

1 The Emerging Human Influence on the Seasonal Cycle of Sea

2 Surface Temperature

4 Jia-Rui Shi^{1*}, Benjamin D. Santer^{1,2*}, Young-Oh Kwon¹, Susan E. Wijffels¹

¹Woods Hole Oceanographic Institution, Woods Hole, MA, USA

9 ²*Joint Institute for Regional Earth System Science and Engineering, University of California Los*
10 *Angeles, Los Angeles, CA, USA*

19 *Corresponding authors:

20 Benjamin D. Santer, bensanter1289@gmail.com

21 Jia-Rui Shi, jia-rui.shi@whoi.edu

22 Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA

23 02543.

24

Abstract

25 We provide the first scientific evidence that a human-caused signal in the seasonal cycle of sea
26 surface temperature (SST) has emerged from the background noise of natural variability.
27 Geographical patterns of changes in SST seasonal cycle amplitude (SST_{AC}) reveal two distinctive
28 features: an increase at mid-latitudes in the Northern Hemisphere related to mixed-layer depth
29 changes, and a robust dipole pattern between 40°S and 55°S in the Southern Hemisphere which is
30 mainly driven by surface wind changes. The model-predicted pattern of SST_{AC} change is
31 identifiable with high statistical confidence in four observed SST products and in 51 individual
32 model realizations of historical climate evolution. Simulations with individual forcing reveal that
33 greenhouse gas increases are the primary driver of changes in SST_{AC} , with smaller but distinct
34 contributions from anthropogenic aerosol and ozone forcing. The robust human influence
35 identified here on the seasonality of SST is likely to have wide-ranging impacts on marine
36 ecosystems.

37

38

39

40

41 Earth's climate is simultaneously influenced by anthropogenic and natural external forcings, as
42 well as by natural internal climate variability operating on a wide range of different space and time
43 scales. Detection and attribution (D&A) analysis seeks to disentangle these human and natural
44 influences¹. Pattern-based "fingerprint" methods are a key component of D&A studies. Such
45 methods have successfully identified human fingerprints in long-term annual-mean changes in
46 surface and atmospheric temperature²⁻⁷, different aspects of the hydrological cycle⁸⁻¹²,
47 atmospheric circulation^{13,14}, and ocean heat content^{15,16}.

48 The annual cycle is one of the most fundamental aspects of our climate and accounts for
49 greater than 90% of seasonal temperature variability over most of the globe¹⁷. It influences human
50 health, water supplies, agriculture, energy demand, and ecosystems. Gaining insight into how
51 anthropogenic forcing has impacted seasonality is of scientific, economic, and societal importance.

52 Although annual cycle changes have attracted recent scientific attention in D&A studies^{17–22}, such
53 investigations have not been performed with ocean variables.

54 We focus here on changes in the amplitude of the annual cycle of sea surface temperature
55 (SST_{AC}), which plays an important role in air-sea interaction, global rainfall patterns, and the
56 distributions of marine ecosystems^{23–25}. In the tropical Pacific, model projections show an
57 intensification of SST_{AC} in the twenty-first century compared to the twentieth century, which has
58 been attributed to changes in meridional SST gradients²⁶ and atmospheric circulation²⁷. In the mid-
59 latitudes, SST_{AC} is projected to increase in both hemispheres^{24,28,29}. These projections of SST_{AC}
60 intensification in mid-latitudes are consistent with the observed amplitude increase in the surface
61 air temperature (SAT) and tropospheric temperature (TT) annual cycles^{17,22} during recent decades.
62 Since SST, SAT, and TT are independently measured, the emergence of an externally forced signal
63 in SST_{AC} would provide additional support for the identification of anthropogenic fingerprints in
64 SAT and TT annual cycles.

65 Several previous model investigations demonstrate that the mid-latitude amplification of
66 SST_{AC} is primarily linked to changes in mixed-layer depth (MLD)^{24,28–31}. In summer, decreasing
67 MLD leads to trapping of the net surface heat flux into the ocean in a thinner layer, thereby yielding
68 a larger summertime SST increase²⁸. This shoaling of the mixed layer results from enhanced upper
69 ocean stratification driven by ocean warming^{32,33}. In simulations with estimated future greenhouse-
70 gas emissions, the annual-mean mixed layer shoaling and the mid-latitude SST_{AC} increase are
71 projected to intensify²⁹ as the effective heat capacity of the thinner mixed layer decreases.

72 It is still unclear if an anthropogenic fingerprint can be formally detected in the changing
73 amplitude of the observed SST annual cycle, and whether this fingerprint can be robustly attributed
74 to human influence. We address this question here with four different observed SST datasets and
75 over 50 individual model realizations of historical climate change. A novel aspect of our
76 fingerprint study is its use of idealized simulations and heat budget analysis to elucidate the
77 physical mechanisms that dictate key features of the common model and observed patterns of
78 SST_{AC} change.

79

80

81 **Trends in SST_{AC}**

82 In all four of the observed SST products we examined, SST_{AC} trends over our primary analysis
83 period (1950-2014) increase in most ocean regions and have a similar spatial pattern (Fig. 1a-d).
84 Some features of the observed pattern are also evident in model simulations of historical climate
85 change (HIST; Fig. 1e). The changes common to the models and observations are dominated by
86 zonal-mean amplitude increases between 30° and 60° in both hemispheres (Fig. 1f), poleward of
87 the maxima in the SST_{AC} climatology (Extended Data Fig. 1). Another notable regional-scale
88 feature of the SST_{AC} trends in the HIST multi-model mean (MMM) and the HadISST and PCMDI
89 observed datasets is the decrease in annual cycle amplitude in the vicinity of the Antarctic
90 Circumpolar Current (Fig. 1e) south of 50°S.

91 Although models can reproduce the positive observed SST_{AC} trends at NH mid-latitudes,
92 the observed trends are smaller than in the simulations (Fig. 1f). One possible interpretation of this
93 result is that the observed regional signals may be partly suppressed by the specific phasing of
94 internal variability in the North Atlantic, as is the case with observed annual-mean warming in the
95 tropical Pacific^{34,35}. Differences between SST_{AC} trends in observed data and the HIST MMM are
96 also prominent in the tropics, such as the pronounced maximum in the western equatorial Pacific
97 that appears only in observations.

98 These model-observed differences may be partly due to the fact that the MMM is an
99 average over individual realizations of historical climate change (in a single model) and an average
100 over models. Averaging damps the noise of natural internally generated variability, which is
101 uncorrelated across model realizations (except by chance). The MMM, therefore, should more
102 clearly reveal the response to external forcing^{34,35}. In contrast, there is only one realization of the
103 observed record, which contains both internal variability and the forced signal in SST_{AC}. We
104 therefore expect observed SST_{AC} changes to be noisier than in the MMM, particularly in regions
105 where multidecadal variability affects tropical and subtropical temperature trends^{34,35}.

106 Could the above-mentioned model-observed differences in SST_{AC} trends be related to
107 model biases in climatological-mean SST_{AC} patterns? We find that the model-average correlation
108 between the patterns of model biases in the climatology of SST_{AC} and the model biases in the
109 patterns of trends of SST_{AC} is low ($R = 0.06$). We infer from this that model biases in climatology
110 do not appear to be a dominant factor in explaining the differences between the observed and

111 simulated SST_{AC} trend patterns in Fig. 1a-d and Fig. 1e. This does not, however, rule out a
112 possibility we discuss later – that overestimated climate sensitivity may contribute to model-
113 observed differences in SST_{AC} trends³⁶.

114 The MMM and observations show closer agreement in global-scale features of zonally
115 averaged SST_{AC} trends (Fig. 1f), with a common pattern of larger increase in the amplitude of
116 SST_{AC} in the extratropics relative to the tropics. This pattern occurs in both hemispheres, but the
117 mid-latitude increases in SST_{AC} are larger and broader in the Northern Hemisphere (NH) than in
118 Southern Hemisphere (SH). This hemispheric asymmetry is consistent with results from previous
119 studies of changes in the amplitude of the annual cycle of mid-tropospheric temperature^{17,22}. As
120 noted above, the simulated decrease of SST_{AC} trends in the Southern Ocean (Fig. 1f) is common
121 to HadISST and PCMDI. Although the other two observational estimates do not show negative
122 SST_{AC} trends between 50°-60°S, they have trend magnitudes within this latitude band that are
123 smaller than the positive trends between 35°-45°S, and thus are consistent with the MMM results
124 in a relative sense.

125

126 **Fingerprint Analysis and Detection Time**

127 We use a standard pattern-based method to determine whether the model-predicted externally-
128 forced fingerprint of SST_{AC} changes is statistically identifiable in observations³⁷. The fingerprint
129 we search for is the leading empirical orthogonal function (EOF) of the MMM SST_{AC} anomalies
130 (Methods). The fingerprint is calculated from the HIST simulations over the period 1950 to 2014
131 (Fig. 2a). Our analysis assumes that the spatial structure of the fingerprint pattern does not change
132 markedly over time^{17,38}. We tested and confirmed this assumption by calculating the HIST
133 fingerprint for four different analysis periods (1950-2014, 1960-2014, 1970-2014, and 1980-2014;
134 see Extended Data Fig. 2).

135 We compare the time-invariant SST_{AC} fingerprint pattern calculated from the HIST MMM
136 with the time-evolving SST_{AC} patterns from observed datasets and long model control runs,
137 respectively. These comparisons yield time series of similarity between the fingerprint and
138 observed SST_{AC} patterns and between the fingerprint and patterns of natural internal variability in
139 SST_{AC} . By varying the trend length L over a range of timescales (from 10 to 65 years), we can
140 determine whether (and when) the similarity between the observations and the HIST fingerprint

141 shows a statistically significant signal – i.e., an increase in pattern similarity over time that is
142 unlikely to be due to natural internal variability alone.

143 Figure 2b shows the timescale-dependent S/N ratio calculated from the trends of these
144 signal and noise time series. We stipulate that fingerprint detection occurs at trend length L if the
145 S/N ratio exceeds a 5% significance threshold and remains above this threshold for all trend lengths
146 larger than L . The model HIST fingerprint is identifiable with high statistical confidence (i.e., at
147 the 5% significance level or better) in all four observational SST datasets after ca. 2000. At the
148 end of the 65-year record, S/N ratios in the observations vary between 2.8 and 3.5. This indicates
149 that smaller-scale differences between the four observational data sets – such as the previously-
150 noted SST_{AC} trend differences at high latitudes in the SH – have relatively small impact on
151 detection of the global-scale fingerprint in observations.

152 We also show the S/N ratios obtained when the HIST MMM fingerprint is searched for in
153 individual realizations of HIST simulations (gray curves in Fig. 2b). In all 51 realizations, S/N
154 exceeds the 5% threshold before the end of the simulation period in 2014. As in the case of the
155 observations, SST_{AC} changes in individual HIST runs exhibit time-increasing similarity with the
156 fingerprint (gray curves in Fig. 2b), pointing towards the robustness of the model-predicted forced
157 SST_{AC} response.

158 The S/N ratios calculated with observed data generally lie within but close to the lower end
159 of the model-generated S/N ratio distribution. There are multiple (not mutually exclusive) possible
160 explanations for this result. These explanations include errors in the model external forcings³⁹,
161 errors in the simulated SST_{AC} responses to the applied forcings, residual systematic errors in the
162 observations, and model-versus-observed mismatches in the random phasing of internal variability
163 (e.g., the El Niño–Southern Oscillation, Interdecadal Pacific Oscillation, and Pacific Decadal
164 Oscillation). The latter explanation contributes to the more muted observed annual-mean
165 tropospheric warming over the satellite era³⁴.

166 It is still unclear, however, what influence such mismatches in simulated and observed
167 variability phasing have on changes in the seasonal cycle of SST. Here, we note that individual
168 ensemble members generated with the same model and external forcings can have appreciable
169 differences in their S/N behavior (see Extended Data Fig. 3). This suggests that as in the case
170 annual-mean tropospheric temperature changes³⁴, model-observed differences in the phasing of
171 internal variability may have marked influence on SST_{AC} , and hence on the overestimated “model

172 only” S/N ratios in Fig. 2b. The non-negligible correlation between climate sensitivity⁴⁰ and the
173 “model only” S/N ratios over the full 65-year analysis period ($R = 0.55$) provides evidence that
174 overestimated model climate sensitivity³⁶ could also contribute to overestimated “model only” S/N
175 ratios (see Extended Data Fig. 4).

176 Figure 2c provides information on the monitoring period required to identify the model-
177 predicted HIST SST_{AC} fingerprint (the trend length L). Values of L at which detection occurs are
178 shown as a function of the choice of the analyzed period. We consider four different periods; each
179 ends in 2014, but has a different start date (1950, 1960, 1970, and 1980). There are two principal
180 findings from this analysis. First, irrespective of the assumed start date of monitoring, the model-
181 predicted HIST SST_{AC} fingerprint pattern in Fig. 2a is robustly identifiable in all four observed
182 SST data sets and in all 51 model realizations of historical climate change. Except in the case of
183 S/N results obtained with COBE data, the observed values of L are always contained within the
184 spread of the model results.

185 Second, a common feature of both the simulated and observed results is that L decreases
186 systematically with later start dates. For the MMM SST_{AC} changes, L is approximately 48 years
187 and 18 years for start dates in 1950 and 1980 (respectively). This systematic decrease is likely due
188 to larger net positive anthropogenic forcing over the 1980-2014 period than over periods with
189 earlier start dates that sample appreciable negative forcing by anthropogenic aerosols. As will be
190 shown in the next section, GHG forcing is the dominant influence on simulated SST_{AC} changes,
191 so changes over time in the relative importance of GHG and anthropogenic aerosol forcing must
192 contribute to the differences in L in the four analysis periods in Fig. 2c. Note that for fingerprint
193 detection in the four different observed SST data sets, the spread in L values decreases as a function
194 of increasing start date. This decrease in spread is partly due to improvements over time in the
195 quality and spatial coverage of SST measurements and overlap between datasets.

196

197 Contributions from individual external forcings

198 We use single-forcing simulations to isolate and quantify the individual contributions of changes
199 in well-mixed greenhouse gases (GHG), anthropogenic aerosols (AER), stratospheric ozone
200 depletion (O3), and volcanic eruptions and solar variability (NAT) (Methods). We apply two
201 different methods to understand the effects of single forcings: (1) To estimate the contributions of
202 individual external forcings to the time-evolving S/N ratios obtained with the HIST MMM

203 fingerprint, the GHG, AER, O₃, and NAT single-forcing simulations are all regressed onto the
204 same HIST fingerprint used in the previous section; (2) To determine whether the model-predicted
205 fingerprint associated with an individual forcing is statistically identifiable, SST_{AC} changes from
206 observations and HIST runs are projected onto each of the four fingerprints estimated from the
207 GHG, AER, O₃, and NAT single-forcing experiments. In the main text, we focus on Method 1
208 results. The results based on Method 2 are discussed in Methods.

209 The Method 1 S/N results indicate that GHG forcing is the dominant contributory factor to
210 the identification of the HIST SST_{AC} fingerprint, which is detectable in the GHG MMM before
211 1990 (and before the end of the analysis period in 2014 in 48 out of 51 individual GHG realizations;
212 see Extended Data Fig. 5). The S/N ratios for the “GHG only” case increase nearly linearly with
213 increases in timescale L and the magnitude of the GHG forcing. In contrast, S/N results for AER
214 show markedly nonlinear behavior as L increases. This is due to non-monotonic changes in
215 emissions of anthropogenic sulfate aerosols, with large emissions after World War II followed by
216 a reduction in emissions from North America and Europe after the 1980s^{41–43}. The HIST SST_{AC}
217 fingerprint is not detectable in the MMM of AER, O₃, or NAT.

218 Our analysis of the impact of individual anthropogenic factors assumes additivity of the
219 forced responses in GHG, AER, O₃, and NAT^{44,45}. To test the validity of this additivity assumption,
220 we compare the HIST S/N results in Fig. 3a with S/N results obtained for ALL, the linear
221 combination of the individual S/N ratios obtained for the GHG, AER, O₃ and NAT experiments.
222 Additivity is a reasonable assumption for analysis periods longer than 40 years. For periods less
223 than 40 years, differences between the HIST and ALL S/N results are likely related to the
224 combined effects of larger noise on shorter timescales, the smaller ensemble size for O₃, and
225 nonlinear aspects of the forced SST_{AC} responses^{46–48}.

226 Figure 3b provides detection times for the HIST SST_{AC} fingerprint in HIST, GHG, and
227 three linear combinations of individual SST_{AC} responses: GHG+AER, GHG+O₃, and
228 GHG+AER+O₃. The primary influence on detection time is GHG, with AER acting to delay
229 fingerprint detection: “GHG only” yields systematically earlier detection times than any set of
230 SST_{AC} changes that includes AER (HIST, GHG+AER, or GHG+AER+O₃). Including O₃ also
231 advances detection time, with the earliest median detection time of the HIST SST_{AC} fingerprint (in
232 1985) in the GHG+O₃ linear combination. The spread in detection times obtained with linear

233 combinations is larger than the spread in detection time inferred from HIST. This is likely due to
234 amplification of noise in the linear combination of individual responses.

235

236 **Physical drivers of SST changes**

237 We seek to understand the physical drivers of the SST_{AC} changes described in the previous sections.
238 In the observations, warming of zonal-mean SST over 1950 to 2014 occurs in nearly all months
239 and latitudes (Extended Data Fig. 6). For the mid-latitudes it is more pronounced in the summer
240 hemisphere. In the SH at ca. 40°S, both the observations and HIST display warming relative to
241 annual-mean trends in austral summer and cooling relative to annual-mean trends in austral winter
242 (Figs. 4a,b). In HIST, this feature is primarily driven by GHG forcing (Figs. 4c). Relative to
243 observations, CMIP6 models yield larger NH temperature rises in both summer and winter. As
244 noted above, there are multiple possible interpretations of this result.

245 Another prominent aspect of HIST and GHG is a dipole pattern characterized by
246 anticorrelation between the seasonal temperature changes at roughly 40°S and 55°S. GHG and O3
247 forcing both contribute to this feature (Figs. 4c,d). As noted above, this dipole is evident in two of
248 the four observed datasets (HadISST and PCMDI; Extended Data Fig. 7). These observational
249 differences likely arise because satellite data were included in HadISST and PCMDI but not in
250 ERSST and COBE. In consequence, the Southern Ocean is better represented in the first two
251 datasets, especially in the vicinity of sea-ice.

252 Buoyancy flux and wind stress changes are two major surface forcings affecting the
253 Southern Ocean climate^{49–51}. We explore the respective effects of buoyancy (dominated by heat
254 flux change) and wind (momentum) forcing on SST_{AC} changes using the Flux-Anomaly-Forced
255 Model Intercomparison (FAFMIP) experiments (Fig. 5). In the FAF-stress experiment, in which
256 CO₂-induced perturbations to the ocean are imposed in wind stress only, the SH mid-latitudes
257 show a robust meridional dipole pattern in zonal-mean SST_{AC} change (Fig. 5b). In the FAF-heat
258 experiment, CO₂-driven perturbations to heat fluxes amplify SST_{AC} in both hemispheres, but the
259 magnitude of the change is markedly larger in the NH (Fig. 5c), where the wind stress effect is
260 limited. The FAFMIP results imply that wind forcing caused by CO₂ increases is the main driver
261 of the above-described SST_{AC} dipole pattern between 40°S and 55°S found in HIST, GHG, and
262 two of the observed SST datasets. In contrast, changes in NH mid-latitude SST_{AC} arise from
263 increased surface heat flux linked to atmospheric warming.

264 In addition to the influence of these surface wind stress and heat flux forcings, the SST_{AC}
265 fingerprint can also be influenced by ocean adjustments arising from *MLD* changes. We
266 investigated the role of *MLD* changes with a simplified mixed-layer heat budget analysis of the
267 HIST runs. Our heat budget model also considers the effects of net surface heat flux (*Qnet*) and
268 shortwave radiation flux out of the mixed layer base into the intermediate ocean (*Qb*) (Methods;
269 Eq. 3). The patterns of the $dSST/dt_{AC}$ change can be reproduced by this simple model (Figs. 6a,b),
270 and are consistent with the SST_{AC} fingerprint (Fig. 2a). The shoaling of *MLD* with fixed *Qnet*-*Qb*
271 is the key factor here (Fig. 6c). In winter, this shoaling effect generates SST cooling by enhancing
272 temperature response to winter heat loss. In summer, shoaling yields SST warming. It is
273 noteworthy that the *Qnet* effect here differs from the analysis of FAF-heat, as the latter also
274 incorporates *MLD* effects arising from the accumulated ocean heat.

Formatted: Font: Italic

275 Because of this seasonally dependent effect of the *MLD* shoaling, the SST_{AC} would be
276 amplified even with constant *MLD* shoaling throughout the year. This is why both hemispheres
277 show positive annual cycle changes in the 30°-50° latitude band. Between 50°S-60°S, the *MLD*
278 deepens in austral summer, which appears to overwhelm the shoaling of *MLD* in austral winter,
279 thus decreasing SST_{AC} in this band. The fixed *MLD* case results in a weak but reduced SST_{AC} in
280 most regions (Fig. 6d), which implies that the warming induced by the *Qnet*-*Qb* change is slightly
281 larger in winter than in summer.

282 We performed two further sensitivity experiments: (1) constant monthly *MLD* shoaling, in
283 which the summer value is applied for all 12 months at each location; and (2) shoaling *MLD* by
284 5% in every month and location relative to the background monthly value. Our results suggest that
285 the absolute change and relative change of *MLD* give rise to similar patterns (Extended Data Fig.
286 8). The major difference is in the 50°S-60°S band, apparently due to the opposite directions of
287 *MLD* change between austral winter and summer (Extended Data Fig. 9a,b). For all other latitudes,
288 the shoaling of the mixed layer is consistent with season.

289 The westerly wind stress in the 50°S-60°S region increases in austral summer (Extended
290 Data Fig. 9c,d). This can deepen *MLD* by increased local turbulent mixing as well as by the
291 increased equatorward advection of colder water. The negative wind stress changes between 30°S-
292 50°S have the opposite effect. The contrasting surface wind responses in the 30°S-50°S and 50°S-
293 60°S bands reflect the poleward shifting of zonal winds over the Southern Ocean caused by GHG

294 and O₃ forcing (Fig. 4c,d). This shift is consistent with the FAF-stress response to CO₂-driven
295 wind stress changes.

296

297 **Conclusions**

298 Most previous studies of the annual cycle of SST (SST_{AC}) focused primarily on projected 21st
299 century changes^{29,31}. Here, we examine whether there is a detectable “fingerprint” pattern of
300 human-induced SST_{AC} change over 1950-2014. We provide the first scientific evidence that a
301 human-caused SST_{AC} signal has already emerged from the background noise of natural variability.
302 Geographical patterns of SST_{AC} changes show increased SST_{AC} at mid-latitudes in the NH and a
303 distinctive meridional dipole structure at SH mid-latitudes. These large-scale zonal features are
304 common to observations and model simulations with anthropogenic forcing, and are dissimilar to
305 the smaller-scale structure of natural internal variability. This helps to explain why the model-
306 estimated SST_{AC} fingerprint in response to combined anthropogenic and natural external forcing
307 is identifiable by the end of the 20th century in all four observed SST datasets analyzed here. The
308 fingerprint is also robustly identifiable in all 51 model realizations of historical climate change.

309 Single forcing experiments indicate that increases in well-mixed GHGs is the dominant
310 factor in the identification of externally forced changes in SST_{AC}. Anthropogenic aerosol
311 emissions are likely to have delayed the detection of this fingerprint by ca. 7-8 years on average.
312 External forcing from stratospheric ozone depletion partially contributed to the development of
313 the SST_{AC} dipole structure at SH mid-latitudes, while natural external forcing by volcanoes and
314 solar irradiance changes had relatively little effect on the detection of a human fingerprint in SST_{AC}.

315 Model simulations and a heat budget analysis reveal that the leading physical drivers of
316 these large-scale SST_{AC} changes are different in the two hemispheres. In the SH, the impacts of
317 changes in atmospheric circulation and surface wind stress on the *MLD* are the key determinant of
318 the dipole-like SST_{AC} response in the Southern Ocean. In the mid-latitudes of both hemispheres,
319 human-induced warming yields increased stratification of the upper ocean, which in turn causes
320 shoaling of the *MLD* during all seasons. Year-round *MLD* shoaling decreases the thermal inertia,
321 thereby amplifying the mid-latitude SST_{AC}.

322 Human-driven amplification of the mid-latitude seasonal cycle of SST has important
323 implications for future changes in the behavior of marine ecosystems. The SST changes found here
324 have the potential to influence both the productivity and distribution of marine species which

Deleted: are the main driver of the large-scale spatial
structure of the model-predicted SST_{AC} fingerprint

327 constitute key food resources for human societies. Our finding of robust changes in the seasonality
328 of SST should motivate more detailed exploration of the anthropogenically forced seasonal
329 changes in a wide range of different ocean properties.

330

331 **Methods**

332 **CMIP6 experiments and models.**

333 This study uses output from climate model simulations performed under Phase 6 of the Coupled
334 Model Intercomparison Project (CMIP6)⁵². We focus on 10 CMIP6 models that performed all of
335 the following 4 experiments: historical all-forcing simulations (HIST) and single-forcing
336 simulations performed with anthropogenic aerosols (AER), greenhouse gases (GHG), and purely
337 natural changes in solar irradiance and volcanic aerosols (NAT)⁵³. Each of the 10 models has
338 multiple ensemble members. Each ensemble member of a given model is driven by the same
339 external forcing, but has a different manifestation of natural internal climate variability
340 superimposed on the underlying forced response. The number of ensemble members available for
341 each model and each experiment is listed in Extended Data Table 1. For each experiment, there
342 are 51 realizations in total. The multi-model mean (MMM) is the average of the ensemble means
343 of these 10 models. The preindustrial control (piControl) simulations from the same 10 models are
344 used for the purpose of estimating the noise from internal variability (see below).

345 We also analyze results from an experiment with forcing by stratospheric ozone changes
346 only (O3). Only 4 of the 10 models that performed HIST, GHG, AER, and NAT simulations
347 provided results for the O3 simulation (see Extended Data Table 1).

348 The HIST, GHG, AER, O3, and NAT experiments cover the period from 1850 to 2014.
349 We focus on the 1950-2014 period for comparing simulations with observations of changes in the
350 amplitude of the annual cycle of SST (SST_{AC}). This choice of period was dictated by improvement
351 in the spatial coverage and quality of observed SST data after World War II, as well as by large
352 post-1950 changes in well-mixed GHGs, anthropogenic aerosols, and stratospheric ozone. All
353 model output was interpolated to a common, regular 1° × 1° grid.

354

355 **Observations.**

356 We rely on four primary SST gridded products. These are the Hadley Center Sea Ice and SST
357 dataset version 1 (HadISST)⁵⁴, the NOAA Extended Reconstructed SST dataset version 5
358 (ERSST)⁵⁵, the Centennial In Situ Observation-Based Estimates of the Variability of SST and
359 Marine Meteorological Variables, version 2 (COBE)⁵⁶, and the Program for Climate Model
360 Diagnosis and Intercomparison SST dataset (PCMDI)⁵⁷. ERSST and COBE are based on in situ
361 measurements, and HadISST and PCMDI combine in situ and satellite estimates of SST. Different
362 averaging and gap-filling approaches are employed to infill data-sparse regions and time periods
363 in these gridded products. HadISST and PCMDI datasets are not entirely independent: the PCMDI
364 dataset is HadISST1 through 1981, and uses the NOAA Optimum Interpolation SST data (OI.v2)⁵⁸
365 thereafter.

366 In addition to these observational SST products, we also used the monthly surface zonal
367 wind from the latest-generation reanalysis of the European Centre for Medium-Range Weather
368 Forecasts (ERA5)⁵⁹. For the observed mixed layer depth (*MLD*), we first employed the gridded
369 monthly temperature and salinity data from the IAP product⁶⁰ to calculate the potential density.
370 *MLD* was then defined as the depth at which the ocean potential density exceeds the sea surface
371 density at a criterion of $\delta\rho = 0.125 \text{ kg/m}^3$, following the definition for *MLD* output (referred to as
372 ‘*mlotst*’) from the CMIP6 models. There are likely to be substantial uncertainties in the IAP
373 product arising from sparse measurements of the subsurface temperature and salinity fields in the
374 Southern Ocean (particularly in the pre-Argo era of the IAP records).

375 In addition, we have used the information from ref 61 to examine whether biases in ship
376 SST data could be an important factor in our D&A analysis. We find it is unlikely that ship SST
377 data biases could alter any of our findings regarding the identification of an SST_{AC} fingerprint in
378 observations (not shown).

379
380 **FAFMIP experiments.**
381 To isolate the individual effects of changes in wind stress and surface heat flux on SST_{AC} trends,
382 we rely on output from the Flux-Anomaly-Forced Model Intercomparison (FAFMIP) experiments.
383 Results are from 5 models: ACCESS-CM2, CanESM5, HadGEM3-GC31-LL, MIROC6, MRI-
384 ESM2-0. The FAFMIP experiments, branched from each model’s piControl run, prescribe a set of
385 surface flux perturbations for the ocean. These perturbations are obtained from the ensemble-mean
386 changes simulated at the time of doubled CO₂ by CMIP5 AOGCMs run under the 1pctCO₂
387 scenario (in which atmospheric CO₂ levels increase by 1% each year). We examine three different
388 FAFMIP experiments: FAF-all, in which perturbations of surface wind stress, surface freshwater
389 flux, and surface heat flux are simultaneously imposed; FAF-stress, with imposed perturbations of
390 surface wind stress only; and FAF-heat, with imposed perturbations of net surface heat flux only⁶².

391 All FAFMIP experiments considered here were run for 70 years. We show the anomalies
392 of the 31–70-yr average relative to the climatology calculated from the full length of each model’s
393 piControl.

394
395 **Calculation of annual cycle amplitudes.**
396 For each model simulation and observation product, and at each grid-point x and year t , we
397 performed a Fourier analysis on the 12 monthly-mean values of SST. The amplitude of the first
398 harmonic is taken as the annual cycle amplitude (SST_{AC}; see Extended Data Fig. 1d). Consistent
399 with previous work¹⁷, the first harmonic explains > 95% of the total seasonal variance at almost
400 all locations between 60°N and 60°S (except at regions close to the equator). As an additional
401 sensitivity study, we confirmed that our fingerprint results are insensitive to the definition of
402 SST_{AC}. The S/N ratios and detection times obtained here with the first harmonic are very similar

403 to those found when we define SST_{AC} as the seasonal maximum SST minus the seasonal minimum
404 SST at each grid-point and in each year.

405
406 **Pattern-based fingerprint analysis.**

407 *a. Definition of the fingerprint*

408 Detection methods generally require an estimate of the true but unknown climate-change signal,
409 typically designated as the fingerprint $F(x)$, in response to an individual forcing or set of forcings⁶³.
410 As in previous work, we assume $F(x)$ to be the first EOF of the MMM change in SST_{AC} in the
411 HIST simulations¹⁷.

412 Let $S(i, j, x, t)$ represent SST_{AC} at grid-point x and year t from the i^{th} realization of the j^{th}
413 model's HIST simulation, where:

414
415 $i = 1, \dots, N_r(j)$ (the number of realizations for the j^{th} model)
416 $j = 1, \dots, N_m$ (the number of models used in fingerprint estimation)
417 $x = 1, \dots, N_x$ (the total number of grid-points after regridding to a regular $1^\circ \times 1^\circ$ grid)
418 $t = 1, \dots, N_t$ (the time in years)

419
420 Here, N_r varies across models (Extended Data Table 1). For HIST, $N_m = 10$ models. Prior to the
421 fingerprint analysis, all model and observed SST_{AC} fields were interpolated to a common $1^\circ \times 1^\circ$
422 latitude/longitude grid. The evolution of multi-model mean SST_{AC} was calculated by first
423 averaging over an individual model's realizations (where multiple realizations were available), and
424 then averaging across the number of models available for each experiment. MMM anomalies were
425 then defined at each grid-point x and year t with respect to the local MMM climatological annual
426 cycle amplitude. The fingerprint is the first EOF of the changes over time in the MMM SST_{AC}
427 anomalies from the HIST experiment – i.e., the temporal changes in the annual cycle of SST. To
428 minimize the impact of sea-ice on SST_{AC} , the domain was restricted to 60°N - 60°S and to regions
429 where the winter sea-ice concentration is smaller than 10%. The anomalies are weighted by the
430 square root of the cosine of the grid node's latitude⁶⁴ before calculating the EOF. Most of the
431 discussion focuses on model fingerprints estimated over 1950 to 2014. We also calculated
432 fingerprints for three additional analysis periods (1960-2014, 1970-2014, and 1980-2014). As
433 noted in the main text, the spatial structure of the fingerprint patterns does not change markedly
434 over these periods (Extended Data Fig. 2).

435
436 *b. Fingerprint detection*

437 We seek to determine whether the pattern similarity between the time-varying observations
438 and $F(x)$ shows a statistically significant increase over time. To address this question, we require

439 control run estimates of internally generated variability (“noise”), in which we know *a priori* that
440 there is no expression of the fingerprint, except by chance.

441 This intrinsic noise is estimated using preindustrial control runs (piControl) from the same
442 10 models employed for calculating the HIST fingerprint. These control simulations can be
443 affected by residual long-term drift. To reduce the effects of such drift on estimates of the internal
444 variability of SST_{AC}, we fit a cubic polynomial to the full length of each model’s control run and
445 then removed the fitted polynomial^{65,66}. Fitting and drift removal is performed at each model grid-
446 point. Because the individual model control runs are of unequal length, our noise estimates rely on
447 the last 400 years of each model’s piControl run. This yields a total of 4,000 years of concatenated
448 control run data, and avoids introducing any bias associated with differing control run lengths.

449 Observed SST_{AC} estimates are expressed as anomalies relative to climatological means
450 over the 1950-2014 analysis period (or over the alternate analysis periods in Fig. 2c). The observed
451 temperature data are projected onto $F(x)$, the time-invariant fingerprint:

452

$$Z_o(t) = \sum_{x=1}^{N_x} O(x, t) F(x) \quad (1)$$

453 where $O(x, t)$ are the observed SST_{AC} anomalies. This projection is equivalent to a spatially
454 uncentered covariance between the patterns $O(x, t)$ and $F(x)$ at year t . The signal time series $Z_o(t)$
455 provides information on the fingerprint strength in the observations. If observed patterns of
456 temperature change are becoming increasingly similar to $F(x)$, $Z_o(t)$ should increase over time.

457 To assess whether this increase is statistically significant, we compare trends in $Z_o(t)$ with
458 a null distribution for which we know *a priori* that there is no expression of the fingerprint, except
459 by chance. Here, we derive this null distribution using $C(x, t)$, the 4,000-year concatenated noise
460 data set, generated from the piControl runs as described above. The noise time series $N_c(t)$ is the
461 projection of $C(x, t)$ onto the fingerprint:

462

$$N_c(t) = \sum_{x=1}^{N_x} C(x, t) F(x) \quad (2)$$

463 where the length of $N_c(t)$ is 4,000 years (see above).

464 We estimate signal-to-noise (S/N) ratios by fitting least-squares linear trends of increasing
465 length L years to $Z_o(t)$, and then comparing these trends with the standard deviation of the
466 distribution of maximally overlapping L -length trends in $N_c(t)$ ^{17,37}. Signal detection is stipulated to
467 occur when the trend in $Z_o(t)$ exceeds and remains above the stipulated significance level (which
468 is 5% in our study)²². The test is one-tailed, and we assume a Gaussian distribution of trends in
469 $N_c(t)$. The start date for fitting linear trends to $Z_o(t)$ is 1950 for our baseline analysis, and is 1960,
470 1970, and 1980 in the alternate analysis periods shown in Fig 2c. We use a minimum trend length

475 of ten years, so the first S/N ratio (and the earliest possible detection time in the baseline period)
476 is for 10-year trends ending in 1959.

477 We also show S/N results that are based solely on model simulation output. In our “model
478 only” results, $N_c(t)$ is calculated as in Eq. 2, but the observational estimates in Eq. 1 are replaced
479 by $S(i, j, x, t)$, the annual cycle amplitude information from each of the 51 HIST simulations (see
480 the gray curves in Figs. 1f and 2b).

481
482 **c. HIST fingerprint vs. single-forcing fingerprints**
483 As noted in the main text, we employ two methods to study the contributions of individual
484 external forcings (GHG, AER, NAT, and O3) to the simulated SST_{AC} changes. In Method 1,
485 SST_{AC} anomalies from individual realizations of the four single-forcing simulations are projected
486 onto the common fingerprint calculated from the HIST MMM. As in the case of HIST, the MMMs
487 of SST_{AC} from these four single-forcing experiments were also projected onto $F(x)$.

488 In Method 2, we project SST_{AC} changes from the HIST MMM and from individual HIST
489 realizations onto each of the four fingerprints estimated from the GHG, AER, O3, and NAT multi-
490 model average SST_{AC} changes. This yields information on the strength of each individual
491 fingerprint in the historical all-forcing simulations, and on how the strength of the GHG, AER, O3,
492 and NAT fingerprints evolves with increasingly longer analysis periods.

493 We use EOF1 for the Method 2 GHG fingerprint and EOF2 for the Method 2 fingerprints
494 from AER, O3, and NAT (see Extended Data Fig. 10). This choice was made because in the GHG
495 simulation, EOFs 1 and 2 are clearly separated in terms of explained variance (EV), with the EV
496 associated with GHG EOF1 a factor of 3 larger than the EV of GHG EOF2. The latter pattern
497 largely reflects tropical internal variability associated with the El Niño-Southern Oscillation
498 (ENSO). In contrast, EOFs 1 and 2 are less well separated in terms of EV in the AER, O3, and
499 NAT simulations – their EOF1 is very similar to EOF2 from the GHG simulation, while the EOF2
500 patterns of AER, O3, and NAT appear to be dominated by extratropical forced responses.
501 Moreover, the second principal component from AER, O3, and NAT show some remarkable
502 signals in the temporal evolution (Extended Data Fig. 10j).

503 SST_{AC} from observations and HIST runs are projected onto these four single-forcing
504 fingerprints (Extended Data Fig. 11). For the projections onto the GHG fingerprint, all 51 model
505 HIST realizations and three of the four observational datasets eventually exceed the 5%
506 significance threshold. S/N levels are systematically lower for the AER, NAT, and O3 fingerprints,
507 which are therefore not as clearly identifiable in the HIST realizations or observations as the GHG
508 fingerprint. This provides support for a key finding from our Method 1 analysis: forcing by well-
509 mixed GHGs is the dominant factor in the identification of externally forced changes in SST_{AC} .

510 We note that in Method 2, the NAT fingerprint is identifiable at the 5% level in 88% of the
511 HIST realizations and in two of the four observed SST_{AC} datasets (Extended Data Fig. 11d). While

512 there are small changes over time in the solar and volcanic forcing over 1950 to 2014³⁹, the
 513 behavior of the first principal component of the NAT SST_{AC} changes ([Extended Data Fig. 10i](#))
 514 suggests that NAT forcing is unlikely to produce a significant multi-decadal trend in SST_{AC}.
 515 Instead, the identification of the NAT fingerprint in the HIST SST_{AC} data appears to be due to the
 516 spatial similarity between certain large-scale features of the GHG and NAT fingerprints (compare
 517 [Extended Data Figs. 10a,f](#)). Thus in Method 2 (which we do not focus on in our fingerprint analysis)
 518 the statistical problem of degeneracy⁶⁷ of the normalized GHG and NAT fingerprints hampers
 519 reliable assessment of the relative contributions of GHG and NAT forcing to the simulated SST_{AC}
 520 changes. In Method 1, however, the larger amplitude of the SST_{AC} response to GHG forcing
 521 (relative to NAT forcing) is preserved – which is why the HIST fingerprint can be identified in the
 522 individual GHG realizations, but not in the individual NAT realizations.

523 The uncentered pattern correlation between GHG EOF1 and NAT EOF2 is higher than the
 524 pattern correlations between GHG EOF1 and the EOF2 patterns of other single-forcing
 525 experiments ([Extended Data Table 2](#)). This similarity may arise from major tropical volcanic
 526 eruptions in the 1950-2014 analysis period (Agung, El Chichón, and Pinatubo) and the associated
 527 shifts of the intertropical convergence zone⁶⁸, which in turn could affect the latitudinal location of
 528 regions of mid-latitude increases in SST_{AC}.

529

530 **Simplified Mixed-Layer Heat Budget Analysis.**

531 Our mixed-layer heat budget model is a simplified version of the traditional mixed-layer heat
 532 budget model that takes into account only the dominant heat fluxes and mixed-layer depth
 533 affecting the temperature of the oceanic mixed layer:

534

$$535 \frac{dT}{dt} \sim \frac{Q_{net} - Q_b}{rho * Cp * MLD} \quad (3)$$

536 The left-hand side is the ocean temperature tendency, and the right-hand side is the estimate based
 537 on net surface heat flux (Q_{net}), shortwave radiation flux leaving the mixed-layer base (Q_b), and
 538 mixed-layer depth (MLD). These terms are functions of month, latitude and longitude and are
 539 calculated from HIST runs. The terms rho and Cp are the density and specific heat of seawater,
 540 respectively.

541 For the changes in the annual cycle (AC) amplitude of dT/dt :

542

$$543 AC\left(\frac{dT_2}{dt}\right) - AC\left(\frac{dT_1}{dt}\right) \approx AC\left(\frac{Q_{net_2} - Q_{b_2}}{rho * Cp * MLD_2}\right) - AC\left(\frac{Q_{net_1} - Q_{b_1}}{rho * Cp * MLD_1}\right) \quad (4)$$

Deleted: not shown

546 where “1” represents the average of the period 1950-1979, and “2” represents the average of the
 547 period 1985-2014. The changes are the difference between these two 30-year periods. We also
 548 hold Q_{net} and MLD constant in Eq. 4 to isolate the effects due to MLD change and Q_{net} change:
 549

$$\Delta MLD \text{ effect} = AC\left(\frac{Q_{net1}-Qb_1}{rho*Cp*MLD_2}\right) - AC\left(\frac{Q_{net1}-Qb_1}{rho*Cp*MLD_1}\right) \quad (5)$$

$$\Delta Q_{net} \text{ effect} = AC\left(\frac{Q_{net2}-Qb_2}{rho*Cp*MLD_1}\right) - AC\left(\frac{Q_{net1}-Qb_1}{rho*Cp*MLD_1}\right) \quad (6)$$

552 In Eqs. 5 and 6, the Qb and Q_{net} terms are for the same analysis period. Results are
 553 insensitive to whether Qb is chosen from period 1 or period 2.

554 We examine the effect of MLD change in terms of its absolute change (Eq. 7) and relative
 555 change (Eq. 8). As shown in Eq. 7, we assumed a summer MLD change to be added to all the
 556 months from the base period. In terms of relative change, we assumed MLD is assumed to shoal
 557 by 5% everywhere and in every month relative to the background value (Eq. 8).

$$\Delta MLD_{summer} \text{ effect} = AC\left(\frac{Q_{net1}-Qb_1}{rho*Cp*(MLD_1+(MLD_{2,summer}-MLD_{1,summer}))}\right) - AC\left(\frac{Q_{net1}-Qb_1}{rho*Cp*MLD_1}\right) \quad (7)$$

$$\Delta MLD_{5\%shoaling} \text{ effect} = AC\left(\frac{Q_{net1}-Qb_1}{rho*Cp*(MLD_1*0.95)}\right) - AC\left(\frac{Q_{net1}-Qb_1}{rho*Cp*MLD_1}\right) \quad (8)$$

565 **Data availability**
566 The CMIP6 historical, single-forcing, and FAFMIP simulation outputs are available on the Earth
567 System Grid of the Program for Climate Model Diagnosis and Intercomparison (PCMDI):
568 (<https://esgf-node.llnl.gov/search/cmip6/>). HadISST data are available at:
569 <https://www.metoffice.gov.uk/hadobs/hadisst>. ERSST data are available at:
570 <https://www.ncei.noaa.gov/products/extended-reconstructed-sst>. COBE data are available at:
571 <https://psl.noaa.gov/data/gridded/data.cobe2.html>. PCMDI data are available at:
572 <https://doi.org/10.22033/ESGF/input4MIPs.16921>. ERA5 data are available at:
573 <https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5>. IAP data are available at:
574 <https://climatedataguide.ucar.edu/climate-data/ocean-temperature-analysis-and-heat-content-estimate-institute-atmospheric-physics>.
575

576

577 **Acknowledgments**

578 We acknowledge the World Climate Research Programme’s Working Group on Coupled
579 Modelling, which led the design of CMIP6 and coordinated the work, and we also thank individual
580 climate modeling groups (listed in Extended Data Table 1) for their efforts in performing all model
581 simulations analyzed here.

582

583 **Author contributions**

584 J.-R.S. and B.D.S. conceived the study. J.-R.S. conducted the analysis and wrote the first draft. J.-
585 R.S., B.D.S., Y.-O.K., and S.E.W. contributed to interpreting the results, writing, and editing the
586 manuscript.

587

588 **Competing Interests**

589 The authors declare no competing interests.

590

591

592 **References**

593 1. Bindoff, N. L. *et al.* Detection and Attribution of Climate Change: from Global to
594 Regional. in *Climate Change 2013 – The Physical Science Basis* (ed. Intergovernmental
595 Panel on Climate Change) vol. 9781107057 867–952 (Cambridge University Press, 2014).

596 2. Hegerl, G. C. *et al.* Detecting Greenhouse-Gas-Induced Climate Change with an Optimal
597 Fingerprint Method. *Journal of Climate* **9**, 2281–2306 (1996).

598 3. Santer, B. D. *et al.* A search for human influences on the thermal structure of the
599 atmosphere. *Nature* **382**, 39–46 (1996).

600 4. Tett, S. F. B., Mitchell, J. F. B., Parker, D. E. & Allen, M. R. Human Influence on the
601 Atmospheric Vertical Temperature Structure: Detection and Observations. *Science* **274**,
602 1170–1173 (1996).

603 5. Stott, P. A. *et al.* External Control of 20th Century Temperature by Natural and
604 Anthropogenic Forcings. *Science* **290**, 2133–2137 (2000).

605 6. Santer, B. D. *et al.* Quantifying stochastic uncertainty in detection time of human-caused
606 climate signals. *Proceedings of the National Academy of Sciences of the United States of
607 America* **116**, 19821–19827 (2019).

608 7. Santer, B. D. *et al.* Exceptional stratospheric contribution to human fingerprints on
609 atmospheric temperature. *Proceedings of the National Academy of Sciences* **120**, 1–11
610 (2023).

611 8. Stott, P. A., Sutton, R. T. & Smith, D. M. Detection and attribution of Atlantic salinity
612 changes. *Geophysical Research Letters* **35**, L21702 (2008).

613 9. Santer, B. D. *et al.* Incorporating model quality information in climate change detection
614 and attribution studies. *Proceedings of the National Academy of Sciences* **106**, 14778–
615 14783 (2009).

616 10. Terray, L. *et al.* Near-surface salinity as nature's rain gauge to detect human influence on
617 the Tropical water cycle. *Journal of Climate* **25**, 958–977 (2012).

618 11. Pierce, D. W., Gleckler, P. J., Barnett, T. P., Santer, B. D. & Durack, P. J. The fingerprint
619 of human-induced changes in the ocean's salinity and temperature fields. *Geophysical
620 Research Letters* **39**, L21704 (2012).

621 12. Marvel, K. & Bonfils, C. Identifying external influences on global precipitation.
622 *Proceedings of the National Academy of Sciences* **110**, 19301–19306 (2013).

623 13. Gillett, N. P., Fyfe, J. C. & Parker, D. E. Attribution of observed sea level pressure trends
624 to greenhouse gas, aerosol, and ozone changes. *Geophysical Research Letters* **40**, 2302–
625 2306 (2013).

626 14. Christidis, N. & Stott, P. A. Changes in the geopotential height at 500 hPa under the
627 influence of external climatic forcings. (2015) doi:10.1002/2015GL066669.Received.

628 15. Barnett, T. P. *et al.* Penetration of Human-Induced Warming into the World's Oceans.
629 *Science* **309**, 284–287 (2005).

630 16. Bilbao, R. A. F., Gregory, J. M., Bouttes, N., Palmer, M. D. & Stott, P. Attribution of
631 ocean temperature change to anthropogenic and natural forcings using the temporal,
632 vertical and geographical structure. *Climate Dynamics* **53**, 5389–5413 (2019).

633 17. Santer, B. D. *et al.* Human influence on the seasonal cycle of tropospheric temperature.

634 *Science* **361**, (2018).

635 18. Min, S.-K., Zhang, X., Zwiers, F. W. & Agnew, T. Human influence on Arctic sea ice
636 detectable from early 1990s onwards. *Geophysical Research Letters* **35**, L21701 (2008).

637 19. Qian, C. & Zhang, X. Human Influences on Changes in the Temperature Seasonality in
638 Mid- to High-Latitude Land Areas. *Journal of Climate* **28**, 5908–5921 (2015).

639 20. Marvel, K. *et al.* Observed and Projected Changes to the Precipitation Annual Cycle.
640 *Journal of Climate* **30**, 4983–4995 (2017).

641 21. Duan, J. *et al.* Detection of human influences on temperature seasonality from the
642 nineteenth century. *Nature Sustainability* **2**, 484–490 (2019).

643 22. Santer, B. D. *et al.* Robust anthropogenic signal identified in the seasonal cycle of
644 tropospheric temperature. *Journal of Climate* 1–51 (2022) doi:10.1175/jcli-d-21-0766.1.

645 23. Dwyer, J. G., Biasutti, M. & Sobel, A. H. The effect of greenhouse gas-induced changes
646 in SST on the annual cycle of zonal mean tropical precipitation. *Journal of Climate* **27**,
647 4544–4565 (2014).

648 24. Alexander, M. A. *et al.* Projected sea surface temperatures over the 21st century: Changes
649 in the mean, variability and extremes for large marine ecosystem regions of Northern
650 Oceans. *Elementa* **6**, (2018).

651 25. Kwiatkowski, L. *et al.* Twenty-first century ocean warming, acidification, deoxygenation,
652 and upper-ocean nutrient and primary production decline from CMIP6 model projections.
653 *Biogeosciences* **17**, 3439–3470 (2020).

654 26. Timmermann, A., Jin, F. F. & Collins, M. Intensification of the annual cycle in the
655 tropical Pacific due to greenhouse warming. *Geophysical Research Letters* **31**, 1–4 (2004).

656 27. Sobel, A. H. & Camargo, S. J. Projected future seasonal changes in tropical summer
657 climate. *Journal of Climate* **24**, 473–487 (2011).

658 28. Chen, C. & Wang, G. Role of North Pacific mixed layer in the response of SST annual
659 cycle to global warming. *Journal of Climate* **28**, 9451–9458 (2015).

660 29. Jo, A. R. *et al.* Future Amplification of Sea Surface Temperature Seasonality Due To
661 Enhanced Ocean Stratification. *Geophysical Research Letters* **49**, 1–10 (2022).

662 30. Liu, F., Lu, J., Luo, Y., Huang, Y. & Song, F. On the oceanic origin for the enhanced
663 seasonal cycle of SST in the midlatitudes under global warming. *Journal of Climate* **33**,
664 8401–8413 (2020).

665 31. Dwyer, J. G., Biasutti, M. & Sobel, A. H. Projected changes in the seasonal cycle of
666 surface temperature. *Journal of Climate* **25**, 6359–6374 (2012).

667 32. Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced
668 upper ocean stratification with climate change in the CMIP3 models. *Journal of*
669 *Geophysical Research: Oceans* **117**, n/a-n/a (2012).

670 33. Li, G. *et al.* Increasing ocean stratification over the past half-century. *Nature Climate
671 Change* **10**, 1116–1123 (2020).

672 34. Po-Chedley, S. *et al.* Natural variability contributes to model–satellite differences in
673 tropical tropospheric warming. *Proceedings of the National Academy of Sciences of the
674 United States of America* **118**, 1–7 (2021).

675 35. Po-Chedley, S. *et al.* Internal variability and forcing influence model–satellite differences
676 in the rate of tropical tropospheric warming. *Proceedings of the National Academy of*

677 *Sciences* **119**, 1–8 (2022).

678 36. Zelinka, M. D. *et al.* Causes of Higher Climate Sensitivity in CMIP6 Models. *Geophysical*
679 *Research Letters* **47**, 1–12 (2020).

680 37. Santer, B. D. *et al.* Identifying human influences on atmospheric temperature.
681 *Proceedings of the National Academy of Sciences of the United States of America* **110**,
682 26–33 (2013).

683 38. Solomon, S. *et al.* Emergence of healing in the Antarctic ozone layer. *Science* **353**, 269–
684 274 (2016).

685 39. Fyfe, J. C., Kharin, V. V., Santer, B. D., Cole, J. N. S. & Gillett, N. P. Significant impact
686 of forcing uncertainty in a large ensemble of climate model simulations. *Proceedings of*
687 *the National Academy of Sciences of the United States of America* **118**, 1–6 (2021).

688 40. Meehl, G. A. *et al.* Context for interpreting equilibrium climate sensitivity and transient
689 climate response from the CMIP6 Earth system models. *Science Advances* **6**, 1–10 (2020).

690 41. Deser, C. *et al.* Isolating the Evolving Contributions of Anthropogenic Aerosols and
691 Greenhouse Gases: A New CESM1 Large Ensemble Community Resource. *Journal of*
692 *Climate* **33**, 7835–7858 (2020).

693 42. Shi, J.-R., Kwon, Y.-O. & Wijffels, S. E. Two Distinct Modes of Climate Responses to
694 the Anthropogenic Aerosol Forcing Changes. *Journal of Climate* **35**, 3445–3457 (2022).

695 43. Shi, J.-R., Kwon, Y. & Wijffels, S. E. Subsurface Ocean Temperature Responses to the
696 Anthropogenic Aerosol Forcing in the North Pacific. *Geophysical Research Letters* **50**, 1–
697 16 (2023).

698 44. Ribes, A. & Terray, L. Application of regularised optimal fingerprinting to attribution.
699 Part II: Application to global near-surface temperature. *Climate Dynamics* **41**, 2837–2853
700 (2013).

701 45. Marvel, K. *et al.* Do responses to different anthropogenic forcings add linearly in climate
702 models? *Environmental Research Letters* **10**, (2015).

703 46. Maher, N., McGregor, S., England, M. H. & Gupta, A. Sen. Effects of volcanism on
704 tropical variability. *Geophysical Research Letters* **42**, 6024–6033 (2015).

705 47. O'Brien, J. P. & Deser, C. Quantifying and Understanding Forced Changes to Unforced
706 Modes of Atmospheric Circulation Variability over the North Pacific in a Coupled Model
707 Large Ensemble. *Journal of Climate* **36**, 19–37 (2023).

708 48. Deser, C., Simpson, I. R., Phillips, A. S. & McKinnon, K. A. How Well Do We Know
709 ENSO's Climate Impacts over North America, and How Do We Evaluate Models
710 Accordingly? *Journal of Climate* **31**, 4991–5014 (2018).

711 49. Fyfe, J. C., Saenko, O. A., Zickfeld, K., Eby, M. & Weaver, A. J. The Role of Poleward-
712 Intensifying Winds on Southern Ocean Warming. *Journal of Climate* **20**, 5391–5400
713 (2007).

714 50. Shi, J.-R., Talley, L. D., Xie, S.-P., Liu, W. & Gille, S. T. Effects of Buoyancy and Wind
715 Forcing on Southern Ocean Climate Change. *Journal of Climate* **33**, 10003–10020 (2020).

716 51. Shi, J.-R., Talley, L. D., Xie, S.-P., Peng, Q. & Liu, W. Ocean warming and accelerating
717 Southern Ocean zonal flow. *Nature Climate Change* **11**, 1090–1097 (2021).

718 52. Eyring, V. *et al.* Overview of the Coupled Model Intercomparison Project Phase 6
719 (CMIP6) experimental design and organization. *Geoscientific Model Development* **9**,

720 1937–1958 (2016).

721 53. Gillett, N. P. *et al.* The Detection and Attribution Model Intercomparison Project (DAMIP
722 v1.0) contribution to CMIP6. *Geoscientific Model Development* **9**, 3685–3697 (2016).

723 54. Rayner, N. A. *et al.* Global analyses of sea surface temperature, sea ice, and night marine
724 air temperature since the late nineteenth century. *Journal of Geophysical Research: Atmospheres* **108**, (2003).

725 55. Huang, B. *et al.* Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5):
726 Upgrades, Validations, and Intercomparisons. *Journal of Climate* **30**, 8179–8205 (2017).

727 56. Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and
728 its uncertainty. *Journal of Climate* **27**, 57–75 (2014).

729 57. Durack, P. J., Taylor, K. E., Ames, S., Po-Chedley, S. & Mauzey, C. PCMDI AMIP SST
730 and sea-ice boundary conditions version 1.1.8. *Earth System Grid Federation* (2022)
731 doi:<https://doi.org/10.22033/ESGF/input4MIPs.16921>.

732 58. Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An Improved In
733 Situ and Satellite SST Analysis for Climate. *Journal of Climate* **15**, 1609–1625 (2002).

734 59. Hersbach, H. *et al.* The ERA5 global reanalysis. *Quarterly Journal of the Royal
735 Meteorological Society* **146**, 1999–2049 (2020).

736 60. Cheng, L. *et al.* Improved estimates of ocean heat content from 1960 to 2015. *Science
737 Advances* **3**, e1601545 (2017).

738 61. Chan, D. & Huybers, P. Correcting Observational Biases in Sea Surface Temperature
739 Observations Removes Anomalous Warmth during World War II. *Journal of Climate* **34**,
740 4585–4602 (2021).

741 62. Gregory, J. M. *et al.* The Flux-Anomaly-Forced Model Intercomparison Project
742 (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in
743 response to CO₂ forcing. *Geoscientific Model Development* **9**, 3993–4017 (2016).

744 63. Hasselmann, K. *On the Signal-To-Noise Problem in Atmospheric Response Studies*.
745 (Royal Meteorological Society, 1979).

746 64. Van Den Dool, H. M., Saha, S. & Johansson, Å. Empirical orthogonal teleconnections.
747 *Journal of Climate* **13**, 1421–1435 (2000).

748 65. Irving, D. B., Wijffels, S. & Church, J. A. Anthropogenic Aerosols, Greenhouse Gases,
749 and the Uptake, Transport, and Storage of Excess Heat in the Climate System.
750 *Geophysical Research Letters* **46**, 4894–4903 (2019).

751 66. Shi, J.-R., Wijffels, S. E., Kwon, Y. & Xie, S. Interhemispheric Contrasts of Ocean Heat
752 Content Change Reveals Distinct Fingerprints of Anthropogenic Climate Forcings.
753 *Geophysical Research Letters* **50**, (2023).

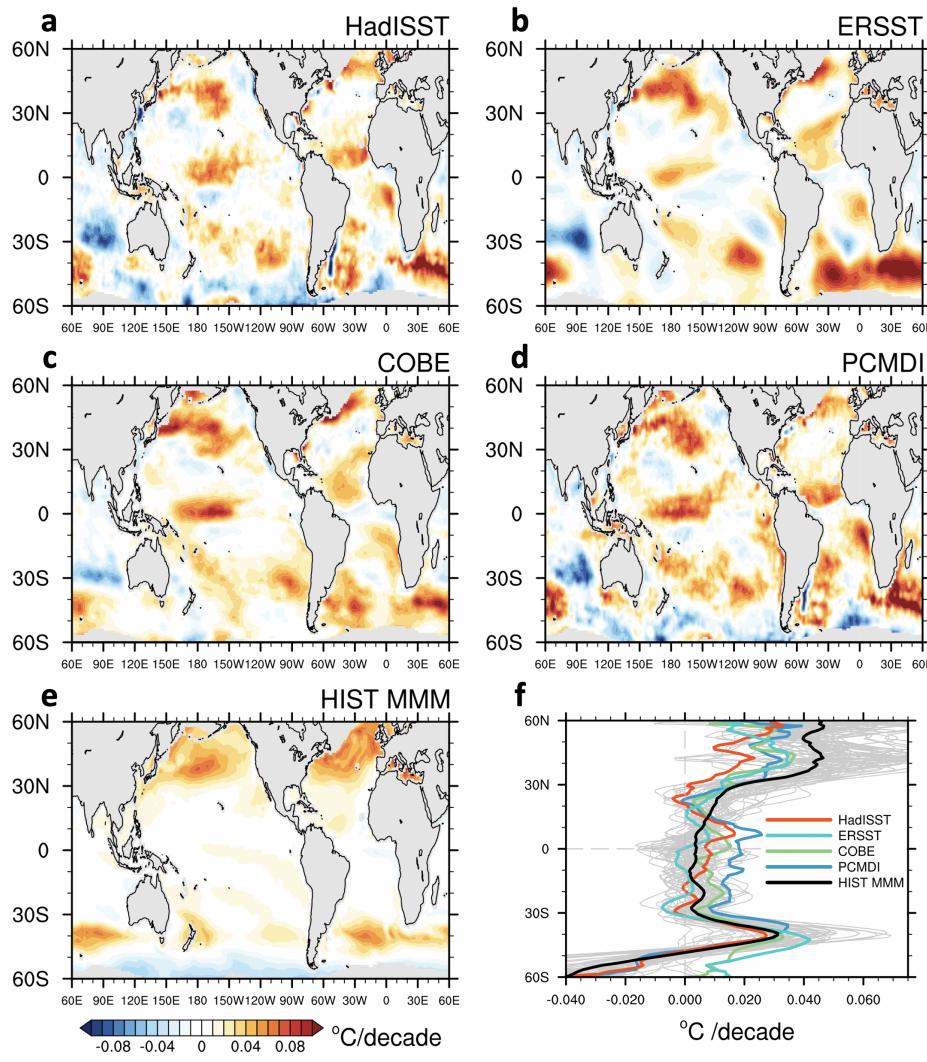
754 67. Allen, M. R. & Tett, S. F. B. Checking for model consistency in optimal fingerprinting.
755 *Climate Dynamics* **15**, 419–434 (1999).

756 68. Bonfils, C. J. W. *et al.* Human influence on joint changes in temperature, rainfall and
757 continental aridity. *Nature Climate Change* **10**, 726–731 (2020).

758

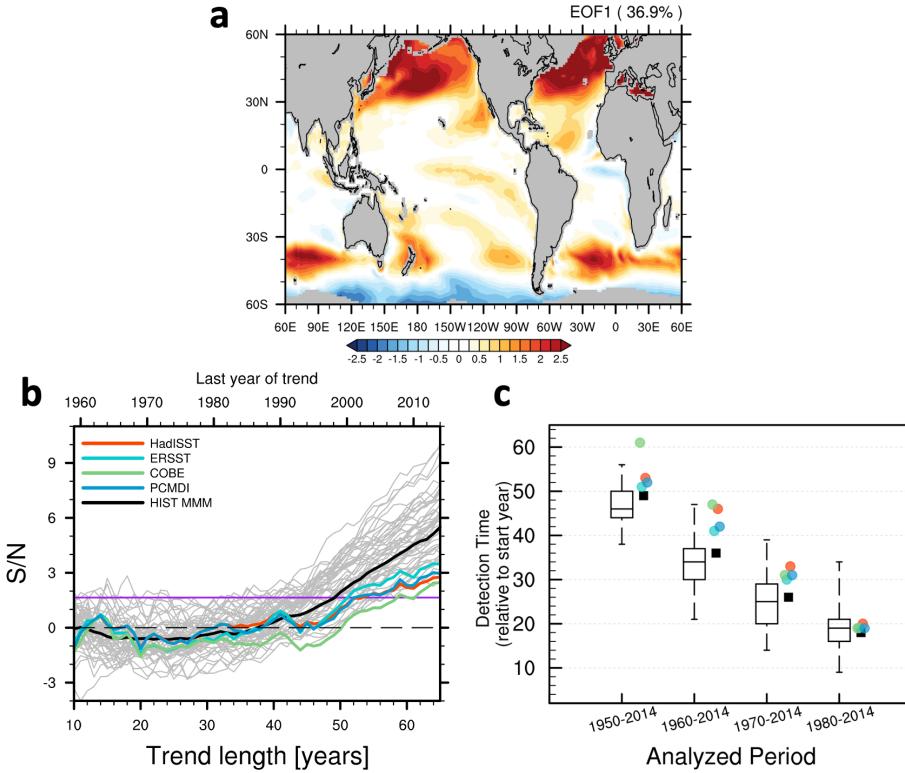
759

760



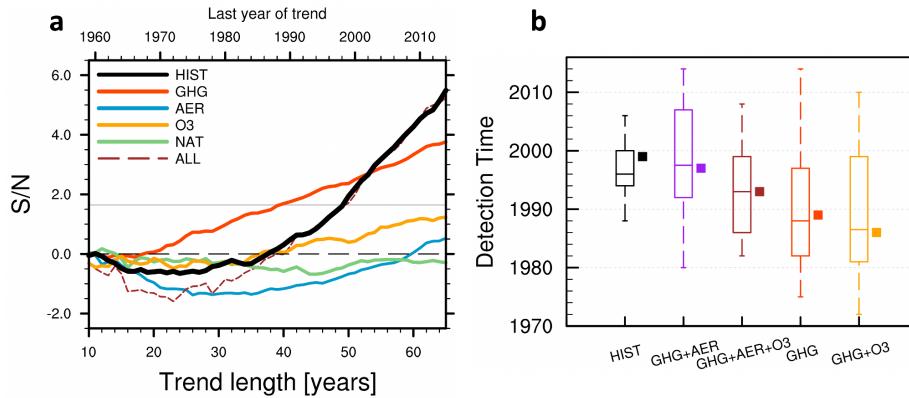
761

762 **Fig. 1 Trends over 1950 to 2014 in the annual cycle amplitude of SST (SST_{AC}).** a-d Trends from
 763 four observed datasets. e Trends from the multi-model mean (MMM) of CMIP6 HIST simulations.
 764 Regions where the model-average climatological sea-ice coverage is larger than 10% are masked
 765 in gray. f Zonal-mean trends in the amplitude of the SST_{AC} estimated from observations and
 766 models. The gray curves are from 51 individual HIST simulations. The domain over which all
 767 calculations are performed is restricted to 60°S-60°N to minimize the impact of sea ice changes
 768 on SST_{AC}.



769

770 **Fig. 2 SST_{AC} fingerprint and signal-to-noise (S/N) analysis.** **a** Time-invariant HIST MMM
 771 fingerprint pattern. The fingerprint is defined here as the EOF1 of the MMM SST_{AC} changes over
 772 1950-2014. **b** Timescale-dependent S/N ratios for trends calculated from signal and noise time
 773 series for period of 1950-2014. The HIST MMM result is the black curve; results from individual
 774 HIST runs are the gray curves. The colored lines denote S/N ratios estimated by searching for the
 775 HIST MMM SST_{AC} fingerprint in four different observed SST datasets. The horizontal purple line
 776 is the 5% significance level (see Methods). **c** Detection time relative to the start year for the
 777 model-predicted SST_{AC} fingerprint from the HIST experiment. Fingerprint detection occurs when
 778 the S/N ratios for an L -year analysis period first exceed the stipulated significance level and then
 779 remain above it for all larger values of L . The y-axis shows the value of L that satisfies this
 780 condition. Results are for four different assumed analysis start years (1950, 1960, 1970, and
 781 1980). In the box-and-whisker plots, the horizontal bar is the median value, the box size
 782 represents the interquartile range, and the whiskers span the full range of detection times from
 783 all 51 individual HIST realizations. Black squares are the detection times calculated with the
 784 MMM. Colored circles are detection times estimated by searching for the model-predicted SST_{AC}
 785 fingerprint in four different observed SST datasets (see panel b legend).



786

787 **Fig. 3 S/N ratios and detection times from single-forcing runs and their linear combinations.** **a**
788 S/N ratios for the signal trends obtained by a fingerprint analysis involving the patterns of SST_{AC}
789 change estimated from the MMM of different experiments. Results are for Method 1 (see
790 Methods). For O3, the MMM is calculated from the 4 models for which O3 results were available.
791 The MMM in the remaining cases is based on a larger set of 10 models. ALL represents the linear
792 combination of S/N ratios from GHG, AER, O3 and NAT. The horizontal gray line is the 5%
793 significance level. **b** The detection times of the HIST fingerprint estimated from HIST, GHG, and
794 linear combinations of SST_{AC} changes from GHG, AER, and O3. The analysis period is 1950-2014.

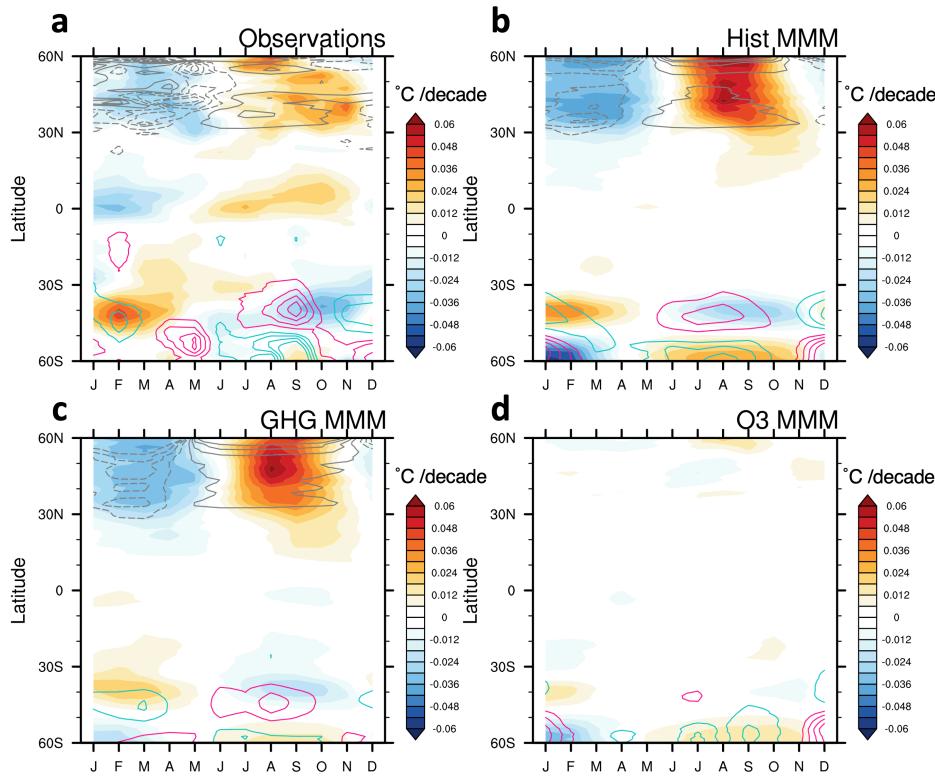


Fig. 4 Zonal-mean trends over 1950 to 2014 in monthly-mean SST, zonal wind stress, and MLD.
 795 a The ensemble mean of four different observed datasets. b-d The MMM of the HIST, GHG, and
 796 O3 simulations. All results are departures from annual-mean trends. Colored shading denotes
 797 monthly SST trends, gray contours are MLD trends plotted with a $0.75 \text{ m decade}^{-1}$ interval, and
 798 colored contours are zonal wind stress trends plotted with a $7.2 \times 10^{-4} \text{ Pa decade}^{-1}$ interval (with
 800 positive changes shown in magenta). The zero contours are omitted. We show the MLD changes
 801 in the NH only and the wind stress changes in the SH only. Additional information about simulated
 802 and observed MLD and wind changes (including observational data sources) is given in Extended
 803 Data Fig. 9.
 804

805

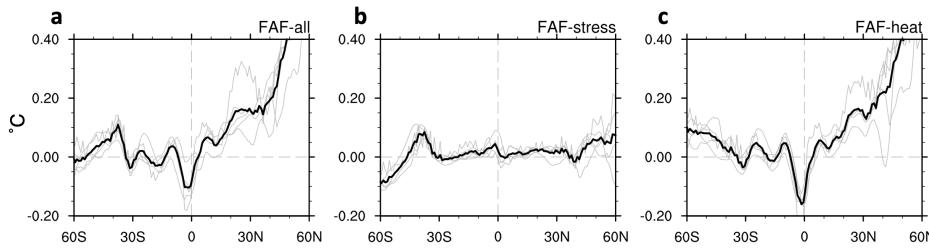
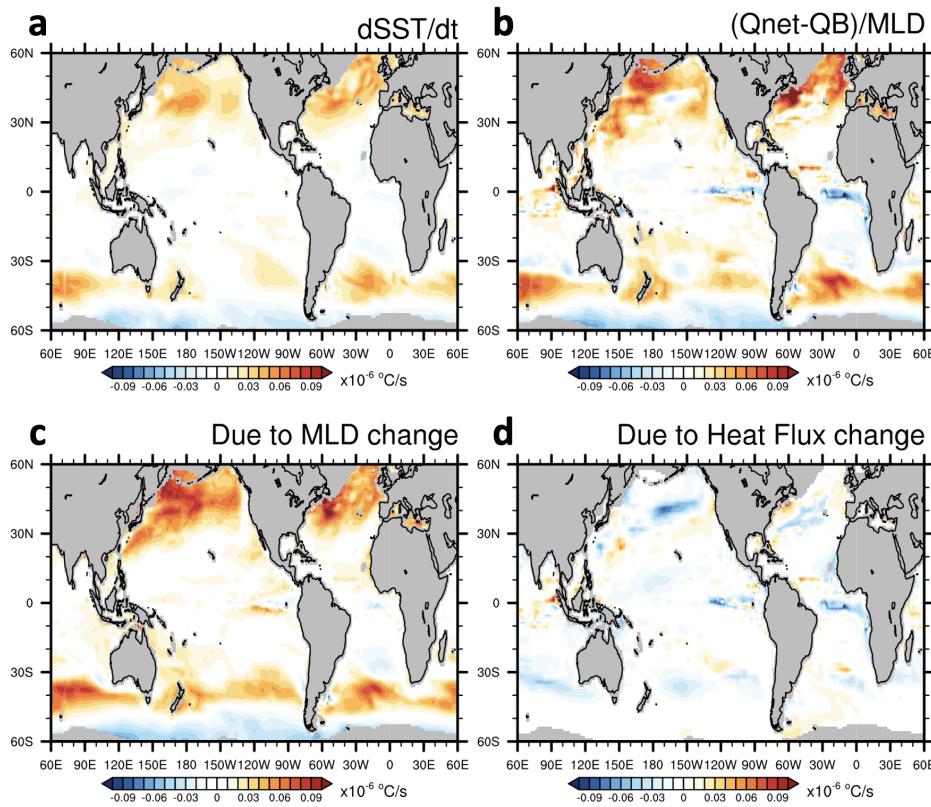


Fig. 5 Zonal-mean SST_{AC} changes from FAFMIP perturbation experiments relative to piControl.

806
 807 **a-c** Results from FAF-all, FAF-stress, and FAF-heat, respectively. For each model, the piControl
 808 results are averaged over the full length of the simulation. Perturbation results are averaged over
 809 years 31 to 70. The gray curves are from individual models and the black curves are the MMM
 810 results.
 811

812

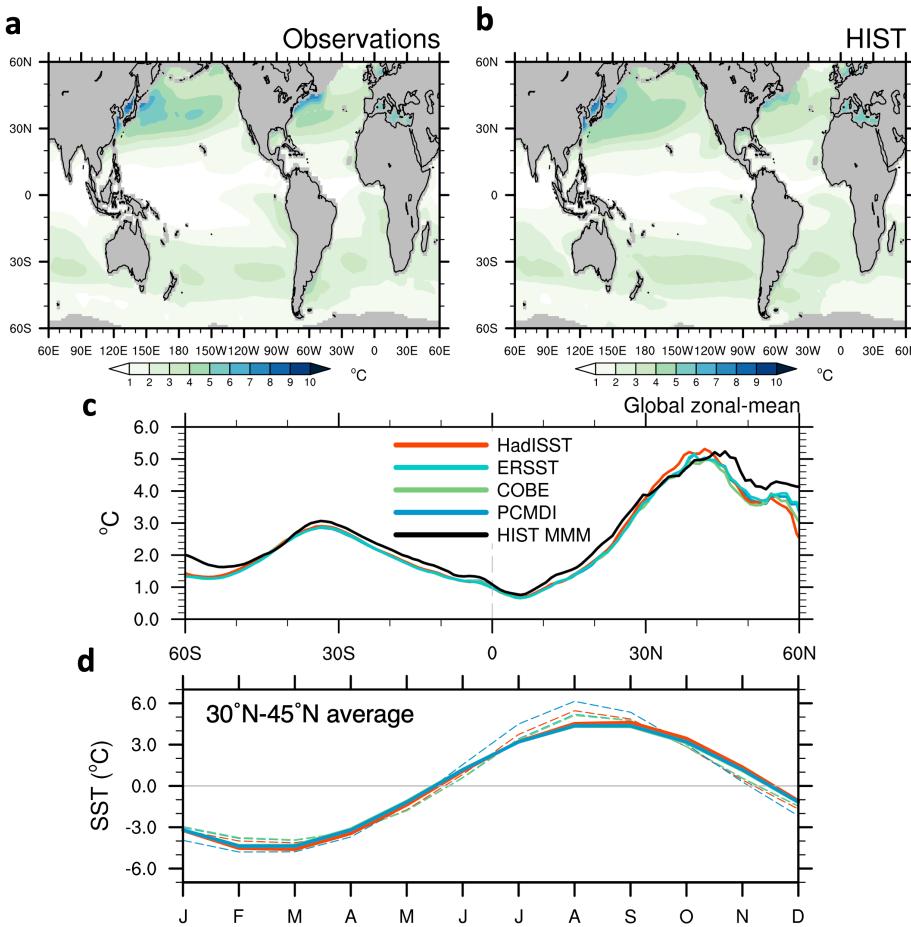


813
814 **Fig. 6 Annual cycle amplitude changes between 1950-1979 and 1985-2014. a-b** Changes of the
815 annual cycle of SST tendency from CMIP6 HIST MMM and the estimate based on the mixed-layer
816 heat budget model. **c-d** Contributions of the changing *MLD* and heat flux (*Qnet-Qb*) to the
817 changes of the annual cycle of SST tendency, respectively.

818

819

Extended Data:



820

821

822

823

824

825

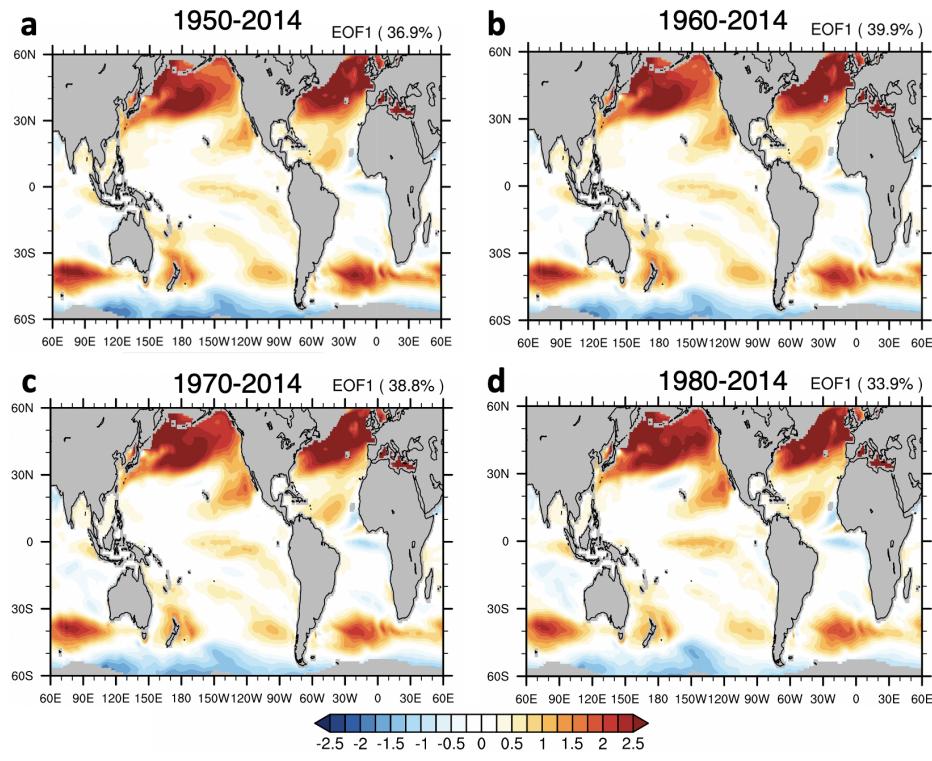
826

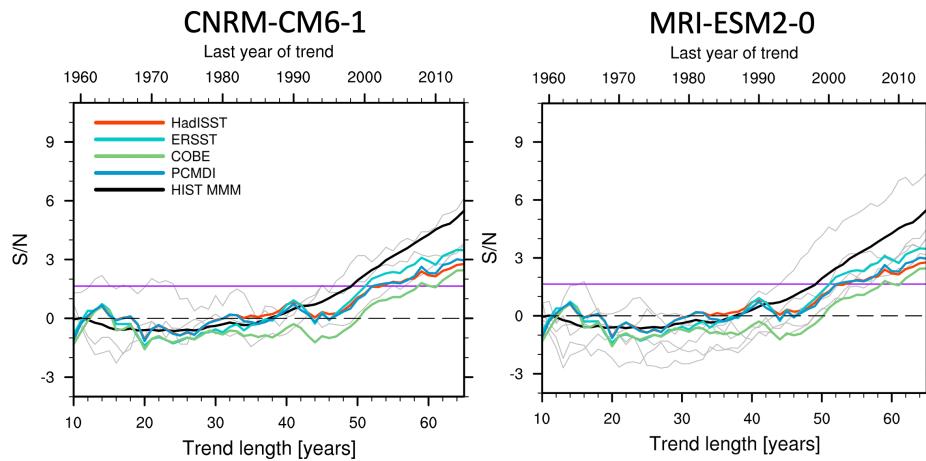
827

828

829

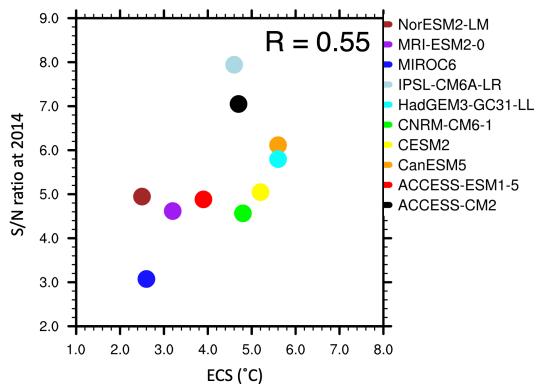
Extended Data Fig. 1. Spatial patterns and zonal mean of the climatology of SST annual cycle amplitude (SST_{AC}) from four different observational products and from the multi-model mean (MMM) of the HIST simulations. a Average of four different observed SST datasets. **b** HIST MMM. **c** Zonal-mean climatology of the HIST MMM and individual observed SST datasets. **d** Monthly climatology of SST averaged between 30°N - 45°N from observations (dashed curves) and the fits of the first harmonic obtained through Fourier analysis (solid curves). Results are calculated over 1950 to 2014.





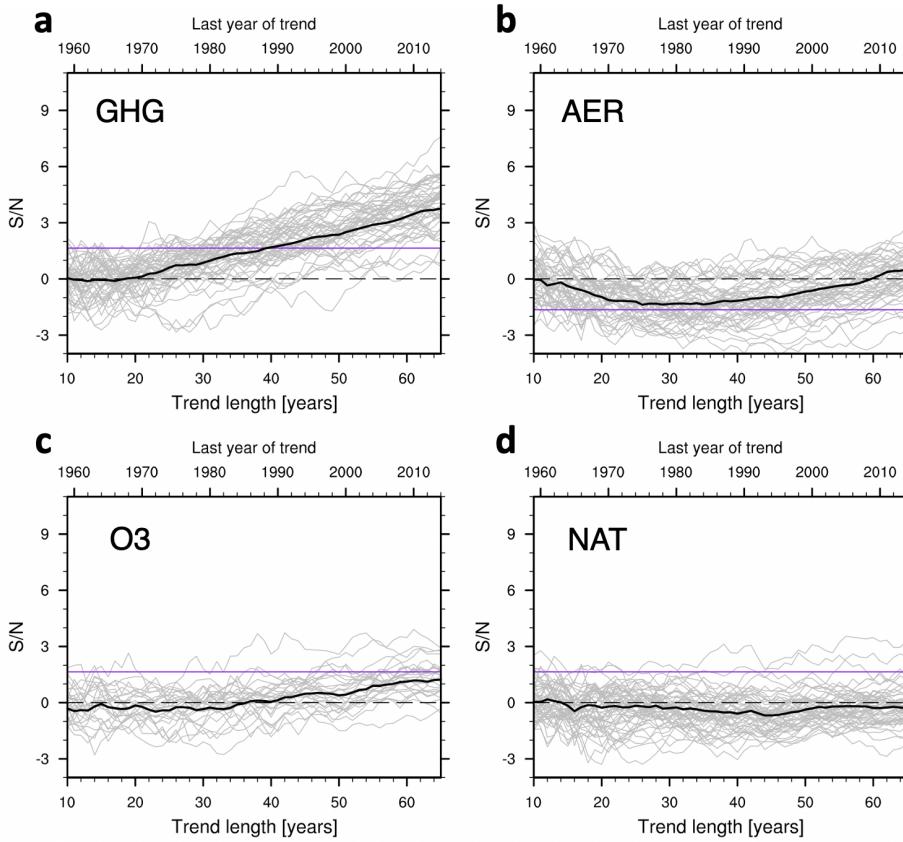
835
836
837
838
839

Extended Data Fig. 3. S/N ratios from two selected CMIP6 models. Results are as in Fig. 2b, but the “model only” S/N ratios here are from two models only: CNRM-CM6-1 and MRI-ESM2-0. Individual realizations from each model can have appreciable differences in their S/N behavior.

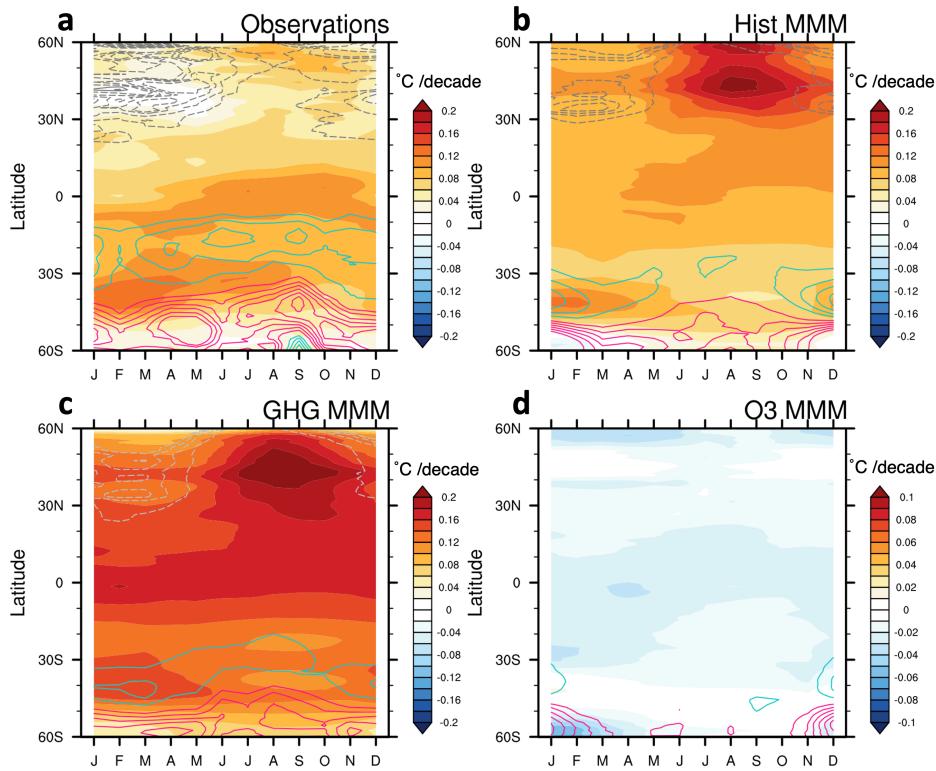


840
841 **Extended Data Fig. 4. Scatterplot between the climate sensitivity of the 10 CMIP6 models**
842 **analyzed here and the final value of the S/N ratio for the 65-year analysis period from 1950 to**
843 **2014. The effective climate sensitivities are based on the results from ref 40.**

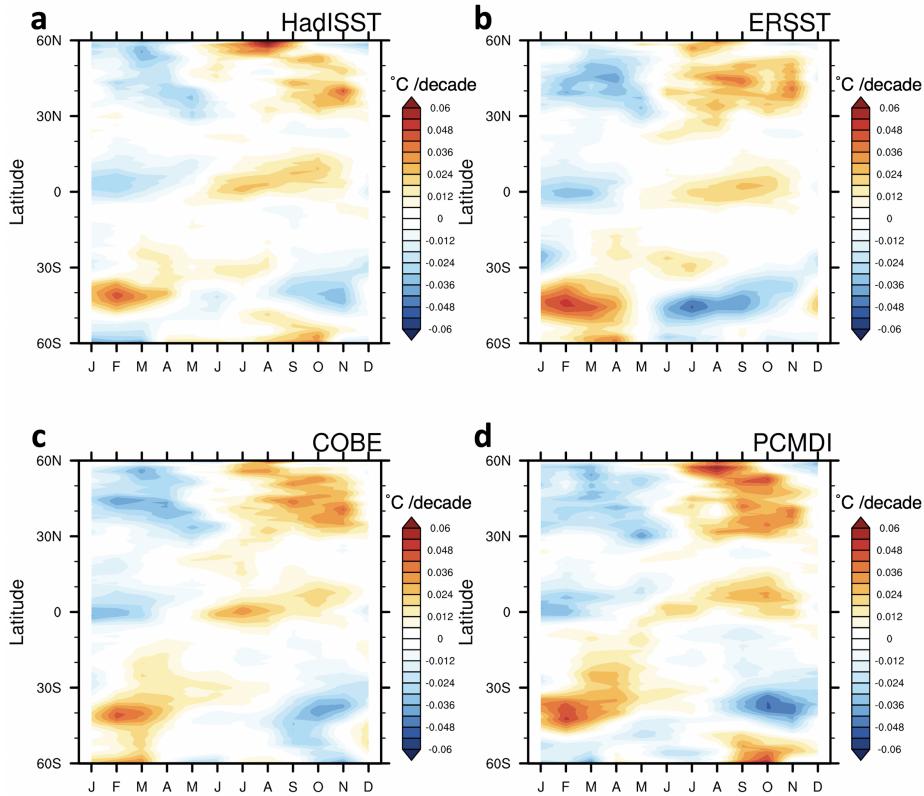
844



845
846
847 **Extended Data Fig. 5. S/N ratios from the GHG, AER, O3, and NAT single-forcing runs.** Results
848 are based on use of the same HIST fingerprint, which is searched for in the SST_{AC} changes of each
849 single-forcing run (Method 1). Each panel shows the MMM result (the black curve) and results
850 from individual realizations (the gray curves). GHG, AER, and NAT results are from 10 models with
851 a total of 51 realizations; only four models with a total of 26 realizations were available for
852 calculating O3 S/N ratios. The horizontal purple line is the 5% significance level. For further details
853 refer to Methods.
854



855
 856 **Extended Data Fig. 6. Zonal-mean monthly-mean SST trends over 1950 to 2014.** **a** The ensemble
 857 mean of four observed datasets. **b-d** The MMM of the HIST, GHG, and O3 simulations. In contrast
 858 to Fig. 4, the trends are not expressed as departures from annual-mean trends.
 859



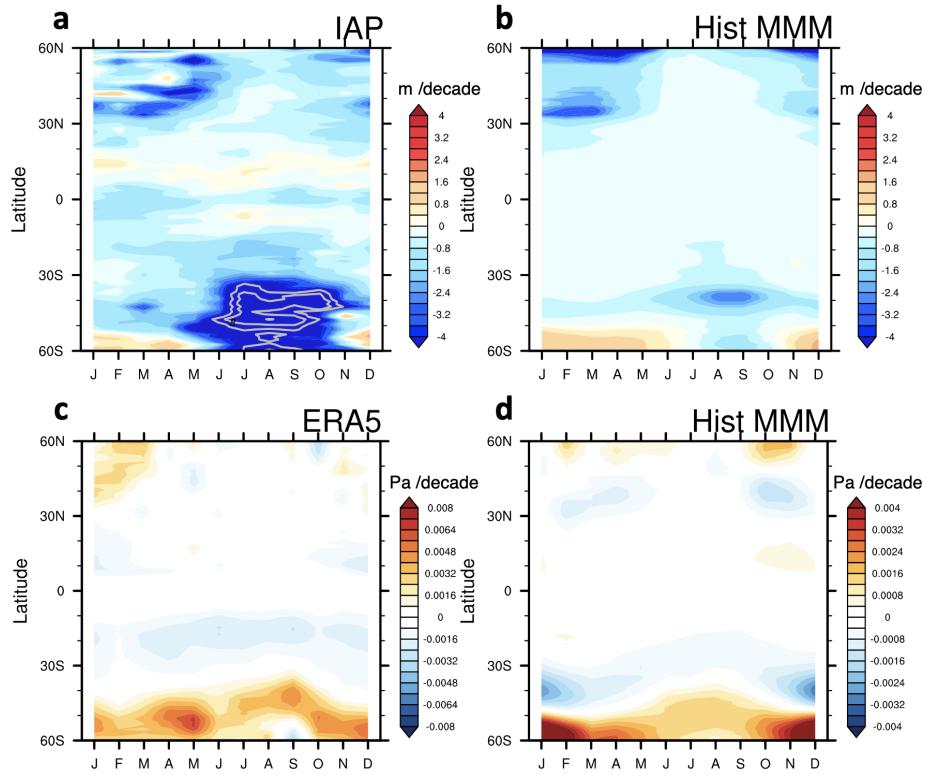
Extended Data Fig. 7. Zonal-mean monthly-mean SST trends over 1950 to 2014 in four observed datasets. The results are expressed as departures from annual-mean trends.

860
861
862
863
864

865
866
867
868
869
870
871
872



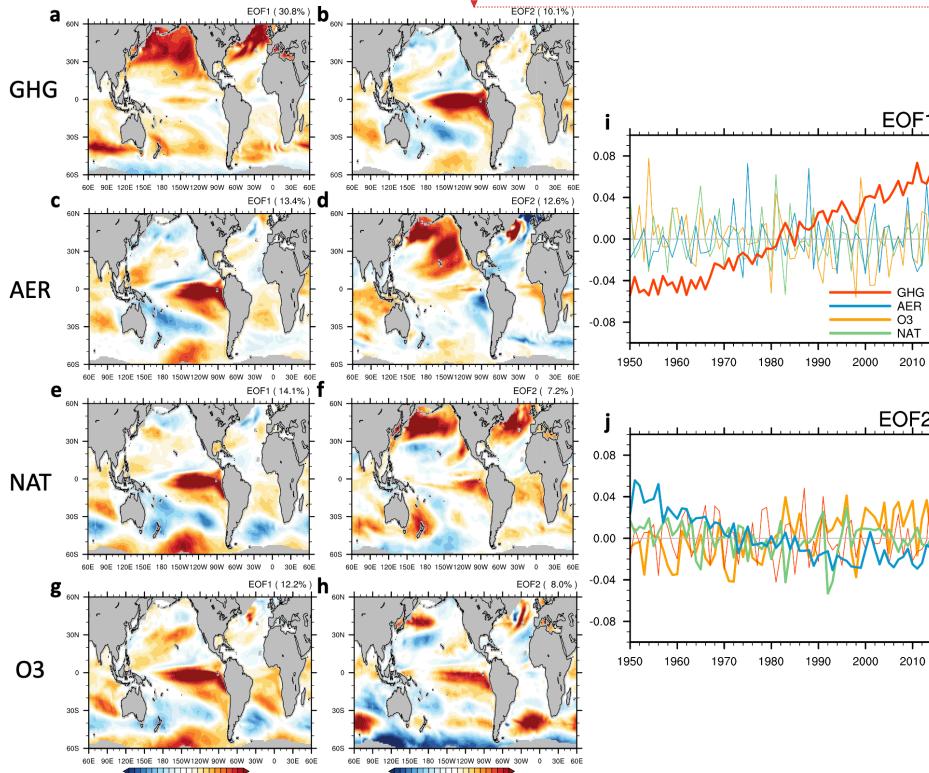
Extended Data Fig. 8. Changes of annual cycle amplitude of SST tendency between 1950-1979 and 1985-2014 due to MLD changes. a Changes of annual cycle when it is assumed to have a consistent summer MLD change for all 12 months (see Eq. 7). **b** Changes of annual cycle when MLD is assumed to shoal by 5% at every location and in every month relative to the background monthly value (see Eq. 8).



873
 874 **Extended Data Fig. 9. Zonal-mean monthly-mean trends over 1950 to 2014 in MLD and zonal**
 875 **wind stress.** a-b MLD trends from the IAP product and the MMM of the HIST simulations,
 876 **respectively.** Gray contours highlight the large MLD trends of -6 and -8 m/decade. c-d Zonal wind
 877 **stress trends from ERA5 and the MMM of the HIST simulations.**

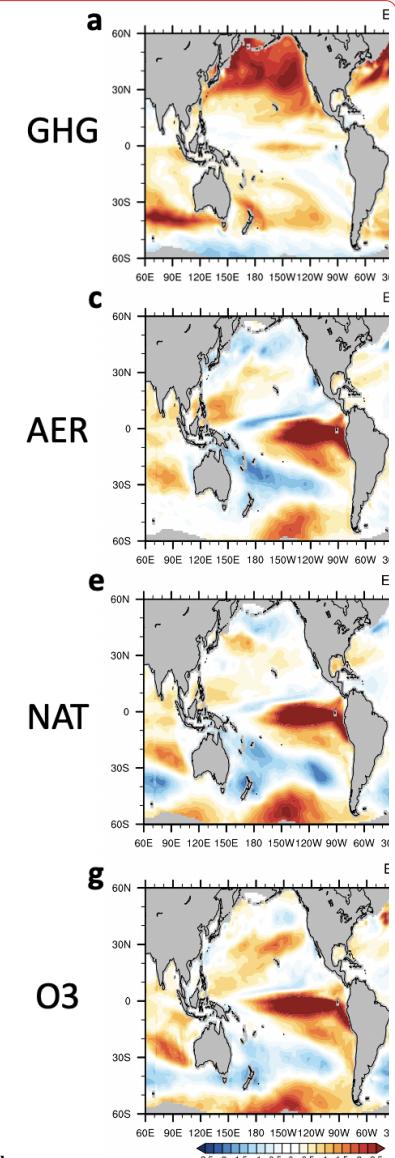
878

879

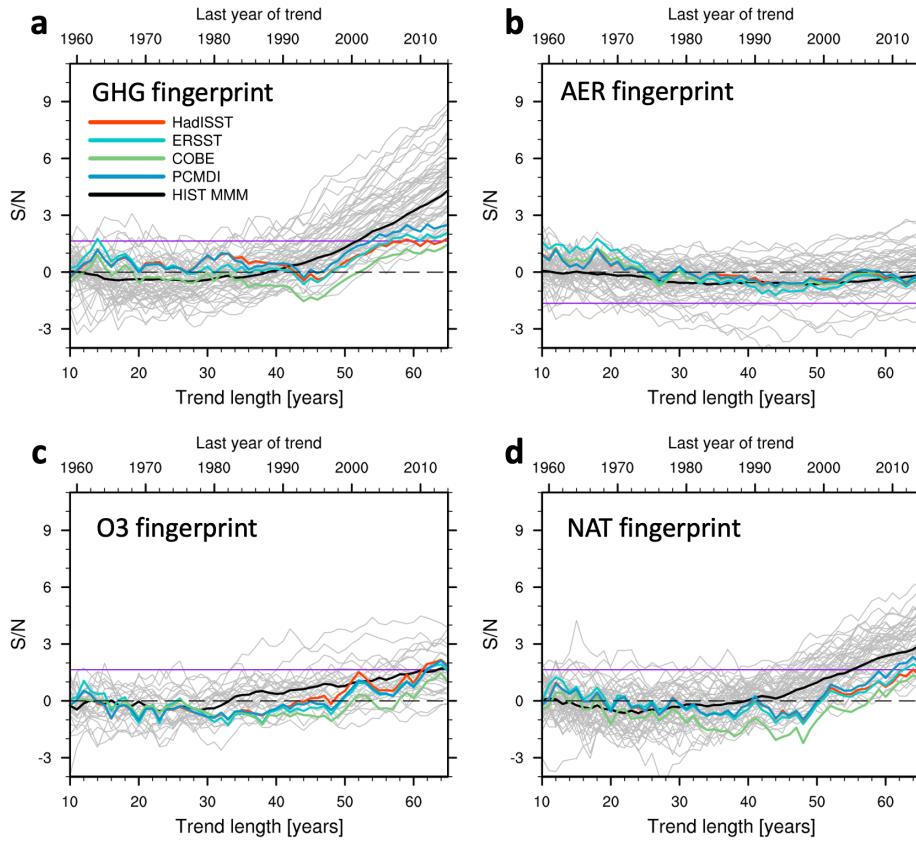


880
**Extended Data Fig. 10. First two EOFs of SST_{AC} anomalies calculated from the MMM of the GHG,
881 AER, NAT, and O3 single-forcing experiments.** **a-h** Results for EOF1 and EOF2 are in the left and
882 right columns, respectively. The explained variances are shown in brackets. **i-j** Principal
883 components for EOF1 and EOF2 from four single-forcing experiments. All calculations are over
884 1950-2014.

885



Deleted:
Deleted:



888
889
890 **Extended Data Fig. 11. S/N ratios of HIST runs and observations obtained using the fingerprints**
891 **estimated from single-forcing experiments (GHG, AER, O3, and NAT).** In Method 2, the SST_{AC}
892 changes in the individual single-forcing runs are projected onto their respective fingerprints. The
893 GHG fingerprint is the EOF1 pattern from the left column of Extended Data Fig. 10. Because the
894 leading EOFs of AER, O3, and NAT simulations capture the effect of ENSO variability on SST_{AC} , the
895 fingerprints for AER, O3 and NAT are the EOF2 patterns from the right column of Extended Data
896 Fig. 10. The horizontal purple line is the 5% significance level.
897

898 **Extended Data Table 1. CMIP6 models and the number of model realizations used in this study.** The left
 899 column shows the 10 CMIP6 models for which HIST, GHG, AER, and NAT runs were available. For O3,
 900 results were available from four models only (right column). The middle and right columns show the
 901 number of realizations available for each model. The identifiers of these realizations (r1, etc.) are
 902 indicated in brackets.

Model names	Number of realizations used in HIST, GHG, AER, and NAT	Number of realizations used in O3
ACCESS-CM2	3 (r1-r3)	--
ACCESS-ESM1-5	3 (r1-r3)	--
CanESM5	15 (r1-15)	10 (r1-r10)
CESM2	2 (r1 and r3)	--
CNRM-CM6-1	3 (r1-r3)	--
HadGEM3-GC31-LL	4 (r1-r4)	--
IPSL-CM6A-LR	10 (r1-r3)	10 (r1-r10)
MIRO6	3 (r1-r3)	3 (r1-r3)
MRI-ESM2-0	5 (r1-r3)	3 (r1, r3, and r5)
NorESM2-LM	3 (r1-r3)	--

903
 904
 905 **Extended Data Table 2. Uncentered pattern correlations between fingerprints from different**
 906 **experiments.** For HIST and GHG, the fingerprint is obtained from the first EOF mode. For AER, O3, and
 907 NAT, the second EOF mode is used as the fingerprint (see Extended Data Fig. 10).

Pattern Correlation	HIST	GHG	AER	O3	NAT
HIST	1				
GHG	0.87	1			
AER	0.20	0.45	1		
O3	0.52	0.34	-0.06	1	
NAT	0.75	0.68	0.31	0.41	1