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A B S T R A C T   

Reproducibility, replicability, and expandability (RRE) have emerged as fundamental concerns in the realm of 
scientific research and development. Wherein, devising effective solutions for RRE within geospatial analysis 
stands out as a particularly critical challenge that demands immediate attention. Although there has been an 
evolution from basic reproducibility of code and data to a more comprehensive cyberinfrastructure, this inte-
grated solution is still grappling with issues of limited user accessibility, steep learning curves particularly in 
coding skills, and difficulties in achieving collaboration with other data science platforms This study proposes a 
framework that combines open-source GIS with visual programming platforms, grounded in principles of stan-
dardization and educationalization, to advance the RRE framework in geographic analysis. Using the Geospatial 
Analytics Extension for KNIME as an example, we demonstrate the platform’s adaptability and utility through 
case studies in a recent textbook with an in-depth illustration of spatial accessibility analysis, specifically via the 
Generalized Two-Step Floating Catchment Area (G2SFCA) method. Our findings shed light on the transformative 
potential of such an integrative strategy, offer fresh perspectives for enhancing the RRE in geospatial analysis and 
craft a well-structured, intuitive, and extensive GIS knowledge tree.   

1. Introduction 

Reproducibility, replicability, and expandability (RRE) have 
emerged as fundamental concerns in the realm of scientific research and 
development (Goodchild, 2021). In the context of geographic analysis, 
the discourse surrounding RRE encompasses a range of topics including 
the precise definition of RRE concepts, the categorization of literature in 
terms of its replicability, the challenges posed by spatiotemporal vari-
ability, the difficulties in generalizing replication results, and potential 
solutions to these issues (Zaragozí et al., 2020; Nüst and Pebesma, 
2021). Among these topics, devising effective solutions for RRE within 
geospatial analysis stands out as a particularly critical and pressing 
challenge that demands immediate attention (Wilson, 2020). 

The development of RRE framework for geospatial analysis aligns 

closely with the broader evolution of RRE in data science (Sui and 
Kedron, 2021; Mai, 2022). This evolution is marked by a shift from basic 
reproducibility of code and data to a more comprehensive Cyberin-
frastructure solution. This integrated solution, exemplified by platforms 
like CyberGIS, encapsulates data, code, metadata, and webGIS func-
tionalities within a comprehensive open-source programming environ-
ment (Evans, 2019; Moreau et al., 2023). However, the challenges are 
substantial, stemming from the rapid expansion of geospatial data, the 
emergence of new open-source geospatial analysis packages (Shook, 
2019), ongoing updates in open-source platforms (Steiniger and Bocher, 
2009; Neteler and Mitasova, 2008), and the increasing demand for 
computational resources (Pijanowski, 2014). These challenges highlight 
the need for a solution that not only integrates but also simplifies and 
democratizes access to complex geospatial data and analysis tools. 
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Integrated platforms are grappling with issues of limited user accessi-
bility, steep learning curves particularly in coding skills, and difficulties 
in achieving seamless collaboration with other data science platforms 
(Goldberg et al., 2020). Moreover, the rapid pace of GIS knowledge 
expansion creates a synthesis dilemma. Despite a rich set of GIS tools, 
studies, and models (O’reilly, 2009), the task of effectively structuring 
this burgeoning body of knowledge remains formidable. The ultimate 
objective is not mere aggregation but a structured organization that 
fosters understanding and catalyzes further research. 

In response to the challenges of limited user accessibility, steep 
learning curves associated with coding, the difficulties in seamless 
collaboration with other data science platforms, and the rapid expansion 
of GIS knowledge, this study proposes a framework that combines open- 
source GIS with visual programming platforms. Grounded in principles 
of standardization and educationalization, the framework aims to 
advance the RRE framework in geographic analysis. This solution, 
exemplified by the Geospatial Analytics Extension for KNIME, utilizes 
visualization to reduce the learning curve, standardizes geographic 
analysis modules derived from GIS knowledge tree for efficient inte-
gration with data science platforms, and promotes RRE through inter-
disciplinary collaboration. This approach represents a decentralized and 
collaborative solution, transitioning from a holistic to a more distributed 
methodology. 

This paper begins with a comprehensive literature review in Section 
2, delving into the concepts, current solutions, and the role of open vi-
sual programming in the RRE in geospatial analysis. Section 3 in-
troduces the eight key features of KNIME Analytics Platform and its 
integration with extension development, guided by the 4E principle. We 
further provide an in-depth comparison between a KNIME workbook 
and its ArcGIS Pro-focused textbook. Delving into a detailed case study 
centered on spatial accessibility and leveraging the generalized two-step 
floating catchment method (G2SFCA), Section 5 underscores the distinct 
advantages of visual programming for RRE framework. Our exploration 
sheds light on its transformative capacity to shape a holistic knowledge 
tree and highlights its indispensable contribution to the evolution of the 
RRE framework in geospatial analysis. 

2. Literature review 

Fig. 1 summarizes the framework for literature analysis on the RRE 
framework in geospatial analysis, which comprises a comparison of 
concepts like reproduction, replication, reanalysis, generalization, and 
expansion, and an overview of the key stages in geospatial analysis and 
the evolution of RRE solutions. 

2.1. Concepts of Reproducibility, Replicability, and expandability (RRE) 

Reproducibility and replicability (R&R) are widely acknowledged as 
fundamental to the creation and verification of scientific theories and 
models (Jasny, 2011), including those in Geographic Information Sci-
ences (GISciences) (Konkol et al., 2019). As well accepted and defined in 
the 2019 National Academies Report on “Reproducibility and Replica-
bility in Science” (Kedron, 2021); reproducibility is defined as obtaining 
the same conclusions using the same data and analytical methods, 
whereas replicability involves the application of original methods to 
different datasets (National Academies of Sciences, E. and Medicine, 
Reproducibility and replicability in science., 2019). The sequential 
positioning of these two terms actually mirrors the scientific argumen-
tation process, transitioning from reproducibility to replicability 
(Brunsdon and Comber, 2021). However, the reveres terms of replica-
bility and reproducibility may emphasized the transition from replica-
bility to reproducibility, particularly in studies using different datasets 
to achieve the same conclusions (Wilson, 2020; Stevens, 2017). Such 
reproduction is closely related to the concept of generalization for the 
(Halbert, 2022), indicating a lifecycle mantra: reproduce, replication 
and reproduction (Machicao, 2022). 

As there exist different levels of replicability in various type of geo-
spatial research or weak replicability due to the inherent spatiotemporal 
heterogeneity (Ostermann and Granell, 2016; Wainwright, 2020). The 
pursuit of generalizable conclusions or the laws in geographic sciences 
through new data utilization and model expansion is a crucial aspect of 
scientific research (Dangermond and Goodchild, 2019; Kedron and 
Holler, 2022), necessitating broader interdisciplinary collaboration and 
expansion. Expandability refers to the potential to extend existing 
research materials by reanalyzing it with new functionality (Goeva 
et al., 2020; Kedron and Frazier, 2022). Therefore, the progression from 

Fig. 1. Literature review summary on the Reproducible, Replicable and Extensibility (RRE) framework for geospatial analysis. (a) Concepts comparison on 
reproduction, replication, reanalysis, generalization, and expansion, (b) key stages for geospatial analysis and the evolution of RRE solutions. 
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reproducibility to replicability, to generalization, epitomizes the process 
of expandability in data research. The extensibility also transcends the 
confines of geography, extending to interdisciplinary and cross-group 
collaborations with the ultimate goal of enriching the spectrum of 
geographical knowledge (Iosifescu Enescu, 2019). Fig. 1(a) illustrates 
the core concepts of reproducibility, replicability, reanalysis, general-
ization, and expandability. 

2.2. RRE framework and solutions for geospatial analysis 

The RRE framework is intrinsically aligned with the entire scientific 
research process, encompassing concept development, data collection, 
analysis, and interpretation (Kedron, 2021). This framework is contin-
uously evolving in response to the increasing complexity of data, 
computational codes, platforms, and research content. Central to the 
RRE framework are data and analysis, with a growing trend in the 
geographic RRE field towards utilizing open-source, programming- 
based code. This shift is largely attributed to its potential to minimize 
manual operations (Grieve, 2020). 

Emphasizing minimum reproducible standards for data and code 
(Peng, 2011), the RRE framework has expanded its scope to include 
comprehensive workflows, software versioning, random parameter 
settings, and adherence to the “10 simple rules” for effective text pro-
cessing (Sandve, 2013). In this evolving landscape, CyberGIS has 
emerged as a pivotal development, integrating the strengths of WebGIS 
and container technology to become a significant trend in RRE platform 
solutions (Gahegan, 2019; Yin, 2018). CyberGIS is particularly effective 
in facilitating basic reproduction and replication functions (Wang, 
2019). 

However, the challenges for CyberGIS as an integrated solution are 
substantial, which include limited user accessibility, steep learning 
curves particularly in coding skills, and difficulties in achieving seamless 
collaboration with other data science platforms (Goldberg et al., 2020). 
Consequently, it becomes imperative to standardize data and functional 
modules, along with reducing the learning barriers associated with 
geospatial analysis modules (Bush, 2020; Lin, 2020). Such measures are 
crucial not only for promoting interdisciplinary collaboration but also 
for lowering the learning barriers associated with the platform. Ulti-
mately, these efforts contribute to the advancement of GIS education 
and the further development of the RRE framework (Kedron, 2021; Leek 
and Peng, 2015). 

2.3. Analysis standardization and reducing learning barriers through 
visual programming 

Visual programming is increasingly acknowledged as an effective 
method for standardizing tools and reducing the learning barriers in 
programming education (Eronen, 2002; Dillon et al., 2012; Olsson, 
2015). Popular platforms like Scratch (Xinogalos, 2015)and Minecraft 
(Saito, 2016)have demonstrated their effectiveness in facilitating 
collaborative and constructivist learning through mind mapping tech-
niques. ESRI ArcGIS Model Builder also exemplifies visual programming 
for GIS. Facilitating GIS through visual programming could be a crucial 
pathway for the ’Next Generation of GIS’ (Zhu, 2020). 

In the realm of data science, open visual programming software like 
KNIME Analytics Platform, Orange, and RapidMiner emerges as a 
promising solution (Hirudkar and Sherekar, 2013). These platforms 
offer scalable modules and visual programming, and reduce the tech-
nical barriers for data processing (Egger, 2022). They allow seamless 
integration of Python or R scripting, facilitate exploration of advanced 
geographic analysis techniques, such as AI or ML methodologies, thus 
cater to a broad spectrum of user expertise (Dietz, 2020). Their visual 
interfaces present a structured, graphical blueprint for project organi-
zation, and champion a modular approach ideal for crafting knowledge 
trees—a marked departure from the linear content in Jupyter notebooks 
(Chauhan and Sehgal, 2018). 

However, most of these open tools are not fundamentally designed 
for GIS. The pressing question is: can these tools be adapted and 
expanded to satisfy the distinct requirements of GIS applications and, 
consequently, bolster the RRE framework? 

3. KNIME Analytics platform and geospatial Analytics Extension 
for RRE framework 

3.1. Harnessing KNIME Analytics platform’s capabilities for RRE 
framework in geospatial analysis 

The KNIME Analytics Platform presents a distinct advantage in 
implementing the RRE framework in geospatial analysis (Di Martino, 
2024). This is exemplified by the comprehensive workflow depicted in 
Fig. 2, which illustrates a typical case from reading geographic data to 
data manipulation, visualization, geographic modeling, machine 
learning modeling, and the use of R and Python extensions, along with 
components composed of multiple nodes. The workflow demonstrates 
KNIME’s modular architecture, enabling a complete end-to-end visual 
programming process. It showcases data flow represented by arrows, the 
capability for parallel computation of multiple data streams, program-
ming extensibility, and the scalability of combining multiple compo-
nents. Furthermore, both the workflow and these customized 
components can be effectively shared on the open KNIME Hub. With the 
support of KNIME Webportal, workflows can also be transformed into 
WebGIS applications, enhancing their applicability and reach. 

The platform’s feature set, dubbed MVP-S5, is concluded as Modular 
Architecture, Visual Programming, Parallel Computation, Streaming 
Data, Scripting Extensibility, Scalable Nodes, Server Synchronization, 
and Seamless Sharing (Fig. 2). 

Modular Architecture: Within KNIME, each node signifies a distinct 
operation, contributing to a high degree of modularity that facilitates 
the analysis phase of the RRE framework (Jagla et al., 2011). Nodes can 
be manipulated without disrupting the overall structure, promoting 
reproducibility by enabling scientists to reuse and rearrange pre-built 
modules and compare them with modules of other geospatial tools or 
models. 

Visual Programming: KNIME employs visual interfaces to represent 
programming constructs and enables users to craft programs by 
manipulating elements graphically rather than textually (Berthold, 
2007). This visual approach fosters reproducibility by making work-
flows intuitive and accessible to both programmers and non- 
programmers, simplifying the understanding and reproduction of com-
plex geospatial concepts. 

Parallel Computation: KNIME’s capability to perform multiple 
computations simultaneously not only enhances computational effi-
ciency but also supports the reproducibility of complex or large-scale 
tasks. It allows the user to inspect the results of different models 
simultaneously, and thus fosters a more thorough and efficient analysis 
process. 

Streaming Data: In KNIME, each connection between nodes in the 
data flow represents the data stream. This transparency in data flow aids 
reproducibility by providing a clear and explicit map of the data’s 
journey through the algorithm. As geospatial data often involves various 
scales and formats, data flow visualization helps users understand how 
data is processed, transformed, and measured. 

Scripting Extensibility: This flexibility allows researchers to create 
reproducible workflows that can be extended to suit unique geospatial 
analysis needs using custom scripts with Python, R or Java, thereby 
increases the compatibility of KNIME with new models. It also allow 
users to build a new standardized extension based on Python packages 
and KNIME Python API (KNIME Python API, 2023). 

Scalable Nodes: Nodes in KNIME can be wrapped and configured as 
components that work as nodes, and thus enable high scalability for 
specific functions (Knime, 2023). This scalability supports reproduc-
ibility for complex geospatial analyses that involve multiple steps or 
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large datasets by allowing complex analyses to be encapsulated into 
reusable components. 

Server Synchronization: The cloud service can be directly accessed 
by the desktop version of KNIME Analytics Platform, and workflows can 
be run in the Webportal across all platforms with adjustable parameters 
(Knime, 2023). This capability promotes reproducibility by ensuring 
that everyone can replicate and explore the research, regardless of their 
location or device. 

Seamless Sharing: The workflows, components and nodes can be 
easily shared and installed via KNIME Hub, and thus facilitate the 
effortless and efficient sharing of data, tools, and results among users 
(University, 2023). 

In essence, the MVP-S5 features of the KNIME Analytics Platform 
intricately align with the tenets of the RRE framework in geospatial 
analysis. The Modular Architecture and Scalable Nodes enhance the 
precision in the conceptualization of geospatial tasks, and allow more 
flexible and customizable structures. Streaming Data ensures clarity in 
measurement by making data flow transparent and traceable. Mean-
while, the combined capabilities of Visual Programming, Parallel 
Computation, and Scripting Extensibility support robust analytical 
processes and simplify complex analyses. Finally, Server Synchroniza-
tion and Seamless Sharing promote effective communication by 
ensuring that findings and methodologies are easily accessible and 
shared across platforms and users. 

3.2. Applying the 4E approach in the geospatial Analytics Extension for 
KNIME: Merging RRE strategy with GIS knowledge tree 

In the rapidly evolving field of geospatial analysis, effectively inte-
grating the innovation of data and models from newly published 

research is key to the successful application of the RRE framework. A 
systematic and organized approach is essential to ensure efficiency, 
consistency, and scalability. In this context, we propose the 4E approach 
→ Examine Innovation, Engineer Workflow, Establish Nodes, and Embed 
Structure (Fig. 3). This strategy, designed intertwine the principles of the 
RRE framework with the development of the Geospatial Analytics 
extension for KNIME, not only emphasizes technical innovation in 
geospatial analysis but also highlights how these innovations are effec-
tively organized, refined, standardized and supplemented within an 
existing GIS knowledge tree. 

Examine Innovation: This initial step involves a comprehensive 
evaluation of either data innovation or model innovation, framed within 
the context of an existing geospatial knowledge tree in KNIME. This 
process is essential for understanding the unique aspects and re-
quirements of the new data or model, which aids users in compre-
hending the methods for replicability and expandability. 

Engineer Workflow: Depending on the nature of the innovation, the 
workflow engineering process is determined. For model innovations, an 
initial assessment evaluates whether the model can be constructed using 
existing KNIME nodes. If feasible, a component encapsulating these 
nodes is created. If not, Python or R script nodes are embedded within 
the component to act as the key function extracted from the academic 
paper or package. For data innovations, it is vital to ascertain whether 
the data can be retrieved via an API. If so, the data can be directly 
converted into a node. If API access isn’t available, the data will be 
pushed to Dataverse for subsequent use. 

Establish Nodes: After engineering the data or model using the 
KNIME workflow, these nodes are then established as standard KNIME 
components or new nodes in the Geospatial Analytics Extension for 
KNIME. This process involves packaging the nodes into reusable 

Fig. 2. The MVP-S5 Feature Set of the KNIME Analytics Platform for the RRE Framework of Geospatial Analysis.  
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components, which can be shared and reused across different projects or 
by different teams. By doing so, we promote best practices, ensure 
consistency, and improve efficiency in geospatial analysis, thereby 
further strengthening the replicable and reproducible nature of the 
process. This method not only fosters open-source collaboration but also 
enhances the reproducibility and expandability of research by sharing 
nodes across different disciplines. 

Embed Structure: The final stage involves embedding the estab-
lished plugin nodes into the geographical knowledge tree. The organi-
zation and management of the geospatial knowledge tree is achieved by 
building a GIS Nodes repository in GitHub. Similar to other software 
development in GitHub involving collaborative efforts through crowd-
sourcing, the core team is responsible for the main development, while 
user teams can optimize nodes by submitting issues and pull requests. By 
embedding the plugin nodes into this knowledge tree, they become part 
of this organized structure, and thus enhance accessibility and usability 
for users in their geospatial analysis tasks. This structured approach 
ensures the process’s adaptability and readiness to incorporate new 
nodes as they emerge. 

Collectively, these 4E steps delineate the entire journey from case 
replication (Examine Innovation) to knowledge discovery and organi-
zation. This comprehensive process, encapsulated within the expansion 
of the knowledge tree (Embed GIS Knowledge Tree) and leveraging vi-
sual programming workflows (Engineer Workflow) and node standard-
ization (Establish Nodes), successfully extends from specific case 
replication to broader knowledge generalization. Importantly, it un-
derscores the significance of reproducibility and expandability 
throughout the entire process. 

3.3. Geospatial Analytics Extension for KNIME as an RRE framework for 
replicating an ArcGIS-Pro centric textbook 

Building upon the geospatial knowledge tree outlined in the text-
book, Computational Methods and GIS Application in Social Science (3rd 
Edition) (Wang and Liu, 2023); we leveraged the KNIME Analytics 
platform to recreate case studies and developed geospatial analysis 
nodes, forming the Geospatial Analytics Extension for KNIME. Currently 
in its 1.2 version, the extension is composed of 12 categories and 86 
nodes. This diverse set of nodes accommodates a wide range of tasks, 

including data import, cleaning, transformation, analysis, and visuali-
zation. The extension is continually developed and updated, with the 
latest nodes and source code available on GitHub and the KNIME Hub 
(Liu, 2024). 

From a comprehensive review of the nodes incorporated into KNIME 
workflows, 775 nodes were deployed, stemming from 146 distinct nodes 
(Liu and Wang, 2023). The top 10 nodes frequently leveraged include 
Math Formula, Joiner, GroupBy, GeoFile Reader, Linear Regression 
Learner, Geospatial View, Column Filter, CSV Reader, and Row Filter. 
Beyond basic functionalities, Spatial Join, Euclidean Distance, Projec-
tion, and Dissolve emerge as the primary nodes in the Geospatial Ana-
lytics Extension for KNIME (Refer to Fig. 4). 

A noteworthy observation is the overlap between geospatial analysis 
data operations and conventional data science tasks, evident in nodes 
like Math Formula, Joiner, and GroupBy. This overlap underscores the 
dual advantages of the KNIME Analytics platform in geospatial contexts. 
On one hand, it allows seamless integration with KNIME’s overarching 
data science capabilities and amplifies the extensibility of geospatial 
analyses. For instance, nodes related to deep learning or Explainable AI 
can be easily integrated and enrich the reproduction and expansion 
potential of intricate geospatial analyses. On the other hand, a nuanced 
analysis of the generic data science nodes paves the way for a clearer 
delineation of the unique attributes of geographic operations or models 
when replicating a case study for novel research. 

3.4. Case study on measuring spatial accessibility within the RRE 
framework context 

In this section, a specific case study is introduced to demonstrate the 
practical application of the Geospatial Analytics Extension for KNIME. It 
aims to validate its efficacy through textbook replication and a focused 
study on spatial accessibility. 

Anchored in the RRE framework, we present a case study on 
measuring spatial accessibility to hospitals in East Baton Rouge Parish 
(EBRP). The study evaluates access for residents across census block 
groups to five acute hospitals (Fig. 5). Data of locations and bed sizes of 
hospitals is from the Louisiana Hospital Association’s 2021 directory. 
Supplementary data concerning census block groups, including popu-
lation demographics and road networks in EBRP, is informed by the 

Fig. 3. The 4E Approach (Examine Innovation, Engineer Workflow, Establish Nodes, and Embed Structure) for the Geospatial Analytics Extension for KNIME, based 
on the RRE Framework with Geospatial Knowledge Tree. 
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2020 Census. 

3.5. KNIME workflow for G2SFCA based on an RRE framework 

Spatial accessibility to healthcare services, measured by the gener-
alized two-step floating catchment method (G2SFCA), requires three 
elements: demand (D), supply (S), and the spatial impedance or travel 
cost (d) between them, such as travel time or distance (Wang, 2012; 
Wang, 2014). The spatial accessibility at demand location i, SAi, is 
written as 

SAi ↑
)n

j↑1

[
Sjf↓dij↔ω

)m

k↑1
↓Dkf↓dkj↔↔

]
(1)  

where hospital capacity at supply location j is denoted by Sj, population 
at demand location k (or i) is denoted by Dk (or Di), and the interactions 
between them is a declining function of their physical distance or travel 
cost dkj (or dij). 

Emergent uncertainties within the G2SFCA model, when contextu-
alized within the RRE framework, are depicted in Fig. 6. They encom-
pass conceptual, measurement, modeling, and communication 
dimensions. Supplementary Table S1 encapsulates these uncertainties 
alongside the pertinent data or methodologies applied in the study. 

In the G2SFCA implementation within the KNIME platform, the 
workflow is segmented into six methodical phases, as depicted in Fig. 7. 
These phases encompass the entirety of the process, from the initial data 
acquisition and distance computations, through to the visualization of 

Fig. 4. The frequency of the top 45 nodes in the KNIME lab manual for Computational Methods and GIS Application in Social Science.  
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accessibility scores (Table 1). 
The workflow’s design is inherently adaptable and aligns with the 

principles of the RRE framework and the knowledge tree approach to 
healthcare accessibility. Such adaptability is evident in the choices 
offered for distance computations and decay functions (as seen in Nodes 
5–9, and Nodes 12–16), and facilitates an easy integration of alternative 
methodologies and metrics. Supplementary Figures S1 and S2 show the 
interfaces of the key nodes along with their parameters. 

3.6. Component Development, sensitivity analysis and WebPortal 
interface 

With a keen focus on replicability and adaptability, specific nodes 
tailored for geospatial analytical tasks are condensed into a compact 
component within the RRE framework. A refined workflow was built to 
illustrate the process of node standardization for 2SFCA model, G2SFCA 
model that integrates multiple models and parameters, and a model 
sensitivity analysis based on looping parameters. The standardization 
process is primarily executed through Components, which utilize nodes 

Fig. 5. (a) Location of East Baton Rouge Parish, and (b) Population and hospitals in EBRP.  

Fig. 6. Illustration of the uncertainty in G2SFCA Model.  
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from the 2SFCA and G2SFCA models developed in the previous 
workflow. 

Fig. 8(a) illustrates this workflow, which reads the OD matrix data, 
population, and hospital bed sizes, inherited from Node 11 in the pre-
ceding workflow. This workflow efficiently operationalizes the 2SFCA 
and G2SFCA methodologies as components, drawn from nodes 

delineated in earlier workflows. To bolster reproducibility, loop nodes 
are adeptly integrated to enable detailed parameter sensitivity analyses. 
Enhanced with custom parameter capabilities, this component harmo-
niously aligns with the behavior and scalability virtues of standard 
KNIME nodes. 

As shown in Fig. 8(b), the sub-workflow inside the 2SFCA Model 
component amalgamates nodes from the antecedent workflow, notably 
2SFCA distance decay parameter (Node 12) and Accessibility Scoring 
(Nodes 17–21). A double configuration node (Node 2) is added to create 
an interface to fine-tune the 2SFCA threshold parameter, as shown in 
Fig. 9(a). 

In parallel, Fig. 8(c) presents the G2SFCA component’s architectural 
blueprint. This component is a mosaic of five distinct models, each of 
which is harmonized with specific parameters. With deft integrations, it 
consolidates all distance decay models (Nodes 12–16) and Nodes 17–21 
from the antecedent workflow. To amplify adaptability, four innovative 
configuration nodes (Nodes 6–8) have been incorporated to ensure a 
user-friendly interface for parameter adjustments, which is further 
depicted in Fig. 9(b). 

Upon completing the workflow construction, researchers can utilize 

Fig. 7. KNIME workflow for G2SFCA model.  

Table 1 
Phases and Nodes in the G2SFCA Implementation.  

Phase Description Nodes 

1 Reading Data Nodes 1–4 
2 Calculating Travel Cost (OSRM Distance Matrix, 

Euclidean distance, Google Distance Matrix, Road 
Network) 

Nodes 5–9 

3 Data Joining Nodes 10–11 
4 Distance Decay Effect (2SFCA, E2SFA, Gravity, 

Exponential, Hybrid) 
Nodes 12–16 
(Figure S1 and 
S2) 

5 Accessibility Scoring Nodes 17–21 
6 Visualization Nodes 22–24  
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the integrated Explorer feature within the KNIME Analytics Platform to 
upload it to the KNIME Hub. This not only facilitates the sharing of data 
and workflows with other users but also synchronizes the associated 
metadata and annotations. Furthermore, with minor adjustments, this 
workflow can be uploaded to a cloud server licensed with the free 
educational edition via the Explorer feature. Such a configuration 

empowers users in any internet-enabled location to harness the robust 
computational resources of the server through the KNIME platform and 
adjust various parameters as needed. This feature of cloud-based sharing 
and synchronized computational access offers geospatial researchers 
significant convenience and advantages to explore large-scale models, 
advanced algorithms, and complex operational environments, and yet 

Fig. 8. (a) A refined workflow for using component of 2SFCA and G2SFCA, and its sub-workflows inside the components of (b) 2SFCA Model and (c) G2SFCA.  
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requires no extensive programming background. 

4. Result 

Component 1 in the workflow shown in Fig. 7 examines the corre-
lation between different travel times and distances. It incorporates an 
OSRM node, which utilizes the functions of the Open-Source Routing 
Machine API (Huber and Rust, 2016), a Road Network Distance Matrix 
node that operates based on a user-defined driving network and speed 
information, and a Euclidean distance node for calculating distances 
using coordinate data. Overall, the different types of travel distance and 
time demonstrate a high degree of correlation, (Table 2). As shown in 
Fig. 10(a), the driving time computed by OSRM Distance Matrix is, on 
average, 4.7 min longer than that derived from road network calcula-
tions. Such a result is consistent with a previous study between Google 
Map API time and road network time based on ArcGIS (Wang and Xu, 
2011). Additionally, the travel distance was approximately 144 m more, 
as shown in Fig. 10(b). 

Fig. 11 showcases a comparative analysis of the distance decay 
curves for five distinct models and their respective parameters, derived 
from Component 2 in Fig. 6. Notably, different models and their pa-
rameters significantly influenced accessibility calculations. Future 
research can further integrate more distance decay models to expand the 
current choices available in the G2SFCA model and select the best-fitting 

distance decay model and its parameters based on actual travel data 
(Shin and Lee, 2018; Jing, 2023). 

The result of the looping workflow for sensitivity analysis further 
reveals that while different parameters influence accessibility scores, the 
inherent model trends vary with parameter adjustments. As illustrated 
in Fig. 12, both the Gravity model and the Hybrid gravity model 
generally yield consistent ranking trends in terms of accessibility scores. 
However, as the decay coefficient increases, the disparity in accessibility 
scores becomes more pronounced. For the 2SFCA model, as the 
threshold increases, the accessibility scores converge towards the mean, 
but the rankings exhibit irregular fluctuations. This highlights the 
sensitivity of the 2SFCA model to spatial interactions with various 
threshold catchment area sizes. With such model adjustments, the 
workflow for G2SFCA offers a robust avenue for exploring the charac-
teristics of accessibility models. 

Ultimately, all models in the G2SFCA workflow depicted in Fig. 13 
(b) can be consolidated into a knowledge tree for spatial accessibility 
measures for healthcare, as illustrated in Fig. 13(a), set against a broader 
context (Liu, 2022). As new methodologies emerge, this knowledge tree 
will undergo continuous expansion. For instance, new models, such as 
the 2-step virtual catchment area (2SVCA) method that is tailored to 
measure the accessibility via a virtual space (internet) such as telehealth 
access can be integrated on the left side of the diagram (Liu, 2023). 

5. Concluding comments 

This paper reports our effort to delve into the potential of integrating 
visual programming platforms, specifically KNIME, with GIS function-
alities to fortify the RRE framework and GIS knowledge tree. This 
exploration highlights the tangible advantages of this integration, 
especially in the context of increasing challenges faced by the GIS 
community. 

The Geospatial Analytics Extension for KNIME uses a workflow- 
based platform to mitigate technical challenges often faced in GIS. Its 
modular and visual programming capabilities pave the way for a more 
intuitive and accessible geospatial analysis experience. The 4E approach 
provides a systematic methodology for integrating new geospatial in-
novations into established platforms. As the GIS field rapidly evolves, 

Fig. 9. Interface of the components (a) 2SFCA and (b) G2SFCA.  

Table 2 
Correlations between spatial costs by different methods.   

OSRM 
distance 

Euclidean 
distance 

Road 
network 
time 

Road network 
distance 

OSRM time  0.977  0.963  0.949  0.974 
OSRM distance   0.985  0.95  0.983 
Euclidean 

distance    
0.951  0.980 

Road network 
time     

0.977 

Note: OSRM Time (Distance) and Road Network Time (Distance) represent the 
travel time (distance) calculated by driving by OSRM node and Road Network 
Distance Matrix nodes. 
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such structured strategies are crucial for assimilating innovations and 
ensuring adaptability in the GIS community. 

The case studies implemented in KNIME in a recent textbook, espe-
cially one focusing on spatial accessibility measures by the G2SFCA 
model, demonstrate the versatility and efficacy of the Geospatial Ana-
lytics Extension for KNIME. A particularly intriguing revelation is the 
intersection of geospatial analysis operations with foundational data 
science tasks. This intersection underscores the dual capabilities of 
platforms like KNIME. On one hand, it facilitates specialized geospatial 
functionalities. On the other hand, it integrates seamlessly with core 
data science competencies. Such synergy is pivotal as it not only aug-
ments the breadth of geospatial studies but also promotes interdisci-
plinary collaborations. 

Furthermore, this investigation has illuminated some of the inherent 
challenges facing the GIS community, particularly in the realm of open- 
source GIS. As the GIS domain burgeons with a plethora of tools, data-
sets, and models, it calls for a structured synthesis. The challenge is not 
just about collating this vast reservoir of knowledge but organizing it in 
a manner that is intuitive, accessible, and conducive to further research. 
Our in-depth illustration of creating a knowledge tree for healthcare 
accessibility integrated with nodes for workflows in visual programing 
software is a step in this direction, and provides a structured framework 
that can be continually expanded and refined as new methodologies and 
insights emerge. 

Our work on the Geospatial Analytics Extension for KNIME shows the 
transformative potential of integrating visual programming platforms 
and standardized GIS functionalities, enhances interdisciplinary 

cooperation within the RRE framework. While this integration marks a 
significant step in advancing the RRE in geospatial analyses, it requires 
further development. Expanding GIS functionalities beyond textbook 
tools, incorporating nodes for remote sensing imagery, and conducting 
more empirical studies to validate KNIME’s effectiveness in geospatial 
analysis are key areas for future focus. This work sets the stage for 
advancing geospatial analytics through improved integration of GIS and 
visual programming. 
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Fig. 12. Sensitive analysis for (a) 2SFCA with varying threshold from 10 to 45 min ranking by the ascending score while threshold ↑ 10 min, (b) Gravity model with 
varying coefficient from 0.4 to 1.2, and (c) Hybrid model with a initial fixed threshold of 10 min and Gravity model with varying coefficient from 0.4 to 1.2, ranking 
by the ascending score while coefficient ↑ 1.2. 

Fig. 13. (a) Knowledge tree of healthcare accessibility, and (b) conceptual workflow for G2SFCA model.  
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Healthcare Accessibility by G2SFCA Model under KNIME Hub. 
https://hub.knime.com/center for geographic analysis at Harvard 

university/spaces/Geospatial Analytics Examples/latest/ 
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