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Abstract 24 

We provide the first scientific evidence that a human-caused signal in the seasonal cycle of sea 25 

surface temperature (SST) has emerged from the background noise of natural variability. 26 

Geographical patterns of changes in SST seasonal cycle amplitude (SSTAC) reveal two distinctive 27 

features: an increase at mid-latitudes in the Northern Hemisphere related to mixed-layer depth 28 

changes, and a robust dipole pattern between 40˚S and 55˚S in the Southern Hemisphere which is 29 

mainly driven by surface wind changes. The model-predicted pattern of SSTAC change is 30 

identifiable with high statistical confidence in four observed SST products and in 51 individual 31 

model realizations of historical climate evolution. Simulations with individual forcing reveal that 32 

greenhouse gas increases are the primary driver of changes in SSTAC, with smaller but distinct 33 

contributions from anthropogenic aerosol and ozone forcing. The robust human influence 34 

identified here on the seasonality of SST is likely to have wide-ranging impacts on marine 35 

ecosystems.  36 

 37 

 38 

 39 

 40 

Earth’s climate is simultaneously influenced by anthropogenic and natural external forcings, as 41 

well as by natural internal climate variability operating on a wide range of different space and time 42 

scales. Detection and attribution (D&A) analysis seeks to disentangle these human and natural 43 

influences1. Pattern-based “fingerprint” methods are a key component of D&A studies. Such 44 

methods have successfully identified human fingerprints in long-term annual-mean changes in 45 

surface and atmospheric temperature2–7, different aspects of the hydrological cycle8–12, 46 

atmospheric circulation13,14, and ocean heat content15,16.  47 

The annual cycle is one of the most fundamental aspects of our climate and accounts for 48 

greater than 90% of seasonal temperature variability over most of the globe17. It influences human 49 

health, water supplies, agriculture, energy demand, and ecosystems. Gaining insight into how 50 

anthropogenic forcing has impacted seasonality is of scientific, economic, and societal importance. 51 
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Although annual cycle changes have attracted recent scientific attention in D&A studies17–22, such 52 

investigations have not been performed with ocean variables.  53 

 We focus here on changes in the amplitude of the annual cycle of sea surface temperature 54 

(SSTAC), which plays an important role in air-sea interaction, global rainfall patterns, and the 55 

distributions of marine ecosystems23–25. In the tropical Pacific, model projections show an 56 

intensification of SSTAC in the twenty-first century compared to the twentieth century, which has 57 

been attributed to changes in meridional SST gradients26 and atmospheric circulation27. In the mid-58 

latitudes, SSTAC is projected to increase in both hemispheres24,28,29. These projections of SSTAC 59 

intensification in mid-latitudes are consistent with the observed amplitude increase in the surface 60 

air temperature (SAT) and tropospheric temperature (TT) annual cycles17,22 during recent decades. 61 

Since SST, SAT, and TT are independently measured, the emergence of an externally forced signal 62 

in SSTAC would provide additional support for the identification of anthropogenic fingerprints in 63 

SAT and TT annual cycles.  64 

Several previous model investigations demonstrate that the mid-latitude amplification of 65 

SSTAC is primarily linked to changes in mixed-layer depth (MLD)24,28–31. In summer, decreasing 66 

MLD leads to trapping of the net surface heat flux into the ocean in a thinner layer, thereby yielding 67 

a larger summertime SST increase28. This shoaling of the mixed layer results from enhanced upper 68 

ocean stratification driven by ocean warming32,33. In simulations with estimated future greenhouse-69 

gas emissions, the annual-mean mixed layer shoaling and the mid-latitude SSTAC increase are 70 

projected to intensify29  as the effective heat capacity of the thinner mixed layer decreases.  71 

It is still unclear if an anthropogenic fingerprint can be formally detected in the changing 72 

amplitude of the observed SST annual cycle, and whether this fingerprint can be robustly attributed 73 

to human influence. We address this question here with four different observed SST datasets and 74 

over 50 individual model realizations of historical climate change. A novel aspect of our 75 

fingerprint study is its use of idealized simulations and heat budget analysis to elucidate the 76 

physical mechanisms that dictate key features of the common model and observed patterns of 77 

SSTAC change.   78 

  79 
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 80 

Trends in SSTAC 81 

In all four of the observed SST products we examined, SSTAC trends over our primary analysis 82 

period (1950-2014) increase in most ocean regions and have a similar spatial pattern (Fig. 1a-d). 83 

Some features of the observed pattern are also evident in model simulations of historical climate 84 

change (HIST; Fig. 1e). The changes common to the models and observations are dominated by 85 

zonal-mean amplitude increases between 30˚ and 60˚ in both hemispheres (Fig. 1f), poleward of 86 

the maxima in the SSTAC climatology (Extended Data Fig. 1). Another notable regional-scale 87 

feature of the SSTAC trends in the HIST multi-model mean (MMM) and the HadISST and PCMDI 88 

observed datasets is the decrease in annual cycle amplitude in the vicinity of the Antarctic 89 

Circumpolar Current (Fig. 1e) south of 50˚S.  90 

Although models can reproduce the positive observed SSTAC trends at NH mid-latitudes, 91 

the observed trends are smaller than in the simulations (Fig. 1f). One possible interpretation of this 92 

result is that the observed regional signals may be partly suppressed by the specific phasing of 93 

internal variability in the North Atlantic, as is the case with observed annual-mean warming in the 94 

tropical Pacific34,35. Differences between SSTAC trends in observed data and the HIST MMM are 95 

also prominent in the tropics, such as the pronounced maximum in the western equatorial Pacific 96 

that appears only in observations. 97 

These model-observed differences may be partly due to the fact that the MMM is an 98 

average over individual realizations of historical climate change (in a single model) and an average 99 

over models. Averaging damps the noise of natural internally generated variability, which is 100 

uncorrelated across model realizations (except by chance). The MMM, therefore, should more 101 

clearly reveal the response to external forcing34,35. In contrast, there is only one realization of the 102 

observed record, which contains both internal variability and the forced signal in SSTAC. We 103 

therefore expect observed SSTAC changes to be noisier than in the MMM, particularly in regions 104 

where multidecadal variability affects tropical and subtropical temperature trends34,35.  105 

Could the above-mentioned model-observed differences in SSTAC trends be related to 106 

model biases in climatological-mean SSTAC patterns? We find that the model-average correlation 107 

between the patterns of model biases in the climatology of SSTAC and the model biases in the 108 

patterns of trends of SSTAC is low (R = 0.06). We infer from this that model biases in climatology 109 

do not appear to be a dominant factor in explaining the differences between the observed and 110 
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simulated SSTAC trend patterns in Fig. 1a-d and Fig. 1e. This does not, however, rule out a 111 

possibility we discuss later – that overestimated climate sensitivity may contribute to model-112 

observed differences in SSTAC trends36.  113 

The MMM and observations show closer agreement in global-scale features of zonally 114 

averaged SSTAC trends (Fig. 1f), with a common pattern of larger increase in the amplitude of 115 

SSTAC in the extratropics relative to the tropics. This pattern occurs in both hemispheres, but the 116 

mid-latitude increases in SSTAC are larger and broader in the Northern Hemisphere (NH) than in 117 

Southern Hemisphere (SH). This hemispheric asymmetry is consistent with results from previous 118 

studies of changes in the amplitude of the annual cycle of mid-tropospheric temperature17,22. As 119 

noted above, the simulated decrease of SSTAC trends in the Southern Ocean (Fig. 1f) is common 120 

to HadISST and PCMDI. Although the other two observational estimates do not show negative 121 

SSTAC trends between 50˚-60˚S, they have trend magnitudes within this latitude band that are 122 

smaller than the positive trends between 35˚-45˚S, and thus are consistent with the MMM results 123 

in a relative sense.  124 

   125 

Fingerprint Analysis and Detection Time 126 

We use a standard pattern-based method to determine whether the model-predicted externally-127 

forced fingerprint of SSTAC changes is statistically identifiable in observations37. The fingerprint 128 

we search for is the leading empirical orthogonal function (EOF) of the MMM SSTAC anomalies 129 

(Methods). The fingerprint is calculated from the HIST simulations over the period 1950 to 2014 130 

(Fig. 2a). Our analysis assumes that the spatial structure of the fingerprint pattern does not change 131 

markedly over time17,38. We tested and confirmed this assumption by calculating the HIST 132 

fingerprint for four different analysis periods (1950-2014, 1960-2014, 1970-2014, and 1980-2014; 133 

see Extended Data Fig. 2).  134 

 We compare the time-invariant SSTAC fingerprint pattern calculated from the HIST MMM 135 

with the time-evolving SSTAC patterns from observed datasets and long model control runs, 136 

respectively. These comparisons yield time series of similarity between the fingerprint and 137 

observed SSTAC patterns and between the fingerprint and patterns of natural internal variability in 138 

SSTAC. By varying the trend length L over a range of timescales (from 10 to 65 years), we can 139 

determine whether (and when) the similarity between the observations and the HIST fingerprint 140 
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shows a statistically significant signal – i.e., an increase in pattern similarity over time that is 141 

unlikely to be due to natural internal variability alone.  142 

Figure 2b shows the timescale-dependent S/N ratio calculated from the trends of these 143 

signal and noise time series. We stipulate that fingerprint detection occurs at trend length L if the 144 

S/N ratio exceeds a 5% significance threshold and remains above this threshold for all trend lengths 145 

larger than L. The model HIST fingerprint is identifiable with high statistical confidence (i.e., at 146 

the 5% significance level or better) in all four observational SST datasets after ca. 2000. At the 147 

end of the 65-year record, S/N ratios in the observations vary between 2.8 and 3.5. This indicates 148 

that smaller-scale differences between the four observational data sets – such as the previously-149 

noted SSTAC trend differences at high latitudes in the SH – have relatively small impact on 150 

detection of the global-scale fingerprint in observations.   151 

We also show the S/N ratios obtained when the HIST MMM fingerprint is searched for in 152 

individual realizations of HIST simulations (gray curves in Fig. 2b). In all 51 realizations, S/N 153 

exceeds the 5% threshold before the end of the simulation period in 2014. As in the case of the 154 

observations, SSTAC changes in individual HIST runs exhibit time-increasing similarity with the 155 

fingerprint (gray curves in Fig. 2b), pointing towards the robustness of the model-predicted forced 156 

SSTAC response.  157 

The S/N ratios calculated with observed data generally lie within but close to the lower end 158 

of the model-generated S/N ratio distribution. There are multiple (not mutually exclusive) possible 159 

explanations for this result. These explanations include errors in the model external forcings39, 160 

errors in the simulated SSTAC responses to the applied forcings, residual systematic errors in the 161 

observations, and model-versus-observed mismatches in the random phasing of internal variability 162 

(e.g., the El Niño–Southern Oscillation, Interdecadal Pacific Oscillation, and Pacific Decadal 163 

Oscillation). The latter explanation contributes to the more muted observed annual-mean 164 

tropospheric warming over the satellite era34.  165 

It is still unclear, however, what influence such mismatches in simulated and observed 166 

variability phasing have on changes in the seasonal cycle of SST. Here, we note that individual 167 

ensemble members generated with the same model and external forcings can have appreciable 168 

differences in their S/N behavior (see Extended Data Fig. 3). This suggests that as in the case 169 

annual-mean tropospheric temperature changes34, model-observed differences in the phasing of 170 

internal variability may have marked influence on SSTAC, and hence on the overestimated “model 171 
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only” S/N ratios in Fig. 2b. The non-negligible correlation between climate sensitivity40 and the 172 

“model only” S/N ratios over the full 65-year analysis period (R = 0.55) provides evidence that 173 

overestimated model climate sensitivity36 could also contribute to overestimated “model only” S/N 174 

ratios (see Extended Data Fig. 4).          175 

Figure 2c provides information on the monitoring period required to identify the model-176 

predicted HIST SSTAC fingerprint (the trend length L). Values of L at which detection occurs are 177 

shown as a function of  the choice of the analyzed period. We consider four different periods; each 178 

ends in 2014, but has a different start date (1950, 1960, 1970, and 1980). There are two principal 179 

findings from this analysis. First, irrespective of the assumed start date of monitoring, the model-180 

predicted HIST SSTAC fingerprint pattern in Fig.  2a is robustly identifiable in all four observed 181 

SST data sets and in all 51 model realizations of historical climate change. Except in the case of 182 

S/N results obtained with COBE data, the observed values of L are always contained within the 183 

spread of the model results. 184 

Second, a common feature of both the simulated and observed results is that L decreases 185 

systematically with later start dates. For the MMM SSTAC changes, L is approximately 48 years 186 

and 18 years for start dates in 1950 and 1980 (respectively). This systematic decrease is likely due 187 

to larger net positive anthropogenic forcing over the 1980-2014 period than over periods with 188 

earlier start dates that sample appreciable negative forcing by anthropogenic aerosols. As will be 189 

shown in the next section, GHG forcing is the dominant influence on simulated SSTAC changes, 190 

so changes over time in the relative importance of GHG and anthropogenic aerosol forcing must 191 

contribute to the differences in L in the four analysis periods in Fig. 2c. Note that for fingerprint 192 

detection in the four different observed SST data sets, the spread in L values decreases as a function 193 

of increasing start date. This decrease in spread is partly due to improvements over time in the 194 

quality and spatial coverage of SST measurements and overlap between datasets. 195 

 196 

Contributions from individual external forcings 197 

We use single-forcing simulations to isolate and quantify the individual contributions of changes 198 

in well-mixed greenhouse gases (GHG), anthropogenic aerosols (AER), stratospheric ozone 199 

depletion (O3), and volcanic eruptions and solar variability (NAT) (Methods). We apply two 200 

different methods to understand the effects of single forcings: (1) To estimate the contributions of 201 

individual external forcings to the time-evolving S/N ratios obtained with the HIST MMM 202 
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fingerprint, the GHG, AER, O3, and NAT single-forcing simulations are all regressed onto the 203 

same HIST fingerprint used in the previous section; (2) To determine whether the model-predicted 204 

fingerprint associated with an individual forcing is statistically identifiable, SSTAC changes from 205 

observations and HIST runs are projected onto each of the four fingerprints estimated from the 206 

GHG, AER, O3, and NAT single-forcing experiments. In the main text, we focus on Method 1 207 

results. The results based on Method 2 are discussed in Methods. 208 

 The Method 1 S/N results indicate that GHG forcing is the dominant contributory factor to 209 

the identification of the HIST SSTAC fingerprint, which is detectable in the GHG MMM before 210 

1990 (and before the end of the analysis period in 2014 in 48 out of 51 individual GHG realizations; 211 

see Extended Data Fig. 5). The S/N ratios for the “GHG only” case increase nearly linearly with 212 

increases in timescale L and the magnitude of the GHG forcing. In contrast, S/N results for AER 213 

show markedly nonlinear behavior as L increases. This is due to non-monotonic changes in 214 

emissions of anthropogenic sulfate aerosols, with large emissions after World War II followed by 215 

a reduction in emissions from North America and Europe after the 1980s41–43. The HIST SSTAC 216 

fingerprint is not detectable in the MMM of AER, O3, or NAT. 217 

 Our analysis of the impact of individual anthropogenic factors assumes additivity of the 218 

forced responses in GHG, AER, O3, and NAT44,45. To test the validity of this additivity assumption, 219 

we compare the HIST S/N results in Fig. 3a with S/N results obtained for ALL, the linear 220 

combination of the individual S/N ratios obtained for the GHG, AER, O3 and NAT experiments. 221 

Additivity is a reasonable assumption for analysis periods longer than 40 years. For periods less 222 

than 40 years, differences between the HIST and ALL S/N results are likely related to the 223 

combined effects of larger noise on shorter timescales, the smaller ensemble size for O3, and 224 

nonlinear aspects of the forced SSTAC responses46–48. 225 

 Figure 3b provides detection times for the HIST SSTAC fingerprint in HIST, GHG, and 226 

three linear combinations of individual SSTAC responses: GHG+AER, GHG+O3, and 227 

GHG+AER+O3. The primary influence on detection time is GHG, with AER acting to delay 228 

fingerprint detection: “GHG only” yields systematically earlier detection times than any set of 229 

SSTAC changes that includes AER (HIST, GHG+AER, or GHG+AER+O3). Including O3 also 230 

advances detection time, with the earliest median detection time of the HIST SSTAC fingerprint (in 231 

1985) in the GHG+O3 linear combination. The spread in detection times obtained with linear 232 
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combinations is larger than the spread in detection time inferred from HIST. This is likely due to 233 

amplification of noise in the linear combination of individual responses.  234 

 235 

Physical drivers of SST changes  236 

We seek to understand the physical drivers of the SSTAC changes described in the previous sections. 237 

In the observations, warming of zonal-mean SST over 1950 to 2014 occurs in nearly all months 238 

and latitudes (Extended Data Fig. 6). For the mid-latitudes it is more pronounced in the summer 239 

hemisphere. In the SH at ca. 40˚S, both the observations and HIST display warming relative to 240 

annual-mean trends in austral summer and cooling relative to annual-mean trends in austral winter 241 

(Figs. 4a,b). In HIST, this feature is primarily driven by GHG forcing (Figs. 4c). Relative to 242 

observations, CMIP6 models yield larger NH temperature rises in both summer and winter. As 243 

noted above, there are multiple possible interpretations of this result.  244 

Another prominent aspect of HIST and GHG is a dipole pattern characterized by 245 

anticorrelation between the seasonal temperature changes at roughly 40˚S and 55˚S. GHG and O3 246 

forcing both contribute to this feature (Figs. 4c,d). As noted above, this dipole is evident in two of 247 

the four observed datasets (HadISST and PCMDI; Extended Data Fig. 7). These observational 248 

differences likely arise because satellite data were included in HadISST and PCMDI but not in 249 

ERSST and COBE. In consequence, the Southern Ocean is better represented in the first two 250 

datasets, especially in the vicinity of sea-ice. 251 

 Buoyancy flux and wind stress changes are two major surface forcings affecting the 252 

Southern Ocean climate49–51. We explore the respective effects of buoyancy (dominated by heat 253 

flux change) and wind (momentum) forcing on SSTAC changes using the Flux-Anomaly-Forced 254 

Model Intercomparison (FAFMIP) experiments (Fig. 5). In the FAF-stress experiment, in which 255 

CO2-induced perturbations to the ocean are imposed in wind stress only, the SH mid-latitudes 256 

show a robust meridional dipole pattern in zonal-mean SSTAC change (Fig. 5b). In the FAF-heat 257 

experiment, CO2-driven perturbations to heat fluxes amplify SSTAC in both hemispheres, but the 258 

magnitude of the change is markedly larger in the NH (Fig. 5c), where the wind stress effect is 259 

limited. The FAFMIP results imply that wind forcing caused by CO2 increases is the main driver 260 

of the above-described SSTAC dipole pattern between 40˚S and 55˚S found in HIST, GHG, and 261 

two of the observed SST datasets. In contrast, changes in NH mid-latitude SSTAC arise from 262 

increased surface heat flux linked to atmospheric warming.  263 



 

10 

 

In addition to the influence of these surface wind stress and heat flux forcings, the SSTAC 264 

fingerprint can also be influenced by ocean adjustments arising from MLD changes. We 265 

investigated the role of MLD changes with a simplified mixed-layer heat budget analysis of the 266 

HIST runs. Our heat budget model also considers the effects of net surface heat flux (Qnet) and 267 

shortwave radiation flux out of the mixed layer base into the intermediate ocean (Qb) (Methods; 268 

Eq. 3). The patterns of the dSST/dtAC change can be reproduced by this simple model (Figs. 6a,b), 269 

and are consistent with the SSTAC fingerprint (Fig. 2a). The shoaling of MLD with fixed Qnet-Qb 270 

is the key factor here (Fig. 6c). In winter, this shoaling effect generates SST cooling by enhancing 271 

temperature response to winter heat loss. In summer, shoaling yields SST warming. It is 272 

noteworthy that the Qnet effect here differs from the analysis of FAF-heat, as the latter also 273 

incorporates MLD effects arising from the accumulated ocean heat.  274 

Because of this seasonally dependent effect of the MLD shoaling, the SSTAC would be 275 

amplified even with constant MLD shoaling throughout the year. This is why both hemispheres 276 

show positive annual cycle changes in the 30˚-50˚ latitude band. Between 50˚S-60˚S, the MLD 277 

deepens in austral summer, which appears to overwhelm the shoaling of MLD in austral winter, 278 

thus decreasing SSTAC in this band. The fixed MLD case results in a weak but reduced SSTAC in 279 

most regions (Fig. 6d), which implies that the warming induced by the Qnet-Qb change is slightly 280 

larger in winter than in summer. 281 

We performed two further sensitivity experiments: (1) constant monthly MLD shoaling, in 282 

which the summer value is applied for all 12 months at each location; and (2) shoaling MLD by 283 

5% in every month and location relative to the background monthly value. Our results suggest that 284 

the absolute change and relative change of MLD give rise to similar patterns (Extended Data Fig. 285 

8). The major difference is in the 50˚S-60˚S band, apparently due to the opposite directions of 286 

MLD change between austral winter and summer (Extended Data Fig. 9a,b). For all other latitudes, 287 

the shoaling of the mixed layer is consistent with season.  288 

The westerly wind stress in the 50˚S-60˚S region increases in austral summer (Extended 289 

Data Fig. 9c,d). This can deepen MLD by increased local turbulent mixing as well as by the 290 

increased equatorward advection of colder water. The negative wind stress changes between 30˚S-291 

50˚S have the opposite effect. The contrasting surface wind responses in the 30˚S-50˚S and 50˚S-292 

60˚S bands reflect the poleward shifting of zonal winds over the Southern Ocean caused by GHG 293 
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and O3 forcing (Fig. 4c,d). This shift is consistent with the FAF-stress response to CO2-driven 294 

wind stress changes.  295 

 296 

Conclusions 297 

Most previous studies of the annual cycle of SST (SSTAC) focused primarily on projected 21st 298 

century changes29,31. Here, we examine whether there is a detectable “fingerprint” pattern of 299 

human-induced SSTAC change over 1950-2014. We provide the first scientific evidence that a 300 

human-caused SSTAC signal has already emerged from the background noise of natural variability. 301 

Geographical patterns of SSTAC changes show increased SSTAC at mid-latitudes in the NH and a 302 

distinctive meridional dipole structure at SH mid-latitudes. These large-scale zonal features are 303 

common to observations and model simulations with anthropogenic forcing, and are dissimilar to 304 

the smaller-scale structure of natural internal variability. This helps to explain why the model-305 

estimated SSTAC fingerprint in response to combined anthropogenic and natural external forcing 306 

is identifiable by the end of the 20th century in all four observed SST datasets analyzed here. The 307 

fingerprint is also robustly identifiable in all 51 model realizations of historical climate change.  308 

Single forcing experiments indicate that increases in well-mixed GHGs is the dominant 309 

factor in the identification of externally forced changes in SSTAC. Anthropogenic aerosol 310 

emissions are likely to have delayed the detection of this fingerprint by ca. 7-8 years on average. 311 

External forcing from stratospheric ozone depletion partially contributed to the development of 312 

the SSTAC dipole structure at SH mid-latitudes, while natural external forcing by volcanoes and 313 

solar irradiance changes had relatively little effect on the detection of a human fingerprint in SSTAC.  314 

Model simulations and a heat budget analysis reveal that the leading physical drivers of 315 

these large-scale SSTAC changes are different in the two hemispheres. In the SH, the impacts of 316 

changes in atmospheric circulation and surface wind stress on the MLD are the key determinant of 317 

the dipole-like SSTAC response in the Southern Ocean. In the mid-latitudes of both hemispheres, 318 

human-induced warming yields increased stratification of the upper ocean, which in turn causes 319 

shoaling of the MLD during all seasons. Year-round MLD shoaling decreases the thermal inertia, 320 

thereby amplifying the mid-latitude SSTAC.  321 

Human-driven amplification of the mid-latitude seasonal cycle of SST has important 322 

implications for future changes in the behavior of marine ecosystems. The SST changes found here 323 

have the potential to influence both the productivity and distribution of marine species which 324 

Deleted: are the main driver of the large-scale spatial 325 
structure of the model-predicted SSTAC fingerprint326 
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constitute key food resources for human societies. Our finding of robust changes in the seasonality 327 

of SST should motivate more detailed exploration of the anthropogenically forced seasonal 328 

changes in a wide range of different ocean properties.  329 

  330 



 

13 

 

Methods 331 

CMIP6 experiments and models. 332 

This study uses output from climate model simulations performed under Phase 6 of the Coupled 333 

Model Intercomparison Project (CMIP6)52. We focus on 10 CMIP6 models that performed all of 334 

the following 4 experiments: historical all-forcing simulations (HIST) and single-forcing 335 

simulations performed with anthropogenic aerosols (AER), greenhouse gases (GHG), and purely 336 

natural changes in solar irradiance and volcanic aerosols (NAT)53. Each of the 10 models has 337 

multiple ensemble members. Each ensemble member of a given model is driven by the same 338 

external forcing, but has a different manifestation of natural internal climate variability 339 

superimposed on the underlying forced response. The number of ensemble members available for 340 

each model and each experiment is listed in Extended Data Table 1. For each experiment, there 341 

are 51 realizations in total. The multi-model mean (MMM) is the average of the ensemble means 342 

of these 10 models. The preindustrial control (piControl) simulations from the same 10 models are 343 

used for the purpose of estimating the noise from internal variability (see below). 344 

  We also analyze results from an experiment with forcing by stratospheric ozone changes 345 

only (O3). Only 4 of the 10 models that performed HIST, GHG, AER, and NAT simulations 346 

provided results for the O3 simulation (see Extended Data Table 1).  347 

 The HIST, GHG, AER, O3, and NAT experiments cover the period from 1850 to 2014. 348 

We focus on the 1950-2014 period for comparing simulations with observations of changes in the 349 

amplitude of the annual cycle of SST (SSTAC). This choice of period was dictated by improvement 350 

in the spatial coverage and quality of observed SST data  after World War II, as well as by large 351 

post-1950 changes in well-mixed GHGs, anthropogenic aerosols, and stratospheric ozone. All 352 

model output was interpolated to a common, regular 1 ̊ × 1 ̊ grid. 353 

 354 

Observations. 355 

We rely on four primary SST gridded products. These are the Hadley Center Sea Ice and SST 356 

dataset version 1 (HadISST)54, the NOAA Extended Reconstructed SST dataset version 5 357 

(ERSST)55, the Centennial In Situ Observation-Based Estimates of the Variability of SST and 358 

Marine Meteorological Variables, version 2 (COBE)56, and the Program for Climate Model 359 

Diagnosis and Intercomparison SST dataset (PCMDI)57. ERSST and COBE are based on in situ 360 

measurements, and HadISST and PCMDI combine in situ and satellite estimates of SST. Different 361 

averaging and gap-filling approaches are employed to infill data-sparse regions and time periods 362 

in these gridded products. HadISST and PCMDI datasets are not entirely independent: the PCMDI 363 

dataset is HadISST1 through 1981, and uses the NOAA Optimum Interpolation SST data (OI.v2)58 364 

thereafter. 365 
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In addition to these observational SST products, we also used the monthly surface zonal 366 

wind from the latest-generation reanalysis of the European Centre for Medium-Range Weather 367 

Forecasts (ERA5)59. For the observed mixed layer depth (MLD), we first employed the gridded 368 

monthly temperature and salinity data from the IAP product60 to calculate the potential density. 369 

MLD was then defined as the depth at which the ocean potential density exceeds the sea surface 370 

density at a criterion of δρ = 0.125 kg/m³, following the definition for MLD output (referred to as 371 

‘mlotst’) from the CMIP6 models. There are likely to be substantial uncertainties in the IAP 372 

product arising from sparse measurements of the subsurface temperature and salinity fields in the 373 

Southern Ocean (particularly in the pre-Argo era of the IAP records). 374 

 In addition, we have used the information from ref 61 to examine whether biases in ship 375 

SST data could be an important factor in our D&A analysis. We find it is unlikely that ship SST 376 

data biases could alter any of our findings regarding the identification of an SSTAC fingerprint in 377 

observations (not shown). 378 

 379 

FAFMIP experiments. 380 

To isolate the individual effects of changes in wind stress and surface heat flux on SSTAC trends, 381 

we rely on output from the Flux-Anomaly-Forced Model Intercomparison (FAFMIP) experiments. 382 

Results are from 5 models: ACCESS-CM2, CanESM5, HadGEM3-GC31-LL, MIROC6, MRI-383 

ESM2-0. The FAFMIP experiments, branched from each model’s piControl run, prescribe a set of 384 

surface flux perturbations for the ocean. These perturbations are obtained from the ensemble-mean 385 

changes simulated at the time of doubled CO2 by CMIP5 AOGCMs run under the 1pctCO2 386 

scenario (in which atmospheric CO2 levels increase by 1% each year). We examine three different 387 

FAFMIP experiments: FAF-all, in which perturbations of surface wind stress, surface freshwater 388 

flux, and surface heat flux are simultaneously imposed; FAF-stress, with imposed perturbations of 389 

surface wind stress only; and FAF-heat, with imposed  perturbations of net surface heat flux only62. 390 

All FAFMIP experiments considered here were run for 70 years. We show the anomalies 391 

of the 31–70-yr average relative to the climatology calculated from the full length of each model’s 392 

piControl. 393 

 394 

Calculation of annual cycle amplitudes. 395 

For each model simulation and observation product, and at each grid-point x and year t, we 396 

performed a Fourier analysis on the 12 monthly-mean values of SST. The amplitude of the first 397 

harmonic is taken as the annual cycle amplitude (SSTAC; see Extended Data Fig. 1d). Consistent 398 

with previous work17, the first harmonic explains > 95% of the total seasonal variance at almost 399 

all locations between 60˚N and 60˚S (except at regions close to the equator). As an additional 400 

sensitivity study, we confirmed that our fingerprint results are insensitive to the definition of 401 

SSTAC. The S/N ratios and detection times obtained here with the first harmonic are very similar 402 
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to those found when we define SSTAC as the seasonal maximum SST minus the seasonal minimum 403 

SST at each grid-point and in each year.  404 

 405 

Pattern-based fingerprint analysis. 406 

a. Definition of the fingerprint 407 

Detection methods generally require an estimate of the true but unknown climate-change signal,  408 

typically designated as the fingerprint F(x), in response to an individual forcing or set of forcings63. 409 

As in previous work, we assume F(x) to be the first EOF of the MMM change in SSTAC in the 410 

HIST simulations17.  411 

 Let S(i, j, x, t) represent SSTAC at grid-point x and year t from the ith realization of the jth 412 

model’s HIST simulation, where: 413 

  414 

 i = 1, . . . Nr(j) (the number of realizations for the jth model) 415 

 j = 1, . . . Nm (the number of models used in fingerprint estimation) 416 

 x = 1, . . . Nx (the total number of grid-points after regridding to a regular 1 ̊ × 1 ̊ grid) 417 

 t = 1, . . . Nt (the time in years) 418 

 419 

Here, Nr varies across models (Extended Data Table 1). For HIST, Nm = 10 models. Prior to the 420 

fingerprint analysis, all model and observed SSTAC fields were interpolated to a common 1 ̊ × 1 ̊ 421 

latitude/longitude grid. The evolution of multi-model mean SSTAC was calculated by first 422 

averaging over an individual model’s realizations (where multiple realizations were available), and 423 

then averaging across the number of models available for each experiment. MMM anomalies were 424 

then defined at each grid-point x and year t with respect to the local MMM climatological annual 425 

cycle amplitude. The fingerprint is the first EOF of the changes over time in the MMM SSTAC 426 

anomalies from the HIST experiment – i.e., the temporal changes in the annual cycle of SST. To 427 

minimize the impact of sea-ice on SSTAC, the domain was restricted to 60˚N-60˚S and to regions 428 

where the winter sea-ice concentration is smaller than 10%. The anomalies are weighted by the 429 

square root of the cosine of the grid node’s latitude64 before calculating the EOF. Most of the 430 

discussion focuses on model fingerprints estimated over 1950 to 2014. We also calculated 431 

fingerprints for three additional analysis periods (1960-2014, 1970-2014, and 1980-2014). As 432 

noted in the main text, the spatial structure of the fingerprint patterns does not change markedly 433 

over these periods (Extended Data Fig. 2).  434 

 435 

b. Fingerprint detection 436 

 We seek to determine whether the pattern similarity between the time-varying observations 437 

and F(x) shows a statistically significant increase over time. To address this question, we require 438 
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control run estimates of internally generated variability (“noise”), in which we know a priori that 439 

there is no expression of the fingerprint, except by chance. 440 

 This intrinsic noise is estimated using preindustrial control runs (piControl) from the  same 441 

10 models employed for calculating the HIST fingerprint. These control simulations can be 442 

affected by residual long-term drift. To reduce the effects of such drift on estimates of the internal 443 

variability of SSTAC, we fit a cubic polynomial to the full length of each model’s control run and 444 

then removed the fitted polynomial65,66. Fitting and drift removal is performed at each model grid-445 

point. Because the individual model control runs are of unequal length, our noise estimates rely on 446 

the last 400 years of each model’s piControl run. This yields a total of 4,000 years of concatenated 447 

control run data, and avoids introducing any bias associated with differing control run lengths.  448 

Observed SSTAC estimates are expressed as anomalies relative to climatological means 449 

over the 1950-2014 analysis period (or over the alternate analysis periods in Fig. 2c). The observed 450 

temperature data are projected onto F(x), the time-invariant fingerprint: 451 

 452 

!!(#) = 	∑ ((), #)	+())"!
#$%      (1) 453 

 454 

where O(x, t) are the observed SSTAC anomalies. This projection is equivalent to a spatially 455 

uncentered covariance between the patterns O(x, t) and F(x) at year t. The signal time series Zo(t) 456 

provides information on the fingerprint strength in the observations. If observed patterns of 457 

temperature change are becoming increasingly similar to F(x), Zo(t) should increase over time. 458 

 To assess whether this increase is statistically significant, we compare trends in Zo(t) with 459 

a null distribution for which we know a priori that there is no expression of the fingerprint, except 460 

by chance. Here, we derive this null distribution using C(x, t), the 4,000-year concatenated noise 461 

data set, generated from the piControl runs as described above. The noise time series Nc(t) is the 462 

projection of C(x, t) onto the fingerprint: 463 

 464 

,&(#) = 	∑ -(), #)	+())"!
#$%      (2) 465 

 466 

where the length of Nc(t) is 4,000 years (see above).  467 

We estimate signal-to-noise (S/N) ratios by fitting least-squares linear trends of increasing 468 

length L years to Zo(t), and then comparing these trends with the standard deviation of the 469 

distribution of maximally overlapping L-length trends in Nc(t)17,37. Signal detection is stipulated to 470 

occur when the trend in Zo(t) exceeds and remains above the stipulated significance level (which 471 

is 5% in our study)22. The test is one-tailed, and we assume a Gaussian distribution of trends in 472 

Nc(t). The start date for fitting linear trends to Zo(t) is 1950 for our baseline analysis, and is 1960, 473 

1970, and 1980 in the alternate analysis periods shown in Fig 2c. We use a minimum trend length 474 
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of ten years, so the first S/N ratio (and the earliest possible detection time in the baseline period) 475 

is for 10-year trends ending in 1959.  476 

We also show S/N results that are based solely on model simulation output. In our “model 477 

only” results, Nc(t) is calculated as in Eq. 2, but the observational estimates in Eq. 1 are replaced 478 

by S(i, j, x, t), the annual cycle amplitude information from each of the 51 HIST simulations  (see 479 

the gray curves in Figs. 1f and 2b).  480 

 481 

c. HIST fingerprint vs. single-forcing fingerprints 482 

As noted in the main text, we employ two methods to study the contributions of individual 483 

external forcings (GHG, AER, NAT, and O3) to the simulated SSTAC changes. In Method 1,  484 

SSTAC anomalies from individual realizations of the four single-forcing simulations are projected 485 

onto the common fingerprint calculated from the HIST MMM. As in the case of HIST, the MMMs 486 

of SSTAC from these four single-forcing experiments were also projected onto F(x). 487 

 In Method 2, we project SSTAC changes from the HIST MMM and from individual HIST 488 

realizations onto each of the four fingerprints estimated from the GHG, AER, O3, and NAT multi-489 

model average SSTAC changes. This yields information on the strength of each individual 490 

fingerprint in the historical all-forcing simulations, and on how the strength of the GHG, AER, O3, 491 

and NAT fingerprints evolves with increasingly longer analysis periods.  492 

We use EOF1 for the Method 2 GHG fingerprint and EOF2 for the Method 2 fingerprints 493 

from AER, O3, and NAT (see Extended Data Fig. 10). This choice was made because in the GHG 494 

simulation, EOFs 1 and 2 are clearly separated in terms of explained variance (EV), with the EV 495 

associated with GHG EOF1 a factor of 3 larger than the EV of GHG EOF2. The latter pattern 496 

largely reflects tropical internal variability associated with the El Niño-Southern Oscillation 497 

(ENSO). In contrast,  EOFs 1 and 2 are less well separated in terms of EV in the AER, O3, and 498 

NAT simulations – their EOF1 is very similar to EOF2 from the GHG simulation, while the EOF2 499 

patterns of AER, O3, and NAT appear to be dominated by extratropical forced responses. 500 

Moreover, the second principal component from AER, O3, and NAT show some remarkable 501 

signals in the temporal evolution (Extended Data Fig. 10j).  502 

SSTAC from observations and HIST runs are projected onto these four single-forcing 503 

fingerprints (Extended Data Fig. 11). For the projections onto the GHG fingerprint, all 51 model 504 

HIST realizations and three of the four observational datasets eventually exceed the 5% 505 

significance threshold. S/N levels are systematically lower for the AER, NAT, and O3 fingerprints, 506 

which are therefore not as clearly identifiable in the HIST realizations or observations as the GHG 507 

fingerprint. This provides support for a key finding from our Method 1 analysis: forcing by well-508 

mixed GHGs is the dominant factor in the identification of externally forced changes in SSTAC.  509 

We note that in Method 2, the NAT fingerprint is identifiable at the 5% level in 88% of the 510 

HIST realizations and in two of the four observed SSTAC datasets (Extended Data Fig. 11d). While 511 
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there are small changes over time in the solar and volcanic forcing over 1950 to 201439, the 512 

behavior of the first principal component of the NAT SSTAC changes (Extended Data Fig. 10i) 513 

suggests that NAT forcing is unlikely to produce a significant multi-decadal trend in SSTAC. 514 

Instead, the identification of the NAT fingerprint in the HIST SSTAC data appears to be due to the 515 

spatial similarity between certain large-scale features of the GHG and NAT fingerprints (compare 516 

Extended Data Figs. 10a,f). Thus in Method 2 (which we do not focus on in our fingerprint analysis) 517 

the statistical problem of degeneracy67 of the normalized GHG and NAT fingerprints hampers 518 

reliable assessment of the relative contributions of GHG and NAT forcing to the simulated SSTAC 519 

changes. In Method 1, however, the larger amplitude of the SSTAC response to GHG forcing 520 

(relative to NAT forcing) is preserved – which is why the HIST fingerprint can be identified in the 521 

individual GHG realizations, but not in the individual NAT realizations.  522 

The uncentered pattern correlation between GHG EOF1 and NAT EOF2 is higher than the 523 

pattern correlations between GHG EOF1 and the EOF2 patterns of other single-forcing 524 

experiments (Extended Data Table 2). This similarity may arise from major tropical volcanic 525 

eruptions in the 1950-2014 analysis period (Agung, El Chichón, and Pinatubo) and the associated 526 

shifts of the intertropical convergence zone68, which in turn could affect the latitudinal location of 527 

regions of mid-latitude increases in SSTAC.  528 

 529 

Simplified Mixed-Layer Heat Budget Analysis. 530 

Our mixed-layer heat budget model is a simplified version of the traditional mixed-layer heat 531 

budget model that takes into account only the dominant heat fluxes and mixed-layer depth 532 

affecting the temperature of the oceanic mixed layer: 533 

 534 
'(
') ~

*+,)-*.
/0!∗23∗456                 (3) 535 

The left-hand side is the ocean temperature tendency, and the right-hand side is the estimate based 536 

on net surface heat flux (Qnet), shortwave radiation flux leaving the mixed-layer base (Qb), and 537 

mixed-layer depth (MLD). These terms are functions of month, latitude and longitude and are 538 

calculated from HIST runs. The terms rho and Cp are the density and specific heat of seawater, 539 

respectively.  540 

For the changes in the annual cycle (AC) amplitude of dT/dt: 541 

 542 

!"(!"!!# ) − !"(
!""
!# ) ≈ !"( $%&#!'$(!

)*+∗-.∗/01!
) − 	!"( $%&#"'$("

)*+∗-.∗/01"
)  (4) 543 

 544 

Deleted: not shown545 
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where “1” represents the average of the period 1950-1979, and “2” represents the average of the 546 

period 1985-2014. The changes are the difference between these two 30-year periods. We also 547 

hold Qnet and MLD constant in Eq. 4 to isolate the effects due to MLD change and Qnet change: 548 

 549 

∆)*+	,--,./ = 	!"( $%&#"'$("
)*+∗-.∗/01!

) − 	!"( $%&#"'$("
)*+∗-.∗/01"

)                           (5) 550 

∆12,/	,--,./ = 	!"( $%&#!'$(!
)*+∗-.∗/01"

) − 	!"( $%&#"'$("
)*+∗-.∗/01"

)                           (6) 551 

 552 

In Eqs. 5 and 6, the Qb and Qnet terms are for the same analysis period. Results are 553 

insensitive to whether Qb is chosen from period 1 or period 2.  554 

We examine the effect of MLD change in terms of its absolute change (Eq. 7) and relative 555 

change (Eq. 8). As shown in Eq. 7, we assumed a summer MLD change to be added to all the 556 

months from the base period. In terms of relative change, we assumed MLD is assumed to shoal 557 

by 5% everywhere and in every month relative to the background value (Eq. 8).  558 

 559 

∆"#$!"##$% 	&''&() = 	+,( &'$(!)&*!
%+,∗./∗(123!4(123",$%&&'()123!,$%&&'()

) − 	+,( &'$(!)&*!
%+,∗./∗123!

)        560 

(7) 561 

 562 
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Data availability  565 

The CMIP6 historical, single-forcing, and FAFMIP simulation outputs are available on the Earth 566 

System Grid of the Program for Climate Model Diagnosis and Intercomparison (PCMDI): 567 

(https://esgf-node.llnl.gov/search/cmip6/). HadISST data are available at: 568 

https://www.metoffice.gov.uk/hadobs/hadisst. ERSST data are available at: 569 

https://www.ncei.noaa.gov/products/extended-reconstructed-sst. COBE data are available at: 570 

https://psl.noaa.gov/data/gridded/data.cobe2.html. PCMDI data are available at: 571 

https://doi.org/10.22033/ESGF/input4MIPs.16921. ERA5 data are available at: 572 

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. IAP data are available at: 573 

https://climatedataguide.ucar.edu/climate-data/ocean-temperature-analysis-and-heat-content-574 

estimate-institute-atmospheric-physics. 575 
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 761 

Fig. 1 Trends over 1950 to 2014 in the annual cycle amplitude of SST (SSTAC). a-d Trends from 762 
four observed datasets. e Trends from the multi-model mean (MMM) of CMIP6 HIST simulations. 763 
Regions where the model-average climatological sea-ice coverage is larger than 10% are masked 764 
in gray. f Zonal-mean trends in the amplitude of the SSTAC estimated from observations and 765 
models. The gray curves are from 51 individual HIST simulations. The domain over which all 766 
calculations are performed is restricted to 60˚S-60˚N to minimize the impact of sea ice changes 767 
on SSTAC. 768 
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 769 

Fig. 2 SSTAC fingerprint and signal-to-noise (S/N) analysis. a Time-invariant HIST MMM 770 
fingerprint pattern. The fingerprint is defined here as the EOF1 of the MMM SSTAC changes over 771 
1950-2014. b Timescale-dependent S/N ratios for trends calculated from signal and noise time 772 
series for period of 1950-2014. The HIST MMM result is the black curve; results from individual 773 
HIST runs are the gray curves. The colored lines denote S/N ratios estimated by searching for the 774 
HIST MMM SSTAC fingerprint in four different observed SST datasets. The horizontal purple line 775 
is the 5% significance level (see Methods). c Detection time relative to the start year for the 776 
model-predicted SSTAC fingerprint from the HIST experiment. Fingerprint detection occurs when 777 
the S/N ratios for an L-year analysis period first exceed the stipulated significance level and then 778 
remain above it for all larger values of L. The y-axis shows the value of L that satisfies this 779 
condition. Results are for four different assumed analysis start years (1950, 1960, 1970, and 780 
1980). In the box-and-whisker plots, the horizontal bar is the median value, the box size 781 
represents the interquartile range, and the whiskers span the full range of detection times from 782 
all 51 individual HIST realizations. Black squares are the detection times calculated with  the 783 
MMM. Colored circles are detection times estimated by searching for the model-predicted SSTAC 784 
fingerprint in four different observed SST datasets (see panel b legend).  785 
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 786 

Fig. 3 S/N ratios and detection times from single-forcing runs and their linear combinations. a 787 
S/N ratios for the signal trends obtained by a fingerprint analysis involving the patterns of SSTAC 788 
change estimated from the MMM of different experiments. Results are for Method 1 (see 789 
Methods). For O3, the MMM is calculated from the 4 models for which O3 results were available. 790 
The MMM in the remaining cases is based on a larger set of 10 models. ALL represents the linear 791 
combination of S/N ratios from GHG, AER, O3 and NAT. The horizontal gray line is the 5% 792 
significance level. b The detection times of the HIST fingerprint estimated from HIST, GHG, and 793 
linear combinations of SSTAC changes from GHG, AER, and O3. The analysis period is 1950-2014.   794 
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 795 
Fig. 4 Zonal-mean trends over 1950 to 2014 in monthly-mean SST, zonal wind stress, and MLD. 796 
a The ensemble mean of four different observed datasets. b-d The MMM of the HIST, GHG, and 797 
O3 simulations. All results are departures from annual-mean trends. Colored shading denotes 798 
monthly SST trends, gray contours are MLD trends plotted with a 0.75 m decade-1 interval, and 799 
colored contours are zonal wind stress trends plotted with a 7.2 x 10-4 Pa decade-1 interval (with 800 
positive changes shown in magenta). The zero contours are omitted. We show the MLD changes 801 
in the NH only and the wind stress changes in the SH only. Additional information about simulated 802 
and observed MLD and wind changes (including observational data sources) is given in Extended 803 
Data Fig. 9. 804 
  805 
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 806 
Fig. 5 Zonal-mean SSTAC changes from FAFMIP perturbation experiments relative to piControl. 807 
a-c Results from FAF-all, FAF-stress, and FAF-heat, respectively. For each model, the piControl 808 
results are averaged over the full length of the simulation. Perturbation results are averaged over 809 
years 31 to 70. The gray curves are from individual models and the black curves are the MMM 810 
results.  811 
  812 
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 813 
Fig. 6 Annual cycle amplitude changes between 1950-1979 and 1985-2014. a-b Changes of the 814 
annual cycle of SST tendency from CMIP6 HIST MMM and the estimate based on the mixed-layer 815 
heat budget model. c-d Contributions of the changing MLD and heat flux (Qnet-Qb) to the 816 
changes of the annual cycle of SST tendency, respectively.  817 
  818 
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Extended Data: 819 

 820 
 821 
Extended Data Fig. 1. Spatial patterns and zonal mean of the climatology of SST annual cycle 822 
amplitude (SSTAC) from four different observational products and from the multi-model mean 823 
(MMM) of the HIST simulations. a Average of four different observed SST datasets. b HIST MMM. 824 
c Zonal-mean climatology of the HIST MMM and individual observed SST datasets. d Monthly 825 
climatology of SST averaged between 30˚N-45˚N from observations (dashed curves) and the fits 826 
of the first harmonic obtained through Fourier analysis (solid curves). Results are calculated over 827 
1950 to 2014.  828 
  829 
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 830 
 831 
Extended Data Fig. 2. Leading EOF of SSTAC estimated from the HIST MMM. a-d Results for four 832 
different analysis periods. The explained variances are shown in brackets.  833 
  834 
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 835 
Extended Data Fig. 3. S/N ratios from two selected CMIP6 models. Results are as in Fig. 2b, but 836 
the “model only” S/N ratios here are from two models only: CNRM-CM6-1 and MRI-ESM2-0.  837 
Individual realizations from each model can have appreciable differences in their S/N behavior.  838 
  839 
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 840 
Extended Data Fig. 4. Scatterplot between the climate sensitivity of the 10 CMIP6 models 841 
analyzed here and the final value of the S/N ratio for the 65-year analysis period from 1950 to 842 
2014. The effective climate sensitivities are based on the results from ref 40.  843 

 844 
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 845 
 846 
Extended Data Fig. 5. S/N ratios from the GHG, AER, O3, and NAT single-forcing runs. Results 847 
are based on use of the same HIST fingerprint, which is searched for in the SSTAC changes of each 848 
single-forcing run (Method 1). Each panel shows the MMM result (the black curve) and results 849 
from individual realizations (the gray curves). GHG, AER, and NAT results are from 10 models with 850 
a total of 51 realizations; only four models with a total of 26 realizations were available for 851 
calculating O3 S/N ratios. The horizontal purple line is the 5% significance level. For further details 852 
refer to Methods. 853 
  854 
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 855 
Extended Data Fig. 6. Zonal-mean monthly-mean SST trends over 1950 to 2014. a The ensemble 856 
mean of four observed datasets. b-d The MMM of the HIST, GHG, and O3 simulations. In contrast 857 
to Fig. 4, the trends are not expressed as departures from annual-mean trends.  858 
  859 
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 860 
 861 
Extended Data Fig. 7. Zonal-mean monthly-mean SST trends over 1950 to 2014 in four observed 862 
datasets. The results are expressed as departures from annual-mean trends. 863 
  864 
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 865 
 866 
Extended Data Fig. 8. Changes of annual cycle amplitude of SST tendency between 1950-1979 867 
and 1985-2014 due to MLD changes. a Changes of annual cycle when it is assumed to have a 868 
consistent summer MLD change for all 12 months (see Eq. 7). b Changes of annual cycle when 869 
MLD is assumed to shoal by 5% at every location and in every month relative to the background 870 
monthly value (see Eq. 8).  871 
 872 
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 873 
Extended Data Fig. 9. Zonal-mean monthly-mean trends over 1950 to 2014 in MLD and zonal 874 
wind stress. a-b MLD trends from the IAP product and the MMM of the HIST simulations, 875 
respectively. Gray contours  highlight the large MLD trends of -6 and -8 m/decade. c-d Zonal wind 876 
stress trends from ERA5 and the MMM of the HIST simulations. 877 
 878 
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 879 

 880 
Extended Data Fig. 10. First two EOFs of SSTAC anomalies calculated from the MMM of the GHG, 881 
AER, NAT, and O3 single-forcing experiments. a-h Results for EOF1 and EOF2 are in the left and 882 
right columns, respectively. The explained variances are shown in brackets. i-j Principal 883 
components for EOF1 and EOF2 from four single-forcing experiments. All calculations are over 884 
1950-2014. 885 
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Deleted:  887 
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 888 
 889 
Extended Data Fig. 11. S/N ratios of HIST runs and observations obtained using the fingerprints 890 
estimated from single-forcing experiments (GHG, AER, O3, and NAT). In Method 2, the SSTAC 891 
changes in the individual single-forcing runs are projected onto their respective fingerprints. The 892 
GHG fingerprint is the EOF1 pattern from the left column of Extended Data Fig. 10. Because the 893 
leading EOFs of AER, O3, and NAT simulations capture the effect of ENSO variability on SSTAC, the 894 
fingerprints for AER, O3 and NAT are the EOF2 patterns from the right column of Extended Data 895 
Fig. 10. The horizontal purple line is the 5% significance level. 896 
  897 
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Extended Data Table 1. CMIP6 models and the number of model realizations used in this study. The left 898 
column shows the 10 CMIP6 models for which HIST, GHG, AER, and NAT runs were available. For O3, 899 
results were available from four models only (right column). The middle and right columns show the 900 
number of realizations available for each model. The identifiers of these realizations (r1, etc.) are  901 
indicated in brackets.  902 

Model names 
Number of realizations used in HIST,  

GHG, AER, and NAT 
Number of realizations 

used in O3 

ACCESS-CM2             3 (r1-r3) -- 

ACCESS-ESM1-5             3 (r1-r3) -- 

CanESM5              15 (r1-15) 10 (r1-r10) 

CESM2                     2 (r1 and r3) -- 

CNRM-CM6-1              3 (r1-r3) -- 

HadGEM3-GC31-LL              4 (r1-r4) -- 

IPSL-CM6A-LR              10 (r1-r3) 10 (r1-r10) 

MIRO6              3 (r1-r3) 3 (r1-r3) 

MRI-ESM2-0              5 (r1-r3) 3 (r1, r3, and r5) 

NorESM2-LM              3 (r1-r3) -- 

 903 
 904 
Extended Data Table 2. Uncentered pattern correlations between fingerprints from different 905 
experiments. For HIST and GHG, the fingerprint is obtained from the first EOF mode. For AER, O3, and 906 
NAT, the second EOF mode is used as the fingerprint (see Extended Data Fig. 10). 907 
 908 

Pattern 
Correlation HIST GHG AER O3                    NAT 

HIST 1     
GHG 0.87 1    
AER 0.20 0.45 1   
O3 0.52 0.34 -0.06 1  

NAT 0.75 0.68 0.31 0.41 1 
 909 


