the City of Albany’s 5-year consolidated
plan, “substandard housing conditions in [sic] affordable units may make them
unsafe or may lead to exceptionally high utility costs, negating savings in rent
as compared to a more expensive unit elsewhere” [13].

LMI renters often face high energy costs when lack of weatherization, aging
appliances or other efficiency measures in their rental units are dilapidated. Of
note was the magnitude of the 32% energy savings for renters in city-owned
properties in the Rental Rehabilitation program, which is at the high end or
exceeds the performance of capital upgrades and incentive programs in resi-
dential and commercial buildings [14, 15]. In conversation with a Community
Development Manager within the City of Albany’s Department of Commu-
nity and Economic Development, we learned that occupants in all city-owned



properties pay their own utility bills under tenant-paid contracts. For exam-
ple, “they have customers calling all the time with extremely large ... bills, the
landlord won’t fix it. They think the [resident] is supposed to [fix] it.” Prior
studies have shown that under tenant-paid contracts, households can have
substantially lower consumption, particularly in response to temperature fluc-
tuations [16]; however, barriers remain for low-income residents in city-owned
properties.

As multifamily households (e.g., Apartment; Condominium; Duplex,
Triplex, Quadplex) represent only 4.5% of participants in our study, we
acknowledge that there is limited potential for renters to benefit from policy
options such as contractual interventions, i.e., shifting lease contracts from
owner-paid to tenant-paid contracts [17] or establishing green leases in which
the cost of capital improvements are offset by increased rent to tenants [12].
We also know that when owners pay for utilities, they tend to command higher
rent prices [18], which puts even more pressure on LMI energy efficiency partic-
ipation. Regulatory interventions such as building codes, and other financing
options, are designed to address barriers related to split incentives, but gener-
ally do not focus on specific principal-agent problems faced by LMI households
in practice. For instance, one city official informed us that “tenants can fill out
[the application for public assistance] but landlord must give approval.”

Overall, our findings illustrate that housing policies in Albany, GA, which
also fund structural upgrades in multifamily homes can meaningfully address
split incentive investment barriers, which simultaneously benefit LMI renters
with some of the highest energy and cost burdens nationally.

Insights from administrators and residents. In addition to evidence
related to program uptake, our interviews with Albany, GA, administra-
tors and residents revealed three additional findings. First, we learned that
public administrators communicate a shared commitment to their fellow res-
idents through a deep public service motivation [19, 20]. We also observed
that City administrators often shared several characteristics and values with
the residents they serve. The representative bureaucracy literature in public
administration often argues that that administrative personnel who reflect the
community served can actively represent the interests of particular groups,
which translates into substantive benefits for those represented [21-23]. For
example, HUD requires at least 70% of CDBG funding to be allotted to
LMI households, defined as 80% of the area median income (AMI) or below.
However, officials in Albany’s Department of Community and Economic Devel-
opment (DCED), which manages HUD funds in Albany, exceed the minimum
targeting set forth by HUD, reporting that over 90% of their portfolio goes to
LMI households.

Second, we found that the city of Albany’s bureaucratic structure enabled
centralised decision-making over data ownership and access by having a Chief
Information Officer jointly overseeing city and county data initiatives. This
structure allowed for organisational agility in which information technology



(IT) resources were centrally allocated to address data silos and data integra-
tion challenges across departments. Scholars have argued that such integrated
access to data can uniquely address public pressure for information and greater
transparency of public investments [24-26].

Third, from our resident interviews, we also uncovered some evidence of
diverging perceptions about household energy use among participants. For
example, one resident said, “What I do know is that the electricity bill is still
over $200 a month and that’s what it was before the [new] AC unit. So, I
didn’t see a change in my bill.” Issues surrounding information provision and
estimating resource use in the residential sector are well-documented [27-31].
Additional research is needed to understand potential perception gaps among
residents regarding neighbourhood improvements.

Additional quotes from interviews.

® On shared commitment: When asked what was the most important
aspect of their job, one administrator answered, “...ensuring the most
vulnerable populations have access to these funds and can partake in its ben-
efits”. A resident said that “I really do appreciate Albany. A lot of changes
have been made, and I see us growing; and that’s good also.” When asked
what motivates going to work everyday, an administrator said that it was
“supporting the community you live and were born in.” Another said that
“we’re in this together, we must work together.”

® On bureaucratic structure: An administrator said that “We're I'T for
the city and the county...it’s a group of us, who are cross-sectional, not all
of them work for the technology department. But, our goal is to identify
situations like [siloed housing and utility data] and then bring that group
of people together; and see, is it possible to solve that problem with tech-
nology?” When asked how open data hubs facilitate interactions within a
department, an administrator said that “Not so much within my depart-
ment, but between us and other departments...This is a similar problem [that
other cities across the US have;] a lot of departments, even though they’re a
part of a whole city, they work in silos; so a project that one department has
really has a profound effect on a different department. But those 2 depart-
ments really don’t know what’s going on between the 2. So what we’re using
the [Open Data] Hub for... is a way to visualise what’s happening around
our city, and allow other people to see into some projects and some data
that they never really access to before.”

® On consumer perceptions: An administrator said that “...energy use
and disproportionate percentages of income [are] being spent on energy for
people in poverty, but how do you fix that? That is the big debate.” A
resident said that “Very concerned. Living on a $1500 income a month, and
you're talking about the mortgage, light bill, personal items, that’s pretty
tight. That your light bill’s over $200 a month, they’re much concerned
about it. I have to help my mom some months financially.” Another resident
said that “We paid $1500 in three months during the summer months. It



was $500+ every month. And we had to try to come up with it. Because
we can’t operate without lights and electricity. But it’s tough for retired
people and people on social security but it was a blessing that I have a little
retirement.”
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Supplementary Fig. 1 Comparison of matching models with TWFE and

staggered DiD estimators.
The figure compares the staggered DiD treatment effects with TWFE estima-
tors after matching. The staggered DiD estimates suggest larger savings than
more conservative TWFE approach. At the same time, both estimates are
generally consistent with each other as the upper and lower confidence inter-
vals largely overlap. The upper and lower colour-coded lines represent 95%
confidence intervals.
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Supplementary Fig. 2 Bias reduction after genetic matching.
This figure plots the average percent reduction in standardised mean differences
as a function of the matching ratio parameter. The optimal ratio of controls over
treated households balances the need for saturation of potential counterfactuals with
computational efficiency. The optimal ratio was found at 19:1 and depicted as an
orange line.
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Supplementary Fig. 3 Bias reduction after genetic matching.
This figure plots the average percent reduction in standardised mean differences as
a function of the number of observations pruned, derived from the optimal ratio of
controls over treated households. The optimal ratio balances the need for saturation
of potential counterfactuals with computational efficiency. The optimal ratio was
found at 19:1 and the correspondent number of observations pruned is depicted as
an orange line.



12

78

77
1

o
000’

o, o ° 0G0,

00 5 o %o, o @00

0,
00 o

Average Percent Reduction in Std. Mean Diff.
76
1
o
]

75
1

Ratio

Supplementary Fig. 4 Bias reduction after propensity score matching.
This figure plots the average percent reduction in standardised mean differences
as a function of the matching ratio parameter. The optimal ratio of controls over
treated households balances the need for saturation of potential counterfactuals with
computational efficiency. The optimal ratio was found at 21:1 and depicted as a blue
line.
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Supplementary Fig. 5 Bias reduction after propensity score matching.
This figure plots the average percent reduction in standardised mean differences as
a function of the number of observations pruned, derived from the optimal ratio of
controls over treated households. The optimal ratio balances the need for saturation
of potential counterfactuals with computational efficiency. The optimal ratio was
found at 21:1 and the correspondent number of observations pruned is depicted as a
blue line.
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Supplementary Fig. 6 Matching frontier.
This figure shows the matching frontier along the results of propensity score and
genetic matching (visualised in blue and orange, respectively) and support the
evidence that genetic matching outperforms propensity score matching.
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Supplementary Fig. 7 Treated vs. untreated household trends.
This figure shows trends of quarterly electricity consumption (kWh/sqft) pre and
post housing policy implementation. The vertical dashed line depicts the period when
the first housing project was initiated during October 2007. The trendlines serve as
a visual guide for respective projects with the shaded areas representing mean values
with upper and lower 95% confidence intervals.
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Supplementary Table 1 Monthly energy savings by project, 2004-2019.

Genetic Matching PS Matching Without
Ratio: Ratio: Matching
No. of  Estimate Controls/ Estimate Controls/ Estimate
Projects (S.E.) Treated (S.E.) Treated (S.E.)
HUD-funded 549 -5.03"" 9.30 -5.49™" 11.33 -4.32"
Projects (1.90) (1.89) (1.86)
CDBG 349 -9.92""* 14.62 -10.34™*" 17.83 -9.15™"*
Projects (2.07) (2.07) (2.04)
Energy 62 -12.93"* 82.31 -13.24™" 100.34 -11.79""
Efficiency (4.30) (4.29) (4.28)
Emergency 268 -6.24™" 20.58 -6.69™" 25.09 -5.52""
Repairs (2.20) (2.19) (2.18)
Rental 22 -31.96" 231.95 -32.37" 282.77 -31.84"
Rehabilitation (16.18) (16.18) (16.17)
HOME 200 6.38 25.52 5.79 31.11 6.94
Projects (3.73) (3.72) (3.70)
Homeowner 29 -10.46" 175.97 -10.74" 214.52 -9.30
Rehabilitation (5.13) (5.13) (5.12)
Non-Energy 160 15.13™** 31.89 14.42%"" 38.88 15.53""*
Projects (4.03) (4.02) (4.00)
Placebo Tests -2.55 9.30 -2.33 11.33 0.63
Pre-Treatment (1.81) (1.80) (1.76)
Treated Households 549 549 549
Control Households 5,103 6,221 16,131
No. of Observations 986,450 1,170,647 2,931,406

Notes: *p < 0.0; ”p < 0.01; ***p < 0.001. Standard errors are clustered at the household level
by property ID. The dependent variable is the monthly electricity consumption in kilowatt-hour
per square foot, which has been log-transformed and multiplied by 100 for interpretability as

a percentage change. In this table, project savings are calculated using a two-way fized effects
estimator with and without matching procedures. Models without matching and bias reduction
result in lower saving estimates. The non-energy projects include New Construction and
Tenant Based Rental Assistance. The placebo tests for participating projects in the pre-
treatment period indicate effects not significantly different from zero with all methods.
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Supplementary Table 3 Annualised savings equivalencies using April 2021
Consumer Price Index (CPI).

Item and Group Monthly Savings per  Savings per
Expenditure 5% ATE 32% ATE
Food $269.43 28% 179%
Household Furnishings and Operations $128.85 58% 374%
Apparel $127.23 59% 379%
Private Transportation $224.10 34% 215%
Professional Services $383.73 20% 126%
Recreation $125.20 60% 385%
Education and Communication $137.00 55% 352%
Durables $115.30 65% 418%

Note: For food expenditure, the annualised savings for a household range from nearly
one-third of a month (28%) up to almost two month (179%) for a basked of goods.
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Supplementary Table 4 Matching analysis with and without property value.

With Property Value  Without Property Value No. of Observations

All HUD-funded -5.49™" -5.59"" 1,170,647
Projects (PSM) (1.89) (1.89)
All HUD-funded -5.03"" -5.99"" 986,450
Projects (GenMatch) (1.90) (1.90)

Notes: *p < 0.05; **p < 0.01; ***p < 0.001. Standard errors are clustered at the household
level by property ID. The dependent variable is the monthly electricity consumption in
kilowatt-hour per square foot, which has been log-transformed and multiplied by 100

for interpretability as a percentage change. Data analysis was done using a two-way

fized effects estimator.
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Supplementary Table 6 Rosenbaum’s sensitivity analysis for unobserved

confounders.
Gamma (I')  CI4 (upper bound) CI- (lower bound)
1.35 -0.180004 -0.011615
1.40 -0.189627 -0.001678
1.45 -0.19889 0.007922
1.50 -0.207817 0.017204
Notes: a = 0.10. 95,689 matched pairs are based on nearest neighbor

propensity score matching. At a critical I' of 1.45, the difference
between upper and lower bounds of the CIs includes zero.
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Supplementary Table 7 TWFE estimates with different clustering.

Spatial Clusters  Temporal Clusters Genetic Matching

One-way Clustering 16,680 — -5.03""
(property level) (1.90)
Two-way Clustering 16,680 16 -5.03""
(property & year) (1.94)
Two-way Clustering 16,680 185 -5.03""
(property & month) (1.98)

Notes: *p < 0.05; **p < 0.01; *Mp < 0.001. Total number of observations is 986,450.
The dependent variable is the monthly electricity consumption in kilowatt-hour per
square foot, which has been log-transformed and multiplied by 100 for interpretability
as a percentage change. Data analysis was done using a two-way fized effects estimator.
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Supplementary Table 8 TWFE estimates with and without incomplete projects.

Genetic Matching

PS Matching Without Matching

With Incompletes -5.03"" -5.49™" -4.32"
(1.90) (1.89) (1.86)

Without Incompletes -5.38"™" -5.22™" -4.29"
(1.93) (1.93) (1.90)

No. of Observations 986,450 1,170,647 2,931,406

Notes: 'p < 0.05; "p < 0.01;

*

**p < 0.001. Standard errors are clustered at the household

level by property ID. The dependent variable is the monthly electricity consumption in
kilowatt-hour per square foot, which has been log-transformed and multiplied by 100 for
interpretability as a percentage change.Data analysis was done using a two-way fized

effects estimator.
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