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Abstract—Deep neural networks (DNNs) exhibit an exceptional

generalization capability in practice. This work aims to capture

the effect of depth and its potential benefit for learning within

the paradigm of information-theoretic generalization bounds. We

derive two novel hierarchical bounds on the generalization error

that explicitly depend on the internal representations within

each layer. The first result, is a layer-dependent generalization

bound in terms of the Kullback-Leibler (KL) divergence, which

shrinks as the layer index increases. The second bound, which

is based on the Wasserstein distance, implies the existence of a

layer that serves as a generalization funnel, which minimizes the

generalization bound. We then specialize our bounds to the case

of binary Gaussian classification, and present analytic expressions

dependent on weight matrices rank or certain norms, for the KL

divergence and the Wasserstein bounds, respectively. Our results

may provide a new perspective for understanding generalization

in deep models.

I. INTRODUCTION

Overparameterized deep neural networks (DNNs) have
surged in popularity as the preferred model for numerous
high-dimensional and large-scale learning tasks, primarily due
to their remarkable generalization performance. Substantial
efforts have been devoted to theoretically explaining this
phenomenon from various perspectives. This includes norm-
based complexity measures [1]–[3], PAC-Bayes bounds [4]–
[9], sharpness and flatness of the loss minima [10]–[12], loss
landscape [13], implicit regularization induced by the gradient
descent algorithms [14]–[16], etc. The reader is referred to
the recent survey [17] for a comprehensive literature review.
Despite this wealth of research, the precise factors contributing
to the generalization capacity of DNNs remain elusive, as
indicated in [18], [19]. The goal of this work is to shed new
light on the advantages of deep models for learning under the
framework of information-theoretic generalization bounds.
The generalization error is the difference between the pop-

ulation risk and the empirical risk on the training data. It
measures the extent of overfitting of a trained neural net-
work when the empirical risk is pushed to zero. Information-
theoretic generalization bounds have been widely explored
in recent years. This line of work was initiated by [20],
where a generalization error bound in terms of the mutual
information between the input and output of the learning
algorithm was derived; see also [21], [22]. These inaugural
results inspired various extensions and refinements based on

chaining arguments [23], [24], conditioning and processing
techniques [25]–[28], as well as other information-theoretic
quantities [29]–[32]. However, the aforementioned results
were not specialized to the DNN setting. Hence, they did
not explicitly elucidate the impact of the structure of DNNs,
including factors such as the number of layers, parameter size,
and the used activation functions, on generalization. The paper
[33] considered the multilayer structure of DNN, especially
under the Gibbs algorithm, but did not address the dependence
of generalization on the network architecture and parameters.
Quantifying these effects within information-theoretic bounds
is the main objective of this work.
Towards this goal, we present two new hierarchical gen-

eralization error bounds for DNNs. The first bound refines
the results from [20]–[22], by bounding the generalization in
terms of the Kullback-Leibler (KL) divergence and mutual
information associated with the internal representations of
each layer. This bound shrinks as the layer count increases,
can adapt to layers of low complexity (e.g., low-dimensional
or discrete), and overall highlights the benefits of depth
for learning. Our second generalization bound explores an
alternative approach by bounding the generalization in terms
of the Wasserstein distance associated with the layer indices.
This bound implies that there exists a layer that minimizes the
generalization upper bound, which serves as a generalization
funnel layer. To quantify these, we specialize our bounds to
the case of binary Gaussian mixture classification problem.
The derived analytic expressions show that as we delve deeper
into the network, the KL divergence bounds shrink as a result
of the shrinking ranks of the product of weight matrices;
the generalization funnel layer induced by the Wasserstein
bounds depends on the Frobenius norms of the weight matrices
product. We compute the generalization funnel layer using a
simple numerical example, which shows that the funnel layer
depends on the model generating methods.
The rest of our paper is organized as follows. In Section II,

we define the notations and formulate the supervised learning
problem under a feedforward DNN model. In Section III
present the hierarchical generalizaiton bounds based on the
KL divergence and the Wasserstein distance, respectively. We
then specialize our bounds to the case of binary Gaussian
classification and derive the analytic expressions. We conclude
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our discussion and present avenues for future work in Section
IV. The proofs of our results are provided in [34, Appendix].

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

The class of Borel probability measures on X ✓ Rd is de-
noted by P(X ). A random variable X ⇠ PX 2 P(X ) is called
�-sub-Gaussian, if E

⇥
exp

�
�(X�E[X])

�⇤
 �2�2/2 for any

� 2 R. The f -divergence between µ, ⌫ 2 P(X ) (µ ⌧ ⌫) is
defined by Df (µk⌫) :=

R
f(dµ/d⌫) d⌫, where f : (0,+1) !

R is convex and f(1) = 0. The Kullback-Leibler (KL)
divergence is defined by taking f(u) = u log u. The Hellinger
(H2) distance is defined by taking f(u) = (1�

p
u)2. The total

variation (TV) distance is defined by taking f(u) = 1
2 |u� 1|.

The mutual information between (X,Y ) ⇠ PX,Y 2 P(X⇥Y)
is defined as I(X;Y ) := DKL(PX,Y kPX ⌦PY ). The Shannon
entropy of a discrete random variable X ⇠ PX 2 P(X ) is
H(X) = H(PX) = log(|X |) � DKL(PXkUnif(X )). Suppose
X is a complete separable metric space; for p 2 N and
p � 1, the p-Wasserstein distance between µ, ⌫ 2 P(X ) is
defined as Wp(µ, ⌫) := (inf⇡2⇧(µ,⌫) E(x,x0)⇠⇡[kx�x0kp])1/p,
where ⇧(µ, ⌫) denotes the set of couplings on X 2 with
marginal distributions µ and ⌫. For a d-dimensional vector
X and integers 1  i < j  d, we use the shorthands
Xj

i := (Xi, . . . , Xj) and [j] := {1, 2, . . . , j}. For a vector
v, define kvk :=

p
v|v as the Euclidean norm. For a matrix

A, define kAkop = sup{kAvk | kvk = 1} as the operator
norm and kAkF :=

p
tr(AA⇤) as the Frobenius norm.

B. Supervised Learning Problem

Consider a data space X ✓ Rd0 and label set Y =
[K] ✓ N. Fix a data distribution PX,Y 2 P(X ⇥ Y) and
let (X,Y ) ⇠ PX,Y be a nominal data feature–label pair. The
training dataset Dn = {(Xi, Yi)}ni=1 comprises independently
and identically distributed (i.i.d.) copies of (X,Y ); note that
PDn = P⌦n

X,Y . We consider a feedforward DNN model with L
layers for predicting the label Y from the test sample X via
Ŷ := gwL � gwL�1 � · · · � gw1(X), where gwl(t) = �l(wlt),
l 2 [L], for a weight matrix wl 2 Rdl⇥dl�1 and an activation
function �l : R ! R (acting on vectors element-wise).
Denote all the network parameters by w = (w1, . . . ,wL)
and the parameter space by W ✓ Rd1⇥d0 ⇥ · · ·⇥ RdL⇥dL�1 .
We denote the internal representation of the lth layer by
Tl := gwl � · · · � gw1(X), l 2 [L], noting that T0 = X . When
the input to the network is Xi (rather than X), we add a
subscript i to the internal representation notation, writing Tl,i

instead of Tl. See Figure 1 for an illustration. We know that
the setup can be generalized to regression problems by setting
Y ✓ R. Furthermore, our arguments extend to the case when
the training dataset Dn comprises dependent but identically
distributed data samples, e.g., ones generated from a Markov
chain Monte Carlo method.

Fig. 1. L-layer feedforward network.

Let ` : W ⇥ X ⇥ Y ! R+ be the loss function. Given
any w 2 W , the population risk and the empirical risk are
respectively defined as

LP(w, PX,Y ) := E[`(w, X, Y )];

LE(w, Dn) :=
1

n

nX

i=1

`(w, Xi, Yi),

where the loss function ` penalizes the discrepancy between
the true label Y and the DNN prediction Ŷ = gwL � · · · �
gw1(X), i.e., `(w, x, y) = ˜̀(gwL � · · ·�gw1(x), y). A learning
algorithm trained with Dn can be characterized by a stochastic
mapping PW|Dn

. Given any (PW|Dn
, PX,Y ), the expected

generalization error is defined as the expected gap between
the population empirical risks:

gen(PW|Dn
, PX,Y ) := E[LP(W, PX,Y )� LE(W, Dn)], (1)

where the expectation is w.r.t. P(X,Y ),Dn,W = P⌦(n+1)
X,Y ⌦

PW|Dn
.

III. HIERARCHICAL GENERALIZATION BOUND

Existing results such as [20], [22] bound the generalization
error from (1) in terms of the mutual information terms
I(Dn;W) or

Pn
i=1 I(Xi, Yi;W), which only depend on the

raw input dataset and the algorithm. We next establish two new
improved generalization bounds, whose hierarchical structure
captures the effect of the internal representations Tl. Notably,
the first bound shrinks as one moves deeper into the network,
providing new evidence for the benefits of deep models for
learning. The second bound is minimized by one of the
network layers, shedding light on understanding the different
effects of internal representations.

A. KL Divergence Bound
We present the following generalization bound for the above

described setting.

Theorem 1 (Hierarchical generalization bound). Suppose that
the loss function `(w, X, Y ) is �-sub-Gaussian under PX,Y ,
for all w 2 W . We have
��gen(PW|Dn

, PX,Y )
��  UB(L)  UB(L�1)  . . .  UB(0),

where UB(l) := �
p
2

n

nP
i=1

�
I(Tl,i, Yi;WL

l+1|Wl
1) +

DKL(PTl,i,Yi|Wl
1

��PTl,Y |Wl
1

��PWl
1
)
�1/2, l = 0, . . . , L.
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Theorem 1 is derived by first establishing the UB(L) upper
bound via the Donsker-Varadhan variational representation
of the KL divergence and the sub-Gaussianity of the loss
function. We then invoke the data processing inequality (DPI)
to successively peel off the layers to arrive at the remaining
bounds. See [34, Appendix A] for a detailed proof. While
the UB(L) forms the tightest bound, the state hierarchy
highlights the benefit of depth for learning and lend well
for comparison to existing results. Indeed, observing that
UB(0) =

p
2�2 n�1

Pn
i=1

p
I(Xi, Yi;W), we see that our

bound is indeed tighter than the one from [22].
Theorem 1 shows that the model generalizes when both

I(Tl,i, Yi;WL
l+1|Wl

1) and DKL(PTl,i,Yi|Wl
1
kPTl,Y |Wl

1
|PWl

1
)

are small, for some layer l = 0, . . . , L. This happens when the
weights of subsequent layers are not overly dependent on the
lth input internal representation, and when the learned posterior
of this internal representation highly matches the prior.

Special case (discrete latent space). When Tl only takes a
finite number of values, i.e., its support satisfies |Tl| < 1 (e.g.,
the discrete latent layer in the VQ-VAE [35]). Assuming that
tl(wl

1) := mint2Tl,y2Y PTl,Y |Wl
1
(t, y|wl

1) 2
�
0, |Tl ⇥ Y|�1

�

and tl := supwl
1
tl(wl

1), we have

UB(l) 
q
2�2 log

�
K2/tl

�
.

As tl grows, we see that PTl,Y |Wl
1
tends to the uniform dis-

tribution on Tl⇥Y and its entropy/variance increases. This, in
turn, shrinks the generalization error, which is consistent with
the intuition that stochasticity leads to better generalization.
Proof Sketch: The information measures in
UB(l) can be upper bounded as follows:
I(Tl,i, Yi;WL

l+1|Wl
1) + DKL(PTl,i,Yi|Wl

1
kPTl,Y |Wl

1
|PWl

1
) 

2H(Yi|Tl,i,Wl
1) � EP

Tl,i,Yi,W
l
1

[logPTl,Y |Wl
1
] 

2 logK � EP
Tl,i,Yi,W

l
1

[logPTl,Y |Wl
1
]  log(K2/tl).

B. Wasserstein Distance Bound
Akin to Theorem 1, we present a generalization error bound

based on the Wasserstein distance. Unlike the KL divergence,
Wasserstein distances do not generally follow the DPI, and
hence the presented bound does not adhere to a descending
hierarchical structure. Instead, it shows that there exists a layer
that minimizes the Wasserstein generalization bound.

Theorem 2 (Min Wasserstein generalization bound). Suppose
that the loss function ˜̀ : Y ⇥ Y ! R�0 is ⇢0-Lipschitz and
the activation function �l : R ! R is ⇢l-Lipschitz, for each
l = 1, . . . , L. We have

gen(PW|Dn
, PX,Y )  min

l=0,...,L

⇢0
n

nX

i=1

E
✓

1_
LY

j=l+1

⇢jkWjkop
◆

W1

�
PTl,i,Yi|W(·|W), PTl,Y |W(·|W)

��
.

The derivation of the bound relies on Kantorovich–
Rubinstein duality, which ties W1 to the difference of expec-
tations defining the generalization error. See [34, Appendix

B] for the proof details. As the Wasserstein distance is mono-
tonically increasing in the order (i.e., Wp  Wq whenever
p  q), the 1-Wasserstein distance provides the sharpest
bound. Compared to the KL divergence bound from Theo-
rem 1, which degenerates when the considered distributions
are supported on different domains, the Wasserstein distance
is robust to mismatched supports and the corresponding bound
is meaningful even in that setting.
Theorem 2 suggests that the generalization bound is con-

trolled by a certain layer that achieves the smallest weighted
1-Wasserstein distance between the distributions of the training
and test internal representations. This layer serves as a funnel
that determines the overall generalization performance; thus,
we call it generalization funnel layer. It suggests that within a
DNN, there exists a specific layer that exerts a stronger impact
on generalization compared to others.

Remark 1 (Comparison with KL-divergence based bound).
Assume that the loss function (bounded within [0, A] ⇢ R�0)
and the activation functions in the DNN model satisfy the Lip-
schitz continuity conditions in Theorem 2. Under this assump-
tion, the loss function `(w, X, Y ), where (X,Y ) ⇠ PX,Y , is
A
2 -subGaussian for allw. When ⇢0K2  A, the generalization
bound given in Theorem 2 is tighter than UB(L) in Theorem
1. A proof of this claim is provided in [34, Appendix D] ,
and utilizes [36, Theorem 4], Pinsker’s and Bretagnolle-Huber
inequalities.

C. Case Study: Binary Gaussian Mixture Classification

To better understand the generalization bounds from The-
orems 1 and 2 and assess their dependence on depth, we
consider the following binary Gaussian mixture example and
evaluate the bounds analytically.

Classification problem setting. Consider the binary classifi-
cation problem illustrated in Fig. 2, where the input data dis-
tribution is a binary Gaussian mixture: PY = Unif{�1,+1}
and PX|Y=y = N (yµ0,�2

0Id0), where µ0 2 Rd and �0 > 0.
The goal is to classify the binary label Y given the feature
X . Notice that under this setting, the Bayes optimal linear
classifier is Y ? = tanh(µ|

0X).

Model and algorithm. Consider a classifier that is realized by
a linear L-layer neural network composed with a hyperbolic
tangent nonlinearity at the output, i.e., Ŷ (w) = tanh(w⌦LX),
where w⌦l := wlwl�1 · · ·w1. To train the model to ap-
proaches the Bayes optimal classifier tanh(µ|

0X), we consider
an algorithm PW|Dn

defined by W|
⌦L = 1

n

Pn
i=1 YiXi, and

set the prediction to Ŷ = Ŷ (W). The rationale behind this
choice of algorithm comes from observing that there are
i.i.d. YiXi ⇠ N (µ0,�2

0Id0), for i = 1, . . . , n. Consequently,
W|

⌦L can be viewed as the sample mean of the dataset
{X1Y1, . . . , XnYn}, and by the strong law of large number
we have W|

⌦L ! µ0 almost surely, as n ! 1. Performance
is measured using the quadratic loss function `(w, X, Y ) =�
Y � tanh(w⌦LX)

�2, which is bounded inside [0, 4] and is
thus 2-sub-Gaussian under PX,Y , for all w.
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Fig. 2. Binary Gaussian mixture data when d0 = 2.

Analysis. We move to evaluate the generalization bounds
in Theorems 1 and 2 by computing the prior and posterior
distributions and the divergences between them. Proofs of
subsequent claims are all deferred to [34, Appendix E].

Lemma 3 (Prior and posterior of (Xi, Yi)). For any
i 2 [n] and y 2 {±1}, the prior distribution of
Xi|Yi = y is given by PXi|Yi=y = 1

2N (yµ0,�2
0Id0),

while its posterior distribution given the model W⌦L is
PXi|Yi=y,W⌦L

= 1
2N (yW|

⌦L,
(n�1)�2

0
n Id0). Furthermore,

we have PYi|W,W⌦L
= PYi|W⌦L

= Unif{�1,+1} and
PXi,Yi|W,W⌦L

= PXi,Yi|W⌦L
.

Given the above expressions for the involved distributions,
we evaluate the KL divergence generalization bound from
Theorem 1 as follows.

Proposition 4 (KL divergence bound evaluation). Under the
binary Gaussian classification setting, we have
��gen(PW|Dn

, PX,Y )
��  fUB(L)  fUB(L� 1)  · · ·  fUB(0),

where fUB(l) := 2
q
rl(log

n
n�1 � 1

n ) +
d0
n , r0 = d0, and rl =

rank(W⌦l), for l 2 [L].

As a sanity check, observe that fUBn(l) converges to 0
as n ! 1, for all l = 0, 1, . . . , L, as expected. Recall-
ing that rank(AB)  rank(A) ^ rank(B), we see that
rL  rL�1  · · ·  r1  r0 = d0. Consequently,
the contraction from fUBn(l � 1) to fUBn(l) is evident and
quantified by the gap between the ranks ofW⌦(l�1) andW⌦l,
namely, rl�1 � rl. Note that in our example, rank(WL) = 1
and thus rank(W⌦L) = 1, independent of the depth L,
which means that the tightest bound, fUB(L), does not change
with L. Nevertheless, the intermediate bounds fUB(l), for
l 2 [L � 1], generally shrink as L grows, depicting the
trajectory of generalization performance of the internal layers.
Extending the above example beyond the classification setting
to representation learning, where the output representation
dimension dL varies according to the network structure, would
enable observing a similar effect for fUB(L) as well. Our focus

TABLE I
THE GENERALIZATION FUNNEL LAYER INDEX l⇤ FOR DIFFERENTLY

GENERATED MODEL W WHEN L = 10 IN EXAMPLE 1. THE GENERATING
METHOD IS DETERMINED BY

Ql0
j=1 Cj = 0.2k 1

n

P
i=1 YiXik.

Generating method l0 = 3 l0 = 5 l0 = 7
Generalization funnel layer l⇤ 3 5 7

on the binary classification case is motivated by its analytic
tractability, and we leave further extensions for future work.

We proceed to evaluate the Wasserstein generalization
bound under the considered setting.

Proposition 5 (Min Wasserstein distance bound evaluation).
Under the binary Gaussian classification setting and from
Theorem 2, we have

gen(PW|Dn
, PX,Y )  min

l=0,...,L
WUB(l),

whereWUB(l) := (4
p
2�0(

p
d0+(

p
n�

p
n� 1))/

p
n)E[(1_QL

j=l+1 kWjk2op)kW⌦lk2F]
1
2 , W⌦l = WlWl�1 · · ·W1 for

l 2 [L], and W⌦0 = Id0 .

Note that this upper bound also vanishes as n ! 1. In this
case, the generalization funnel layer that yields the tightest
upper bound depends on the Frobenius norm of the product
of network weight matrices up to the current layer kW⌦lkF
and the product of subsequent layers’ operator norms. We
notice that kW⌦lkF =

q
tr(W⌦lW

|
⌦l) not only depends on

rank(W⌦l) but also on the singular values of W⌦l. Thus, the
generalization funnel layer is not necessarily the last one. In
the following example, by considering a simple neural network
model with different training methods, we empirically show
that the generalization funnel layer depends on the training
method.

Example 1 (Numerical evaluation of Proposition 5). Let
L = 10, d0 = d1 = · · · = dL�1 = 2, n =
100, µ0 = (0.5, 0), �0 = 1. We generate the network
model parameters as follows: WL = (0, CL), Wl =
Cl

�
cos ✓l sin ✓l
� sin ✓l cos ✓l

�
for l = 1, . . . , L � 1, where

PL�1
l=1 ✓l =

arccos hWL,
1
n

P
i=1 YiXii and

QL
l=1 Cl = k 1

n

P
i=1 YiXik.

(W1, . . . ,WL�1) are scaled rotation matrices that rotate
WL to 1

n

P
i=1 YiXi. Under this model, we have that W⌦l is

full-rank, kW⌦lkF =
p
2
Ql

j=1 Cj for l = 1, . . . , L� 1, and
k(W⌦L)

rl
1 kF = k 1

n

P
i=1 YiXik. Given the training dataset

Dn, we generate {Cl}Ll=1 such that
QL

j=l+1 Cj  1 for
all l = 0, 1, . . . , L � 1 and

Ql0

j=1 Cj be sufficiently small
for l0 2 {3, 5, 7}. We compute the generalization funnel
layer index as the minimizer of the sample mean from 104

output network parameters W (trained on 100 datasets Dn):
l⇤ = argminl=0,1,...,L SampleMean(kW⌦lkF). As shown in
Table I, the generalization funnel layer varies according to
the parameter generating methods.
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IV. CONCLUSION AND FUTURE WORK

This work has taken a novel step at understanding the
generalization performance of DNNs from the perspective of
information-theoretic generalization bounds. We built upon the
existing information-theoretic results by specializing them to
the DNN setting. We derived two hierarchical generalization
bounds that capture the effect of depth through the internal
representations of the corresponding layers. The two bounds
compare the distributions of internal representations of the
training and test data under (i) the KL divergence, and (ii) the
1-Wasserstein distance. The KL divergence bound diminishes
as the layer index increases, indicating the advantage of deep
network architectures. The Wasserstein bound is minimized
by the so-called generalization funnel layer, providing new a
insight that certain layers play a more prominent role than oth-
ers in governing generalization performance. We instantiated
these results to a binary Gaussian mixture classification task
with linear DNNs. Simple analytic expressions for the two
generalization bounds we obtained, with the KL divergence
reducing to depend on (and shrinks with) the rank of the
product of weight matrices, while the Wasserstein bound
simplified to depend on the operation and Frobenius norms
of the weight matrix product. The latter further implied that
the generalization funnel layer of a given model varies with
different training methods.
In the future, to draw more compelling conclusions, it is

necessary to conduct thorough analyses and experiments for
general algorithms/architectures beyond the binary Gaussian
classification. It would also be interesting and insightful to
quantify the contraction in the hierarchical bounds in terms of
the DNN architecture parameters.
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