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Reproducibility, replicability, and expandability (RRE) have emerged as fundamental concerns in the realm of
scientific research and development. Wherein, devising effective solutions for RRE within geospatial analysis
stands out as a particularly critical challenge that demands immediate attention. Although there has been an
evolution from basic reproducibility of code and data to a more comprehensive cyberinfrastructure, this inte-
grated solution is still grappling with issues of limited user accessibility, steep learning curves particularly in
coding skills, and difficulties in achieving collaboration with other data science platforms This study proposes a
framework that combines open-source GIS with visual programming platforms, grounded in principles of stan-
dardization and educationalization, to advance the RRE framework in geographic analysis. Using the Geospatial
Analytics Extension for KNIME as an example, we demonstrate the platform’s adaptability and utility through
case studies in a recent textbook with an in-depth illustration of spatial accessibility analysis, specifically via the
Generalized Two-Step Floating Catchment Area (G2SFCA) method. Our findings shed light on the transformative
potential of such an integrative strategy, offer fresh perspectives for enhancing the RRE in geospatial analysis and
craft a well-structured, intuitive, and extensive GIS knowledge tree.

closely with the broader evolution of RRE in data science (Sui and
Kedron, 2021; Mai, 2022). This evolution is marked by a shift from basic
reproducibility of code and data to a more comprehensive Cyberin-

1. Introduction

Reproducibility, replicability, and expandability (RRE) have

emerged as fundamental concerns in the realm of scientific research and
development (Goodchild, 2021). In the context of geographic analysis,
the discourse surrounding RRE encompasses a range of topics including
the precise definition of RRE concepts, the categorization of literature in
terms of its replicability, the challenges posed by spatiotemporal vari-
ability, the difficulties in generalizing replication results, and potential
solutions to these issues (Zaragozi et al., 2020; Niist and Pebesma,
2021). Among these topics, devising effective solutions for RRE within
geospatial analysis stands out as a particularly critical and pressing
challenge that demands immediate attention (Wilson, 2020).

The development of RRE framework for geospatial analysis aligns

* Corresponding authors.

frastructure solution. This integrated solution, exemplified by platforms
like CyberGIS, encapsulates data, code, metadata, and webGIS func-
tionalities within a comprehensive open-source programming environ-
ment (Evans, 2019; Moreau et al., 2023). However, the challenges are
substantial, stemming from the rapid expansion of geospatial data, the
emergence of new open-source geospatial analysis packages (Shook,
2019), ongoing updates in open-source platforms (Steiniger and Bocher,
2009; Neteler and Mitasova, 2008), and the increasing demand for
computational resources (Pijanowski, 2014). These challenges highlight
the need for a solution that not only integrates but also simplifies and
democratizes access to complex geospatial data and analysis tools.
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Integrated platforms are grappling with issues of limited user accessi-
bility, steep learning curves particularly in coding skills, and difficulties
in achieving seamless collaboration with other data science platforms
(Goldberg et al., 2020). Moreover, the rapid pace of GIS knowledge
expansion creates a synthesis dilemma. Despite a rich set of GIS tools,
studies, and models (O’reilly, 2009), the task of effectively structuring
this burgeoning body of knowledge remains formidable. The ultimate
objective is not mere aggregation but a structured organization that
fosters understanding and catalyzes further research.

In response to the challenges of limited user accessibility, steep
learning curves associated with coding, the difficulties in seamless
collaboration with other data science platforms, and the rapid expansion
of GIS knowledge, this study proposes a framework that combines open-
source GIS with visual programming platforms. Grounded in principles
of standardization and educationalization, the framework aims to
advance the RRE framework in geographic analysis. This solution,
exemplified by the Geospatial Analytics Extension for KNIME, utilizes
visualization to reduce the learning curve, standardizes geographic
analysis modules derived from GIS knowledge tree for efficient inte-
gration with data science platforms, and promotes RRE through inter-
disciplinary collaboration. This approach represents a decentralized and
collaborative solution, transitioning from a holistic to a more distributed
methodology.

This paper begins with a comprehensive literature review in Section
2, delving into the concepts, current solutions, and the role of open vi-
sual programming in the RRE in geospatial analysis. Section 3 in-
troduces the eight key features of KNIME Analytics Platform and its
integration with extension development, guided by the 4E principle. We
further provide an in-depth comparison between a KNIME workbook
and its ArcGIS Pro-focused textbook. Delving into a detailed case study
centered on spatial accessibility and leveraging the generalized two-step
floating catchment method (G2SFCA), Section 5 underscores the distinct
advantages of visual programming for RRE framework. Our exploration
sheds light on its transformative capacity to shape a holistic knowledge
tree and highlights its indispensable contribution to the evolution of the
RRE framework in geospatial analysis.
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2. Literature review

Fig. 1 summarizes the framework for literature analysis on the RRE
framework in geospatial analysis, which comprises a comparison of
concepts like reproduction, replication, reanalysis, generalization, and
expansion, and an overview of the key stages in geospatial analysis and
the evolution of RRE solutions.

2.1. Concepts of Reproducibility, Replicability, and expandability (RRE)

Reproducibility and replicability (R&R) are widely acknowledged as
fundamental to the creation and verification of scientific theories and
models (Jasny, 2011), including those in Geographic Information Sci-
ences (GISciences) (Konkol et al., 2019). As well accepted and defined in
the 2019 National Academies Report on “Reproducibility and Replica-
bility in Science” (Kedron, 2021); reproducibility is defined as obtaining
the same conclusions using the same data and analytical methods,
whereas replicability involves the application of original methods to
different datasets (National Academies of Sciences, E. and Medicine,
Reproducibility and replicability in science., 2019). The sequential
positioning of these two terms actually mirrors the scientific argumen-
tation process, transitioning from reproducibility to replicability
(Brunsdon and Comber, 2021). However, the reveres terms of replica-
bility and reproducibility may emphasized the transition from replica-
bility to reproducibility, particularly in studies using different datasets
to achieve the same conclusions (Wilson, 2020; Stevens, 2017). Such
reproduction is closely related to the concept of generalization for the
(Halbert, 2022), indicating a lifecycle mantra: reproduce, replication
and reproduction (Machicao, 2022).

As there exist different levels of replicability in various type of geo-
spatial research or weak replicability due to the inherent spatiotemporal
heterogeneity (Ostermann and Granell, 2016; Wainwright, 2020). The
pursuit of generalizable conclusions or the laws in geographic sciences
through new data utilization and model expansion is a crucial aspect of
scientific research (Dangermond and Goodchild, 2019; Kedron and
Holler, 2022), necessitating broader interdisciplinary collaboration and
expansion. Expandability refers to the potential to extend existing
research materials by reanalyzing it with new functionality (Goeva
et al., 2020; Kedron and Frazier, 2022). Therefore, the progression from
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Fig. 1. Literature review summary on the Reproducible, Replicable and Extensibility (RRE) framework for geospatial analysis. (a) Concepts comparison on
reproduction, replication, reanalysis, generalization, and expansion, (b) key stages for geospatial analysis and the evolution of RRE solutions.
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reproducibility to replicability, to generalization, epitomizes the process
of expandability in data research. The extensibility also transcends the
confines of geography, extending to interdisciplinary and cross-group
collaborations with the ultimate goal of enriching the spectrum of
geographical knowledge (losifescu Enescu, 2019). Fig. 1(a) illustrates
the core concepts of reproducibility, replicability, reanalysis, general-
ization, and expandability.

2.2. RRE framework and solutions for geospatial analysis

The RRE framework is intrinsically aligned with the entire scientific
research process, encompassing concept development, data collection,
analysis, and interpretation (Kedron, 2021). This framework is contin-
uously evolving in response to the increasing complexity of data,
computational codes, platforms, and research content. Central to the
RRE framework are data and analysis, with a growing trend in the
geographic RRE field towards utilizing open-source, programming-
based code. This shift is largely attributed to its potential to minimize
manual operations (Grieve, 2020).

Emphasizing minimum reproducible standards for data and code
(Peng, 2011), the RRE framework has expanded its scope to include
comprehensive workflows, software versioning, random parameter
settings, and adherence to the “10 simple rules” for effective text pro-
cessing (Sandve, 2013). In this evolving landscape, CyberGIS has
emerged as a pivotal development, integrating the strengths of WebGIS
and container technology to become a significant trend in RRE platform
solutions (Gahegan, 2019; Yin, 2018). CyberGIS is particularly effective
in facilitating basic reproduction and replication functions (Wang,
2019).

However, the challenges for CyberGIS as an integrated solution are
substantial, which include limited user accessibility, steep learning
curves particularly in coding skills, and difficulties in achieving seamless
collaboration with other data science platforms (Goldberg et al., 2020).
Consequently, it becomes imperative to standardize data and functional
modules, along with reducing the learning barriers associated with
geospatial analysis modules (Bush, 2020; Lin, 2020). Such measures are
crucial not only for promoting interdisciplinary collaboration but also
for lowering the learning barriers associated with the platform. Ulti-
mately, these efforts contribute to the advancement of GIS education
and the further development of the RRE framework (Kedron, 2021; Leek
and Peng, 2015).

2.3. Analysis standardization and reducing learning barriers through
visual programming

Visual programming is increasingly acknowledged as an effective
method for standardizing tools and reducing the learning barriers in
programming education (Eronen, 2002; Dillon et al., 2012; Olsson,
2015). Popular platforms like Scratch (Xinogalos, 2015)and Minecraft
(Saito, 2016)have demonstrated their effectiveness in facilitating
collaborative and constructivist learning through mind mapping tech-
niques. ESRI ArcGIS Model Builder also exemplifies visual programming
for GIS. Facilitating GIS through visual programming could be a crucial
pathway for the "Next Generation of GIS’ (Zhu, 2020).

In the realm of data science, open visual programming software like
KNIME Analytics Platform, Orange, and RapidMiner emerges as a
promising solution (Hirudkar and Sherekar, 2013). These platforms
offer scalable modules and visual programming, and reduce the tech-
nical barriers for data processing (Egger, 2022). They allow seamless
integration of Python or R scripting, facilitate exploration of advanced
geographic analysis techniques, such as AI or ML methodologies, thus
cater to a broad spectrum of user expertise (Dietz, 2020). Their visual
interfaces present a structured, graphical blueprint for project organi-
zation, and champion a modular approach ideal for crafting knowledge
trees—a marked departure from the linear content in Jupyter notebooks
(Chauhan and Sehgal, 2018).
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However, most of these open tools are not fundamentally designed
for GIS. The pressing question is: can these tools be adapted and
expanded to satisfy the distinct requirements of GIS applications and,
consequently, bolster the RRE framework?

3. KNIME Analytics platform and geospatial Analytics Extension
for RRE framework

3.1. Harnessing KNIME Analytics platform’s capabilities for RRE
framework in geospatial analysis

The KNIME Analytics Platform presents a distinct advantage in
implementing the RRE framework in geospatial analysis (Di Martino,
2024). This is exemplified by the comprehensive workflow depicted in
Fig. 2, which illustrates a typical case from reading geographic data to
data manipulation, visualization, geographic modeling, machine
learning modeling, and the use of R and Python extensions, along with
components composed of multiple nodes. The workflow demonstrates
KNIME'’s modular architecture, enabling a complete end-to-end visual
programming process. It showcases data flow represented by arrows, the
capability for parallel computation of multiple data streams, program-
ming extensibility, and the scalability of combining multiple compo-
nents. Furthermore, both the workflow and these customized
components can be effectively shared on the open KNIME Hub. With the
support of KNIME Webportal, workflows can also be transformed into
WebGIS applications, enhancing their applicability and reach.

The platform’s feature set, dubbed MVP-S5, is concluded as Modular
Architecture, Visual Programming, Parallel Computation, Streaming
Data, Scripting Extensibility, Scalable Nodes, Server Synchronization,
and Seamless Sharing (Fig. 2).

Modular Architecture: Within KNIME, each node signifies a distinct
operation, contributing to a high degree of modularity that facilitates
the analysis phase of the RRE framework (Jagla et al., 2011). Nodes can
be manipulated without disrupting the overall structure, promoting
reproducibility by enabling scientists to reuse and rearrange pre-built
modules and compare them with modules of other geospatial tools or
models.

Visual Programming: KNIME employs visual interfaces to represent
programming constructs and enables users to craft programs by
manipulating elements graphically rather than textually (Berthold,
2007). This visual approach fosters reproducibility by making work-
flows intuitive and accessible to both programmers and non-
programmers, simplifying the understanding and reproduction of com-
plex geospatial concepts.

Parallel Computation: KNIME’s capability to perform multiple
computations simultaneously not only enhances computational effi-
ciency but also supports the reproducibility of complex or large-scale
tasks. It allows the user to inspect the results of different models
simultaneously, and thus fosters a more thorough and efficient analysis
process.

Streaming Data: In KNIME, each connection between nodes in the
data flow represents the data stream. This transparency in data flow aids
reproducibility by providing a clear and explicit map of the data’s
journey through the algorithm. As geospatial data often involves various
scales and formats, data flow visualization helps users understand how
data is processed, transformed, and measured.

Scripting Extensibility: This flexibility allows researchers to create
reproducible workflows that can be extended to suit unique geospatial
analysis needs using custom scripts with Python, R or Java, thereby
increases the compatibility of KNIME with new models. It also allow
users to build a new standardized extension based on Python packages
and KNIME Python API (KNIME Python API, 2023).

Scalable Nodes: Nodes in KNIME can be wrapped and configured as
components that work as nodes, and thus enable high scalability for
specific functions (Knime, 2023). This scalability supports reproduc-
ibility for complex geospatial analyses that involve multiple steps or
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Fig. 2. The MVP-S5 Feature Set of the KNIME Analytics Platform for the RRE Framework of Geospatial Analysis.

large datasets by allowing complex analyses to be encapsulated into
reusable components.

Server Synchronization: The cloud service can be directly accessed
by the desktop version of KNIME Analytics Platform, and workflows can
be run in the Webportal across all platforms with adjustable parameters
(Knime, 2023). This capability promotes reproducibility by ensuring
that everyone can replicate and explore the research, regardless of their
location or device.

Seamless Sharing: The workflows, components and nodes can be
easily shared and installed via KNIME Hub, and thus facilitate the
effortless and efficient sharing of data, tools, and results among users
(University, 2023).

In essence, the MVP-S5 features of the KNIME Analytics Platform
intricately align with the tenets of the RRE framework in geospatial
analysis. The Modular Architecture and Scalable Nodes enhance the
precision in the conceptualization of geospatial tasks, and allow more
flexible and customizable structures. Streaming Data ensures clarity in
measurement by making data flow transparent and traceable. Mean-
while, the combined capabilities of Visual Programming, Parallel
Computation, and Scripting Extensibility support robust analytical
processes and simplify complex analyses. Finally, Server Synchroniza-
tion and Seamless Sharing promote effective communication by
ensuring that findings and methodologies are easily accessible and
shared across platforms and users.

3.2. Applying the 4E approach in the geospatial Analytics Extension for
KNIME: Merging RRE strategy with GIS knowledge tree

In the rapidly evolving field of geospatial analysis, effectively inte-
grating the innovation of data and models from newly published

research is key to the successful application of the RRE framework. A
systematic and organized approach is essential to ensure efficiency,
consistency, and scalability. In this context, we propose the 4E approach
— Examine Innovation, Engineer Workflow, Establish Nodes, and Embed
Structure (Fig. 3). This strategy, designed intertwine the principles of the
RRE framework with the development of the Geospatial Analytics
extension for KNIME, not only emphasizes technical innovation in
geospatial analysis but also highlights how these innovations are effec-
tively organized, refined, standardized and supplemented within an
existing GIS knowledge tree.

Examine Innovation: This initial step involves a comprehensive
evaluation of either data innovation or model innovation, framed within
the context of an existing geospatial knowledge tree in KNIME. This
process is essential for understanding the unique aspects and re-
quirements of the new data or model, which aids users in compre-
hending the methods for replicability and expandability.

Engineer Workflow: Depending on the nature of the innovation, the
workflow engineering process is determined. For model innovations, an
initial assessment evaluates whether the model can be constructed using
existing KNIME nodes. If feasible, a component encapsulating these
nodes is created. If not, Python or R script nodes are embedded within
the component to act as the key function extracted from the academic
paper or package. For data innovations, it is vital to ascertain whether
the data can be retrieved via an API If so, the data can be directly
converted into a node. If API access isn’t available, the data will be
pushed to Dataverse for subsequent use.

Establish Nodes: After engineering the data or model using the
KNIME workflow, these nodes are then established as standard KNIME
components or new nodes in the Geospatial Analytics Extension for
KNIME. This process involves packaging the nodes into reusable
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components, which can be shared and reused across different projects or
by different teams. By doing so, we promote best practices, ensure
consistency, and improve efficiency in geospatial analysis, thereby
further strengthening the replicable and reproducible nature of the
process. This method not only fosters open-source collaboration but also
enhances the reproducibility and expandability of research by sharing
nodes across different disciplines.

Embed Structure: The final stage involves embedding the estab-
lished plugin nodes into the geographical knowledge tree. The organi-
zation and management of the geospatial knowledge tree is achieved by
building a GIS Nodes repository in GitHub. Similar to other software
development in GitHub involving collaborative efforts through crowd-
sourcing, the core team is responsible for the main development, while
user teams can optimize nodes by submitting issues and pull requests. By
embedding the plugin nodes into this knowledge tree, they become part
of this organized structure, and thus enhance accessibility and usability
for users in their geospatial analysis tasks. This structured approach
ensures the process’s adaptability and readiness to incorporate new
nodes as they emerge.

Collectively, these 4E steps delineate the entire journey from case
replication (Examine Innovation) to knowledge discovery and organi-
zation. This comprehensive process, encapsulated within the expansion
of the knowledge tree (Embed GIS Knowledge Tree) and leveraging vi-
sual programming workflows (Engineer Workflow) and node standard-
ization (Establish Nodes), successfully extends from specific case
replication to broader knowledge generalization. Importantly, it un-
derscores the significance of reproducibility and expandability
throughout the entire process.

3.3. Geospatial Analytics Extension for KNIME as an RRE framework for
replicating an ArcGIS-Pro centric textbook

Building upon the geospatial knowledge tree outlined in the text-
book, Computational Methods and GIS Application in Social Science (3rd
Edition) (Wang and Liu, 2023); we leveraged the KNIME Analytics
platform to recreate case studies and developed geospatial analysis
nodes, forming the Geospatial Analytics Extension for KNIME. Currently
in its 1.2 version, the extension is composed of 12 categories and 86
nodes. This diverse set of nodes accommodates a wide range of tasks,

including data import, cleaning, transformation, analysis, and visuali-
zation. The extension is continually developed and updated, with the
latest nodes and source code available on GitHub and the KNIME Hub
(Liu, 2024).

From a comprehensive review of the nodes incorporated into KNIME
workflows, 775 nodes were deployed, stemming from 146 distinct nodes
(Liu and Wang, 2023). The top 10 nodes frequently leveraged include
Math Formula, Joiner, GroupBy, GeoFile Reader, Linear Regression
Learner, Geospatial View, Column Filter, CSV Reader, and Row Filter.
Beyond basic functionalities, Spatial Join, Euclidean Distance, Projec-
tion, and Dissolve emerge as the primary nodes in the Geospatial Ana-
lytics Extension for KNIME (Refer to Fig. 4).

A noteworthy observation is the overlap between geospatial analysis
data operations and conventional data science tasks, evident in nodes
like Math Formula, Joiner, and GroupBy. This overlap underscores the
dual advantages of the KNIME Analytics platform in geospatial contexts.
On one hand, it allows seamless integration with KNIME’s overarching
data science capabilities and amplifies the extensibility of geospatial
analyses. For instance, nodes related to deep learning or Explainable Al
can be easily integrated and enrich the reproduction and expansion
potential of intricate geospatial analyses. On the other hand, a nuanced
analysis of the generic data science nodes paves the way for a clearer
delineation of the unique attributes of geographic operations or models
when replicating a case study for novel research.

3.4. Case study on measuring spatial accessibility within the RRE
framework context

In this section, a specific case study is introduced to demonstrate the
practical application of the Geospatial Analytics Extension for KNIME. It
aims to validate its efficacy through textbook replication and a focused
study on spatial accessibility.

Anchored in the RRE framework, we present a case study on
measuring spatial accessibility to hospitals in East Baton Rouge Parish
(EBRP). The study evaluates access for residents across census block
groups to five acute hospitals (Fig. 5). Data of locations and bed sizes of
hospitals is from the Louisiana Hospital Association’s 2021 directory.
Supplementary data concerning census block groups, including popu-
lation demographics and road networks in EBRP, is informed by the
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Fig. 4. The frequency of the top 45 nodes in the KNIME lab manual for Computational Methods and GIS Application in Social Science.

2020 Census.

3.5. KNIME workflow for G2SFCA based on an RRE framework

Spatial accessibility to healthcare services, measured by the gener-
alized two-step floating catchment method (G2SFCA), requires three
elements: demand (D), supply (S), and the spatial impedance or travel
cost (d) between them, such as travel time or distance (Wang, 2012;
Wang, 2014). The spatial accessibility at demand location i, SA;, is
written as

sa =Y |S£(d) /S (D (dy) M

where hospital capacity at supply location j is denoted by S;, population
at demand location k (or i) is denoted by Dy (or D;), and the interactions
between them is a declining function of their physical distance or travel
cost dy;j (or dy).

Emergent uncertainties within the G2SFCA model, when contextu-
alized within the RRE framework, are depicted in Fig. 6. They encom-
pass conceptual, measurement, modeling, and communication
dimensions. Supplementary Table S1 encapsulates these uncertainties
alongside the pertinent data or methodologies applied in the study.

In the G2SFCA implementation within the KNIME platform, the
workflow is segmented into six methodical phases, as depicted in Fig. 7.
These phases encompass the entirety of the process, from the initial data
acquisition and distance computations, through to the visualization of



L. Liu et al. International Journal of Applied Earth Observation and Geoinformation 130 (2024) 103948

N
— e [ilOMELET'S
4 A 0 5 10

Legend

<» Hospital

Population
[ Jo-952
[ 953-1387
[ 1388 - 1937
B 1938 - 2872
I 2873 - 6719

na =
l‘-‘%\;-&@s» ¥

4
. - N’

Fig. 5. (a) Location of East Baton Rouge Parish, and (b) Population and hospitals in EBRP.

SCALE
A
e N
] Different Resources
Different Group ! ! SUPPLY Specialty
Urban/rural Lo - Capacity
Ethnic groups roo b Service boundary
Income i i
Age ) i
A o R e S Bs
Network distance
Euclidean distance TRAVEL COST —» MODEL <
Various Travel mode d f(a)
Time cost
Expenditure
Departure time
Fig. 6. Illustration of the uncertainty in G2SFCA Model.
accessibility scores (Table 1). 3.6. Component Development, sensitivity analysis and WebPortal

The workflow’s design is inherently adaptable and aligns with the interface

principles of the RRE framework and the knowledge tree approach to

healthcare accessibility. Such adaptability is evident in the choices With a keen focus on replicability and adaptability, specific nodes

offered for distance computations and decay functions (as seen in Nodes tailored for geospatial analytical tasks are condensed into a compact

5-9, and Nodes 12-16), and facilitates an easy integration of alternative component within the RRE framework. A refined workflow was built to

methodologies and metrics. Supplementary Figures S1 and S2 show the illustrate the process of node standardization for 2SFCA model, G2SFCA

interfaces of the key nodes along with their parameters. model that integrates multiple models and parameters, and a model
sensitivity analysis based on looping parameters. The standardization
process is primarily executed through Components, which utilize nodes
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Table 1
Phases and Nodes in the G2SFCA Implementation.
Phase  Description Nodes
1 Reading Data Nodes 1-4
2 Calculating Travel Cost (OSRM Distance Matrix, Nodes 5-9
Euclidean distance, Google Distance Matrix, Road
Network)
3 Data Joining Nodes 10-11
4 Distance Decay Effect (2SFCA, E2SFA, Gravity, Nodes 12-16
Exponential, Hybrid) (Figure S1 and
S2)
5 Accessibility Scoring Nodes 17-21
6 Visualization Nodes 22-24

from the 2SFCA and G2SFCA models developed in the previous
workflow.

Fig. 8(a) illustrates this workflow, which reads the OD matrix data,
population, and hospital bed sizes, inherited from Node 11 in the pre-
ceding workflow. This workflow efficiently operationalizes the 2SFCA
and G2SFCA methodologies as components, drawn from nodes

delineated in earlier workflows. To bolster reproducibility, loop nodes
are adeptly integrated to enable detailed parameter sensitivity analyses.
Enhanced with custom parameter capabilities, this component harmo-
niously aligns with the behavior and scalability virtues of standard
KNIME nodes.

As shown in Fig. 8(b), the sub-workflow inside the 2SFCA Model
component amalgamates nodes from the antecedent workflow, notably
2SFCA distance decay parameter (Node 12) and Accessibility Scoring
(Nodes 17-21). A double configuration node (Node 2) is added to create
an interface to fine-tune the 2SFCA threshold parameter, as shown in
Fig. 9(a).

In parallel, Fig. 8(c) presents the G2SFCA component’s architectural
blueprint. This component is a mosaic of five distinct models, each of
which is harmonized with specific parameters. With deft integrations, it
consolidates all distance decay models (Nodes 12-16) and Nodes 17-21
from the antecedent workflow. To amplify adaptability, four innovative
configuration nodes (Nodes 6-8) have been incorporated to ensure a
user-friendly interface for parameter adjustments, which is further
depicted in Fig. 9(b).

Upon completing the workflow construction, researchers can utilize
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Fig. 8. (a) A refined workflow for using component of 2SFCA and G2SFCA, and its sub-workflows inside the components of (b) 2SFCA Model and (c) G2SFCA.

the integrated Explorer feature within the KNIME Analytics Platform to
upload it to the KNIME Hub. This not only facilitates the sharing of data
and workflows with other users but also synchronizes the associated
metadata and annotations. Furthermore, with minor adjustments, this
workflow can be uploaded to a cloud server licensed with the free
educational edition via the Explorer feature. Such a configuration

empowers users in any internet-enabled location to harness the robust
computational resources of the server through the KNIME platform and
adjust various parameters as needed. This feature of cloud-based sharing
and synchronized computational access offers geospatial researchers
significant convenience and advantages to explore large-scale models,
advanced algorithms, and complex operational environments, and yet
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requires no extensive programming background.
4. Result

Component 1 in the workflow shown in Fig. 7 examines the corre-
lation between different travel times and distances. It incorporates an
OSRM node, which utilizes the functions of the Open-Source Routing
Machine API (Huber and Rust, 2016), a Road Network Distance Matrix
node that operates based on a user-defined driving network and speed
information, and a Euclidean distance node for calculating distances
using coordinate data. Overall, the different types of travel distance and
time demonstrate a high degree of correlation, (Table 2). As shown in
Fig. 10(a), the driving time computed by OSRM Distance Matrix is, on
average, 4.7 min longer than that derived from road network calcula-
tions. Such a result is consistent with a previous study between Google
Map API time and road network time based on ArcGIS (Wang and Xu,
2011). Additionally, the travel distance was approximately 144 m more,
as shown in Fig. 10(b).

Fig. 11 showcases a comparative analysis of the distance decay
curves for five distinct models and their respective parameters, derived
from Component 2 in Fig. 6. Notably, different models and their pa-
rameters significantly influenced accessibility calculations. Future
research can further integrate more distance decay models to expand the
current choices available in the G2SFCA model and select the best-fitting

Table 2
Correlations between spatial costs by different methods.

OSRM Euclidean  Road Road network
distance  distance network distance
time
OSRM time 0.977 0.963 0.949 0.974
OSRM distance 0.985 0.95 0.983
Euclidean 0.951 0.980
distance
Road network 0.977

time

Note: OSRM Time (Distance) and Road Network Time (Distance) represent the
travel time (distance) calculated by driving by OSRM node and Road Network
Distance Matrix nodes.
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distance decay model and its parameters based on actual travel data
(Shin and Lee, 2018; Jing, 2023).

The result of the looping workflow for sensitivity analysis further
reveals that while different parameters influence accessibility scores, the
inherent model trends vary with parameter adjustments. As illustrated
in Fig. 12, both the Gravity model and the Hybrid gravity model
generally yield consistent ranking trends in terms of accessibility scores.
However, as the decay coefficient increases, the disparity in accessibility
scores becomes more pronounced. For the 2SFCA model, as the
threshold increases, the accessibility scores converge towards the mean,
but the rankings exhibit irregular fluctuations. This highlights the
sensitivity of the 2SFCA model to spatial interactions with various
threshold catchment area sizes. With such model adjustments, the
workflow for G2SFCA offers a robust avenue for exploring the charac-
teristics of accessibility models.

Ultimately, all models in the G2SFCA workflow depicted in Fig. 13
(b) can be consolidated into a knowledge tree for spatial accessibility
measures for healthcare, as illustrated in Fig. 13(a), set against a broader
context (Liu, 2022). As new methodologies emerge, this knowledge tree
will undergo continuous expansion. For instance, new models, such as
the 2-step virtual catchment area (2SVCA) method that is tailored to
measure the accessibility via a virtual space (internet) such as telehealth
access can be integrated on the left side of the diagram (Liu, 2023).

5. Concluding comments

This paper reports our effort to delve into the potential of integrating
visual programming platforms, specifically KNIME, with GIS function-
alities to fortify the RRE framework and GIS knowledge tree. This
exploration highlights the tangible advantages of this integration,
especially in the context of increasing challenges faced by the GIS
community.

The Geospatial Analytics Extension for KNIME uses a workflow-
based platform to mitigate technical challenges often faced in GIS. Its
modular and visual programming capabilities pave the way for a more
intuitive and accessible geospatial analysis experience. The 4E approach
provides a systematic methodology for integrating new geospatial in-
novations into established platforms. As the GIS field rapidly evolves,
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such structured strategies are crucial for assimilating innovations and
ensuring adaptability in the GIS community.

The case studies implemented in KNIME in a recent textbook, espe-
cially one focusing on spatial accessibility measures by the G2SFCA
model, demonstrate the versatility and efficacy of the Geospatial Ana-
lytics Extension for KNIME. A particularly intriguing revelation is the
intersection of geospatial analysis operations with foundational data
science tasks. This intersection underscores the dual capabilities of
platforms like KNIME. On one hand, it facilitates specialized geospatial
functionalities. On the other hand, it integrates seamlessly with core
data science competencies. Such synergy is pivotal as it not only aug-
ments the breadth of geospatial studies but also promotes interdisci-
plinary collaborations.

Furthermore, this investigation has illuminated some of the inherent
challenges facing the GIS community, particularly in the realm of open-
source GIS. As the GIS domain burgeons with a plethora of tools, data-
sets, and models, it calls for a structured synthesis. The challenge is not
just about collating this vast reservoir of knowledge but organizing it in
a manner that is intuitive, accessible, and conducive to further research.
Our in-depth illustration of creating a knowledge tree for healthcare
accessibility integrated with nodes for workflows in visual programing
software is a step in this direction, and provides a structured framework
that can be continually expanded and refined as new methodologies and
insights emerge.

Our work on the Geospatial Analytics Extension for KNIME shows the
transformative potential of integrating visual programming platforms
and standardized GIS functionalities, enhances interdisciplinary
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cooperation within the RRE framework. While this integration marks a
significant step in advancing the RRE in geospatial analyses, it requires
further development. Expanding GIS functionalities beyond textbook
tools, incorporating nodes for remote sensing imagery, and conducting
more empirical studies to validate KNIME’s effectiveness in geospatial
analysis are key areas for future focus. This work sets the stage for
advancing geospatial analytics through improved integration of GIS and
visual programming.
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Healthcare Accessibility by G2SFCA Model under KNIME Hub.
https://hub.knime.com/center for geographic analysis at Harvard
university/spaces/Geospatial Analytics Examples/latest/
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