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Abstract

We provide the first scientific evidence that a human-caused signal in the seasonal cycle of sea
surface temperature (SST) has emerged from the background noise of natural variability.
Geographical patterns of changes in SST seasonal cycle amplitude (SSTac) reveal two distinctive
features: an increase at mid-latitudes in the Northern Hemisphere related to mixed-layer depth
changes, and a robust dipole pattern between 40°S and 55°S in the Southern Hemisphere which is
mainly driven by surface wind changes. The model-predicted pattern of SSTac change is
identifiable with high statistical confidence in four observed SST products and in 51 individual
model realizations of historical climate evolution. Simulations with individual forcing reveal that
greenhouse gas increases are the primary driver of changes in SSTac, with smaller but distinct
contributions from anthropogenic aerosol and ozone forcing. The robust human influence
identified here on the seasonality of SST is likely to have wide-ranging impacts on marine

ecosystems.

Earth’s climate is simultaneously influenced by anthropogenic and natural external forcings, as
well as by natural internal climate variability operating on a wide range of different space and time
scales. Detection and attribution (D&A) analysis seeks to disentangle these human and natural
influences'. Pattern-based “fingerprint” methods are a key component of D&A studies. Such

methods have successfully identified human fingerprints in long-term annual-mean changes in

7 8-12
5

surface and atmospheric temperature’”’, different aspects of the hydrological cycle
atmospheric circulation'>!#, and ocean heat content!>!6,

The annual cycle is one of the most fundamental aspects of our climate and accounts for
greater than 90% of seasonal temperature variability over most of the globe!”. It influences human
health, water supplies, agriculture, energy demand, and ecosystems. Gaining insight into how

anthropogenic forcing has impacted seasonality is of scientific, economic, and societal importance.
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Although annual cycle changes have attracted recent scientific attention in D&A studies'’”?2, such
investigations have not been performed with ocean variables.

We focus here on changes in the amplitude of the annual cycle of sea surface temperature
(SSTac), which plays an important role in air-sea interaction, global rainfall patterns, and the

distributions of marine ecosystems?*2’

. In the tropical Pacific, model projections show an
intensification of SSTac in the twenty-first century compared to the twentieth century, which has
been attributed to changes in meridional SST gradients?® and atmospheric circulation?”. In the mid-
latitudes, SSTac is projected to increase in both hemispheres?#?%%°, These projections of SSTac
intensification in mid-latitudes are consistent with the observed amplitude increase in the surface
air temperature (SAT) and tropospheric temperature (TT) annual cycles!”?? during recent decades.
Since SST, SAT, and TT are independently measured, the emergence of an externally forced signal
in SSTac would provide additional support for the identification of anthropogenic fingerprints in
SAT and TT annual cycles.

Several previous model investigations demonstrate that the mid-latitude amplification of
SSTac is primarily linked to changes in mixed-layer depth (MLD)**?%73!, In summer, decreasing
MLD leads to trapping of the net surface heat flux into the ocean in a thinner layer, thereby yielding
a larger summertime SST increase®®. This shoaling of the mixed layer results from enhanced upper
ocean stratification driven by ocean warming*>33. In simulations with estimated future greenhouse-
gas emissions, the annual-mean mixed layer shoaling and the mid-latitude SSTac increase are
projected to intensify? as the effective heat capacity of the thinner mixed layer decreases.

It is still unclear if an anthropogenic fingerprint can be formally detected in the changing
amplitude of the observed SST annual cycle, and whether this fingerprint can be robustly attributed
to human influence. We address this question here with four different observed SST datasets and
over 50 individual model realizations of historical climate change. A novel aspect of our
fingerprint study is its use of idealized simulations and heat budget analysis to elucidate the
physical mechanisms that dictate key features of the common model and observed patterns of

SSTac change.
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Trends in SSTac

In all four of the observed SST products we examined, SSTac trends over our primary analysis
period (1950-2014) increase in most ocean regions and have a similar spatial pattern (Fig. 1a-d).
Some features of the observed pattern are also evident in model simulations of historical climate
change (HIST; Fig. le). The changes common to the models and observations are dominated by
zonal-mean amplitude increases between 30° and 60° in both hemispheres (Fig. 1f), poleward of
the maxima in the SSTac climatology (Extended Data Fig. 1). Another notable regional-scale
feature of the SSTac trends in the HIST multi-model mean (MMM) and the HadISST and PCMDI
observed datasets is the decrease in annual cycle amplitude in the vicinity of the Antarctic
Circumpolar Current (Fig. 1e) south of 50°S.

Although models can reproduce the positive observed SSTac trends at NH mid-latitudes,
the observed trends are smaller than in the simulations (Fig. 1f). One possible interpretation of this
result is that the observed regional signals may be partly suppressed by the specific phasing of
internal variability in the North Atlantic, as is the case with observed annual-mean warming in the
tropical Pacific®*3>. Differences between SSTac trends in observed data and the HIST MMM are
also prominent in the tropics, such as the pronounced maximum in the western equatorial Pacific
that appears only in observations.

These model-observed differences may be partly due to the fact that the MMM is an
average over individual realizations of historical climate change (in a single model) and an average
over models. Averaging damps the noise of natural internally generated variability, which is
uncorrelated across model realizations (except by chance). The MMM, therefore, should more
clearly reveal the response to external forcing®*3°. In contrast, there is only one realization of the
observed record, which contains both internal variability and the forced signal in SSTac. We
therefore expect observed SSTac changes to be noisier than in the MMM, particularly in regions
where multidecadal variability affects tropical and subtropical temperature trends*33,

Could the above-mentioned model-observed differences in SSTac trends be related to
model biases in climatological-mean SSTac patterns? We find that the model-average correlation
between the patterns of model biases in the climatology of SSTac and the model biases in the
patterns of trends of SSTac is low (R = 0.06). We infer from this that model biases in climatology

do not appear to be a dominant factor in explaining the differences between the observed and
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simulated SSTac trend patterns in Fig. la-d and Fig. le. This does not, however, rule out a
possibility we discuss later — that overestimated climate sensitivity may contribute to model-
observed differences in SSTac trends™.

The MMM and observations show closer agreement in global-scale features of zonally
averaged SSTac trends (Fig. 1f), with a common pattern of larger increase in the amplitude of
SSTac in the extratropics relative to the tropics. This pattern occurs in both hemispheres, but the
mid-latitude increases in SSTac are larger and broader in the Northern Hemisphere (NH) than in
Southern Hemisphere (SH). This hemispheric asymmetry is consistent with results from previous
studies of changes in the amplitude of the annual cycle of mid-tropospheric temperature!”?2, As
noted above, the simulated decrease of SSTac trends in the Southern Ocean (Fig. 1) is common
to HadISST and PCMDI. Although the other two observational estimates do not show negative
SSTac trends between 50°-60°S, they have trend magnitudes within this latitude band that are
smaller than the positive trends between 35°-45°S, and thus are consistent with the MMM results

in a relative sense.

Fingerprint Analysis and Detection Time

We use a standard pattern-based method to determine whether the model-predicted externally-
forced fingerprint of SSTac changes is statistically identifiable in observations®’. The fingerprint
we search for is the leading empirical orthogonal function (EOF) of the MMM SSTac anomalies
(Methods). The fingerprint is calculated from the HIST simulations over the period 1950 to 2014
(Fig. 2a). Our analysis assumes that the spatial structure of the fingerprint pattern does not change
markedly over time!”*8. We tested and confirmed this assumption by calculating the HIST
fingerprint for four different analysis periods (1950-2014, 1960-2014, 1970-2014, and 1980-2014;
see Extended Data Fig. 2).

We compare the time-invariant SSTac fingerprint pattern calculated from the HIST MMM
with the time-evolving SSTac patterns from observed datasets and long model control runs,
respectively. These comparisons yield time series of similarity between the fingerprint and
observed SSTac patterns and between the fingerprint and patterns of natural internal variability in
SSTac. By varying the trend length L over a range of timescales (from 10 to 65 years), we can

determine whether (and when) the similarity between the observations and the HIST fingerprint
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shows a statistically significant signal — i.e., an increase in pattern similarity over time that is
unlikely to be due to natural internal variability alone.

Figure 2b shows the timescale-dependent S/N ratio calculated from the trends of these
signal and noise time series. We stipulate that fingerprint detection occurs at trend length L if the
S/N ratio exceeds a 5% significance threshold and remains above this threshold for all trend lengths
larger than L. The model HIST fingerprint is identifiable with high statistical confidence (i.e., at
the 5% significance level or better) in all four observational SST datasets after ca. 2000. At the
end of the 65-year record, S/N ratios in the observations vary between 2.8 and 3.5. This indicates
that smaller-scale differences between the four observational data sets — such as the previously-
noted SSTac trend differences at high latitudes in the SH — have relatively small impact on
detection of the global-scale fingerprint in observations.

We also show the S/N ratios obtained when the HIST MMM fingerprint is searched for in
individual realizations of HIST simulations (gray curves in Fig. 2b). In all 51 realizations, S/N
exceeds the 5% threshold before the end of the simulation period in 2014. As in the case of the
observations, SSTac changes in individual HIST runs exhibit time-increasing similarity with the
fingerprint (gray curves in Fig. 2b), pointing towards the robustness of the model-predicted forced
SSTac response.

The S/N ratios calculated with observed data generally lie within but close to the lower end
of the model-generated S/N ratio distribution. There are multiple (not mutually exclusive) possible
explanations for this result. These explanations include errors in the model external forcings®,
errors in the simulated SSTac responses to the applied forcings, residual systematic errors in the
observations, and model-versus-observed mismatches in the random phasing of internal variability
(e.g., the El Nifio—Southern Oscillation, Interdecadal Pacific Oscillation, and Pacific Decadal
Oscillation). The latter explanation contributes to the more muted observed annual-mean
tropospheric warming over the satellite era®*.

It is still unclear, however, what influence such mismatches in simulated and observed
variability phasing have on changes in the seasonal cycle of SST. Here, we note that individual
ensemble members generated with the same model and external forcings can have appreciable
differences in their S/N behavior (see Extended Data Fig. 3). This suggests that as in the case
annual-mean tropospheric temperature changes®*, model-observed differences in the phasing of

internal variability may have marked influence on SSTac, and hence on the overestimated “model
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only” S/N ratios in Fig. 2b. The non-negligible correlation between climate sensitivity*’ and the
“model only” S/N ratios over the full 65-year analysis period (R = 0.55) provides evidence that
overestimated model climate sensitivity>® could also contribute to overestimated “model only” S/N
ratios (see Extended Data Fig. 4).

Figure 2c provides information on the monitoring period required to identify the model-
predicted HIST SSTac fingerprint (the trend length L). Values of L at which detection occurs are
shown as a function of the choice of the analyzed period. We consider four different periods; each
ends in 2014, but has a different start date (1950, 1960, 1970, and 1980). There are two principal
findings from this analysis. First, irrespective of the assumed start date of monitoring, the model-
predicted HIST SSTac fingerprint pattern in Fig. 2a is robustly identifiable in all four observed
SST data sets and in all 51 model realizations of historical climate change. Except in the case of
S/N results obtained with COBE data, the observed values of L are always contained within the
spread of the model results.

Second, a common feature of both the simulated and observed results is that L decreases
systematically with later start dates. For the MMM SSTac changes, L is approximately 48 years
and 18 years for start dates in 1950 and 1980 (respectively). This systematic decrease is likely due
to larger net positive anthropogenic forcing over the 1980-2014 period than over periods with
carlier start dates that sample appreciable negative forcing by anthropogenic aerosols. As will be
shown in the next section, GHG forcing is the dominant influence on simulated SSTac changes,
so changes over time in the relative importance of GHG and anthropogenic aerosol forcing must
contribute to the differences in L in the four analysis periods in Fig. 2c. Note that for fingerprint
detection in the four different observed SST data sets, the spread in L values decreases as a function
of increasing start date. This decrease in spread is partly due to improvements over time in the

quality and spatial coverage of SST measurements and overlap between datasets.

Contributions from individual external forcings

We use single-forcing simulations to isolate and quantify the individual contributions of changes
in well-mixed greenhouse gases (GHG), anthropogenic aerosols (AER), stratospheric ozone
depletion (O3), and volcanic eruptions and solar variability (NAT) (Methods). We apply two
different methods to understand the effects of single forcings: (1) To estimate the contributions of

individual external forcings to the time-evolving S/N ratios obtained with the HIST MMM

7
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fingerprint, the GHG, AER, O3, and NAT single-forcing simulations are all regressed onto the
same HIST fingerprint used in the previous section; (2) To determine whether the model-predicted
fingerprint associated with an individual forcing is statistically identifiable, SSTac changes from
observations and HIST runs are projected onto each of the four fingerprints estimated from the
GHG, AER, 03, and NAT single-forcing experiments. In the main text, we focus on Method 1
results. The results based on Method 2 are discussed in Methods.

The Method 1 S/N results indicate that GHG forcing is the dominant contributory factor to
the identification of the HIST SSTac fingerprint, which is detectable in the GHG MMM before
1990 (and before the end of the analysis period in 2014 in 48 out of 51 individual GHG realizations;
see Extended Data Fig. 5). The S/N ratios for the “GHG only” case increase nearly linearly with
increases in timescale L and the magnitude of the GHG forcing. In contrast, S/N results for AER
show markedly nonlinear behavior as L increases. This is due to non-monotonic changes in
emissions of anthropogenic sulfate aerosols, with large emissions after World War II followed by
a reduction in emissions from North America and Europe after the 1980s*'~*3. The HIST SSTac
fingerprint is not detectable in the MMM of AER, O3, or NAT.

Our analysis of the impact of individual anthropogenic factors assumes additivity of the
forced responses in GHG, AER, O3, and NAT*+*. To test the validity of this additivity assumption,
we compare the HIST S/N results in Fig. 3a with S/N results obtained for ALL, the linear
combination of the individual S/N ratios obtained for the GHG, AER, O3 and NAT experiments.
Additivity is a reasonable assumption for analysis periods longer than 40 years. For periods less
than 40 years, differences between the HIST and ALL S/N results are likely related to the
combined effects of larger noise on shorter timescales, the smaller ensemble size for O3, and
nonlinear aspects of the forced SSTac responses*®3,

Figure 3b provides detection times for the HIST SSTac fingerprint in HIST, GHG, and
three linear combinations of individual SSTac responses: GHG+AER, GHG+O3, and
GHG+AER+O3. The primary influence on detection time is GHG, with AER acting to delay
fingerprint detection: “GHG only” yields systematically earlier detection times than any set of
SSTac changes that includes AER (HIST, GHG+AER, or GHG+AER+O3). Including O3 also
advances detection time, with the earliest median detection time of the HIST SSTac fingerprint (in

1985) in the GHG+O3 linear combination. The spread in detection times obtained with linear
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combinations is larger than the spread in detection time inferred from HIST. This is likely due to

amplification of noise in the linear combination of individual responses.

Physical drivers of SST changes

We seek to understand the physical drivers of the SSTac changes described in the previous sections.
In the observations, warming of zonal-mean SST over 1950 to 2014 occurs in nearly all months
and latitudes (Extended Data Fig. 6). For the mid-latitudes it is more pronounced in the summer
hemisphere. In the SH at ca. 40°S, both the observations and HIST display warming relative to
annual-mean trends in austral summer and cooling relative to annual-mean trends in austral winter
(Figs. 4a,b). In HIST, this feature is primarily driven by GHG forcing (Figs. 4c). Relative to
observations, CMIP6 models yield larger NH temperature rises in both summer and winter. As
noted above, there are multiple possible interpretations of this result.

Another prominent aspect of HIST and GHG is a dipole pattern characterized by
anticorrelation between the seasonal temperature changes at roughly 40°S and 55°S. GHG and O3
forcing both contribute to this feature (Figs. 4c,d). As noted above, this dipole is evident in two of
the four observed datasets (HadISST and PCMDI; Extended Data Fig. 7). These observational
differences likely arise because satellite data were included in HadISST and PCMDI but not in
ERSST and COBE. In consequence, the Southern Ocean is better represented in the first two
datasets, especially in the vicinity of sea-ice.

Buoyancy flux and wind stress changes are two major surface forcings affecting the
Southern Ocean climate**—'. We explore the respective effects of buoyancy (dominated by heat
flux change) and wind (momentum) forcing on SSTac changes using the Flux-Anomaly-Forced
Model Intercomparison (FAFMIP) experiments (Fig. 5). In the FAF-stress experiment, in which
CO»-induced perturbations to the ocean are imposed in wind stress only, the SH mid-latitudes
show a robust meridional dipole pattern in zonal-mean SSTac change (Fig. 5b). In the FAF-heat
experiment, COz-driven perturbations to heat fluxes amplify SSTac in both hemispheres, but the
magnitude of the change is markedly larger in the NH (Fig. 5c), where the wind stress effect is
limited. The FAFMIP results imply that wind forcing caused by CO> increases is the main driver
of the above-described SSTac dipole pattern between 40°S and 55°S found in HIST, GHG, and
two of the observed SST datasets. In contrast, changes in NH mid-latitude SSTac arise from

increased surface heat flux linked to atmospheric warming.

9
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In addition to the influence of these surface wind stress and heat flux forcings, the SSTac
fingerprint can also be influenced by ocean adjustments arising from MLD changes. We
investigated the role of MLD changes with a simplified mixed-layer heat budget analysis of the
HIST runs. Our heat budget model also considers the effects of net surface heat flux (QOnef) and
shortwave radiation flux out of the mixed layer base into the intermediate ocean (Qb) (Methods;
Eq. 3). The patterns of the dSST/dtsc change can be reproduced by this simple model (Figs. 6a,b),
and are consistent with the SSTac fingerprint (Fig. 2a). The shoaling of MLD with fixed Qnet-Qb
is the key factor here (Fig. 6¢). In winter, this shoaling effect generates SST cooling by enhancing

temperature response to winter heat loss. In summer, shoaling yields SST warming. It is

noteworthy that the Onet effect here differs from the analysis of FAF-heat, as the latter also

incorporates MLD effects arising from the accumulated ocean heat.

(Formatted: Font: Italic

Because of this seasonally dependent effect of the MLD shoaling, the SSTac would be
amplified even with constant MLD shoaling throughout the year. This is why both hemispheres
show positive annual cycle changes in the 30°-50° latitude band. Between 50°S-60°S, the MLD
deepens in austral summer, which appears to overwhelm the shoaling of MLD in austral winter,
thus decreasing SSTac in this band. The fixed MLD case results in a weak but reduced SSTac in
most regions (Fig. 6d), which implies that the warming induced by the Oner-Qb change is slightly
larger in winter than in summer.

We performed two further sensitivity experiments: (1) constant monthly MLD shoaling, in
which the summer value is applied for all 12 months at each location; and (2) shoaling MLD by
5% in every month and location relative to the background monthly value. Our results suggest that
the absolute change and relative change of MLD give rise to similar patterns (Extended Data Fig.
8). The major difference is in the 50°S-60°S band, apparently due to the opposite directions of
MLD change between austral winter and summer (Extended Data Fig. 9a,b). For all other latitudes,
the shoaling of the mixed layer is consistent with season.

The westerly wind stress in the 50°S-60°S region increases in austral summer (Extended
Data Fig. 9c,d). This can deepen MLD by increased local turbulent mixing as well as by the
increased equatorward advection of colder water. The negative wind stress changes between 30°S-
50°S have the opposite effect. The contrasting surface wind responses in the 30°S-50°S and 50°S-
60°S bands reflect the poleward shifting of zonal winds over the Southern Ocean caused by GHG

10
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and O3 forcing (Fig. 4c,d). This shift is consistent with the FAF-stress response to CO»-driven

wind stress changes.

Conclusions

Most previous studies of the annual cycle of SST (SSTac) focused primarily on projected 21st
century changes®>?!. Here, we examine whether there is a detectable “fingerprint” pattern of
human-induced SSTac change over 1950-2014. We provide the first scientific evidence that a
human-caused SSTac signal has already emerged from the background noise of natural variability.
Geographical patterns of SSTac changes show increased SSTac at mid-latitudes in the NH and a
distinctive meridional dipole structure at SH mid-latitudes. These large-scale zonal features are
common to observations and model simulations with anthropogenic forcing, and are dissimilar to
the smaller-scale structure of natural internal variability. This helps to explain why the model-
estimated SSTac fingerprint in response to combined anthropogenic and natural external forcing
is identifiable by the end of the 20th century in all four observed SST datasets analyzed here. The
fingerprint is also robustly identifiable in all 51 model realizations of historical climate change.
Single forcing experiments indicate that increases in well-mixed GHGs is the dominant

factor in the identification of externally forced changes in SSTac, Anthropogenic aerosol

emissions are likely to have delayed the detection of this fingerprint by ca. 7-8 years on average.
External forcing from stratospheric ozone depletion partially contributed to the development of

the SSTac dipole structure at SH mid-latitudes, while natural external forcing by volcanoes and

solar irradiance changes had relatively little effect on the detection of a human fingerprint in SSTac.

Model simulations and a heat budget analysis reveal that the leading physical drivers of
these large-scale SSTac changes are different in the two hemispheres. In the SH, the impacts of
changes in atmospheric circulation and surface wind stress on the MLD are the key determinant of
the dipole-like SSTac response in the Southern Ocean. In the mid-latitudes of both hemispheres,
human-induced warming yields increased stratification of the upper ocean, which in turn causes
shoaling of the MLD during all seasons. Year-round MLD shoaling decreases the thermal inertia,
thereby amplifying the mid-latitude SSTac.

Human-driven amplification of the mid-latitude seasonal cycle of SST has important
implications for future changes in the behavior of marine ecosystems. The SST changes found here

have the potential to influence both the productivity and distribution of marine species which

11
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constitute key food resources for human societies. Our finding of robust changes in the seasonality
of SST should motivate more detailed exploration of the anthropogenically forced seasonal

changes in a wide range of different ocean properties.
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Methods

CMIP6 experiments and models.

This study uses output from climate model simulations performed under Phase 6 of the Coupled
Model Intercomparison Project (CMIP6)32. We focus on 10 CMIP6 models that performed all of
the following 4 experiments: historical all-forcing simulations (HIST) and single-forcing
simulations performed with anthropogenic aerosols (AER), greenhouse gases (GHG), and purely
natural changes in solar irradiance and volcanic aerosols (NAT)**. Each of the 10 models has
multiple ensemble members. Each ensemble member of a given model is driven by the same
external forcing, but has a different manifestation of natural internal climate variability
superimposed on the underlying forced response. The number of ensemble members available for
each model and each experiment is listed in Extended Data Table 1. For each experiment, there
are 51 realizations in total. The multi-model mean (MMM) is the average of the ensemble means
of these 10 models. The preindustrial control (piControl) simulations from the same 10 models are
used for the purpose of estimating the noise from internal variability (see below).

We also analyze results from an experiment with forcing by stratospheric ozone changes
only (O3). Only 4 of the 10 models that performed HIST, GHG, AER, and NAT simulations
provided results for the O3 simulation (see Extended Data Table 1).

The HIST, GHG, AER, O3, and NAT experiments cover the period from 1850 to 2014.
We focus on the 1950-2014 period for comparing simulations with observations of changes in the
amplitude of the annual cycle of SST (SSTac). This choice of period was dictated by improvement
in the spatial coverage and quality of observed SST data after World War II, as well as by large
post-1950 changes in well-mixed GHGs, anthropogenic aerosols, and stratospheric ozone. All
model output was interpolated to a common, regular 1°x 1°grid.

Observations.

We rely on four primary SST gridded products. These are the Hadley Center Sea Ice and SST
dataset version 1 (HadISST)**, the NOAA Extended Reconstructed SST dataset version 5
(ERSST)*?, the Centennial In Situ Observation-Based Estimates of the Variability of SST and
Marine Meteorological Variables, version 2 (COBE), and the Program for Climate Model
Diagnosis and Intercomparison SST dataset (PCMDI)*’. ERSST and COBE are based on in situ
measurements, and HadISST and PCMDI combine in situ and satellite estimates of SST. Different
averaging and gap-filling approaches are employed to infill data-sparse regions and time periods
in these gridded products. HadISST and PCMDI datasets are not entirely independent: the PCMDI
dataset is HadISST1 through 1981, and uses the NOAA Optimum Interpolation SST data (Ol.v2)
thereafter.
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In addition to these observational SST products, we also used the monthly surface zonal
wind from the latest-generation reanalysis of the European Centre for Medium-Range Weather
Forecasts (ERA5)*°. For the observed mixed layer depth (MLD), we first employed the gridded
monthly temperature and salinity data from the IAP product® to calculate the potential density.
MLD was then defined as the depth at which the ocean potential density exceeds the sea surface
density at a criterion of dp = 0.125 kg/m?, following the definition for MLD output (referred to as
‘mlotst’) from the CMIP6 models. There are likely to be substantial uncertainties in the IAP
product arising from sparse measurements of the subsurface temperature and salinity fields in the
Southern Ocean (particularly in the pre-Argo era of the IAP records).

In addition, we have used the information from ref 61 to examine whether biases in ship
SST data could be an important factor in our D&A analysis. We find it is unlikely that ship SST
data biases could alter any of our findings regarding the identification of an SSTac fingerprint in
observations (not shown).

FAFMIP experiments.

To isolate the individual effects of changes in wind stress and surface heat flux on SSTac trends,
we rely on output from the Flux-Anomaly-Forced Model Intercomparison (FAFMIP) experiments.
Results are from 5 models: ACCESS-CM2, CanESMS5, HadGEM3-GC31-LL, MIROC6, MRI-
ESM2-0. The FAFMIP experiments, branched from each model’s piControl run, prescribe a set of
surface flux perturbations for the ocean. These perturbations are obtained from the ensemble-mean
changes simulated at the time of doubled CO; by CMIP5 AOGCMs run under the 1pctCO2
scenario (in which atmospheric COz levels increase by 1% each year). We examine three different
FAFMIP experiments: FAF-all, in which perturbations of surface wind stress, surface freshwater
flux, and surface heat flux are simultaneously imposed; FAF-stress, with imposed perturbations of
surface wind stress only; and FAF-heat, with imposed perturbations of net surface heat flux only®?.

All FAFMIP experiments considered here were run for 70 years. We show the anomalies
of the 31-70-yr average relative to the climatology calculated from the full length of each model’s
piControl.

Calculation of annual cycle amplitudes.

For each model simulation and observation product, and at each grid-point x and year ¢, we
performed a Fourier analysis on the 12 monthly-mean values of SST. The amplitude of the first
harmonic is taken as the annual cycle amplitude (SSTac; see Extended Data Fig. 1d). Consistent
with previous work!?, the first harmonic explains > 95% of the total seasonal variance at almost
all locations between 60°N and 60°S (except at regions close to the equator). As an additional
sensitivity study, we confirmed that our fingerprint results are insensitive to the definition of
SSTac. The S/N ratios and detection times obtained here with the first harmonic are very similar
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to those found when we define SSTac as the seasonal maximum SST minus the seasonal minimum

SST at each grid-point and in each year.

Pattern-based fingerprint analysis.

a. Definition of the fingerprint
Detection methods generally require an estimate of the true but unknown climate-change signal,
typically designated as the fingerprint F(x), in response to an individual forcing or set of forcings®.
As in previous work, we assume F(x) to be the first EOF of the MMM change in SSTac in the
HIST simulations!”.
Let S(i, j, x, t) represent SSTac at grid-point x and year ¢ from the i realization of the j*
model’s HIST simulation, where:

i=1,...N:) (the number of realizations for the j* model)

j=1,... Ny (the number of models used in fingerprint estimation)

x=1, ... Ny (the total number of grid-points after regridding to a regular 1°x 1°grid)
t=1,... N (the time in years)

Here, N, varies across models (Extended Data Table 1). For HIST, N,, = 10 models. Prior to the
fingerprint analysis, all model and observed SSTac fields were interpolated to a common 1°x 1°
latitude/longitude grid. The evolution of multi-model mean SSTac was calculated by first
averaging over an individual model’s realizations (where multiple realizations were available), and
then averaging across the number of models available for each experiment. MMM anomalies were
then defined at each grid-point x and year ¢ with respect to the local MMM climatological annual
cycle amplitude. The fingerprint is the first EOF of the changes over time in the MMM SSTac
anomalies from the HIST experiment — i.e., the temporal changes in the annual cycle of SST. To
minimize the impact of sea-ice on SSTac, the domain was restricted to 60°N-60°S and to regions
where the winter sea-ice concentration is smaller than 10%. The anomalies are weighted by the
square root of the cosine of the grid node’s latitude® before calculating the EOF. Most of the
discussion focuses on model fingerprints estimated over 1950 to 2014. We also calculated
fingerprints for three additional analysis periods (1960-2014, 1970-2014, and 1980-2014). As
noted in the main text, the spatial structure of the fingerprint patterns does not change markedly
over these periods (Extended Data Fig. 2).

b. Fingerprint detection

We seek to determine whether the pattern similarity between the time-varying observations
and F(x) shows a statistically significant increase over time. To address this question, we require
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control run estimates of internally generated variability (“noise”), in which we know a priori that
there is no expression of the fingerprint, except by chance.

This intrinsic noise is estimated using preindustrial control runs (piControl) from the same
10 models employed for calculating the HIST fingerprint. These control simulations can be
affected by residual long-term drift. To reduce the effects of such drift on estimates of the internal
variability of SSTac, we fit a cubic polynomial to the full length of each model’s control run and
then removed the fitted polynomial®>%, Fitting and drift removal is performed at each model grid-
point. Because the individual model control runs are of unequal length, our noise estimates rely on
the last 400 years of each model’s piControl run. This yields a total of 4,000 years of concatenated
control run data, and avoids introducing any bias associated with differing control run lengths.

Observed SSTac estimates are expressed as anomalies relative to climatological means
over the 1950-2014 analysis period (or over the alternate analysis periods in Fig. 2c). The observed
temperature data are projected onto F(x), the time-invariant fingerprint:

Z, ) = Zi’il O(x, t) F(x) 1)

where O(x, t) are the observed SSTac anomalies. This projection is equivalent to a spatially
uncentered covariance between the patterns O(x, ¢) and F(x) at year ¢. The signal time series Z,(?)
provides information on the fingerprint strength in the observations. If observed patterns of
temperature change are becoming increasingly similar to F(x), Z,(?) should increase over time.

To assess whether this increase is statistically significant, we compare trends in Z,(?) with
a null distribution for which we know a priori that there is no expression of the fingerprint, except
by chance. Here, we derive this null distribution using C(x, ), the 4,000-year concatenated noise
data set, generated from the piControl runs as described above. The noise time series Ne(?) is the
projection of C(x, ¢) onto the fingerprint:

Nc(t) = Zgil C(x, t) F(x) )

where the length of Nc(?) is 4,000 years (see above).

We estimate signal-to-noise (S/N) ratios by fitting least-squares linear trends of increasing
length L years to Zo(?), and then comparing these trends with the standard deviation of the
distribution of maximally overlapping L-length trends in N.(2)'7-*7. Signal detection is stipulated to
occur when the trend in Z,(?) exceeds and remains above the stipulated significance level (which
is 5% in our study)??. The test is one-tailed, and we assume a Gaussian distribution of trends in
Ne(). The start date for fitting linear trends to Zo(?) is 1950 for our baseline analysis, and is 1960,
1970, and 1980 in the alternate analysis periods shown in Fig 2c. We use a minimum trend length
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of ten years, so the first S/N ratio (and the earliest possible detection time in the baseline period)
is for 10-year trends ending in 1959.

We also show S/N results that are based solely on model simulation output. In our “model
only” results, N(?) is calculated as in Eq. 2, but the observational estimates in Eq. 1 are replaced
by S(, j, x, t), the annual cycle amplitude information from each of the 51 HIST simulations (see
the gray curves in Figs. 1f and 2b).

c. HIST fingerprint vs. single-forcing fingerprints

As noted in the main text, we employ two methods to study the contributions of individual
external forcings (GHG, AER, NAT, and O3) to the simulated SSTac changes. In Method 1,
SSTac anomalies from individual realizations of the four single-forcing simulations are projected
onto the common fingerprint calculated from the HIST MMM. As in the case of HIST, the MMMs
of SSTac from these four single-forcing experiments were also projected onto F(x).

In Method 2, we project SSTac changes from the HIST MMM and from individual HIST
realizations onto each of the four fingerprints estimated from the GHG, AER, O3, and NAT multi-
model average SSTac changes. This yields information on the strength of each individual
fingerprint in the historical all-forcing simulations, and on how the strength of the GHG, AER, O3,
and NAT fingerprints evolves with increasingly longer analysis periods.

We use EOF1 for the Method 2 GHG fingerprint and EOF2 for the Method 2 fingerprints
from AER, O3, and NAT (see Extended Data Fig. 10). This choice was made because in the GHG
simulation, EOFs 1 and 2 are clearly separated in terms of explained variance (EV), with the EV
associated with GHG EOF1 a factor of 3 larger than the EV of GHG EOF2. The latter pattern
largely reflects tropical internal variability associated with the El Nifio-Southern Oscillation
(ENSO). In contrast, EOFs 1 and 2 are less well separated in terms of EV in the AER, O3, and
NAT simulations — their EOF1 is very similar to EOF2 from the GHG simulation, while the EOF2
patterns of AER, O3, and NAT appear to be dominated by extratropical forced responses.
Moreover, the second principal component from AER, O3, and NAT show some remarkable

signals in the temporal evolution (Extended Data Fig. 10j).

SSTac from observations and HIST runs are projected onto these four single-forcing
fingerprints (Extended Data Fig. 11). For the projections onto the GHG fingerprint, all 51 model
HIST realizations and three of the four observational datasets eventually exceed the 5%
significance threshold. S/N levels are systematically lower for the AER, NAT, and O3 fingerprints,
which are therefore not as clearly identifiable in the HIST realizations or observations as the GHG
fingerprint. This provides support for a key finding from our Method 1 analysis: forcing by well-
mixed GHGs is the dominant factor in the identification of externally forced changes in SSTac.

We note that in Method 2, the NAT fingerprint is identifiable at the 5% level in 88% of the
HIST realizations and in two of the four observed SSTac datasets (Extended Data Fig. 11d). While
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there are small changes over time in the solar and volcanic forcing over 1950 to 2014%, the
behavior of the first principal component of the NAT SSTac changes (Extended Data Fig. 101)

suggests that NAT forcing is unlikely to produce a significant multi-decadal trend in SSTac.
Instead, the identification of the NAT fingerprint in the HIST SSTac data appears to be due to the
spatial similarity between certain large-scale features of the GHG and NAT fingerprints (compare
Extended Data Figs. 10a,f). Thus in Method 2 (which we do not focus on in our fingerprint analysis)
the statistical problem of degeneracy®” of the normalized GHG and NAT fingerprints hampers
reliable assessment of the relative contributions of GHG and NAT forcing to the simulated SSTac
changes. In Method 1, however, the larger amplitude of the SSTac response to GHG forcing
(relative to NAT forcing) is preserved — which is why the HIST fingerprint can be identified in the
individual GHG realizations, but not in the individual NAT realizations.

The uncentered pattern correlation between GHG EOF1 and NAT EOF2 is higher than the
pattern correlations between GHG EOF1 and the EOF2 patterns of other single-forcing
experiments (Extended Data Table 2). This similarity may arise from major tropical volcanic
eruptions in the 1950-2014 analysis period (Agung, El Chichdn, and Pinatubo) and the associated
shifts of the intertropical convergence zone®®, which in turn could affect the latitudinal location of

regions of mid-latitude increases in SSTac.

Simplified Mixed-Layer Heat Budget Analysis.

Our mixed-layer heat budget model is a simplified version of the traditional mixed-layer heat
budget model that takes into account only the dominant heat fluxes and mixed-layer depth
affecting the temperature of the oceanic mixed layer:

daTr Qnet—Qb
E - rho*Cp+*MLD )
The left-hand side is the ocean temperature tendency, and the right-hand side is the estimate based
on net surface heat flux (Qner), shortwave radiation flux leaving the mixed-layer base (Qb), and
mixed-layer depth (MLD). These terms are functions of month, latitude and longitude and are
calculated from HIST runs. The terms rho and Cp are the density and specific heat of seawater,
respectively.
For the changes in the annual cycle (4C) amplitude of d7/dt:

dT,
dt

%) ~ AC( Qnet,—Qb, )_ AC( Qnet;—Qby ) (4)

AC(
rhoxCp*MLD, ThoxCp*MLD4

) — AC(
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where “1” represents the average of the period 1950-1979, and “2” represents the average of the
period 1985-2014. The changes are the difference between these two 30-year periods. We also
hold Onet and MLD constant in Eq. 4 to isolate the effects due to MLD change and Qnet change:

Qnet;—Qb Qnet;—Qb

AMLD effect = AC(m) - AC(W) (5)
_ Qnet;—Qb, | Qnet;—Qb,

AQnet ef fect = AC(—rho*Cp*MLDl) AC(—rhO*CP*MLDl) (©)

In Egs. 5 and 6, the Qb and QOnet terms are for the same analysis period. Results are
insensitive to whether Qb is chosen from period 1 or period 2.

We examine the effect of MLD change in terms of its absolute change (Eq. 7) and relative
change (Eq. 8). As shown in Eq. 7, we assumed a summer MLD change to be added to all the
months from the base period. In terms of relative change, we assumed MLD is assumed to shoal
by 5% everywhere and in every month relative to the background value (Eq. 8).

_ Qnet;—Qbq _ Qnet;—Qbq
AMLDsummer ef fect = AC(rho*cw(Mwl+(MLDz,summw—Mwl,summer)) AC(rho*Cmel)
(7
_ Qnet,1—Qb; _ Qnet1—Qbq
AMLDsysnoating ef fect = AC(rho*Cp*(MLDl*OBS)) AC(rho*Cp*MLDl) ®)
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Data availability

The CMIP6 historical, single-forcing, and FAFMIP simulation outputs are available on the Earth
System Grid of the Program for Climate Model Diagnosis and Intercomparison (PCMDI):
(https://esgf-node.lInl.gov/search/cmip6/). HadISST data are available at:
https://www.metoffice.gov.uk/hadobs/hadisst. ERSST data are available at:
https://www.ncei.noaa.gov/products/extended-reconstructed-sst. COBE data are available at:
https://psl.noaa.gov/data/gridded/data.cobe2.html. PCMDI data are available at:
https://doi.org/10.22033/ESGF/input4MIPs.16921. ERAS data are available at:
https://www.ecmwf.int/en/forecasts/dataset/ecmwf{-reanalysis-v5. IAP data are available at:

https://climatedataguide.ucar.edu/climate-data/ocean-temperature-analysis-and-heat-content-

estimate-institute-atmospheric-physics.
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Fig. 1 Trends over 1950 to 2014 in the annual cycle amplitude of SST (SSTac). a-d Trends from
four observed datasets. e Trends from the multi-model mean (MMM) of CMIP6 HIST simulations.
Regions where the model-average climatological sea-ice coverage is larger than 10% are masked
in gray. f Zonal-mean trends in the amplitude of the SSTac estimated from observations and
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fingerprint pattern. The fingerprint is defined here as the EOF1 of the MMM SSTac changes over
1950-2014. b Timescale-dependent S/N ratios for trends calculated from signal and noise time
series for period of 1950-2014. The HIST MMM result is the black curve; results from individual
HIST runs are the gray curves. The colored lines denote S/N ratios estimated by searching for the
HIST MMM SSTac fingerprint in four different observed SST datasets. The horizontal purple line
is the 5% significance level (see Methods). ¢ Detection time relative to the start year for the
model-predicted SSTac fingerprint from the HIST experiment. Fingerprint detection occurs when
the S/N ratios for an L-year analysis period first exceed the stipulated significance level and then
remain above it for all larger values of L. The y-axis shows the value of L that satisfies this
condition. Results are for four different assumed analysis start years (1950, 1960, 1970, and
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all 51 individual HIST realizations. Black squares are the detection times calculated with the
MMM. Colored circles are detection times estimated by searching for the model-predicted SSTac
fingerprint in four different observed SST datasets (see panel b legend).

26



786

787
788
789
790
791
792
793
794

Last year of trend
a 4 b

1960 1970 1980 1990 2000 2010
| IR T RS RS R

6.0 | m— HIST - r 1 =
GHG 2010 |- |
e |
= 2000 | Q. .
Z _5 [ L]
(4] S 1990 | | n
2 : |
o r Il
O 1980 [ 1
E 1
T T T T 1 1970 L L L L L :
10 20 30 40 50 60 st Gv\Gﬂ‘P‘é\i\mN‘—“*O%HG G\,\c,+oa

Trend length [years]

Fig. 3 S/N ratios and detection times from single-forcing runs and their linear combinations. a
S/N ratios for the signal trends obtained by a fingerprint analysis involving the patterns of SSTac
change estimated from the MMM of different experiments. Results are for Method 1 (see
Methods). For 03, the MMM is calculated from the 4 models for which O3 results were available.
The MMM in the remaining cases is based on a larger set of 10 models. ALL represents the linear
combination of S/N ratios from GHG, AER, O3 and NAT. The horizontal gray line is the 5%
significance level. b The detection times of the HIST fingerprint estimated from HIST, GHG, and
linear combinations of SSTac changes from GHG, AER, and O3. The analysis period is 1950-2014.

27



795
796

797
798
799
800
801
802
803
804
805

Latitude

Latitude

60N

30N

308 -

30N

308 —

60S

Sm—]
T T T T T

J FMAMJ

J ASOND

°C /decade

0.06
0.048
0.036

(0]

0024 T

0012 2

«©

[
-0.012
-0.024
-0.036
-0.048
-0.06

°C /decade

308

308

60S

% — pg—— \/F\\\

) - Lt

|°C /decade

0.08
0.048
0.036
0.024
0.012

0
-0.012
-0.024
-0.036
-0.048

-0.06

L L L L L
J FMAMUJJASOND
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and observed MLD and wind changes (including observational data sources) is given in Extended
Data Fig. 9.
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832  Extended Data Fig. 2. Leading EOF of SSTac estimated from the HIST MMM. a-d Results for four
833  different analysis periods. The explained variances are shown in brackets.
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Extended Data Fig. 5. S/N ratios from the GHG, AER, 03, and NAT single-forcing runs. Results
are based on use of the same HIST fingerprint, which is searched for in the SSTac changes of each
single-forcing run (Method 1). Each panel shows the MMM result (the black curve) and results
from individual realizations (the gray curves). GHG, AER, and NAT results are from 10 models with
a total of 51 realizations; only four models with a total of 26 realizations were available for
calculating O3 S/N ratios. The horizontal purple line is the 5% significance level. For further details
refer to Methods.
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856  Extended Data Fig. 6. Zonal-mean monthly-mean SST trends over 1950 to 2014. a The ensemble
857  mean of four observed datasets. b-d The MMM of the HIST, GHG, and O3 simulations. In contrast
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862 Extended Data Fig. 7. Zonal-mean monthly-mean SST trends over 1950 to 2014 in four observed
863  datasets. The results are expressed as departures from annual-mean trends.
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Fig. 10. The horizontal purple line is the 5% significance level.
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898  Extended Data Table 1. CMIP6 models and the number of model realizations used in this study. The left
899  column shows the 10 CMIP6 models for which HIST, GHG, AER, and NAT runs were available. For 03,
900  results were available from four models only (right column). The middle and right columns show the
901 number of realizations available for each model. The identifiers of these realizations (r1, etc.) are
902 indicated in brackets.

Number of realizations used in HIST, Number of realizations
Model names

GHG, AER, and NAT used in 03
ACCESS-CM2 3 (r1-r3) -
ACCESS-ESM1-5 3(r1-r3) --
CanESM5 15 (r1-15) 10 (r1-r10)
CESM2 2 (rlandr3) -
CNRM-CM6-1 3(r1-r3) -
HadGEM3-GC31-LL 4 (r1-rd) --
IPSL-CM6A-LR 10 (r1-r3) 10 (r1-r10)
MIRO6 3(r1-r3) 3(r1-r3)
MRI-ESM2-0 5(r1-r3) 3(r1,r3,andr5)
NorESM2-LM 3 (r1-r3) -
903
904

905  Extended Data Table 2. Uncentered pattern correlations between fingerprints from different

906 experiments. For HIST and GHG, the fingerprint is obtained from the first EOF mode. For AER, O3, and
907 NAT, the second EOF mode is used as the fingerprint (see Extended Data Fig. 10).

908

COPrar:::?on HIST GHG AER 03  NAT
HIST 1

GHG 087 1

AER 020 045 1

03 052 034 -006 1

NAT 075 068 031 041 1

909
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