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This research explores the nonlinear interactions among multidimensional proximities, including geographical,
cognitive, organizational, institutional, social, and technological aspects, and their impact on innovation within
networks of over three million technology firms in China. Utilizing an innovative combination of web-based
hyperlink and textual data analysis, supplemented by patent information, we delve into how these proximity
dimensions influence corporate innovation capabilities. Our methodology integrates text-based deep learning
techniques and employs the XGBoost model along with the SHapley Additive exPlanations (SHAP) algorithm and
partial dependence plots to uncover the nuanced effects of proximity on innovation. The findings reveal that
while geographical distance often correlates with larger cognitive and organizational proximities, underdevel-
oped regions exhibit stronger technological, institutional, and social proximities compared to their developed
counterparts. The study further identifies social structure and technological differences as pivotal factors
impacting collaborative innovation, with both positive and negative effects fluctuating alongside changes in
proximity dimensions. Notably, we uncover that geographical proximity has a pronounced boundary effect on
innovation, highlighting the critical role of spatial considerations in the digital age of innovation networks. This
research contributes to the understanding of urban innovation dynamics and offers valuable insights for poli-
cymakers and urban planners aiming to foster innovation ecosystems.

1. Introduction and institutional proximity and corporate innovation (Boschma, 2005),

suggesting that the formation and effectiveness of interactions among

The acceleration urbanization and rapid advancements in digital
technology have established urban innovation networks as crucial
drivers of urban economic growth and social progress (Gulati & Gar-
giulo, 1999; B. Sun et al., 2022). These networks are undergoing rapid
transformation in their interaction and cooperation patterns, primarily
influenced by the internet and social media (Kinne & Axenbeck, 2020).
Proximity emerges as the primary concept for delineating cooperative
relationships among agents, with its various dimensions significantly
impacting corporate innovation outcomes. Research has demonstrated
that firms strategically positioned within these networks demonstrate
the highest productivity (Giuliani & Bell, 2005). Boschma has clarified
the connection between cognitive, geographical, organizational, social,

economic entities depend on their multidimensional distances. There-
fore, comprehending and assessing the effects of multidimensional
proximity are vital for analyzing urban innovation dynamics (Glaeser
et al., 2022; Y. Sun et al., 2022).

Nevertheless, research on multidimensional proximity presents its
several challenges, particularly in data collection and methodological
approaches. A notable challenge is the reliance of traditional innovation
metrics on academic and patent collaborations (Abbasiharofteh &
Broekel, 2021; Simensen & Abbasiharofteh, 2022), which, due to their
scope limitations, insufficiently capture the breadth of firm interactions
(Bailey et al., 2018) and do not promptly reflect collaboration dynamics
(Nagaoka et al., 2010; Squicciarini et al., 2013). For example, compiling

* Corresponding author. Center for Geographic Analysis, Harvard University, Cambridge, MA, 02138, USA.
E-mail addresses: yololiuchenxi@whu.edu.cn (C. Liu), pengzhenghong@whu.edu.cn (Z. Peng), lingboliu@fas.harvard.edu (L. Liu), wh79@whu.edu.cn (H. Wu),
jan.kinne@istari.ai (J. Kinne), mengcai@whu.edu.cn (M. Cai), lishixuan@whu.edu.cn (S. Li).

https://doi.org/10.1016/j.apgeog.2024.103373

Received 16 January 2024; Received in revised form 31 May 2024; Accepted 6 August 2024

Available online 10 August 2024

0143-6228/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:yololiuchenxi@whu.edu.cn
mailto:pengzhenghong@whu.edu.cn
mailto:lingboliu@fas.harvard.edu
mailto:wh79@whu.edu.cn
mailto:jan.kinne@istari.ai
mailto:mengcai@whu.edu.cn
mailto:lishixuan@whu.edu.cn
www.sciencedirect.com/science/journal/01436228
https://www.elsevier.com/locate/apgeog
https://doi.org/10.1016/j.apgeog.2024.103373
https://doi.org/10.1016/j.apgeog.2024.103373
https://doi.org/10.1016/j.apgeog.2024.103373
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apgeog.2024.103373&domain=pdf

C. Liu et al.

and processing official economic statistics is time-consuming, with de-
lays frequently surpassing a year in translating real-world collaborations
into accessible data, thus compromising their relevance. In contrast, the
advent of information technology has broadened the scope of business
operations and collaborations, moving them beyond mere physical
confines. An increasing number of firms increasingly utilize websites to
display their products, services, R&D efforts, and partnership dynamics,
offering fresh perspectives on investigating innovative collaborations
(Abbasiharofteh et al., 2023; Kriiger et al., 2020; Stoehr et al., 2020).
Website information typically falls into two categories: hyperlink data
within the site and textual content on the web pages. Using hyperlink
data, a cooperation network can be established, and the textual infor-
mation from both parties can be used to analyze the differences in the
cooperative relationship across various dimensions (Gok et al., 2015;
Kriiger et al., 2020). This information can be collected and analyzed
through web scraping and natural language processing technologies,
and by combining text retrieval analysis with machine learning (Kinne
and Axenbeck, 2020; Stich et al., 2023). This facilitates a comprehensive
discussion of corporate innovation activities on a broader scale and with
greater depth.

Another challenge is the inadequacy of traditional methods to un-
ravel the nonlinear relationships inherent in complex networks (Lotfata
etal., 2023; Ma et al., 2021). Historically, linear regression has been the
predominant tool for exploration (Bi et al., 2016; Wang & Liu, 2023).
Yet, the intricate dynamics of innovation networks, catalyzed by
corporate collaborations, defy simple linear analysis (Kinne & Axen-
beck, 2020). These networks exhibit superlinear, sublinear, and
threshold effects, indicating that significant innovation impacts arise
only when specific factors reach predefined levels. Consequently, linear
regression’s limitations necessitate alternative approaches for accurate
analysis (Liu et al., 2023). Machine learning emerges as a viable solution
to these nonlinear complexities (Liu, 2024). However, while deep
learning neural networks excel in prediction, they fall short in clarifying
the influence of individual factors on outcomes. In contrast, gradient
tree-based ensemble learning algorithms, such as GBDT and XGBoost,
offer dual benefits: they predict outcomes and elucidate the relation-
ships between variables and outcomes (Lotfata et al., 2023; Ma et al.,
2021), providing essential support for decision-making (Grekousis &
Liu, 2019). XGBoost, in particular, an enhanced version of GBDT, im-
proves model robustness by incorporating regularization terms and
column sampling, mitigating computational speed and accuracy con-
straints. Despite their effectiveness, machine learning models are often
criticized as "black boxes’ owing to their reliance on numerous param-
eters for high precision, a complexity that exceeds traditional econo-
metric models which require fewer parameters, complicating the
interpretation of outputs. To overcome this, explainable artificial intel-
ligence (XAI), such as the SHAP (Shapley additive explanations) algo-
rithm, was developed (Goodman & Flaxman, 2017; Gunning & Aha,
2019) to demystify the contribution of feature factors within models.
Although SHAP has seen application in building environments and
urban transportation (Chen et al., 2023; Li, 2022), its adoption in
innovation networks remains limited. Research in this domain often
utilizes simpler machine learning algorithms primarily to predict tech-
nological trends (Lee et al., 2018). The integration of ensemble learning
algorithms into innovation network studies is emerging, with insuffi-
cient focus on dissecting influence mechanisms and elucidating causal
relationships and interpretable outcomes.

Moreover, there is a noticeable gap in comprehending the intricacies
of digital collaboration, especially concerning Chinese technology firms.
Additionally, the nonlinear dynamics prevalent in these contexts remain
largely unexplored. While some studies have underscored the influence
of geographic and technological proximities on firms’ innovative per-
formance (Liu et al., 2020), others have emphasized that innovation
agents and activities are deeply ingrained in, and influenced by, the local
context (Ma & Xu, 2023), resulting in significant disparities in innova-
tion cooperation (Li et al., 2020). These uncertainties primarily arise
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from the aggregated data at various levels and the undiscovered in-
teractions among the different dimensions of proximity.

To address these gaps, we conducted an analysis of over three million
Chinese corporate datasets, leveraging AI techniques for feature
extraction from website texts. This led to the creation of a corporate
innovation index, which was validated using patent databases.
Furthermore, we integrated hyperlink and website feature data to
develop an index reflecting the network centrality of corporate multi-
dimensional proximity. Subsequently, XGBoost and XAI methods were
employed to analyze network characteristics and city-specific features.
This approach not only enhanced the transparency and reliability of our
research but also offered fresh insights into the perception and mea-
surement of multidimensional proximity. Consequently, it promotes a
deeper understanding and more effective utilization of urban innovation
networks.

The remaining sections of this paper are organized as follows. Sec-
tion 2 is the literature review, reviewing existing research and summa-
rizing the main contributions of this paper. Section 3 provides detailed
information on data sources and research methods. Section 4 presents
the research results, including the structural analysis of urban innova-
tion networks and the assessment of the impact of multidimensional
proximity. Section 5 delves into a thorough discussion of the research
results, emphasizing their significance for theory and practice. Section 6
summarizes the main findings of the study and discusses its limitations
and possible directions for future research.

2. Literature review
2.1. Evolution of innovation networks and the flow of knowledge

The rapid pace of technological advancement and the escalating
complexity of technology have redefined the innovation process, tran-
sitioning it from a technology-centric, demand-driven, bidirectional
coupling, and interactive integration model to one predicated on
collaborative networks. This paradigm is characterized by an expanding
array of inter-organizational and cross-regional connections and coop-
erative frameworks (Ma & Xu, 2023). Such collaboration, propelled by
the exchange of innovative resources such as knowledge, technology,
and information, assumes a pivotal role in reshaping regional innovation
landscapes. With the increased frequency of innovative resource flows
among organizations, regions, and industries, knowledge sharing and
technological collaboration have intensified, transforming “local
spaces” into “flow spaces” and “network spaces” (Manuel, 2009). Within
these networks, companies gain access to requisite knowledge and
technology, thereby amplifying creative output and augmenting overall
corporate performance (Hartono & Rafik, 2022).

The concept of regional collaborative innovation, rooted in Mar-
shall’s industrial district theory from the late 19th century, underscores
the advantages of industrial agglomeration in terms of external econo-
mies and knowledge sharing effects (Marshall, 2013). In the 1980s, the
emergence of regions like the Third Italy drew academic attention to
cooperative networks and collaborative innovation among local SMEs,
sparking increased research on industrial clusters and regional innova-
tion systems (Cooke, 1992; Porter, 1990). Termed “New Regionalism,”
these studies highlight the importance of geographical proximity, local
networks, and face-to-face communication in sustaining innovative
development and competitive advantage within industrial clusters. The
theory of global production networks accentuates the role of external
factors, such as cross-border production organization and technological
innovation networks (Coe et al., 2008). Scholars like Bathelt critique
both localized and globalized perspectives, advocating for the interac-
tion and transformation of tacit and explicit knowledge across different
spatial dimensions to support local innovation. They introduced the
“global pipelines-local buzz” model, emphasizing effective interaction
between global knowledge flows and local adherence (Bathelt et al.,
2004). The French Proximity Dynamics School challenges the notion
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that geographical factors alone suffice for innovation cooperation,
arguing that individual geographical relationships fail to elucidate the
mechanisms of interactive learning and cooperative innovation between
organizations (Shaw & Gilly, 2000). Boschma and other evolutionary
economic geographers advocate for a multidimensional proximity
framework, providing a relational perspective to examine these dy-
namics (Boschma, 2005).

2.2. Multidimensional proximity and its role in innovation cooperation

Research on network growth dynamics consistently emphasizes that
geographical factors alone do not determine cooperative innovation
between regions. This underscores the need for a multidimensional
proximity analysis to delve into the driving mechanisms of regional
innovation cooperation more thoroughly and impartially (Breschi &
Lissoni, 2009). Current findings increasingly downplay the role of
geographical proximity, instead highlighting the growing importance of
cognitive, organizational, institutional, and cultural proximities (Duan,
2018; Donaldson & Hornbeck, 2016). The concept of “multidimensional
proximity,” introduced by the French Proximity Dynamics School,
challenges the notion that geographical closeness is the singular influ-
encer of innovation flows (Shaw & Gilly, 2000). Building on this,
Boschma developed a framework that integrates geographical, institu-
tional, social, organizational, and cognitive proximities (Boschma,
2005). Asheim and Isaksen emphasized the importance of social, cul-
tural, and institutional dimensions of proximity in cross-regional
collaborative innovation, arguing that organizations responsible for
technology transfer, such as research institutions and higher education
institutions, are crucial in the innovation process (Asheim & Isaksen,
2002). Marianne Steinmo et al. argued that geographical, cognitive,
organizational, and social dimensions of proximity are important
driving factors for the occurrence and sustained cooperation of inno-
vation actors across regions. The importance of different dimensions of
proximity for the construction of new collaborations changes with var-
iations in the nature of innovation actors (Steinmo & Rasmussen, 2016).
Cristian Geldes et al. applied a multidimensional proximity perspective
to discuss the impact of different dimensions of proximity within Chil-
ean agribusiness clusters on the level of cooperation among enterprises
across regions and the relationships between different dimensions
(Geldes et al., 2015). While extensive research has validated the influ-
ence of multidimensional proximity on urban innovation networks, the
focus often remains on its linear, static, and isolated impacts. However,
surpassing specific proximity thresholds can trigger a lock-in effect,
creating a proximity paradox where the impact of proximity on inno-
vation may follow a U-shaped or inverted U-shaped trajectory depend-
ing on the innovation phase (Fitjar et al., 2016; Guo et al., 2021; Zhao
et al., 2023).

Analyzing proximity across various dimensions mitigates uncer-
tainty and addresses coordination challenges, thus promoting interac-
tive learning and innovation. This paper will explore two critical
questions. The first pertains to identifying the most significant dimen-
sion of proximity for innovation within the realm of online cooperation
and its distinction from traditional cooperative networks. While previ-
ous research has partially examined this aspect, it predominantly
assessed the significance of proximity through linear relationships,
overlooking the unique features of online collaboration. The second
question examines the conditions under which proximity exerts a posi-
tive or negative influence on innovation. Common belief holds that
closer relationships among innovators increase interaction, thereby
enhancing learning and innovation. However, this paper contends that
proximity, across different dimensions, may adversely affect innovation.
A dynamic approach is essential to identify the thresholds at which
proximity’s impact shifts from beneficial to detrimental, aiming to more
efficiently boost innovation capabilities.
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2.3. Measuring proximity: traditional vs. modern approaches

The traditional definition and measurement of proximity have been
anchored in the realm of offline innovation networks. Geographic
proximity, gauged by the spatial closeness of cooperating entities, has
been a cornerstone of corporate collaboration (Hu et al., 2021; Rammer
et al., 2020). Cognitive proximity, highlighting the disparities in
knowledge systems among collaborators, plays a pivotal role in the ef-
ficacy of knowledge exchange, often delineated by linguistic and
knowledge source differences (O’ Connor et al., 2020). Organizational
proximity, denoting the intensity of each collaborative tie, is intrinsi-
cally linked to the stability of cooperation and, by extension, the pro-
gression of corporate innovation, typically assessed through the
diversity of cooperative endeavors (Oerlemans & Meeus, 2005). Insti-
tutional proximity captures the variances in cultural values across
businesses, commonly associated with urban or global contexts (Noonan
et al., 2020). Technological proximity, reflecting the degree of techno-
logical alignment and similarity between collaborators, is vital for effi-
cient cooperation, usually inferred from patent alignments (Y. Sun et al.,
2022). Social proximity, reflecting the alignment of cultural and social
backgrounds among actors in innovation, influences partner selection,
frequently evidenced by previous collaborative endeavors (Y. Sun et al.,
2022). Conventional statistical methodologies predominantly underpin
existing proximity research (Hu et al., 2021; O’ Connor et al., 2020;
Oerlemans and Meeus, 2005; Rammer et al., 2020; Y. Sun et al., 2022).

However, the advent of technological shifts and the proliferation of
virtual information have ushered in novel paradigms for online coop-
eration networks, prompting the need for refreshed proximity mea-
surement techniques. Recent scholarly endeavors have reconceptualized
organizational proximity to align with the nuances of online collabo-
ration, markedly refining its assessment through logistic regression an-
alyses (Kriiger et al., 2020). Similarly, cognitive proximity evaluation
has evolved to include textual similarity analyses (Rahimi et al., 2018),
reflecting the foundational knowledge base through Part-of-Speech
(POS) and Term Frequency-Inverse Document Frequency (TF-IDF)
metrics, optimizing the extraction of key structural insights (Du et al.,
2023). Yet, these methodologies exhibit limitations in deeply under-
standing content, struggling to adequately harness and discern contex-
tual structural nuances, hence compromising accuracy. Moreover, the
existing body of research predominantly centers on the European
context, with a notable scarcity of inquiries into developing regions like
China or investigations into the nonlinear ramifications of proximity on
innovation. Additionally, the conceptual overlap among various prox-
imity dimensions complicates differentiation. Therefore, while discus-
sions on offline collaboration have seldom integrated all six proximity
types, the expansion to online collaboration allows for a more granular
and non-redundant differentiation, enriching our comprehension of
innovation networks.

3. Data and methodology
3.1. Data source

This study’s research data consists of two parts (Fig. 1). The first part
is an enterprise dataset comprising basic information and website details
of Chinese technology firms. Basic information is gathered from the
Qichacha platform, encompassing company-level features such as
registration details, staff information, and operational data. Website
details include collaboration data derived from website hyperlinks and
textual data obtained through web scraping. The collaboration data
entails source and target enterprise entities, with collaboration records
formed through hyperlinks between them. The textual data encompasses
all information found on the company’s website. The data mining and
collection tool utilized is ARGUS, based on the Scrapy Python frame-
work. The second part encompasses relevant statistical data for the cities
where the enterprises are situated, including patent data in the
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Patents are sourced from the patent retrieval section of the China Na-
tional Intellectual Property Administration.
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selected for analysis. The study analyzes their geographical patterns and
explores their impact mechanisms on the probability of innovation.
While past studies often relied on patent or paper collaboration data to
represent innovation networks, website data, with its timeliness, gran-
ularity, and online characteristics, is more suitable for researching on-
line innovation networks. Therefore, this paper utilizes information
from enterprise websites to explore innovation networks, supplemented
by collaborative patent authorization data to enhance the scientific rigor
of the study. The deep learning based on text is mainly achieved by the
TF-IDF algorithm and the BERT model (Fig. 2).

3.2.1. Independent variables: proximity and urban technology attribute

3.2.1.1. Cognitive proximity. Cognitive proximity refers to the similarity
in knowledge, expertise, and cognitive processes among collaborators
within an innovation network (O’ Connor et al., 2020). In this study,
cognitive proximity is assessed by measuring the similarity between the
textual content of the websites of collaborating entities. Companies
utilize webpage text to showcase their products and services, providing
valuable insights into their offerings, credibility, achievements, key
personnel decisions, and strategies. Essentially, website text serves as a
representation of the company’s knowledge base (Kriiger et al., 2020).
The cosine similarity of the vectors representing the textual content of
their websites is calculated to quantify cognitive differences between
collaborating companies. This approach is widely employed in natural
language processing research (Gentzkow et al., 2019; Rahimi et al.,
2018). The TF-IDF algorithm is utilized to transform each document into
a fixed-size vector of size V, where V represents the size of the dictionary
comprising all the words from the entire text corpus. Subsequently, the
features in the vector are converted into weighted values, facilitating the
calculation of the similarity between these vectors and the input data.
During the execution of the TF-IDF algorithm, we set the minimum
document frequency to 1.5% and the maximum document frequency to
65% (based on popularity filtering). Cosine similarity is then employed
to determine the similarity between two different document vectors, as
represented in formula 1:

ti X Vdj

/- (1)
[Val * [Va]

similarity =
In the equation, V,; and Vj; represent the vectors corresponding to
query documents i and j, respectively.
The final calculation result ranges from 0 (text completely different,
indicating low cognitive proximity) to 1 (text completely the same,
indicating high cognitive proximity).

3.2.1.2. Organizational proximity. Organizational proximity pertains to
the structural and relational similarities or linkages between collabo-
rators within an innovation network, influencing the ease of coordina-
tion and resource sharing (Oerlemans and Meeus, 2005). The
relationships between collaborating companies are classified into two
categories: inter-industry collaboration and intra-industry collabora-
tion, with organizational proximity treated as a binary variable.
Inter-industry collaboration tends to be more stable and intimate than
intra-industry collaboration, often representing cooperation that is less
substitutable. We determine whether companies are in the same in-
dustry based on the similarity of textual content related to their business
scope displayed on their respective webpages (Kriiger et al., 2020). The
greater the similarity in text, the closer the industry affiliation.

Using this criterion, we quantify the nature of each hyperlink rela-
tionship between two companies as either O (indicating weak intra-
industry collaboration) or 1 (indicating strong inter-industry collabo-
ration). This facilitates binary machine learning classification tasks
(Formula 1). Initially, we randomly select 1700 pairs of collaborating
companies from the dataset to create the training dataset for this clas-
sification task, labeling each pair as either intra-industry or inter-
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industry collaboration. Subsequently, we encode the textual content of
each pair of hyperlinked companies using TF-IDF and train a logistic
regression classifier with the provided data. Although artificial neural
networks were also considered during testing, experimental results
favored the logistic regression classifier for achieving higher accuracy.
Finally, two-thirds of the data are used for training the classifier, with
the remaining third for testing to evaluate the model’s performance. The
trained model demonstrates an accuracy of 0.780, indicating robust
performance and reliable results.

The predicted results range from O (indicating intra-industry
collaboration, weak organizational relationship) to 1 (indicating inter-
industry collaboration, strong organizational relationship).

3.2.1.3. Geographical proximity. Geographic proximity is defined as the
extent of physical closeness among entities within an innovation
network (Rammer et al., 2020). To quantify proximity, the Euclidean
distance between each pair of companies is computed using their lati-
tude and longitude coordinates. These distances are then normalized
and subtracted from 1, converting “distance” into “proximity” for
comparative analysis. The final results range from O (indicating far
distance, low geographical proximity) to 1 (indicating close distance,
high geographical proximity).

3.2.1.4. Technological proximity. Technical proximity refers to the
similarity or compatibility in technological capabilities, structures, or
domains among entities within an innovation network. Recognizing the
crucial role of cities as facilitators of corporate innovation, the urban
technological structure is considered the foundational environment for
corporate innovation (Crowley & Jordan, 2022). The code information
associated with each patent allows us to gain insights into the techno-
logical development of cities, with each code representing a distinct type
of technology. Building upon prior research (Aldieri, 2013), the Jaffe
index (Jaffe, 1986) was employed to characterize the technological
structure of cities based on three primary categories of patent activities
in the technological field of cities (according to the Chinese patent
classification published by the National Intellectual Property Adminis-
tration) (Yingcheng et al., 2023), thereby quantifying technological
proximity. This can be represented as formula 2:

m
> FiiFy
T = N 2

N 2 S 2
> Fa > Fy
k=1 = k=1

In the computation, we consider the data of invention patents, utility
model patents, and design patents, resulting in a total of m = 3 tech-
nological domains. Fy;; represents the number of patents produced by
city i(j) in the technological domain k. The larger the Jaffe index, the
more similar the technological structures of the two regions.

The final calculated results range from O (indicating significant
structural differences and low technological proximity) to 1 (indicating
small structural differences and high technological proximity).

3.2.1.5. Social proximity. Social proximity refers to the level of social
relationships or trust among entities within an innovation network,
indicating the degree of collaboration (Errico et al., 2022). Drawing on
social network analysis principles for expressing social relationships
(Otte & Rousseau, 2002; Wasserman & Galaskiewicz, 1994), social
proximity is measured as the reciprocal of the shortest path between
entities in the collaboration network (Opsahl et al., 2010). The expres-
sion is as follows:

1 1 1
SP;j=In——; SD;; =mi 3
Y nSDij' Y min ((Colh) + N (COhJ>) ( )

In the equation, SP; represents the social proximity between insti-
tution i and j. SD;; denotes the shortest path between institution i and j in
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the innovation collaboration network. stands for the number of collab-
orations between institution i and j, and h is the number of in-
termediaries (intermediating institutions) between institution i and j in
the innovation collaboration network.

The final result ranges from 0 (indicating significant structural dif-
ferences and low technological proximity) to 1 (suggesting minimal
structural differences and high technological proximity).

3.2.1.6. Institutional proximity. Institutional proximity refers to the
consistency or similarity among entities within an innovation network in
terms of operating system types and governance structures (Chen et al.,
2023). In China, keywords such as “limited liability,” “sole proprietor-
ship,” and “collective operation” represent different institutional char-
acteristics in company types. Within each type, the differences in these
keywords can reflect variations in their operating systems. For example,
the difference in keywords between “limited liability company” and
“joint-stock company” implies distinctions in the internal operational
mechanisms and business forms of these enterprises. Therefore, in this
study, the similarity of company type keywords is used to indicate the
institutional proximity between collaborating parties. Similar to the
calculation method for cognitive proximity, TF-IDF recognition is
applied to the textual data of company types involved in collaboration,
and cosine similarity is computed to represent the level of institutional
differences between the two enterprises (Kriiger et al., 2020). The final
result ranges from O (indicating significant differences in institutional
systems and low institutional proximity) to 1 (suggesting minimal dif-
ferences in institutional systems and high institutional proximity).

3.2.1.7. Urban technology attributes as control variables. Urban attri-
butes serve as a fertile ground for collaborative endeavors, significantly
influencing the flow of knowledge and innovation activities (Rammer
et al., 2020). The breadth of the knowledge base, along with socioeco-
nomic performance, and the cultural and social milieu, fundamentally
impacts the capacity of innovators to navigate challenges within the
collaboration process more effectively (Yao et al., 2020). Extensive
research on innovation has explored various urban and regional fea-
tures, including R&D investment, economic development levels, talent
availability, industrialization, scientific and technological infrastruc-
ture, and openness (Dennis Wei et al., 2011; Wei, 2015). Consequently,
it is imperative to consider not only the disparities in knowledge among
innovation agents but also the variation in their urban innovation en-
vironments. In alignment with the research objectives of this study, four
urban attributes have been identified and incorporated as independent
variables into the model, detailed in Table 1. Due to data accessibility
limitations, city-level data were used for certain indicators instead of

Table 1
Description and processing of urban technology attribute.

Attribute

Description

Calculation method

Talent reserve

Industrial

structure

Technological
competitiveness

Financial support

The greater the reserve of
technology talent, the
stronger the advantage in
innovation and development.

It can reflect the technological
and economic connections
between industries in that
region.

It can provide a visual
representation of the current
level of technological
development and capabilities.
It reflects the policy
inclination towards
technological development.

This is expressed in terms of
the number of individuals
with a university education
per one hundred thousand
people.

This is based on the
proportion of the second
and third industries in the
GDP.

This is based on the number
of technology institutions in
the region.

This is based on the
proportion of local financial
investment in science and
technology to the local
general public budget
expenditure.
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firm-level data. While this approach has some limitations, it also allows
for the capture of regional differences, providing valuable insights into
the spatial variation of the studied phenomena.

3.2.2. Dependent variable: innovation probability values as innovation
index

Understanding innovation activities is complex and profound,
requiring a contextual analysis of the entire textual information on the
websites. Therefore, this paper chooses to train and predict innovation
probabilities using the BERT model. The BERT model constitutes a large-
scale, pre-trained language model built upon the Transformer archi-
tecture, particularly well-suited for classification tasks demanding an in-
depth comprehension of textual content (Pota et al., 2021; Tomihira
et al., 2020). BERT’s innovation lies in its utilization of the bidirectional
Transformer for language modeling. Empirical evidence demonstrates
that bidirectional training of language models results in a more pro-
found contextual understanding in comparison to unidirectional models
(F. Zhao et al., 2022; T. Zhao et al., 2022).

BERT’s application in text classification tasks primarily involves two
steps: initially, training the model on an unlabeled, extensive corpus to
acquire linguistic proficiency, facilitating subsequent text classification
tasks. Secondly, the model undergoes fine-tuning for text classification
tasks through supervised training on labeled datasets. BERT employs
two pre-training methods. The first method is the Masked Language
Model, where random placeholders replace 15% of the text characters.
Through rigorous training on a substantial text corpus, the model min-
imizes loss and adeptly predicts the specific characters concealed by
these placeholders. The second method is Next Sentence Prediction,
primarily concentrating on learning sentence relationships while taking
into account individual words. In this approach, sentence segments are
randomly substituted, and the model’s objective is to predict their
suitability as the following sentence after the original one.

In the small sample used for training the innovation probability
prediction model, the determination of innovation activities is not ob-
tained through supervised classification. Instead, it is based on official
data obtained from the China National Intellectual Property Adminis-
tration. Enterprises with new knowledge achievements within the past
three years are designated as having innovation activities, labeled with
“1". Those without new achievements are considered to have no inno-
vation activities, labeled with “0". This approach avoids errors intro-
duced by human expertise, ensuring the accuracy of the small sample
and greatly enhancing the reliability of the results. Following the
collection and organization of data, the small sample comprises a total of
1902 companies, of which 869 are categorized as innovative companies,
while 1033 are classified as non-innovative companies. Using this
labeled small sample as a foundation, we link these labels with the
descriptive textual content found on the companies’ websites. Subse-
quently, the Bert model is employed to train and predict the textual data
set from the companies’ websites, using a learning rate of 0.00003 and a
maximum sequence length of 512. We allocate two-thirds of the data for
training and reserve one-third for validation testing. The model attains a
notable accuracy of 0.97 (Fig. 3), and the details are shown in Table 2.
Thereby it ensures the reliability and scientific validity of the dependent
variable. Ultimately, we derive the innovation probability values for all
companies with websites.

3.3. Methodology

3.3.1. eXtreme gradient boosting (XGBoost)

XGBoost is a gradient boosting method that sequentially integrates
decision trees using the gradient descent optimization algorithm to
minimize the model’s error (Chen et al., 2023). In practice, the XGBoost
algorithm can be seen as an optimized version of the gradient boosting
decision tree algorithm (GBDT). GBDT is commonly used to solve clas-
sification and regression problems, as it can accurately detect complex
nonlinear relationships between dependent and independent variables.
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Fig. 3. Accuracy of Bert’s model training and validation sets.

Table 2

Bert model results.
Epoch Train_loss Train_acc Ir Val_loss Val_acc
1 0.432227 0.776902 0.00003 0.221754 0.927155
2 0.141243 0.950487 0.00003 0.153806 0.943966
3 0.082603 0.972403 0.00003 0.140695 0.956897
4 0.060580 0.979437 0.00003 0.109454 0.963362
5 0.029251 0.989989 0.00003 0.134777 0.966595
6 0.024269 0.992965 0.00003 0.127809 0.965517
7 0.011462 0.997024 0.00003 0.156501 0.959052
8 0.034375 0.988636 0.00003 0.165017 0.960129
9 0.035929 0.985660 0.00003 0.200773 0.957974
10 0.029066 0.991071 0.00003 0.160705 0.968750

It can also compute and visualize the relative importance of each factor.
XGBoost, built upon distributed computing, further significantly im-
proves the computation speed and performance of the original model,
making it the fastest and most integrated decision tree algorithm
currently available. Assuming the XGBoost model consists of K CARTs, it
can be represented as formula 4:

K

Yi=@X)=> flX).fu € F ©)

k=1

Here, y; represents the predicted value, fi represents the k-th tree, fi (X;)
represents the value of the i-th sample in the k-th tree, K is the total
number of samples, X; is the input value of the i-th sample, and F rep-
resents all possible K CARTs. In this study, we utilized the “XGBoost”
package by calling it in R version 4.2.2 and RStudio version 4.1.3 to use
this model.

3.3.2. Shapley and partial dependence plots

The partial dependence plot (PDP) (Friedman, 2001) visualizes how
a single independent variable affects the dependent variable, revealing
the marginal effect of the independent variable. It addresses the problem
of machine learning being a black box where only predictions are
possible without analysis. Shapley, derived from a concept in coopera-
tive game theory, was originally used to fairly distribute the contribu-
tion values of players in a collective achievement (Shapley, 2016).
Through extensions, this algorithm can quantify and visualize the
contribution of each feature in the model. Building upon the Partial
Dependence Plot, Shapley further opens up the black box of machine
learning (Lundberg and Lee, 2017; Lundberg et al., 2019). The Shapley
values of features are calculated using the following formula 5:
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In formula 5, p represents the number of features, N\{j} denotes the
set of all possible feature combinations excluding feature X, j. S repre-
sents a feature set from N\{j}, f(S) represents the model prediction for
the feature set S, f(SUU{j}) represents the model prediction for the
feature set S with the additional feature X. Current research results
demonstrate that the integration of XGBoost and SHAP works well and
can efficiently compute the SHAP values of features (Lundberg and Lee,
2017). In this study, both PDP and SHAP calculations were performed by
calling the “gbm” package and the “SHAPforxgboost” library in R
version 4.2.2 and RStudio version 4.1.3.

4. Result
4.1. Statistics of multidimensional proximity and innovation probability

4.1.1. Preliminary descriptive statistics

Table 4 presents the initial descriptive statistics for multidimensional
proximity and innovation probability values at the enterprise level,
following z-score standardization. A notably strong positive skewness in
cognitive proximity (6.606) indicates a tendency among firms to seek
partnerships with entities displaying considerably diverse cognitive
structures. Organizational proximity (1.095), with a moderate right-
ward skew, suggests prevalent cross-industry collaboration, where firms
form associations leveraging functional complementarities to enhance
capabilities. Despite interactions occurring in digital environments,
geographical proximity remains substantial in partnership formations.
Lower average levels of institutional and social proximity suggest a
current inclination towards forming online collaborative networks with
partners exhibiting significant differences in institutional structures and
engaging in more limited social interactions.

This trend may signify a pursuit of novel institutional frameworks
and the cultivation of less conventional social ties to diversify innova-
tion influences. Additionally, the right-skewed kurtosis for institutional
and social proximity might indicate a pronounced inclination towards
collaboration across different backgrounds, underscoring an underlying
complexity not fully captured by mean levels. Finally, the negative
skewness for technological proximity (—7.574) reflects a preference for
collaborations with entities of similar technological standing, empha-
sizing the importance of compatible technical capabilities and shared
knowledge bases critical for joint innovation endeavors. These findings
collectively depict a nuanced spectrum of collaboration preferences, as
firms strategically position themselves within the innovation landscape.

4.1.2. Spatial distribution of innovation probability

Fig. 4 illustrates the spatial distribution of innovation probability
among Chinese technology firms, revealing a non-uniform distribution
across the country characterized by geographic clustering. Higher
innovation probabilities are clustered in the southeast, encompassing
Beijing and its surrounding areas, the southeastern coastal region,
Wuhan-Changsha, and the Sichuan-Chongqing areas, indicating a con-
centration of innovative activities in economically developed and ur-
banized regions. This clustering pattern may be attributed to several
factors, including the presence of advanced infrastructure, the concen-
tration of human capital, and the establishment of higher education and

Table 3

Multiple model results.
Model RMSE(Root mean squared error)
Linear regression 0.181
Geographically Weighted Regression 0.274

eXtreme Gradient Boosting 0.102
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Table 4

Firm cooperation statistics.
Variable Mean Std. Skewness Kurtosis
Independent variables
Cognitive proximity 0.021 0.060 6.606 64.509
Organizational proximity 0.209 0.086 1.095 1.786
Geographical proximity 0.824 0.131 —0.224 —0.640
Technological proximity 0.974 0.121 -7.574 57.940
Social proximity 0.118 0.138 3.560 19.146
Institutional proximity 0.287 0.378 1.234 —0.252
Talent reserve 0.190 0.155 1.986 4.636
Industrial structure 0.731 0.188 —1.258 2.536
Technological competitiveness 0.031 0.098 6.532 53.566
Financial support 0.134 0.153 2.290 6.845
Dependent variable
Predicted innovation possibility 0.680 0.079 0.122 —0.180

research institutions conducive to innovation. Clusters around Guang-
dong and Fujian may be indicative of regional innovation systems sup-
ported by policies such as Special Economic Zones (SEZs) and
substantial levels of foreign direct investment (FDI). Conversely, lower
innovation probabilities observed in the Yunnan-Guizhou region, Inner
Mongolia, and Xinjiang may result from factors such as lower economic
development, reduced investment in research and development, and
potentially fewer collaborative networks stimulating innovation. These
spatial disparities underscore the significance of region-specific policies
aimed at leveraging local strengths and addressing constraints to pro-
mote balanced innovation capacities across regions.

4.1.3. Spatial distribution of multidimensional proximity

The analysis of multidimensional proximity, depicted in Fig. 5, un-
veils the intricate dynamics shaping the innovation landscape. The
rhombus-shaped structure of the online collaboration network, empha-
sized by geographical proximity, signifies robust inter-regional con-
nections among major economic centers - Beijing, Shanghai,
Guangzhou, Chongqing, and Wuhan - pivotal nodes for innovation
diffusion. The generally low cognitive proximity, with sporadic spikes
between specific cities, implies potential barriers to widespread
knowledge transfer. This could stem from regional specialization in
particular technologies, creating cognitive gaps where firms lack shared
languages and understanding beyond their respective niches. Despite
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the prevalent low cognitive proximity, the existence of high-value con-
nections between peripheral and more developed regions suggests se-
lective yet significant knowledge exchanges, possibly driven by targeted
partnerships or government policies fostering inter-regional collabora-
tion. The pattern of organizational proximity, characterized by high-
value connections concentrated between developed regions and spe-
cific interior and northeastern areas, likely reflects the presence of
branch offices or shared corporate cultures facilitating collaboration.

Meanwhile, technical proximity, evidenced by its high-value link-
ages, underscores a robust exchange of technical knowledge and skills,
particularly within the main collaborative network, essential for high-
tech industries. This clustering effect illustrates how similar businesses
congregate and benefit from shared technological advancements. Insti-
tutional and social proximity, marked by low-value connections in
developed regions but high-value connections in less developed areas,
suggests that while formal institutions and social structures in developed
regions may not drive innovation directly, in less developed areas, these
factors could compensate for other deficiencies, such as economic or
infrastructural deficits. This multifaceted exploration of proximity di-
mensions reveals the nuanced and interdependent nature of innovation
networks, where different forms of proximity interact to shape the
innovation capabilities and potential of regions across China. A com-
parison with innovation networks constructed using patent data in-
dicates a largely consistent basic framework (Abbasiharofteh et al.,
2023; Cantner & Meder, 2007; Cao et al., 2019; Zhao et al., 2023).
However, the network nodes and connections developed in this study
exhibit greater richness, highlighting specific differences that will be
discussed further.

4.2. Result of XGBoost model and SHAP explainer

4.2.1. Model comparison

To highlight the suitability and effectiveness of XGBoost in this
study, we also utilized linear regression and geographically weighted
regression models for comparison purposes (Table 3). The analysis
resulted in an RMSE value of 0.102, indicating minimal model error and
ensuring strong scientific validity. As shown in Table 3, the XGBoost
model demonstrated lower errors in comparison to both the linear
regression and geographically weighted regression models, confirming
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the superiority of XGBoost for our research.

4.2.2. The relative importance of factors explained by SHAP

When thoroughly evaluating the combined influence of various nu-
merical values representing multi-class proximities on the likelihood of
corporate innovation, their significance varies throughout the process.
Mlustrated in Fig. 6, based on SHAP, are the calculated importance re-
sults. Social proximity emerges as the most influential factor, while
organizational proximity exerts the least impact. The horizontal axis
represents the calculated SHAP values, with higher values indicating a
more substantial contribution of the corresponding feature. Each point
on the graph represents a data point from the dataset, vertically aligned
to illustrate density, with a color strip below indicating the values of
each point. Higher feature values are depicted in purple, and lower
values in yellow. For example, a purple point on the social proximity
factor indicates that a higher level of technical proximity (as shown in

the color strip below) has a more significant positive impact on the
probability of innovation (corresponding to larger positive values on the
X-axis).

Fig. 7 elucidates the interactive process of variation in the six types of
proximity values and their changes in importance based on the SHAP
algorithm. For social proximity, a larger value initially exhibits an
inverted U-shaped negative impact, followed by a logarithmic-linear
relationship in the positive impact phase when the value exceeds 1. In
the case of technical proximity, a larger value shifts the impact on the
probability of innovation from negative to positive, with the degree of
influence gradually increasing, demonstrating a logarithmic-linear
relationship. The impact of geographic proximity changes from posi-
tive to negative, forming a logarithmic-linear relationship. In contrast,
institutional proximity undergoes a gentle sine non-linear relationship
between its value and importance, indicating a negative impact. As for
cognitive proximity, as the value increases, it overall forms an inverted
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Fig. 6. SHAP summary plot for the XGBoost model.

U-shaped relationship, with a negative impact in the initial and final
segments and a positive impact in the middle segment. Organizational
proximity forms a very gentle positive exponential relationship.

Regarding urban attribute factors, the relationship between indus-
trial structure and the probability of innovation approximately follows a
power function, exhibiting a negative impact initially. For financial
support, a larger value initially experiences a wavelike decline, tran-
sitioning to a negative impact phase, then rising to form a small peak in
the wave, and finally declining again, with the peak level below the
initial level. Talent reserve and technological competitiveness both
exhibit very gentle logarithmic relationships.

4.2.3. The relationship between factors and innovation probabilities

For a more comprehensive understanding of how independent vari-
ables influence the dependent variable, Fig. 8 illustrates the impact
process of changes in six proximity types on innovation probability
values.

The impact of various proximity measures on innovation probability
exhibits distinct patterns. Social proximity emerges as the most influ-
ential, initially increasing, showing fluctuations, and then sharply rising
at higher levels. Technical proximity decreases at lower levels, experi-
ences moderate growth at intermediate levels, and declines again at
higher levels. Initially, geographic proximity positively correlates with
innovation probability, but this relationship diminishes beyond a certain
threshold. Institutional proximity demonstrates fluctuating effects,
while cognitive proximity initially increases before subsequently
declining. Organizational proximity undergoes minor fluctuations
initially, followed by a sharp decrease at higher levels.

In the realm of urban attributes, industrial structure emerges as the
primary influencer on innovation probability. As the share of secondary
and tertiary industries increases, innovation probability rises, fluctuates,
and generally declines after reaching a certain level. Financial support
boosts innovation probability as it increases, maintaining a consistently
high influence beyond a certain threshold. Talent reserve influences
innovation probability through several stages: initially increasing with
additional reserves, then sharply declining, followed by another rise
before stabilizing at a higher level. Regarding technological competi-
tiveness, low levels trigger a decline in innovation probability, which
then rises and stabilizes as competitiveness improves. At the lowest
levels of competitiveness, innovation probability reaches its peak.
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5. Discussion

This research aims to unravel the intricate nonlinear dynamics be-
tween proximity dimensions within corporate webpage hyperlink net-
works and their impact on innovation. The findings underscore the
pivotal role of these digital networks as hubs for innovation, where
proximity emerges not as a static metric but as a dynamic interplay of
factors that can either hinder or spur firms’ innovative capacities. The
nuanced insights derived from this study, illuminated by Explainable
Artificial Intelligence (XAI), elucidate the complex and nonlinear rela-
tionship between virtual representations of proximity and the pro-
pensity for innovation, a perspective that is becoming increasingly
relevant as the physical and digital realms intertwine more closely.

Among the proximity dimensions, technological proximity at the city
level emerges as the most influential variable for the likelihood of
innovation. The findings suggest that current trends drive enterprises to
forge collaborations primarily with entities sharing similar technolog-
ical structures (Cantner and Meder, 2007; Yu et al., 2014), particularly
in underdeveloped regions, aligning with prior research on patent
innovation networks (Griffith et al., 2006). This inclination is attributed
to the heightened costs associated with significant disparities in research
foundations, a major hindrance to innovation in these areas (Bunduchi
et al.,, 2011; Yang & Cai, 2009). However, the study observes a note-
worthy phenomenon: beyond a certain threshold, excessive technolog-
ical similarity may actually impede innovation. This paradox arises due
to the negative consequences of homogenization, including constraints
on new technology development and limited exploration of new fields
(De Noni et al., 2018). Conversely, when the level of similarity surpasses
a critical threshold, profound technological congruence significantly
enhances entities’ ability to assimilate and leverage each other’s tech-
nologies. In such cases, the benefits of efficient communication
outweigh the drawbacks of homogenization, fostering and sustaining
more innovative collaborations (Cantner and Meder, 2007; Jaffe, 1986).
This phase holds particular relevance for nurturing innovation part-
nerships in underdeveloped regions.

Organizational proximity, as the second most important variable for
the probability of innovation, underscores the prevalence of cross-sector
collaboration where firms establish robust, functionally complementary
partnerships. This observation is consistent with the results of the
existing Chinese patent cooperation, the German website cooperation
network (Cao et al., 2019; Kriiger et al., 2020). Much like cognitive
proximity, its spatial distribution aims to counteract adverse
geographical effects by leveraging compensatory advantages (Mascia
et al.,, 2017; Pouder & StJohn, 1996). Cross-industry cooperation
notably fosters the exchange and synergy of organizational knowledge
across diverse sectors (Markovic et al., 2020). However, as collaboration
intensity escalates, the benefits of complementarity diminish, over-
shadowed by pronounced industry disparities that hinder the circulation
of innovative resources (Gao et al., 2023). Upon surpassing a certain
threshold, these obstacles predominate, significantly reducing innova-
tion potential. Nevertheless, once equilibrium is achieved, innovation
levels exceed their initial baseline, illustrating the superior impact of
cross-sector collaboration on corporate innovation compared to
within-industry partnerships. This underscores the importance of
balanced cross-disciplinary complementarity and resource exchange in
fostering innovation.

Observations on social proximity suggest a preference among en-
terprises for online collaborations with less interactive partners, a trend
diverging sharply from traditional patent innovation networks (Errico
et al., 2022; Zhang et al., 2023). In contrast, economically developed
areas exhibit a stronger reliance on established social relationships for
collaborative innovation, consistent with geoeconomic studies (Baru,
2012; Beeson, 2018). Analyses by SHAP and PDP validate that social
proximity negatively impacts innovation probability. This challenges
previous research advocating for the path-dependent nature of innova-
tion cooperation (Eiriz et al., 2013; Heringa et al., 2014), suggesting
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Fig. 7. SHAP plots for each factor.

instead that online collaboration with previously unaffiliated enterprises
could potentially enhance innovation chances, as suitable diversifica-
tion fosters the production of novel outputs. Furthermore, as proximity
approaches a threshold value, the likelihood of innovation declines and
remains suppressed. This implies that excessively homogeneous cultural
backgrounds and social connections impede the pursuit of new in-
novations in online collaboration contexts, obstructing the generation of
new technological discoveries.

Geographical proximity exhibits a notable boundary effect, with
contemporary enterprise collaborations maintaining an elevated
average level of geographical proximity, emphasizing the enduring
importance of geographical costs even in online collaborations (Abba-
siharofteh et al., 2023; T. Zhao, et al., 2022). This finding is consistent
with those of studies conducted on patent networks (Lim & Han, 2023).
In underdeveloped regions, locational disadvantages necessitate
compensatory measures through enhanced forms of other proximity,
aligning with additional research findings (Santamaria et al., 2021).
Moreover, analyses by Shapely and PDP confirm that moderate
geographical  proximity = enhances innovation  cooperation
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(Abbasiharofteh et al., 2023; T. Zhao, et al., 2022). Intriguingly, our
analysis reveals a reduced innovation probability within China’s
metropolitan radii as geographical closeness decreases, attributed to
heightened homogeneity in knowledge and technology, which fosters
competitive uniformity among enterprises, thereby adversely affecting
innovation (Mascia et al., 2017). However, surpassing a threshold in
geographical proximity significantly mitigates the adverse effects of
competition, notably boosting innovation probabilities.

Additionally, findings regarding institutional proximity indicate that
businesses are increasingly forming online partnerships with entities
exhibiting significant systemic variances. This analysis underscores that
a moderate degree of systemic disparity initially promotes comple-
mentary benefits among parties (Chen et al., n.d.) and ensures unin-
terrupted knowledge exchange across different organizations. Excessive
institutional resemblance between entities can foster exploitative inno-
vation, significantly hampering innovative endeavors (Zhong et al.,
2023). This highlights a fundamental difference in the collaborative
orientation of online innovation networks compared to the collaborative
characteristics of patent and scholarly paper innovation networks (Eiriz
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Fig. 8. PDP based on XGBoost modeling.

et al., 2013; Heringa et al., 2014).

The findings suggest that businesses currently prefer to establish
collaborations with partners who exhibit significant differences in tex-
tual cognition. This contradicts not only prior studies suggesting that
innovation networks based on patents tend to cooperate more with en-
tities having high cognitive similarity (Criscuolo et al., 2018), but also
findings from the analysis of German website cooperation data (Abba-
siharofteh et al., 2023; Kriiger et al., 2020). It is important to
acknowledge that our assessment of cognitive proximity represents a
simplified interpretation of a complex process. Companies from various
sectors, such as cultural technology innovators and chip developers,
operating in the same marketplace (e.g., Al applications in real-world
scenarios), contribute to the reported statistical outcomes. Addition-
ally, spatial analysis reveals that businesses in less developed areas
increasingly rely on greater cognitive proximity to mitigate their dis-
advantages. This finding supports the theory proposed by Miriam
Kriiger, suggesting that cognitive and geographical proximities can
mutually compensate (Kriiger et al., 2020). Results from Shapley and
PDP further validate this conclusion, albeit to a limited extent. Once
cognitive similarity between partners exceeds a certain threshold, there
is a significant surge in innovation potential. This is because similar
knowledge frameworks enhance the efficiency of knowledge and tech-
nology exchanges among entities, consistent with previous findings (O’
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Connor et al., 2020).

Overall, while previous studies may have assumed a monotonous or
linear impact of multidimensional proximities on innovation, the clari-
fication offered by SHAP values in our study unveils an intricate network
of subtle nonlinear relationships. These intricate dynamics become
especially apparent when examining threshold effects and non-
monotonic patterns, including peak responses or V-shaped correla-
tions, providing alternative perspectives in the ongoing discussions on
interpretations of multidimensional proximity. This complexity illumi-
nates the drawbacks of linear models and aggregated data approaches
that have dominated previous research, indicating the necessity for a
more sophisticated analytical framework.

6. Conclusion

This study utilizes data from collaborative activities on Chinese
technology firms’ websites, supplemented by patent data, to meticu-
lously construct the innovation network of enterprises. It considers both
traditional and online collaboration models, enhancing the robustness of
the research foundation. A text-based deep learning approach refines
and optimizes the connotations of proximity and innovation probability
related to informatization. Finally, the XGBoost algorithm, combined
with SHAP and PDP, examines the nonlinear relationship between
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proximity and corporate innovation probability, reducing potential er-
rors inherent in conventional linear regression. This methodology re-
veals the intricacies of machine learning models, providing profound
insight into the influence of online collaboration on innovation net-
works. The research findings lay the groundwork for future in-
vestigations into the nonlinear implications of multidimensional
proximity for innovation.

The precision of the text-based deep learning model is remarkably
high. The results confirm that a database primarily based on website
data, complemented by patent data, is highly suitable for the compre-
hensive analysis of enterprise innovation networks, without constraints
related to specific regions or levels of geographical analysis. Concur-
rently, proximity within their innovation networks can be meaningfully
assessed by combining the features of informatization in enterprise
cooperation. Upon considering online features, the innovation networks
exhibit numerous contrasting or significantly complementary features
compared to traditional networks. Furthermore, enterprises can
enhance their innovation probability through compensatory mecha-
nisms across various proximities.

The high accuracy of the XGBoost algorithm results in identifying the
influence mechanisms, demonstrating the reliability of the model. The
findings highlight that, globally, social proximity has the most signifi-
cant impact on innovation probability, followed by technological
proximity, whereas organizational proximity has the least influence.
Importantly, close relationships between companies do not automati-
cally lead to higher innovation probabilities, due to the complex
nonlinear relationship between proximity and innovation. This suggests
that achieving enhanced enterprise innovation efficiency requires a
multifaceted approach, involving a comprehensive balance among these
various perspectives to identify the optimal solution.

Building on previous discussions, online collaboration has brought
about significant changes in the innovation network, characterized by a
complex influencing mechanism. These conclusions are significant as
digital transformation rapidly reshapes the operational and collabora-
tive paradigms of enterprises. A more accurate understanding of the
transformed innovation network is essential for enhancing business ef-
ficiency and the urban innovation foundation. However, this study has
limitations; primarily, it relies on only one year of website and patent
data for spatial pattern analysis, within a relatively short timeframe.
This limitation prevents the definitive exclusion of occasional results
and fails to capture the dynamic process of the “online” transformation
of the innovation network. Future research endeavors will employ
network mining methods to acquire longer-term data, incorporating a
broader time dimension for a nuanced discussion of the spatiotemporal
evolution of online collaboration.
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