ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/378860310

Mapping the landscape and roadmap of geospatial artificial intelligence
(GeoAl) in quantitative human geography: An extensive systematic review

Article in International Journal of Applied Earth Observation and Geoinformation - March 2024

DOI: 10.1016/j.jag.2024.103734

CITATIONS READS
40 1,793

31 authors, including:

Sigin Wang . Xiao Huang
University of Southern California Emory University

99 PUBLICATIONS 1,546 CITATIONS 273 PUBLICATIONS 4,569 CITATIONS
SEE PROFILE SEE PROFILE

Pengyuan Liu &,  Filip Biljecki

Singapore-ETH Centre % National University of Singapore

32 PUBLICATIONS 431 CITATIONS 197 PUBLICATIONS 6,960 CITATIONS
SEE PROFILE SEE PROFILE

All content following this page was uploaded by Michaelmary Chukwu on 11 March 2024.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/378860310_Mapping_the_landscape_and_roadmap_of_geospatial_artificial_intelligence_GeoAI_in_quantitative_human_geography_An_extensive_systematic_review?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/378860310_Mapping_the_landscape_and_roadmap_of_geospatial_artificial_intelligence_GeoAI_in_quantitative_human_geography_An_extensive_systematic_review?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Siqin-Wang?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Siqin-Wang?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Southern_California?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Siqin-Wang?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiao-Huang-37?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiao-Huang-37?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Emory_University?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiao-Huang-37?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pengyuan-Liu-3?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pengyuan-Liu-3?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pengyuan-Liu-3?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Filip-Biljecki?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Filip-Biljecki?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-University-of-Singapore?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Filip-Biljecki?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michaelmary-Chukwu-2?enrichId=rgreq-bbefd2a3ac57b8f36727bfebe4f17853-XXX&enrichSource=Y292ZXJQYWdlOzM3ODg2MDMxMDtBUzoxMTQzMTI4MTIyODcyMTEzNkAxNzEwMTg3Mzk1NzQ0&el=1_x_10&_esc=publicationCoverPdf

International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103734

Contents lists available at ScienceDirect

International Journal of Applied Earth
Observation and Geoinformation

o %

ELSEVIER journal homepage: www.elsevier.com/locate/jag

Mapping the landscape and roadmap of geospatial artificial intelligence
(GeoAl) in quantitative human geography: An extensive systematic review

a,b,c,”*

Siqin Wang , Xiao Huang **", Pengyuan Liu ¢, Mengxi Zhang ', Filip Biljecki ®", Tao Hu',
Xiaokang Fu’¥, Lingbo Liu’, Xintao Liu', Ruomei Wang®, Yuanyuan Huang ", Jingjing Yan",
Jinghan Jiang "™, Michaelmary Chukwu ", Seyed Reza Naghedi ', Moein Hemmati ",

Yaxiong Shao °, Nan Jia?, Zhiyang Xiao', Tian Tian Y, Yaxin Hu’, Lixiaona Yu', Winston Yap ?,
Edgardo Macatulad ¢, Zhuo Chen®, Yunhe Cui', Koichi Ito ¥, Mengbi Ye ¢, Zicheng Fan ?,

Binyu Lei ¥, Shuming Bao "

2 Spatial Sciences Institute, University of Southern California, Los Angeles, United States

b University of Queensland, Brisbane, Australia

€ School of Science, RMIT University, Melbourne, Australia

d Department of Environmental Sciences, Emory University, Atlanta, United States

€ Future Cities Lab Global, Singapore-ETH Centre, Singapore

f Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States

8 Department of Architecture, National University of Singapore, Singapore

1 Department of Real Estate, National University of Singapore, Singapore

! Department of Geography, Oklahoma State University, Stillwater, OK, United States

J Centre for Geographic Analysis, Harvard University, Cambridge, MA, United States

X State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China

! Department of Land Surveying and Geo-informatics, The Hong Kong Polytechnic University, Hong Kong, China

™ Department of Environmental Science Policy and Management, University of California Berkeley, Califorina, United States

" Environmental Dynamics Program, Graduate School and International Education, University of Arkansas, Fayetteville, AR, United States
© Department of Earth Atmosphere and Environment, Northern Illinois University, Dekalb, IL, United States

P Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, Michigan, United States
9 Department of Urban Planning, School of Urban Design, Wuhan University, Wuhan, China

T The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, United States

® Harrington Heart and Vascular Institute, University Hospitals, and School of Medicine, Case Western Reserve University, Cleveland, OH, United States
! Department of Geography, University of Connecticut, Storrs, CT, United States

Y China Data Institute, Michigan, United States

Y Department of Geosciences, University of Arkansas, AR, United States

ARTICLE INFO ABSTRACT

Keywords: This paper brings a comprehensive systematic review of the application of geospatial artificial intelligence
Geospatial artificial intelligence (GeoAl) in quantitative human geography studies, including the subdomains of cultural, economic, political,
GeoAl

historical, urban, population, social, health, rural, regional, tourism, behavioural, environmental and transport
geography. In this extensive review, we obtain 14,537 papers from the Web of Science in the relevant fields and
select 1516 papers that we identify as human geography studies using GeoAl via human scanning conducted by
several research groups around the world. We outline the GeoAI applications in human geography by system-
atically summarising the number of publications over the years, empirical studies across countries, the categories
of data sources used in GeoAl applications, and their modelling tasks across different subdomains. We find out
that existing human geography studies have limited capacity to monitor complex human behaviour and examine
the non-linear relationship between human behaviour and its potential drivers—such limits can be overcome by
GeoAl models with the capacity to handle complexity. We elaborate on the current progress and status of GeoAl
applications within each subdomain of human geography, point out the issues and challenges, as well as propose
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the directions and research opportunities for using GeoAl in future human geography studies in the context of
sustainable and open science, generative Al, and quantum revolution.

1. Introduction

Geospatial artificial intelligence (GeoAl) is an emerging and prom-
ising research field that integrates Al with geospatial science to resolve
problems and issues of geographic nature (Li and Hsu, 2022). The
development of GeoAl brings the advantages of traditional Al studies in
computer science to geographic research by empowering its quantitative
methods with revolutionary technologies including machine and deep
learning, high-performance computing power, and big data mining(Liu
and Biljecki, 2022). Such emerging Al-oriented research tendency is
particularly important for geographic studies in the era of big data,
given more than 80 % of big data contain spatial information (Leszc-
zynski and Crampton, 2016). As the advocacy of the Tobler’s first law of
geography—“everything is related to everything else, but near things
are more related than distant things” (Miller, 2004), GeoAl enables re-
searchers better monitor human behaviours and the surrounding envi-
ronment which are often spatially dependent and autocorrelated. The
recent breakthrough in GeoAl and more specifically deep learning fa-
cilitates the growth of a new research paradigm integrating data science
and geography to analyse, mine, and visualise large volumes of spatio-
temporal data, as well as enables researchers better capture the human-
environment relationship given such relationship is complex,

ra ogra
the study of cultural phenomena,
including language, refigion, and
customs, and how they vary across

the spatial organization of
economic activities, and the impact
of economic factors on human

multifaceted and non-linear (Li, 2022).

Human geography is the branch of geography that studies spatial
relationships between human communities, cultures, economies, and
their interactions with the environment (Hoggart, 2002). Whereas
physical geography concentrates on spatial and environmental processes
that shape the natural world and tends to draw on the natural and
physical sciences for its scientific underpinnings and methods of inves-
tigation, human geography concentrates on the spatial organization and
processes shaping the lives and activities of people, and their in-
teractions with places and nature (Gregory et al., 2011). Human geog-
raphy consists of a number of sub-disciplinary domains that focus on
different elements of human activity and organization (Gregory et al.,
2011), mainly including (Fig. 1) cultural, economic, political, historical,
urban, population, social, health, rural, regional, tourism, behavioural,
environmental and transport geography. What distinguishes human ge-
ography from other related disciplines, such as development, eco-
nomics, politics, and sociology, are the application of a set of core
geographical concepts and notions that the world operates spatially and
temporally, and that social relations were thoroughly grounded in and
through of place and environment—where the implementation of GeoAl
is well positioned and urgently needed. Although a range of review
papers give attention to various related topics such as the application of
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creating intelligent machines that can perform
tasks that typically require human intelligence

Artificial Intelligence

Computer Vision
enabling computers to interpret
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Deep learning
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from large amounts of data. It is particularly useful for
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Fig. 1. Conceptual framework to shape the review scope.
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deep learning in geography (Li and Hsu, 2022), GeoAl applications in
urban planning and development (Alastal and Shaqfa, 2022) and urban
geography (Liu and Biljecki, 2022), GeoAl approaches for complex
geomatics data (Pierdicca and Paolanti, 2022), unsupervised machine
learning in urban studies (Wang and Biljecki, 2022), and more broadly
GeoAl in social science from a scoping review perspective (Li, 2022),
what is lacking from the current scholarship is a holistic, comprehensive,
and systematic understanding of GeoAl application in various domains
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of human geography—which our study fulfils.

We conduct a systematic review on the implementation of GeoAl in
quantitative human geography including the subdomains listed above to
1) provide a holistic picture of the state-of-the-art GeoAl techniques and
applications that have been used in human geography as well as data
sources that were used to support GeoAl; 2) outline the future directions
for geographers to grasp the Al-oriented opportunities whilst at the same
time the future challenges and risks that need us to think critically and

Essential inclusion criteria:

of other phenomena on human society and
population.
Exemplary papers are:

tasks, and results)

e To predict or estimate demographic and socioeconomic
aspects of populations

e Social sensing via social media to study human
behaviour (e.g., perception, attitude, opinions, mental
signals, natural languages, and semantics towards some
phenomena)

Public health

and sharing economy (e.g., sharing cars, etc)

Political activities (e.g., agents; stakeholders; political

economy; legitimation)

e Urban governance and management; human centred
urban planning

e Social phenomenon (e.g., migration, gentrification, etc)

e Transportation choices and behaviours (e.g., transport
sharing, walkability, etc)

¢ Human-eye measures (e.g., visual quality, street view,
visual greenness, perceived measures, etc)

human-centred; related to human/society, human
Al or human intelligence; focusing on the impact

e Quantitative studies (including data, methods, modelling

¢ Economic activities (e.g., housing prices, settlement, etc)

Essential exclusion criteria:

non-human-centred; focusing on physical

aspects; or techniques centred; without

focusing on their impact on human society

and population.

Exemplary papers are:

e Qualitative summary; outline of study progress;
review papers

e Physical aspects of urban, and neighbourhood
features, land use and change

e Techniques comparisons; methodological oriented
(e.g., IoT, 5@, technical resolution, software, etc)

¢ Climate change modelling without considering
effects on human and society

¢ Remote sensing only (e.g., object detection, data
fusion, etc)

e Weather and air pollution prediction without impacts
on human

e Survey and workshop to educate people to study Al

e Transport modelling without impacts on human (e.g.,
system performance, etc)

p
Papers obtained from
WOS (N=45,350)
Papers removed by
¢mccccccanas applying exclusion search
terms (N=+30,000)
Papers further refined
(N=15,695)
L Papers removed by setting

publication years as in and

(N=14,537)

Papers for scanning ’

after 2010 (N=1,158)

Papers removed by
scanning title, keywords,
journal, and abstracts

(N=13,382)

(N=1,516)

Papers after scanning ’

‘/ Inclusion ‘ ‘ Eligibility ‘ ‘ Scanning ‘ ‘ Data retrieval

Fig. 2. PRISMA workflow for paper selection.
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tackle specifically. Failing to do so could be costly and left behind in the
mainstream of science as others leverage insights from the growing data
deluge.

2. Review method
2.1. Data retrieval

We employed the standard systematic review methodology (Moher
et al., 2010), known as the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) method (Fig. 2), to collect, scan
and select appropriate papers within our research scope (detailed in
Section 2.2). Following the existing review work (e.g.,Li and Hsu, 2022;
Liu and Biljecki, 2022; Wang and Biljecki, 2022), we obtained papers
relevant to GeoAl application in human geography from the Web of
Science (WOS), as one of the most popular academic databases, based on
several sets of predefined search syntax: 1) paper topics (in the WOS
advanced searching engine, these terms were searched through topics
which include article titles, abstracts, and keywords) relevant to GeoAl,
including “artificial intelligence”, “geospatial artificial intelligence”,
“AI”, “GeoAl”, “machine learning”, “deep learning” and “neural
network”; 2) paper topics relevant to human geography, including
“urban*” (the asterisk expands the search to include variations of the
key syntax, such as urbanization), “city*”, “place*”, “human*”, “geo*”,
as well as the name of 14 subdomains shown in Fig. 1. Their intersection
signifies the focus of our review; 3) article type as “peer-reviewed
journal articles” with the language as “English”; 4) disciplines as
“environmental studies”, “environmental sciences”, “geography phys-
ical”, “geography”, “green sustainable”, “science technology”, “engi-
neering civil’, “urban studies”, ‘regional & urban planning”,
“sociology”, “social sciences”, “interdisciplinary”, “social sciences”,
“mathematical methods”, “humanities”, and “multidisciplinary” to
further refine the research; 5) publication timespan as “in and after
2010) given Al techniques started to rapidly develop after 2010 with the
rise of social media, smartphones, and the internet of things (Van Roy
et al., 2020).

With all these settings, the initial search results display 45,350 pa-
pers and the majority of such papers were relevant to remote sensing and
physical geography without focusing on their impact on human society
and population as well as a proportion of these papers fell into other
disciplines (e.g., food industry and hydrology) beyond our review scope.
Accordingly, we added one more set of search syntax—‘“remote
sensing”—as the exclusion criteria to exclude papers, that are not
human/population centred. Finally, the research results by the time of
this study, February 1st, 2023, show that 14,537 papers were
obtained—a substantial number for a systematic review, but a reason-
able one considering the broad scope of the paper and one that can be
manageable for human scanning in a large team. The paper list was
downloaded with attributes including the publication year, author
name, article title, journal, keywords, abstract, and the number of ci-
tations by the time of this study.

2.2. Scanning papers with human efforts

It was imperative to select the pre-obtained papers specifically cen-
tred around human society, population, and their perception and rela-
tionship with the surrounding environment—as the essential notion of
human geography that the spatial organization and processes where the
lives and activities of population immerse are shaping their interactions
with places and nature. Thus, we conducted the paper scanning with
human efforts from March 1st to April 1st, 2023 based on the inclusion
and exclusion criteria (Table 1). Essentially, papers need to be included
if they are quantitative studies in any subdomain of Human Geography,
as well as being human-, population- and society-centred within the
application of GeoAl; otherwise, they should be excluded.

International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103734

Table 1
Inclusion and exclusion criteria used in the paper selection through human
scanning.

Essential exclusion criteria:
non-human-centred; focusing on
physical aspects; or techniques centred;
without focusing on their impact on
human society and population.

Essential inclusion criteria:
human-centred; related to human/
society, human AI or human
intelligence; focusing on the impact of
other phenomena on human society
and population.

Exemplary papers are:

e Quantitative studies (including data,

methods, modelling tasks, and results)

To predict or estimate demographic

and socioeconomic aspects of

populations

Social sensing via social media to

study human behaviour (e.g.,

perception, attitude, opinions, mental

signals, natural languages, and
semantics towards some phenomena)

Exemplary papers are:

e Qualitative summary; outline of study
progress; review papers

Physical aspects of urban, and
neighbourhood features, land use and
change

Techniques comparisons;
methodological oriented (e.g., IoT, 5G,
technical resolution, software, etc)

o Public health e Climate change modelling without
considering effects on human and
society

e Economic activities (e.g., housing e Remote sensing only (e.g., object

prices, settlement, etc) and sharing detection, data fusion, etc)

economy (e.g., sharing cars, etc)

Political activities (e.g., agents; e Weather and air pollution prediction
stakeholders; political economy; without impacts on human
legitimation)

Urban governance and management;
human centred urban planning
Social phenomenon (e.g., migration,
gentrification, etc)

Survey and workshop to educate
people to study Al

Transport modelling without impacts
on human (e.g., system performance,
etc)

Transportation choices and
behaviours (e.g., transport sharing,
walkability, etc)

Human-eye measures (e.g., visual
quality, street view, visual greenness,
perceived measures, etc)

.

3. Statistical outline of GeoAl applications in human geography

This section summarises how GeoAl applications have been applied
in Human Geography studies across different subdomains in terms of
modelling tasks, study areas and data types by using a Sankey diagram
(Fig. 3). The full version containing all categories is provided in Sup-
plementary Figure S1. This visualisation shows that 1) the top three
subdomains using GeoAl in human geography include urban geography,
transport geography and environmental geography (more details pro-
vided in Fig. 4); 2) the top three study areas where GeoAl was applied
most frequently include China, US and India (more details provided in
Fig. 5); 3) the top three data types that were most widely used in GeoAl
include remote sensing imageries, street view imageries and transport
network (more details provided in Fig. 6); 4) the top three modelling
tasks implemented by GeoAl include predication (i.e., the non-linear and
linear regression) and image-based classification (more details provided
in Fig. 7).

It is evident from Fig. 4 that the usage of GeoAl in human geography
has significantly increased since 2018. In 2019, there were 168 papers,
which rose to 526 by 2022. Out of the 1512 selected papers, the majority
of them, accounting for 29.1 % (440), were related to urban geography.
Transport geography followed with 16.4 % (248), environmental ge-
ography with 14.1 % (213), and health geography with 10.6 %. Inter-
estingly, the number of papers published in health geography showed a
sharp increase from 2020 to 2021, which could be attributed to the
COVID-19 pandemic outbreak.

GeoAl has been applied in various study areas, with China leading at
33.3 % (529) followed by the US at 17.6 % (280), India at 4 % (63),
multiple countries worldwide at 3.8 % (60), and UK at 3 % (48) (Fig. 5).
The subdomain of urban geography is the most popular among all study
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Fig. 3. Sankey diagram showing the distribution of study areas, data types and modelling tasks GeoAlI achieved in each subdomain of human geography (top 15
categories included); the full version containing all categories is provided in Supplementary Fig. S1.

areas where GeoAl has been applied. For example, 36.9 % of 529 papers
in China and 23.6 % of 280 papers in the US are in the domain of urban
geography. The second and third most popular study areas where GeoAl
has been applied are transport geography and environmental geogra-
phy, respectively.

The types of data that have been used in GeoAl applications in
Human Geography are classified into broad and secondary categories
(Fig. 6) including 1) raster-based imageries (e.g., remote sensing images,
street view images, and geotagged photos); 2) vector-based spatial data
(e.g., points of interest, building, built environment, land use and land
cover maps, and 3D point clouds); 3) vector-based spatiotemporal flow
data (e.g., transport network, call records, mobile phone signals,
smartphone apps, credit card transactions and traffic records); 4) official
data provided by government or other sectors (e.g., census,
government/authority-lead survey, health, economic data, tourists,
crime, meteorological data, and other official statistics); 5) sound, video
and texts; and 6) self-conducted survey. More details of the data clas-
sifications are provided in Table 2. The data types used in GeoAl are

varying across subdomains.

The modelling tasks that have been implemented by GeoAl appli-
cations in Human Geography studies are classified into broad and sec-
ondary categories (Fig. 7) including 1) classification (e.g., image-based,
vector-based, sequential-data-based, number-based, and text-based); 2)
prediction (e.g., linear and non-linear regression); 3) simulation (e.g., at
the aggregated and individual level); 4) embedding (i.e., the reduction
of data dimensions; feature extraction); and 5) geolocating (i.e., geo-
parsing). More details of the modelling tasks are provided in Table 3. We
can observe some common patterns of GeoAl modelling tasks across
various subdomains of human geography—prediction (particularly non-
linear regression) and classification (particularly image-based classifi-
cation) have been widely employed in different subdomains of human
geography, regardless of the number of published papers. GeoAl in
urban geography also conducted a range of simulation tasks, in partic-
ular the aggregated level simulation (e.g., using cellular automata, deep
neural network, and deep enforcement learning models).
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4. How GeoAl enhances each subdomain of human geography

This section systematically and comprehensively summarises how
GeoAl has been applied to 13 subdomains of Human Geography and
advanced the current studies in terms of analytical approaches,

emerging data, and research scopes.

4.1. Urban geography

GeoAl plays a pivotal role in Urban Geography, analyzing urbani-
zation, urban changes, and hazards. Advancements in GeoAl include
integrating CA with machine learning methods ((e.g.,Azari et al., 2016;
Kafy et al., 2021; Rienow and Goetzke, 2015; Zhang and Xia, 2022;
Zhang, Liu, et al., 2019) and neural networks (He et al., 2018; Ullah
et al., 2019; Yang et al., 2019), using varied data sources like satellite
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images (Qian et al., 2020; Wu et al., 2010) and census data (Feng et al.,
2019; Wu et al., 2010) to support precise and high-resolution simula-
tions in the cities. Beyond CA, other methods, such as CNNs (e.g., Chen
et al.,, 2020b) and generative models (e.g., [brahim et al., 2021), also
show their potential to model the spatial and spatiotemporal in-
teractions of urban objects in the phases of urbanisation. To study urban
places and functions, with the development of smart urban in-
frastructures (e.g., smart cards for transportation), human-sensing data
(e.g., geo-tagged text and images) and digital platforms (e.g., Open-
StreetMap, Mapillary), intelligent computational models, such as natu-
ral language processing and computer vision-based (e.g., CNNs)
analytical frameworks have massively contributed to the understanding
of urban places (e.g., Andrade et al., 2020; Kim, 2019; Luo et al., 2022a;
Wu et al., 2023; Zhang et al., 2023; Zhu et al., 2020) and supporting
urban functional zones planning (e.g., Jiang et al., 2015; Zhai et al.,
2019; Zhang et al., 2019a). Urban hazards cover a wide range of topics,
such as flooding, heat waves, and fire emergencies. Tools developed
based on CNNs with bird’s eye-level remote sensing and human eye-
level street view images (e.g., Bao et al., 2019; Feng and Sester, 2018;
Li et al., 2022a) are adopted to support hazard detection and urban
reconstructions. With the help of smart devices and social media plat-
forms, natural language processing methods, such as geo-referencing (e.
g., Zhang et al., 2021) and content analysis (e.g., Agonafir et al., 2022),
are exclusively developed to support hazards localisation and severity

analysis. As evidenced by the paper collection, thanks to the rapid
enrichment of multiple data sources, we have witnessed a clear trend in
exploring deep learning and its combination of machine learning and
statistical methods in studying urban issues and discovering new pat-
terns of cities that facilitate decision-making or assist downstream
analytics.

4.2. Transport geography

The application of GeoAl in transport geography is a rapidly evolving
field that has gained significant attention in recent years. The use of
machine learning and Al techniques has the potential to improve
transportation systems while providing insights into human travel
behaviour. To date, numerous articles have focused on specific modes of
transportation such as urban rail transit (e.g., Wang et al., 2021a; Zhang
et al., 2020b) bike-sharing (e.g., Fontes et al., 2022; Yang et al., 2018),
and ride-hailing services (e.g., Huang et al., 2021; Niu et al., 2019),
while others have addressed broader topics such as traffic forecasting (e.
g., Zhang et al., 2019¢; Zhang et al., 2020f), crash prediction (e.g., Hu
et al., 2022; Wei et al., 2022), and mobility pattern recognition (e.g.,
Heredia et al., 2021; Lv et al., 2021). Of particular interest is the growing
trend in exploring the use of deep learning models for analysing images
(e.g., street views and user-generated pictures), and other sensor data (e.
g., traffic sensors, GPS pins, and environmental sensors), to understand
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Table 2
Type of data that have been used in GeoAl related Human Geography studies.

Table 3
Modelling tasks and methods that have been implemented in GeoAl related
Human Geography studies.

Broad category Secondary Exemplary data sources

category Broad Secondary Exemplary models and algorithms
Imageries (raster) Remote sensing Land use and land cover raster category category

imageries maps, night-time data, LIDAR, Classification Image-based e Convolutional Neural Networks (CNNs)

Spatial data (vector)

Street view
imageries
Geotagged photos

Points of Interest

Building

MODIS

User/vehicle-generated imageries,
Google/Baidu street view imageries
Geotagged (social media) photos
such as Flickr

Location of public facilities, parks,
and bus stops

Cadastral maps/building footprints

(LeNet, AlexNet, ResNet, VGG, Inception,
EfficientNet, DenseNet, MobileNet)
Artificial Neural Network

Support vector machine (SVM) and one-
class SVM

Gradient Boosting algorithms (GBM) (e.
8., XGBoost, LightGBM, Catboost)

e K-Nearest Neighbour

Built Measures of road density, distance o Naive Bayes Algorithm
environment to the nearest stations o Deep Belief Networks (DBNs)
Land use and land  Polygon layers of land use and land e Autoencoder (AE)
cover cover o Siamese networks
3D point clouds 3D point clouds data including e Isolation forest

vertical dimension e Local outlier factor

Spatial-temporal flow Transport Mobility network, road network, e Angle-based outlier detector
data (vector) network smart card-generated data, flight e Histogram-based outlier detection

tickets e Autoencoders (variational types)
Call records 911 hotline calls, municipal e Hidden Markov models

complaint records o Fuzzy logic-based outlier detection
Mobile phone Safegraph e Deep-learning based methods
signal (Conditional neural network, RNN)

Smartphone app

Credit card
transactions

Social media app/website-
generated data (e.g., Baidu/
Google/Facebook mobility data),
tweets/geotagged tweets, online
bike-sharing information

Credit card records with
spatial-temporal information

YoLo model family

e R-CNN model family (R-CNN, Fast R-

CNN, Mask R-CNN, R-FCN, Cascade R-
CNN)

CenterNet model family (Single Shot
Detector (SSD), DSSD, RON, CornerNet)

o Histogram of Oriented Gradients (HOG)

Traffic Traffic crashes, bike usage, accident e Region-Based Segmentation
records, and emergency events. o Edge Segmentation

Official data provided Census Census data provided by the o K-Means
by gov/organisation/ government e Convolutional Encoder-Decoder Archi-
authority Gov/authority- Disaster evacuation data in the US, tecture (e.g. SegNet, U-Net, Fully Con-
lead survey HILDA data in Australia volutional Networks (FCN)

Health Clinic/patient data, healthcare e Multi-Scale and Pyramid Network Based
facilities Models (FPN)

Economic Housing, insurance, sale and retail e Pyramid Scene Parsing Network
records, tax assessment, residential (PSPNet), Mask R-CNN, Fast R-CNN)
settlement e Dilated Convolutional Models and

Tourist Tourist statistics DeepLab Family

Crime Crime records Vector-based o Spatially constrained multivariate

Meteorological Weather station-generated data (e. clustering

Sound, video and texts

Self-conducted survey

Other statistics
Sound

Video

Text content

Photo

g., wind, rainfall, humidity)

Bio environment (e.g., species)
Voice, sound records

Traffic video

Texts without spatiotemporal
information

Static photos without
spatiotemporal information
Primary data collected via online/
offline interviews, questionnaires

the built environment’s impact on travel behaviour (e.g., Li et al., 2023a;

Sequential (time)
data-based

Multivariate clustering
Density-based clustering

Image segmentation

Hot spot analysis

Cluster and outlier analysis
Space-time pattern mining
Hierarchical clustering analysis (HCA)
Density-based spatial clustering of
applications with noise (DBSCAN)
Spectral clustering

Affinity propagation (AP)
Gaussian mixture model (GMM)
Hidden Markov Models

Long Short-Term Memory networks
(LSTM)

Recurrent Neural Networks (RNN)
Conditional Random Fields
Distance-based (e.g., KNN, dynamic
warping)

Interval-based (e.g., time-series forest)
Dictionary-based (e.g., Bag of SFA
Symbols (BOSS))

Frequency-based (Random Interval
Specteal Ensemble (RISE))
Shapelet-based (e.g., shapelet transform)
Support vector machine (SVM)
Gradient Boosting algorithms (GBM) (e.
8., XGBoost, lightGBM, CatBoost)
Decision tree / Random Forest

Li et al, 2023b; Liu et al.,, 2022). Additionally, researchers are
increasingly interested in the application of intelligent algorithms (e.g.,
tree-structure models, graph neural networks, and recurrent neural
networks) for predicting travel patterns, including mode choice (e.g.,
Zhang et al., 2020a), passenger flow (e.g., Zhang et al., 2020a), and
traffic volume (Zheng et al., 2021). To support transportation planning
efforts, various tools have been developed, such as a planning support
tool for street network design (Fang et al., 2022). Moreover, there is a
surge of research activities proposing novel approaches to
transportation-related challenges, such as detecting traffic incidents
using social media data (e.g., Chang et al., 2022), identifying critical
transfer zones for coordinating transit (e.g., Qiu et al., 2022), and pre-
dicting the demand for bike-sharing and ride-hailing services (e.g., Chen
et al., 2020a; Zhang and Zhao, 2022). These approaches have the

Number (non-
spatial)-based

(continued on next page)
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Table 3 (continued)

Broad
category

Secondary
category

Exemplary models and algorithms

Prediction

Simulation

Embedding

Geolocating

Text-based

Linear

Non-linear

Aggregated level
(areal-based)

Individual level
(agent-based)

Means algorithm

Fuzzy logic-based algorithms

DBSCAN

Spectral clustering

Hierarchical clustering

Affinity Propagation

Latent Dirichlet allocation (LDA) / RNN
Word2Vec

Doc2Vec

Bag-of-words model

n-gram model

Transformers-based methods (BERT,
XLM, GPT, RoBERTa, XLNet, DistilBERT
etc)

ELMo

RNN

LSTM

Word2Vec

Doc2Vec

Bag-of-words model

n-gram model

Transformers-based methods (BERT,
XLM, GPT, RoBERTa, XLNet, DistilBERT
etc)

ELMo

Generalized linear model (GLM),
including Lasso regression, Ridge
regression, Polynomial Regression,
Bayesian linear regression; Logistic
regression, Gamma regression, Poisson
regression, Bernoulli regression, Binomial
regression, Multinomial regression,
Exponential regression, (Inverse)
Gaussian regression

Support vector machine

Artificially Neural Network (ANN)
Gradient Boosting algorithms (GBM) (e.
8., XGBoost, lightGBM, CatBoost)
Empirical Bayesian Kriging regression
prediction

Forest based prediction (random forest,
decision tree)

e Graph Convolutional Neural Network
Generalised additive model (GAM) and
GeoGAM

Bayesian hierarchical model (BHM)
Second-dimension spatial association
Geographically optimal similarity model
Cellular Automata

Deep neural network

Deep enforcement learning

Tabular Q-learning

Agent based modelling

Principal component analysis (PCA)
Independent Component Analysis (ICA)
Linear Discriminant Analysis (LDA)
Locally Linear Embedding (LLE)
t-distributed Stochastic Neighbour
Embedding (t-SNE)

Auto-encoder model family

enerative adversarial network (GAN)
Isomap

Hessian Eigenmapping

Spectral embedding
Multi-dimensional Scaling (MDS)
Kernel PCA

Graph Neural Networks (GraphSAGE,
GCN)

Geoparsing models
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potential to transform the way transportation systems are planned,
designed, and managed. Overall, we observe that GeoAI has emerged as
a highly promising avenue for transforming the transportation industry.
Nevertheless, as many scholars have pointed out, the potential chal-
lenges that must be overcome include integrating disparate data sources,
addressing privacy concerns, and devising efficient algorithms that can
process immense quantities of transportation data in real time. None-
theless, the commendable progress achieved thus far has laid the
groundwork for sustained research in the GeoAl domain of Transport
Geography, thereby facilitating continued improvements in trans-
portation systems.

4.3. Environmental geography

Environmental geography has gained significant importance in
recent years due to pressing global environmental challenges, such as
climate change, population growth and urbanization, environmental
pollution, and an increasing number of natural disasters. By leveraging
the power of advanced machine learning and artificial intelligence
techniques, GeoAl enables the processing and analysis of large and
complex environmental data with the integration of diverse data sources
(e.g., Ning et al., 2020), remote sensing imagery, street view images (Wu
et al., 2020), social media posts (Ning et al., 2020), and census, real-time
monitoring, and enhanced predictive capabilities. For example, GeoAl
techniques have been employed for land use and land cover changes
detection and prediction (e.g., Apollonio et al., 2016; Handayanto et al.,
2017), climate change modelling and forecasting (e.g., Logan et al.,
2020; Shen et al., 2020), disaster management and risk assessment (e.g.,
Bui et al., 2019; Feng and Sester, 2018; Talukdar et al., 2020), water
resource management (e.g., Obringer and White, 2023; Zhang et al.,
2018), environmental pollution monitoring (e.g., Acheampong and
Boateng, 2019; Cole et al., 2020), and urban planning and sustainable
development (e.g., Richards and Tuncer, 2018; Wu et al., 2020). As
GeoAl continues to evolve, it holds the potential to significantly improve
our understanding of environmental geography and provide essential
insights for effective decision-making to address pressing environmental
issues.

4.4. Health geography

The implementation of GeoAl can be easily identified in many
health-related areas, including infectious epidemiology, social media
analysis, built environment, and environmental epidemiology. GeoAl
has been used to identify and forecast the spread of infectious diseases
(Guo et al., 2017), but the booming of this application was not until the
hit of the COVID-19 pandemic that various models have been developed
and used for COVID-19 prediction (Ghahramani and Pilla, 2021; Guo
and He, 2021; Tomar and Gupta, 2020), especially at the early stage of
the pandemic. Other application related to COVID-19 includes
measuring the association between mitigation policies and COVID-19
transmission (Zhang et al., 2020c), maximizing the assessed popula-
tion in the shortest possible time for mobile assessment agents (Simsek
and Kantarci, 2020), and monitoring social distancing using video se-
quences (Ahmed et al., 2021). GeoAlI has also been applied to analyse
social media data to help with the early detection of the distribution of
COVID-19 (Golder et al., 2020). It has also been widely used to under-
stand the distribution and public opinion of other diseases, including
estimating obesity prevalence (Cesare et al., 2019), understanding
autism-related antivaccine beliefs (Tomeny et al., 2017), monitoring the
well-being of transit riders (Tran et al., 2023), and measuring urban-
regional disparities of mental health signals (Wang et al., 2022b).
GeoAi was mainly used to identify tweets and to measure emotions
within a body of text. There has been a long-term interest in applying
GeoAl to better evaluate built environment (e.g., cities, buildings, and
greenspace) (Larkin and Hystad, 2019) and measure its association with
other health outcomes, including COVID-19 transmission (Kawlra and
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Sakamoto, 2021), mental health status (Helbich et al., 2021; Wang et al.,
2019a), the well-being of elderly (Wang et al., 2019b), and pedestrian
emotion (Xiang et al., 2021). Most of this work applies GeoAl to identify
the features of the built environment through analysing street view
images. GeoAl has also been advancing modelling technics in environ-
mental epidemiology in accessing air pollution and measuring its impact
on health. Recent applications include predicting PM2.5 concentration
during the pandemic (Yang et al., 2022b), generating daily surface
concentration maps for PM2.5 and O-3 during a wildfire (Reid et al.,
2019), and predicting air quality (Xiao et al., 2021). It also helps to
model the association between air pollution exposure and early cogni-
tive skills among children (Stingone et al., 2017).

4.5. Economic geography

The GeoAl applications in economic geography have largely crossed
over urban geography, in particular, land use and land change (e.g., Hu
et al., 2016a; Levers et al., 2018), given land provides space for eco-
nomic activities and relevant costs occurring along the process of land
changes link to economic development and evaluation. GeoAI models,
especially non-linear models, have been widely employed to predict and
estimate sale prices of real estate properties (Ceh et al., 2018; Rafiei and
Adeli, 2016) and income levels (Ivan et al., 2020); to generate a wide
range of socioeconomic indicators based on other data sources (e.g.,
remote sensing imageries, open street maps and social media data)
(Feldmeyer et al., 2020; Roumiani and Mofidi, 2022); to explore the
potential driving factors for housing and rental prices(Ma et al., 2020;
Yoo et al.,, 2012) or economic consumptions and activities across
different industries (e.g., electric appliances, retail industry)(AL-
Musaylh et al., 2021; Rao and Ummel, 2017); or to evaluate the rela-
tionship between management and organizational performance (Lin
et al., 2022). Those relationships among economic activities and their
potential factors are complex, non-linear and mingling with various
confounders, where GeoAl provides advanced approaches to generalise
such interrelationships. In addition, GeoAl helps to develop planning
and decision support system (Demetriou et al., 2012), urban renewal
policy analysis based on a wide range of crowdsourcing data (Auerbach
et al., 2020) or to simulate housing rentals (Chen et al., 2016) with the
advantages of visualising its spatiotemporal patterns—these end-user
applications and policy implications can readily benefit government,
public sectors and authorities on economic planning and policy making.

4.6. Behavioural geography

One cutting-edge advance of GeoAl is to quantify the behaviour of
human beings which could be difficult to achieve by other approaches.
Such human behaviours include human perception (e.g., the sense of
safety, anxiety, depression, beauty, and happiness) to the visual features
of the built environment (e.g., green and blue space) and natural envi-
ronment (Choi et al., 2022; Ramirez et al., 2021; Rossetti et al., 2019;
Zhang et al., 2018)as well as certain social phenomena, events and crises
(e.g., COVID-19; disease treatment-seeking behaviours) (Kim et al.,
2022). GeoAlI has also been widely applied to explore the relationship
between environment and human decisions on travel (e.g., active
commuting, walkability, bikeability, and transport demand) (Ding et al.,
2018; Ki and Lee, 2021; Molina-Garcia et al., 2019; Rossi et al., 2019;
Tran et al., 2020), linguistic and semantic expressions (Wirz et al.,
2018), spatiotemporal trajectory (Torrens et al., 2011), and consumers’
behaviours (Dias et al., 2021): such human-environment relationships
are confounding, complex which can be rarely captured by linear
models. The prediction of crime (criminal rates, locations and patterns)
and social lifestyles (Ben Zion and Lerner, 2018; Kadar and Pletikosa,
2018) is another stream of GeoAl applications in behavioural geogra-
phy. Since the outbreak of COVID-19, GeoAl become popular to capture
people’s altitude, opinion, mental reaction and connection to the global
pandemic (e.g., Wang et al., 2022b), although such studies have been
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largely categorised into the subdomain of health geography.
4.7. Social geography

Studies in social geography are largely mingling with other sub-
domains of human geography, including behavioural geography, urban
geography and environmental geography. GeoAl empowers the methods
that were used in the traditionally sociological /urban studies to examine
the relationship between urban built/natural environment and the
observed social phenomenon, including gentrification and community
deprivation (Alizadeh et al., 2018; Li et al., 2019b; Reades et al., 2019;
Talukdar et al., 2021); to evaluate the impacts of social events via large-
scale spatiotemporal crowdsourcing data (e.g., geo-tagged social media
data (Zhu et al., 2018); to address some unique social problems such as
modern slavery (Lavelle-Hill et al., 2021); to visualise the urban social
change of neighbourhoods (Lee and Rinner, 2015); to identify poverty
and urban slums (Yin et al., 2020) and explore the potential driving
factors of poverty (Luo et al., 2022b); to quantify neighbourhood mixing
(Hipp et al., 2017); to evaluate social justice (Debnath et al., 2021),
housing inequality (Knaap, 2017), and social inequality in the selection
of transport modes (Zhou et al., 2019); and to monitor social wellbeing
of different social groups (Brown et al., 2021). GeoAlI also has implica-
tions for the management of social organisations and public policy via
examining social network (Choudhury et al., 2022) and organizational
geosocial network (Zhao et al., 2022), as well as to facilitate citizen
engagement in urban governance (Siyam et al., 2020) and to predict the
socioeconomic status of urban neighbourhoods (Diou et al., 2018).
Similar to some studies in behavioural geography, GeoAl has been also
used to track and predict neighbourhood crime (Amiruzzaman et al.,
2021) and examine how it links to neighbourhood visual appearance
(Reier Forradellas et al., 2020) and the socioeconomic attributes of lo-
cations (Doi et al., 2021). Lastly, GeoAl helps to generate new datasets
from the perspective of social science, including the social vulnerability
index (Alizadeh et al., 2018) and livelihood vulnerability index
(Talukdar et al., 2021), which can be further used in cross-disciplinary
studies.

4.8. Tourism geography

The application of Geo Al in tourism geography has significantly
advanced the field by providing insights into various aspects of tourism
dynamics and management. Key areas of focus include analysing tourist
behaviour and movement patterns (e.g., Chang et al., 2019; Zhang et al.,
2019b), understanding visitor experiences (e.g., Song et al., 2021; Zhang
et al., 2020d), building an attraction evaluation and recommendation
system (Giglio et al., 2019; Sun et al., 2015), evaluating sustainability (e.
g., D’Uva and Rolando, 2023; Roumiani et al., 2023), assessing the
quality of public spaces (e.g., Ghahramani et al., 2021a; Li et al., 2022b),
and monitoring environmental impacts (e.g., Furgata-Selezniow et al.,
2021). These studies use various data sources including surveys (such as
Hou et al., 2021), geotagged photos (such as Zhang et al., 2019b), points
of interest (such as Zhang et al., 2020d), smartphone apps and signals
(such as Crivellari and Beinat, 2020; Song et al., 2021), transport net-
works (such as Nuzzolo and Comi, 2016), remote sensing imagery (such
as Sun et al., 2021), street view images (such as Kruse et al., 2021), and
text content from social media (such as Zhang et al., 2020d). Accord-
ingly, the GeoAI methods used in tourism geography mainly include
text-based techniques like topic modelling (van Weerdenburg et al.,
2019), and sentiment analysis (Ghahramani et al., 2021b), computer
vision models such as deep learning models (Kang et al., 2021), other
machine learning techniques like random forest (Li et al., 2019a) and
XGBoost (Kang et al., 2022), as well as spatial clustering models like
density-based clustering method (DBSCAN) (Sun et al., 2015). Overall,
GeoAl has been widely used to provide insights for policy decisions,
improve tourism management, and contribute to a better understanding
of human behaviour and perception of urban spaces and travel
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experiences. However, some scholars point out that the application of Al
technology may affect turnover intention (Li et al., 2019a).

4.9. Population geography

The application of GeoAl in population geography focuses on pre-
dicting population growth and population movement (e.g., Chen et al.,
2018; Ullah et al., 2019), disaggregating population counts based on
other data sources to generate fine-grained population data that can be
used for other research purposes (e.g., Khan et al., 2021; Monteiro et al.,
2019; Ye et al., 2019), measuring and characterising human activities
(Hu et al., 2016b), delineating human settlement in the exposure to
natural hazards (Herfort et al., 2019), forecasting the mortality of
populations (Perla et al., 2021) and exploring its potential driving fac-
tors (Boumezoued and Elfassihi, 2021), tracking human trajectories and
mobility (Hu, 2020), and inferring people’s demographic and socio-
economic status (Zhang et al., 2020e). Such studies predominantly uti-
lise machine learning models (e.g., random forest, gradient boosting
models) to predict the non-linear relationship between population (e.g.,
counts, their demographic and socioeconomic characteristics) and other
phenomena (e.g., urbanisation, land use change, green space, and
climate change). The applications of more advanced deep learning
models are employed to derive measures from diverse data sources (e.g.,
classification based on remote sensing imageries or official data) that
can be further used for the disaggregation or prediction of population
data at different spatial scales. Common findings from these studies
include that GeoAl provides sufficient approaches with sound modelling
performance to capture the complex relationship between human and
the environment and to produce reliable population data that can be
calibrated and validated by other data sources.

4.10. Cultural geography

GeoAl has been used to advance the methodology used in the cultural
geography studies which are traditionally rooted in qualitative investi-
gation. For example, GoeAl is applied to processing and analysing geo-
tagged photos and street-level images to assess ecosystem cultural
services (nonmaterial benefits people obtain from ecosystems that affect
their physical and mental states(Cardoso et al., 2022; Fish et al., 2016;
Marine et al., 2022; Richards and Tuncer, 2018) and to understand the
spatiotemporal pattern of linguistic variations in one community (Hong,
2020). The approach of GeoAl makes the analysis more efficient by
reducing the error and time from previous manual labour work. GeoAl
has also helped to understand the development of linguistics by recog-
nizing handwritten words from Bangla word images (Das et al., 2020)
and post-correcting Optical Character Recognition in Hebrew (Suissa
et al., 2022). These approaches create a stable and generalized system
for word recognition and correction and obtained a high accuracy rate.
Many studies also use social media data to understand cultural practices
and beliefs, including measuring food cultural differences (Zhang et al.,
2020c), detecting changes in perception towards smart cities (Yue et al.,
2022), recognizing human daily activity (Gong et al., 2019), and
measuring social-spatial boundaries (Rahimi et al., 2018). GoeAl is used
for data extraction, text pre-processing, and sentimental analysis in
those studies.

4.11. Political geography

Compared to other subdomains, the application of GeoAl in political
geography is relatively limited, possibly due to the nature of political
geographic studies being more qualitative. In very recent years, there
are also some GeoAl applications, predominantly natural language
processing models, that have been used to process the contents of pol-
icies, newspapers, and planning documents (Brinkley and Stahmer,
2021); to monitor people’s perception towards political initiatives (e.g.,
smart city concepts) (Yigitcanlar et al., 2021); to forecast corruption and
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presidential election based on social media data (Ghahari et al., 2021;
Liu et al., 2021b); to explore the political tendency towards certain
phenomena or in certain domains (e.g., Brexit, Al, data science, and
organic waste flows) (Bastos and Mercea, 2018; Folgado and Sanz, 2022;
Morone et al., 2021); to address political issues including the radical
right (Jambrina-Canseco, 2023); and to visualize or predict political
activities (e.g., protect incidents and terrorism incidents) (Bekker, 2022;
Hao et al., 2019). Although such applications are largely limited to
coping with texts and qualitative contents, it showcases the great po-
tential of GeoAl in the political implications and helps government hear
the voice of the ‘silent majority’ which was usually difficult to be
monitored via qualitative methods.

4.12. Regional geography

The application of GeoAl in regional geography is relatively limited
given the aim of regional geography is to study the interaction of
different cultural and natural geofactors in a specific land or regional
landscape and compare such differences across regions—it largely
overlaps with studies in other subdomains, leading to a few papers that
fall into this category as the primary subdomain. Despite the nature of
mixture in regional geographic studies, the GeoAl applications have
been used to evaluate regional carrying capacity (Chen et al., 2011), the
inequality and neighbourhood mixing across metropolitan areas (Kane
and Hipp, 2019), contrasting landscapes (Hernandez-Moreno et al.,
2021), regional sustainability across metropolitan areas (Liu et al.,
2021a), regional development (Lai et al., 2022), and regional inequality
of neighbourhood typologies (Lynge et al., 2022). Findings from these
studies show that GeoAlI applications provide highly accurate modelling
results to explore the non-linear relationship among regional charac-
teristics and dependent phenomena and to reveal its great potential to be
used in comparative studies across different geographic contexts.

4.13. Rural geography

GeoAl is increasingly becoming a vital technique in rural geography,
offering innovative solutions to the unique challenges faced by rural
areas. One of its key applications is agricultural land use and crop
monitoring, where it leverages artificial intelligence technologies for
ensuring food security (Yang et al., 2022a) and optimising urban-
agricultural-ecological space (Wang et al., 2022a; Zeng et al., 2022).
GeoAl also plays a crucial role in rural infrastructure planning and
development by assessing and prioritizing infrastructure needs, such as
demand for public transportation (Bakdur et al., 2021), the severity of
accidents prediction (Habibzadeh et al., 2022), and policy guarantee
mechanism assessment (Jin et al., 2021). This contributes to more
equitable and sustainable rural development. In addition, advanced
machine learning algorithms are employed to model and predict rural
economic development (Khalaf et al., 2022; Qin et al., 2020; Xie et al.,
2022) and rural population dynamics (Grossman et al., 2022; Lee,
2022). Furthermore, GeoAl has shown remarkable success in identifying
land use and land cover changes in rural areas that might be overlooked
by traditional remote sensing methods (Killeen et al., 2022; Saha et al.,
2022; Xu et al., 2019). These insights guide rural development policies
and strategies, helping address key challenges in rural areas. Overall, the
integration of GeoAl in rural geography has the potential to revolu-
tionize the field, offering new perspectives and data-driven approaches
for the sustainable development of rural communities.

5. Discussion: Future directions and challenges
5.1. Cross-disciplinary research opportunities and beyond
Human geography has been revolutionised to be increasingly sup-

ported by spatiotemporal big data, more robust in research design to
address the non-linear complex relationship between human society and
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its potential drivers, more diverse in empirical studies and in turn to
advance theoretical foundations. We have observed that the field of
GeoAl presents numerous cross-disciplinary research opportunities to
link human geography to public health, environmental science, medical
science, decision and policy-making, and industrial practices more
broadly. In particular, human geography subdomains that were deeply
rooted in social science in the past, including cultural, historical and
political geography, have been empowered by GeoAl and spatiotem-
poral big data and crowdsourcing data (e.g., social media data) to
broaden its research impact and the coverage of empirical con-
texts—that can be rarely achieved by using small data (e.g., question-
naires) and qualitative methods. Besides, there is still so much potential
to be realized by leveraging the power of GeoAl in conjunction with
broader fields in social science such as psychology, sociology, and an-
thropology to analyse and predict human behaviour—additionally, to
enhance the studies on human-environment interactions given human
behaviour was thought to be mediated through the surrounding envi-
ronment where they reside (e.g., urban built environment and natural
environment) (Wang et al., 2023; Wang et al., 2021b). On the practical
end, GeoAl helps to achieve decision-making and evaluate different
scenarios of policies in the initiatives of smart and healthy cities as well
as citizen participation in urban planning and design—where public
sectors and authorities could rely on the quantitative results simulated
by GeoAl to optimise policy implementation and reduce social and
financial costs. The possibilities for cross-disciplinary research are
endless, and the potential benefits are significant with the invention of
new technology such as generative Al, digital twins, knowledge graphs,
5G, and the Internet of Things (Zhang et al., 2022) to help both re-
searchers and policymakers gain a deeper understanding of complex
urban systems and make more informed decisions that positively link
the academic outcomes to the real world.

5.2. Emerging spatiotemporal data, and its issues and challenges

Our review finds out that human geography studies have been much
advanced by emerging spatiotemporal big data that enables geographers
to track, monitor, and quantify complex human behaviors in a large
spatial and temporal scale. It further indicates that the AI's extensive
role in human geography, yet highlights the limited interpretability of
current models, a concern raised in recent studies (Hsu and Li, 2023; Liu
et al., 2023; Xing and Sieber, 2023). This issue, along with the potential
bias in GeoAl models, is crucial for future research. For instance, models
predicting human perceptions from imagery, often developed through
broad surveys, may not suit specific geographic needs (Kang et al.,
2023). Additionally, these models typically require substantial, region-
specific data, presenting challenges in data availability and applica-
tion across different areas. Addressing these data limitations and biases
in GeoAl is vital for advancing the field. Our review (Fig. 6) has further
found that the used data spans a variety of types and comes from a va-
riety of sources, e.g. authoritative data from governments to crowd-
sourced instances. This matter requires attention, as it has implications
for the quality and downstream analyses. Much of the data used in the
reviewed papers are obtained from OpenStreetMap, the freely editable
map of the world, which in some geographies offers suitable data for
some of the use cases covered in this review. However, data remains
highly heterogeneous (Biljecki et al., 2023) and in some locations, it may
not be sufficient or even detrimental for analyses. We call attention to
pay attention to the quality of the data, especially those derived from a
crowdsourced provenance. Further, a potential research direction is
consideration of the impact of the propagation of errors on the outcome
of an analysis. Spatial data quality, a topic often ignored in human ge-
ography, regards multiple elements such as completeness, positional
accuracy, and thematic accuracy (Hou and Biljecki, 2022). The quality
of each of these elements impacts different use cases in different ways,
and it would require extensive research on understanding the reliability
of an analysis based on the input dataset.
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5.3. Sustainable GeoAl: repeatable, reproducible and expandable

GeoAl is crucial for environmental and sustainability issues, pro-
cessing geospatial data efficiently. Its solutions must be repeatable,
reproducible, and expandable for consistent, transferable, and scalable
methodologies. Repeatability requires GeoAl to provide consistent re-
sults with the same data and methods, calling for well-documented al-
gorithms and transparent workflows. Reproducibility, achieved through
varied data sets or environments, benefits from open-source platforms,
standardized data, and shared code, enhancing collaboration and
progress. Expandability enables adaptation to larger or new data sets
and evolving queries, utilizing modular designs, cloud computing, and
advanced algorithms for big data, ensuring GeoAl solutions remain
flexible and applicable. In addition, the complexity of GeoAl methods
and their execution environments affects their repeatability, reproduc-
ibility, and expandability. Three main approaches for developing and
executing GeoAl models include 1) using existing GIS or analysis soft-
ware like Geoda, ArcGIS, and others, which is user-friendly but less
reproducible and scalable; 2) developing and executing complex models
through code, which enhances reproducibility and scalability, especially
with Jupyter Notebooks. However, Trisovic et al. (2022) conduct a
large-scale study on research code quality and execution, and found that
74 % of data science research code failed execution tests (3) utilizing
visual programming tools like ArcGIS’s Model Builder, QGIS, Knime,
Orange3, and Alteryx to develop and execute GeoAl models in an
executable workflow, reducing the burden on researchers and
improving understandability, it provides a promising idea to improve
repeatability, reproducibility, and expandability of GeoAl modes.
However, there are still relatively few applications for this at present.
Sustainable GeoAl requires a holistic approach to ensure solutions are
repeatable, reproducible, and expandable. By focusing on these aspects,
the GeoAI community can foster long-term, impactful, and collaborative
work, contributing to a more sustainable future.

5.4. Human-centred GeoAl in the era of artificial generative intelligence

Al has witnessed significant advancement with the emergence of
Artificial General Intelligence (AGI) representing Al system’s capable of
performing intellectual tasks better that a human, and sometimes
exceeding human intelligence (e.g., ChatGPT). Leveraging AGI in
human-centered GeoAl has the potential to deliver substantial advan-
tages, including bolstering decision-making processes, optimizing
resource management, and enhancing disaster response and recovery
efforts. The active involvement of stakeholders in the design and
development of Al solutions is anticipated to enhance trust and accep-
tance among the community, guaranteeing that the developed solutions
are customized to cater to their specific interests and requirements. This
approach fosters inclusivity, allowing for a sense of ownership among
the stakeholders, thus creating a collaborative atmosphere conducive to
developing efficient AI solutions. The integration of AGI in geospatial
analysis raises concerns about privacy violations and deepening in-
equalities. Geospatial data, potentially misused by public or private
entities, may infringe on privacy and liberty. AGI, relying on historical
data, might perpetuate biases and discrimination, aggravating societal
inequalities and marginalizing communities. We argue that human-
centered GeoAl must focus on transparency and accountability, allow-
ing stakeholders complete access to AGl-related information. It’s vital
that AGI be inclusive and equitable, avoiding the reinforcement of
existing biases in geospatial analysis. Achieving this involves fair data
practices and actively reducing data biases, thus building trust and
contributing to a more equitable, sustainable future through trans-
parent, accountable, and inclusive AGI solutions.

5.5. Computational capacity subject to the quantum revolution

GeoAl has experienced rapid growth in recent years, yet it still faces



S. Wang et al.

several geo-computation challenges that must be tackled to ensure its
long-term success. One significant challenge is scalable, efficient, and
cost-effective data storage solutions for the large volumes of high-
resolution and real-time geospatial data generated by remote sensing
platforms, IoT devices, social media sources, and more. In addition to
traditional distributed and cloud-based solutions, edge cloud-based
storage system provides an innovative way to improve the perfor-
mance, efficiency, and scalability of geospatial big data storage by
reducing latency, improving bandwidth utilization, and providing high
scalability. With the development of blockchain (Zheng et al., 2018),
Geochain has the potential to significantly impact geospatial data stor-
age by offering a decentralized, secure, and transparent solution for
managing geospatial data (Kamel Boulos et al., 2018; Mao and Golab,
2023). Analysing large geospatial datasets can be computationally
intensive, particularly when using advanced machine learning algo-
rithms that require significant processing power. Developing scalable
processing techniques that can handle large datasets without compro-
mising accuracy is crucial. This may involve parallel processing,
distributed computing, or leveraging specialized hardware, such as
GPUs, to improve the efficiency of GeoAl applications. Quantum
computing (Steane, 1998), an emerging technology that exploits the
principles of quantum mechanics, has the potential to revolutionize
various fields, including GeoAl. Although still in its early stages, quan-
tum computing could offer significant advantages by enhancing
computational power, processing real-time geospatial big data,
improving machine learning algorithms (Riedel et al., 2021), and solv-
ing complex optimization problems (e.g., NP-hard problems) (Werner,
2019).

6. Conclusion

Human geography has undergone a transformative shift, increas-
ingly relying on spatiotemporal big data to enhance research design and
address the intricate, non-linear relationships between human society
and its potential drivers. This evolution is marked by a greater diversity
in empirical studies, contributing to the advancement of theoretical
foundations. Our review reveals that the integration of emerging
spatiotemporal big data has significantly propelled human geography
studies, allowing geographers to track, monitor, and quantify complex
human behaviors on a large spatial and temporal scale. The intersection
of GeoAl with quantum computing is poised to revolutionize human
geography studies further, providing advanced tools to simulate spatial
phenomena and enhance predictions related to the environment and
population dynamics. This integration will empower researchers to
process and analyze extensive datasets at an unprecedented speed,
enabling a more detailed exploration of spatial relationships. It is
essential, however, to approach the development and use of GeoAl
responsibly and ethically, considering the potential social and environ-
mental impacts of its implementation. We advocate for collaborative
efforts across disciplines and sectors, involving government entities,
public and private authorities, and academia. These concerted actions
will contribute to enriching the roadmap of GeoAl in human geography,
extending its application to broader geographic paradigms. This, in turn,
will empower our geographers to seize research opportunities and
leverage insights from the emerging data and AI deluge.
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